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We consider inference in the scalar diffusion model dXt = b(Xt )dt + σ(Xt )dWt with discrete data
(Xj�n

)0≤j≤n, n → ∞, �n → 0 and periodic coefficients. For σ given, we prove a general theorem detail-

ing conditions under which Bayesian posteriors will contract in L2-distance around the true drift function
b0 at the frequentist minimax rate (up to logarithmic factors) over Besov smoothness classes. We exhibit
natural nonparametric priors which satisfy our conditions. Our results show that the Bayesian method adapts
both to an unknown sampling regime and to unknown smoothness.
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1. Introduction

Consider a scalar diffusion process (Xt )t≥0 starting at some X0 and evolving according to the
stochastic differential equation

dXt = b(Xt )dt + σ(Xt )dWt,

where Wt is a standard Brownian motion. It is of considerable interest to estimate the parameters
b and σ , which are arbitrary functions (until we place further assumptions on their form), so
that the model is naturally nonparametric. As we will explain in Section 2, the problems of
estimating σ and b can essentially be decoupled in the setting to be considered here, so in this
paper we consider estimation of the drift function b when the diffusion coefficient σ is assumed
to be given.

It is realistic to assume that we do not observe the full trajectory (Xt )t≤T but rather the pro-
cess sampled at discrete time intervals (Xk�)k≤n. The estimation problem for b and σ has been
studied extensively and minimax rates have been attained in two sampling frameworks: low-
frequency, where � is fixed and asymptotics are taken as n → ∞ (see Gobet–Hoffmann–Reiss
[17]), and high-frequency, where asymptotics are taken as n → ∞ and � = �n → 0, typically
assuming also that n�2 → 0 and n� → ∞ (see Hoffmann [19], Comte et al. [9]). See, for ex-
ample, [10,18,27,33] for more papers addressing nonparametric estimation for diffusions.

For typical frequentist methods, one must know which sampling regime the data is drawn
from. In particular, the low-frequency estimator from [17] is consistent in the high-frequency
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setting but numerical simulations suggest it does not attain the minimax rate (see the discussion
in Chorowski [8]), while the high-frequency estimators of [19] and [9] are not even consistent
with low-frequency data. The only previous result known to the author regarding adaptation to
the sampling regime in the nonparametric setting is found in [8], where Chorowski is able to
estimate the diffusion coefficient σ but not the drift, and obtains the minimax rate when σ has 1
derivative but not for smoother diffusion coefficients.

For this paper, we consider estimation of the parameters in a diffusion model from a nonpara-
metric Bayesian perspective. Bayesian methods for diffusion estimation can be implemented in
practice (e.g., see Papaspiliopoulos et al. [25]). For Bayesian estimation, the statistician need
only specify a prior, and for estimating diffusions from discrete samples the prior need not ref-
erence the sampling regime, so Bayesian methodology provides a natural candidate for a unified
approach to the high- and low-frequency settings. Our results imply that Bayesian methods can
adapt both to the sampling regime and also to unknown smoothness of the drift function (see the
remarks after Proposition 4 and Proposition 2 respectively for details). These results are proved
under the frequentist assumption of a fixed true parameter, so this paper belongs to the field of
frequentist analysis of Bayesian procedures. See, for example, Ghosal and van der Vaart [13] for
an introduction to this field.

It has previously been shown that in the low-frequency setting we have a posterior contraction
rate, guaranteeing that posteriors corresponding to reasonable priors concentrate their mass on
neighbourhoods of the true parameter shrinking at the fastest possible rate (up to log factors) –
see Nickl and Söhl [24]. To complete a proof that such posteriors contract at a rate adapting to
the sampling regime, it remains to prove a corresponding contraction rate in the high-frequency
setting. This forms the key contribution of the current paper: we prove that a large class of
“reasonable” priors will exhibit posterior contraction at the optimal rate (up to log factors) in
L2-distance. This in turn guarantees that point estimators based on the posterior will achieve
the frequentist minimax optimal rate (see the remark after Theorem 1) in both high- and low-
frequency regimes.

The broad structure of the proof is inspired by that in [24]: we use the testing approach of
Ghosal–Ghosh–van der Vaart [11], coupled with the insight of Giné and Nickl [15] that one may
prove the existence of the required tests by finding an estimator with good enough concentration
around the true parameter. The main ingredients here are:

• A concentration inequality for a (frequentist) estimator, from which we construct tests of
the true b0 against a set of suitable (sufficiently separated) alternatives. See Section 4.

• A small ball result, to relate the L2-distance to the information-theoretic Kullback–Leibler
“distance”. See Section 5.

Though the structure reflects that of [24] the details are very different. Estimators for the low-
frequency setting are typically based on the mixing properties of (Xk�) viewed as a Markov
chain and the spectral structure of its transition matrix (see Gobet–Hoffmann–Reiss [17]) and
fail to take full advantage of the local information one sees when � → 0. Here we instead use
an estimator introduced in Comte et al. [9] which uses the assumption � → 0 to view estimation
of b as a regression problem. To prove this estimator concentrates depends on a key insight
of this paper: the Markov chain concentration results used in the low-frequency setting (which
give worse bounds as � → 0) must be supplemented by Hölder type continuity results, which
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crucially rely on the assumption � → 0. We further supplement by martingale concentration
results.

Similarly, the small ball result in the low-frequency setting depends on Markov chain mixing.
Here, we instead adapt the approach of van der Meulen and van Zanten [34]. They demonstrate
that the Kullback–Leibler divergence in the discrete setting can be controlled by the correspond-
ing divergence in the continuous data model; a key new result of the current paper is that in the
high-frequency setting this control extends to give a bound on the variance of the log likelihood
ratio.

As described above, a key attraction of the Bayesian method is that it allows the statistician
to approach the low- and high-frequency regimes in a unified way. Another attraction is that
it naturally suggests uncertainty quantification via posterior credible sets. The contraction rate
theorems proved in this paper and [24] are not by themselves enough to prove that credible sets
behave as advertised. For that one may aim for a nonparametric Bernstein–von Mises result –
see, for example, Castillo and Nickl [6,7]. The posterior contraction rate proved here constitutes
a key first step towards a proof of a Bernstein–von Mises result for the high-frequency sampled
diffusion model, since it allows one to localise the posterior around the true parameter, as in the
proofs in Nickl [23] for a non-linear inverse problem comparable to the problem here.

2. Framework and assumptions

The notation introduced throughout the paper is gathered in Appendix B.
We work with a scalar diffusion process (Xt )t≥0 starting at some X0 and evolving according

to the stochastic differential equation

dXt = b(Xt )dt + σ(Xt )dWt, (1)

for Wt a standard Brownian motion. The parameters b and σ are assumed to be 1-periodic and
we also assume the following.

Assumption 1. σ ∈ C2
per([0,1]) is given. Continuity guarantees the existence of an upper bound

σU < ∞ and we further assume the existence of a lower bound σL > 0 so that σL ≤ σ(x) ≤ σU

for all x ∈ [0,1]. Here C2
per([0,1]) denotes C2([0,1]) functions with periodic boundary condi-

tions (i.e. σ(0) = σ(1), σ ′(0) = σ ′(1) and σ ′′(0) = σ ′′(1)).

Assumption 2. b is continuously differentiable with given norm bound. Precisely, we assume
b ∈ �, where

� = �(K0) = {
f ∈ C1

per

([0,1]) : ‖f ‖C1
per

= ‖f ‖∞ + ∥∥f ′∥∥∞ ≤ K0
}

for some arbitrary, but known, constant K0 (‖ · ‖∞ denotes the supremum norm, ‖f ‖∞ =
supx∈[0,1] |f (x)|). Note in particular that K0 upper bounds ‖b‖∞ and that b is Lipschitz con-
tinuous with constant at most K0.



Posterior contraction for high-frequency sampled diffusions 2699

� is the maximal set over which we prove contraction, and we will in general make the
stronger assumption that in fact b ∈ �s(A0), where

�s(A0) := {
f ∈ � : ‖f ‖Bs

2,∞ ≤ A0 < ∞}
, A0 > 0, s ≥ 1

with Bs
p,q denoting a periodic Besov space and ‖ · ‖Bs

p,q
denoting the associated norm: see Sec-

tion 2.1 for a definition of the periodic Besov spaces we use (readers unfamiliar with Besov
spaces may substitute the L2-Sobolev space Hs = Bs

2,2 ⊆ Bs
2,∞ for Bs

2,∞ and only mildly
weaken the results). We generally assume the regularity index s is unknown. Our results will
therefore aim to be adaptive, at least in the smoothness index (to be fully adaptive we would
need to adapt to K0 also).

Under Assumptions 1 and 2, there is a unique strong solution to (1) (see, e.g., Bass [3], The-
orem 24.3). Moreover, this solution is also weakly unique (= unique in law) and satisfies the
Markov property (see [3], Proposition 25.2 and Theorem 39.2). We denote by P

(x)
b the law (on

the cylindrical σ -algebra of C([0,∞])) of the unique solution of (1) started from X0 = x.
We consider “high-frequency data” (Xk�n)

n
k=0 sampled from this solution, where asymptotics

are taken as n → ∞, with �n → 0 and n�n → ∞. We will suppress the subscript and simply
write � for �n. Throughout we will write X(n) = (X0, . . . ,Xn�) as shorthand for our data and
similarly we write x(n) = (x0, . . . , xn�). We will denote by I the set {K0, σL,σU } so that, for
example, C(I) will be a constant depending on these parameters.

Beyond guaranteeing existence and uniqueness of a solution, our assumptions also guarantee
the existence of transition densities for the discretely sampled process (see Gihman and Skorohod
[14], Theorem 13.2 for an explicit formula for the transition densities). Morever, there also exists
an invariant distribution μb, with a density πb , for the periodised process Ẋ = X mod 1. Defining
Ib(x) = ∫ x

0
2b

σ 2 (y)dy for x ∈ [0,1], the density is

πb(x) = eIb(x)

Hbσ 2(x)

(
eIb(1)

∫ 1

x

e−Ib(y) dy +
∫ x

0
e−Ib(y) dy

)
, x ∈ [0,1],

Hb =
∫ 1

0

eIb(x)

σ 2(x)

(
eIb(1)

∫ 1

x

e−Ib(y) dy +
∫ x

0
e−Ib (y)

)
dy dx,

(see Bhattacharya et al. [4], equations (2.15) to (2.17); note we have chosen a different normali-
sation constant so the expressions appear slightly different).

Observe that πb is bounded uniformly away from zero and infinity, that is, there exist constants
0 < πL,πU < ∞ depending only on I so that for any b ∈ � and any x ∈ [0,1] we have πL ≤
πb(x) ≤ πU . Precisely, we see that σ−2

U e−6K0σ
−2
L ≤ Hb ≤ σ−2

L e6K0σ
−2
L , and we deduce we can

take πL = π−1
U = σ 2

Lσ−2
U e−12K0σ

−2
L .

We assume that X0 ∈ [0,1) and that X0 = Ẋ0 follows this invariant distribution.

Assumption 3. X0 ∼ μb.

We will write Pb for the law of the full process X under Assumptions 1–3, and we will
write Eb for expectation according to this law. Note μb is not invariant for Pb , but nevertheless
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Eb(f (Xt )) = Eb(f (X0)) for any 1-periodic function f (e.g., see the proof of Theorem 6). Since
we will be estimating the 1-periodic function b, the assumption that X0 ∈ [0,1) is unimportant.

Finally, we need to assume that � → 0 at a fast enough rate.

Assumption 4. n�2 log(1/�) ≤ L0 for some (unknown) constant L0. Since we already assume
n� → ∞, this new assumption is equivalent to n�2 log(n) ≤ L′

0 for some constant L′
0.

Throughout we make the frequentist assumption that the data is generated according to some
fixed true parameter denoted b0. We use μ0 as shorthand for μb0 , and similarly for π0 and so on.
Where context allows, we write μ for μb with a generic drift b.

Remarks (Comments on assumptions). Periodicity assumption. We assume b and σ are peri-
odic so that we need only estimate b on [0,1]. One could alternatively assume b satisfies some
growth condition ensuring recurrence, then estimate the restriction of b to [0,1], as in Comte et
al. [9] and van der Meulen and van Zanten [34]. The proofs in this paper work in this alternative
framework with minor technical changes, provided one assumes the behaviour of b outside [0,1]
can be exactly matched by a draw from the prior.

Assuming that σ ∈ C2
per is given. If we observe continuous data (Xt )t≤T then σ is known

exactly (at least at any point visited by the process) via the expression for the quadratic variation
〈X〉t = ∫ t

0 σ 2(Xs)ds. With high-frequency data we cannot perfectly reconstruct the diffusion
coefficient from the data, but we can estimate it at a much faster rate than the drift. When b and
σ are both assumed unknown, if b is s-smooth and σ is s′-smooth, the minimax errors for b

and σ respectively scale as (n�)−s/(1+2s) and n−s′/(1+2s′), as can be shown by slightly adapting
Theorems 5 and 6 from Hoffmann [19] so that they apply in the periodic setting we use here.
Since we assume that n�2 → 0, it follows that n� ≤ n1/2 for large n, hence we can estimate σ

at a faster rate than b regardless of their relative smoothnesses.
Further, note that the problems of estimating b and σ in the high-frequency setting are essen-

tially independent. For example, the smoothness of σ does not affect the rate for estimating b, and
vice-versa – see [19]. We are therefore not substantially simplifying the problem of estimating b

through the assumption that σ is given.
The assumption that σ 2 is twice differentiable is a typical assumption made to ensure transition

densities exist.
Assuming a known bound on ‖b‖C1

per
. The assumption that b has one derivative is a typical

assumption made to ensure that the diffusion equation (1) has a strong solution and that this
solution has an invariant density and transition densities. The assumption of a known bound for
the C1

per-norm of the function is undesirable, but needed for the proofs, in particular to ensure the
existence of a uniform lower bound πL on the invariant densities. This lower bound is essential
for the Markov chain mixing results as its reciprocal controls the mixing time in Theorem 6. It
is plausible that needing this assumption is inherent to the problem rather than an artefact of the
proofs: possible methods to bypass the Markov chain mixing arguments, such as the martingale
approach of [9], Lemma 1, also rely on such a uniform lower bound. One could nonetheless hope
that our results apply to an unbounded prior placing sufficient weight on �(Kn) for some slowly
growing sequence Kn, but the lower bound πL scales unfavourably as e−Kn , which rules out this
approach.
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These boundedness assumptions in principle exclude Gaussian priors, which are computation-
ally attractive. In practice, one could choose a very large value for K0 and approximate Gaussian
priors arbitrarily well using truncated Gaussian priors.

Assuming X0 ∼ μb . It can be shown (see the proof of Theorem 6) that the law of Ẋt converges
to μb at exponential rate from any starting distribution, so assuming X0 ∼ μb is not restrictive
(as mentioned, our fixing X0 ∈ [0,1) is arbitrary but unimportant).

Assuming n�2 log(1/�) ≤ L0. It is typical in the high-frequency setting to assume n�2 → 0
(indeed the minimax rates in [19] are only proved under this assumption) but for technical reasons
in the concentration section (Section 4.2) we need the above.

2.1. Spaces of approximation

We will throughout depend on a family {Sm : m ∈N∪ {0}} of function spaces. For our purposes,
we will take the Sm to be periodised Meyer-type wavelet spaces

Sm = span
({

ψlk : 0 ≤ k < 2l ,0 ≤ l < m
} ∪ {1}).

We will denote ψ−1,0 ≡ 1 for convenience. Denote by 〈·, ·〉 the L2([0,1]) inner product and by
‖ · ‖2 the L2-norm, i.e. 〈f,g〉 = ∫ 1

0 f (x)g(x)dx and ‖f ‖2 = 〈f,f 〉1/2 for f,g ∈ L2([0,1]). One
definition of the (periodic) Besov norm ‖f ‖Bs

2,∞ is, for flk := 〈f,ψlk〉,

‖f ‖Bs
2,∞ = |f−1,0| + sup

l≥0
2ls

(
2l−1∑
k=0

f 2
lk

)1/2

, (2)

with Bs
2,∞ defined as those periodic f ∈ L2([0,1]) for which this norm is finite. See Giné and

Nickl [16] Sections 4.2.3 and 4.3.4 for a construction of periodised Meyer-type wavelets and a
proof that this wavelet norm characterisation agrees with other possible definitions of the desired
Besov space.

Note that the orthonormality of the wavelet basis means ‖f ‖2
2 = ∑

l,k f 2
lk . Thus it follows from

the above definition of the Besov norm that for any b ∈ Bs
2,∞([0,1]) we have

‖πmb − b‖2 ≤ K‖b‖Bs
2,∞2−ms, (3)

for all m, for some constant K = K(s), where πm is the L2-orthogonal projection map onto Sm.

Remarks. Uniform sup-norm convergence of the wavelet series. The wavelet projections πmb

converge to b in supremum norm, uniformly across b ∈ �. That is,

sup
b∈�

‖πmb − b‖∞ → 0 as m → ∞. (4)

This follows from Proposition 4.3.24 in [16] since K0 uniformly bounds ‖b‖C1
per

for b ∈ �.

Boundary regularity. Functions in the periodic Besov space here denoted Bs
2,∞ are s regular

at the boundary, in the sense that their weak derivatives of order s are 1-periodic.
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Alternative approximation spaces. The key property we need for our approximation spaces is
that (3) and (4) hold. Of these, only the first is needed of our spaces for our main contraction
result Theorem 1. A corresponding inequality holds for many other function spaces if we replace
2m by Dm = dim(Sm): for example, for Sm the set of trigonometric polynomials of degree at most
m, or (provided s ≤ smax for some given smax ∈ R) for Sm generated by periodised Daubechies
wavelets. Priors built using these other spaces will achieve the same posterior contraction rate.

3. Main contraction theorem

Let � be a (prior) probability distribution on some σ -algebra S of subsets of �. Given b ∼ �

assume that (Xt : t ≥ 0) follows the law Pb as described in Section 2. Write pb(�,x, y) for the
transition densities

pb(�,x, y)dy = Pb(X� ∈ dy | X0 = x),

and recall we use p0 as shorthand for pb0 . Assume that the mapping (b,�,x, y) �→ pb(�,x, y)

is jointly measurable with respect to the σ -algebras S and BR, where BR is the Borel σ -algebra
on R. Then it can be shown by standard arguments that the Bayesian posterior distribution given
the data is

b | X(n) ∼ πb(X0)
∏n

i=1 pb(�,X(i−1)�,Xi�)d�(b)∫
�

πb(X0)
∏n

i=1 pb(�,X(i−1)�,Xi�)d�(b)
≡ p

(n)
b (X(n))d�(b)∫

�
p

(n)
b (X(n))d�(b)

,

where we introduce the shorthand p
(n)
b (x(n)) = πb(x0)

∏n
i=1 pb(�,x(i−1)�, xi�) for the joint

probability density of the data (X0, . . . ,Xn�).
A main result of this paper is the following. Theorem 1A is designed to apply to adaptive sieve

priors, while Theorem 1B is designed for use when the smoothness of the parameter b is known.
See Section 3.1 for explicit examples of this result in use and see Section 6 for the proof.

Theorem 1. Consider data X(n) = (Xk�)0≤k≤n sampled from a solution X to (1) under Assump-
tions 1–4. Let the true parameter be b0. Assume the appropriate sets below are measurable with
respect to the σ -algebra S .

A. Let � be a sieve prior on �, i.e. let � = ∑∞
m=1 h(m)�m, where �m(Sm ∩ �) = 1, for

Sm a periodic Meyer-type wavelet space of resolution m as described in Section 2.1, and h

some probability mass function on N. Suppose we have, for all ε > 0 and m ∈ N, and for
some constants ζ,β1, β2,B1,B2 > 0,
(i) B1e

−β1Dm ≤ h(m) ≤ B2e
−β2Dm ,

(ii) �m({b ∈ Sm : ‖b − πmb0‖2 ≤ ε}) ≥ (εζ )Dm ,
where πm is the L2-orthogonal projection map onto Sm and Dm = dim(Sm) = 2m. Then
for some constant M = M(A0, s,I,L0, β1, β2,B1,B2, ζ ) we have, for any b0 ∈ �s(A0),

�
({

b ∈ � : ‖b − b0‖2 ≤ M(n�)−s/(1+2s) log(n�)1/2} | X(n)
) → 1

in probability under the law Pb0 of X.
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B. Suppose now b0 ∈ �s(A0) where s ≥ 1 and A0 > 0 are both known. Let jn ∈ N be such
that Djn ∼ (n�)1/(1+2s), that is, for some positive constants L1, L2 and all n ∈ N let
L1(n�)1/(1+2s) ≤ Djn ≤ L2(n�)1/(1+2s). Let (�(n))n∈N be a sequence of priors satisfying,
for εn = (n�)−s/(1+2s) log(n�)1/2, and for some constant ζ > 0,
(I) �(n)(�s(A0) ∩ �) = 1 for all n,

(II) �(n)({b ∈ � : ‖πjnb − πjnb0‖2 ≤ εn}) ≥ (εnζ )Djn .
Then we achieve the same rate of contraction; that is, for some M = M(A0, s,I,L0, ζ ),

�(n)
({

b ∈ � : ‖b − b0‖2 ≤ M(n�)−s/(1+2s) log(n�)1/2} | X(n)
) → 1

in probability under the law Pb0 of X.

Remark (Optimality). The minimax lower bounds of Hoffmann [19] do not strictly apply be-
cause we have assumed σ is given. Nevertheless, the minimax rate in this model should be
(n�)−s/(1+2s). This follows by adapting arguments for the continuous data case from Kutoyants
[21], Section 4.5 to apply to the periodic model and observing that with high-frequency data we
cannot outperform continuous data.

Since a contraction rate of εn guarantees the existence of an estimator converging to the true
parameter at rate εn (for example, the centre of the smallest posterior ball of mass at least 1/2 –
see Theorem 8.7 in Ghosal and van der Vaart [13]) the rates attained in Theorem 1 are optimal,
up to the log factors.

3.1. Explicit examples of priors

Our results guarantee that the following priors will exhibit posterior contraction. Throughout this
section we continue to adopt Assumptions 1–4, and for technical convenience, we add an extra
assumption on b0. Precisely, recalling that {ψlk} form a family of Meyer-type wavelets as in
Section 2.1 and ψ−1,0 denotes the constant function 1, we assume the following.

Assumption 5. For a sequence (τl)l≥−1 to be specified and a constant B , we assume

b0 =
∑
l≥−1

0≤k<2l

τlβlkψlk, with |βlk| ≤ B for all l ≥ −1 and all 0 ≤ k < 2l . (5)

The explicit priors for which we prove contraction will be random wavelet series priors. Let

ulk
iid∼ q , where q is a density on R satisfying

q(x) ≥ ζ for |x| ≤ B, and q(x) = 0 for |x| > B + 1,

where ζ > 0 is a constant and B > 0 is the constant from Assumption 5 (for example, one might
choose q to be the density of a Unif[0,B] random variable or a truncated Gaussian density). We
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define a prior �m on Sm as the law associated to a random wavelet series

b(x) =
∑

−1≤l<m

0≤k<2l

τlulkψlk(x), x ∈ [0,1], (6)

for τl as in Assumption 5. We give three examples of priors built from these �m.

Example 1 (Basic sieve prior). Let τ−1 = τ0 = 1 and let τl = 2−3l/2l−2 for l ≥ 1. Let h be a
probability distribution on N as described in Theorem 1A, for example h(m) = γ e−2m

, where γ

is a normalising constant. Let � = ∑∞
m=1 h(m)�m where �m is as above.

Proposition 2. The preceding prior meets the conditions of Theorem 1A for any b0 satisfy-
ing Assumption 5 with the same τl used to define the prior, and for an appropriate constant
K0. Thus, if also b0 ∈ �s(A0) for some constant A0, then for some constant M , we have
�({b ∈ � : ‖b − b0‖2 ≤ M(n�)−s/(1+2s) log(n�)1/2} | X(n)) → 1, in Pb0 -probability.

The proof can be found in Section 6.

Remark (Adaptive estimation). If we assume b0 ∈ �smin(A0) for some smin > 3/2, then As-
sumption 5 automatically holds with τl as in Example 1 for some constant B = B(smin,A0), as
can be seen from the wavelet characterisation (2). Thus, in contrast to the low-frequency results
of [24], the above prior adapts to unknown s in the range smin ≤ s < ∞.

When s > 1 is known, we fix the rate of decay of wavelet coefficients by hand to ensure a
draw from the prior lies in �s(A0), rather than relying on the hyperparameter to choose the
right resolution of wavelet space. We demonstrate with the following examples. The proofs of
Propositions 3 and 4, given in the supplement (Abraham [1]), mimic that of Proposition 2 but
rely on Theorem 1B in place of Theorem 1A.

Example 2 (Known smoothness prior). Let τ−1 = 1 and let τl = 2−l(s+1/2) for l ≥ 0. Let
L̄n ∈ N ∪ {∞}. Define a sequence of priors �(n) = �L̄n

for b (we can take L̄n = ∞ to have a

genuine prior, but a sequence of priors will also work provided L̄n → ∞ at a fast enough rate).

Proposition 3. Assume L̄n/(n�)1/(1+2s) is bounded away from zero. Then for any s > 1, the
preceding sequence of priors meets the conditions of Theorem 1B for any b0 satisfying As-
sumption 5 with the same τl used to define the prior, and for an appropriate constant K0.
Thus, �(n)({b ∈ � : ‖b − b0‖2 ≤ M(n�)−s/(1+2s) log(n�)1/2} | X(n)) → 1 in Pb0 -probability,
for some constant M .

Remark. Assumption 5 with τl = 2−l(s+1/2) in fact forces b0 ∈ Bs∞,∞ � Bs
2,∞ with fixed norm

bound. Restricting to this smaller set does not change the minimax rate, as can be seen from the
fact that the functions by which Hoffmann perturbs in the lower bound proofs in [19] lie in the
smaller class addressed here. In principle, one could weaken this assumption by taking τl = 2−ls

and taking the prior �(n) to be the law of b ∼ �L̄n
conditional on b ∈ �s(A0).
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Example 3 (Prior on the invariant density). In some applications it may be more natural to
place a prior on the invariant density and only implicitly model the drift function. With minor
adjustments, Theorem 1B can still be applied to such priors. We outline the necessary adjust-
ments.

(i) b is not identifiable from πb and σ 2. We therefore introduce the identifiability constraint
Ib(1) = 0. We could fix Ib(1) as any positive constant and reduce to the case Ib(1) = 0
by a translation, so we choose Ib(1) = 0 for simplicity (this assumption is standard in the
periodic model: for example, see van Waaij and van Zanten [35]). With this restriction, we

have πb(x) = eIb(x)

Gbσ
2(x)

for a normalising constant Gb , so that b = ((σ 2)′ +σ 2(logπb)
′)/2.

(ii) In place of Assumption 5, we need a similar assumption but for H0 := logπb0 . Precisely,
we assume

H0 =
∑
l≥−1

0≤k<2l

τlhlkψlk, with |hlk| ≤ B for all l ≥ −1 and all 0 ≤ k < 2l , (7)

for τ−1 = τ0 = 1 and τl = 2−l(s+3/2)l−2 for l ≥ 1, for some known constant B , and where
s ≥ 1 is assumed known.

(iii) Induce priors on b = ((σ 2)′ + σ 2H ′)/2 by putting the priors �(n) = �L̄n
on H , where

L̄n is as in Proposition 3.
(iv) To ensure b ∈ �s(A0) we place further restrictions on σ ; for example, we could assume

σ 2 is smooth. More tightly, it is sufficient to assume (in addition to Assumption 1) that
σ 2 ∈ �s+1(A1) and ‖σ 2‖Cs

per
≤ A1, where Cs

per is the Hölder norm, for some A1 > 0.
These conditions on σ can be bypassed with a more careful statement of Theorem 1B
and a more careful treatment of the bias.

Proposition 4. Make changes (i)–(iv) as listed above. Then, for some constant M , we have
�(n)({b ∈ � : ‖b − b0‖2 ≤ M(n�)−s/(1+2s) log(n�)1/2} | X(n)) → 1 in Pb0 -probability.

Remarks. Minimax rates. The assumption (7) restricts b0 beyond simply lying in �s(A0). As
with Nickl and Söhl [24], Remark 5, this further restriction does not change the minimax rates,
except for a log factor induced by the weights l−2.

Adaptation to sampling regime. The prior of Proposition 4 is the same as the prior on b in
[24]. However, since here we assume σ is given while in [24] it is an unknown parameter, the
results of [24] do not immediately yield contraction of this prior at a near-minimax rate in the
low-frequency setting. In particular, when σ is known the minimax rate for estimating b with
low-frequency data is n−s/(2s+3) (for example, see Söhl and Trabs [31]), rather than the slower
rate n−s/(2s+5) attained in Gobet–Hoffmann–Reiss [17] when σ is unknown (the improvement
is possible because one bypasses the delicate interweaving of the problems of estimating b and
σ with low-frequency data). Nevertheless, the prior of Proposition 4 will indeed exhibit near-
minimax contraction also in the low-frequency setting. An outline of the proof is as follows. The
small ball results of [24] still apply, with minor changes to the periodic model used here in place
of their reflected diffusion, so it is enough to exhibit tests of the true parameter against suitably
separated alternatives. The identification b = ((σ 2)′ + σ 2(logπb)

′)/2 means one can work with
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the invariant density rather than directly with the drift. Finally one shows the estimator from [31]
exhibits sufficiently good concentration properties (alternatively, one could use general results
for Markov chains from Ghosal and van der Vaart [12]).

It remains an interesting open problem to simultaneously estimate b and σ with a method
which adapts to the sampling regime. Extending the proofs of this paper to the case where σ is
unknown would show that the Bayesian method fulfils this goal. The key difficulty in making
this extension arises in the small ball section (Section 5), because Girsanov’s Theorem does not
apply to diffusions with different diffusion coefficients.

Intermediate sampling regime. Strictly speaking, we only demonstrate robustness to the sam-
pling regime in the extreme cases where � > 0 is fixed or where n�2 → 0. The author is not
aware of any papers addressing the intermediate regime (where � tends to 0 at a slower rate than
n−1/2) for a nonparametric model: the minimax rates do not even appear in the literature. Since
the Bayesian method adapts to the extreme regimes, one expects that it attains the correct rates
in this intermediate regime (up to log factors). However, the proof would require substantial ex-
tra work, primarily in exhibiting an estimator with good concentration properties in this regime.
Kessler’s work on the intermediate regime in the parametric case [20] would be a natural starting
point for exploring this regime in the nonparametric setting.

4. Construction of tests

In this section, we construct the tests needed to apply the general contraction rate theory from
Ghosal–Ghosh–van der Vaart [11]. The main result of this section is the following. Recall that
Sm is a periodic Meyer-type wavelet space of resolution m as described in Section 2.1, πm is the
L2-orthogonal projection map onto Sm and Dm = dim(Sm) = 2m.

Lemma 5. Consider data X(n) = (Xk�)0≤k≤n sampled from a solution X to (1) under Assump-
tions 1–4. Let εn → 0 be a sequence of positive numbers and let ln → ∞ be a sequence of positive
integers such that n�ε2

n/ log(n�) → ∞ and, for some constant L and all n, Dln ≤ Ln�ε2
n. Let

�n ⊆ {b ∈ � : ‖πlnb − b‖2 ≤ εn} contain b0.
Then for any D > 0, there is an M = M(I,L0,D,L) > 0 for which there exist tests ψn (i.e.,

{0,1}-valued functions of the data) such that, for all n sufficiently large,

max
(
Eb0ψn

(
X(n)

)
, sup

{
Eb

[
1 − ψn

(
X(n)

)] : b ∈ �n,‖b − b0‖2 > Mεn

}) ≤ e−Dn�ε2
n .

The proof is given in Section 4.2 and is a straightforward consequence of our constructing an
estimator with appropriate concentration properties. First, we introduce some general concentra-
tion results we will need.

4.1. General concentration results

We will use three forms of concentration results as building blocks for our theorems. The first
comes from viewing the data (Xj�)0≤j≤n as a Markov chain and applying Markov chain concen-
tration results; these results are similar to those used in Nickl and Söhl [24] for the low-frequency



Posterior contraction for high-frequency sampled diffusions 2707

case, but here we need to track the dependence of constants on �. The second form are useful
only in the high-frequency case because they use a quantitative form of Hölder continuity for dif-
fusion processes. An inequality of the third form, based on martingale properties, is introduced
only where needed (in Lemma 13).

4.1.1. Markov chain concentration results applied to diffusions

Our main concentration result arising from the Markov structure is the following. We denote by
‖ · ‖μ the L2

μ([0,1])-norm, ‖f ‖2
μ = Eμ[f 2] = ∫ 1

0 f (x)2 dμ(x).

Theorem 6. There exists a constant κ = κ(I) such that, for all n sufficiently large and all
bounded 1-periodic functions f : R→R,

Pb

(∣∣∣∣∣
n∑

k=1

f (Xk�) − Eμ[f ]
∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 1

κ
�min

(
t2

n‖f ‖2
μ

,
t

‖f ‖∞

))
, (8)

or equivalently

Pb

(∣∣∣∣∣
n∑

j=1

f (Xj�) − Eμ[f ]
∣∣∣∣∣ ≥ max

(√
κv2x, κux

)) ≤ 2e−x, (9)

where v2 = n�−1‖f ‖2
μ and u = �−1‖f ‖∞.

Further, if F is a space of such functions indexed by some (subset of a) d-dimensional vector
space, then for V 2 = supf ∈F v2 and U = supf ∈F u, we also have

Pb

(
sup
f ∈F

∣∣∣∣∣
n∑

j=1

f (Xj�) − Eμ[f ]
∣∣∣∣∣ ≥ κ̃ max

{√
V 2(d + x),U(d + x)

}) ≤ 4e−x. (10)

for some constant κ̃ = κ̃(I).

The proof is an application of the following abstract result for Markov chains.

Theorem 7 (Paulin [26], Proposition 3.4 and Theorem 3.4). Let M1, . . . ,Mn be a time-
homogeneous Markov chain taking values in S with transition kernel P(x,dy) and invari-
ant density π . Suppose M is uniformly ergodic; that is, supx∈S ‖P n(x, ·) − π‖TV ≤ Kρn for
some constants K < ∞, ρ < 1, where P n(x, ·) is the n-step transition kernel and ‖ · ‖TV is
the total variation norm for signed measures (which may be represented by their densities).
Write tmix = min{n ≥ 0 : supx∈S ‖P n(x, ·) − π‖TV < 1/4}. Suppose M1 ∼ π and f : S → R is
bounded. Let Vf = Var[f (M1)], let C = ‖f − E[f (M1)]‖∞. Then

Pr

(∣∣∣∣∣
n∑

i=1

f (Mi) − E
[
f (Mi)

]∣∣∣∣∣ ≥ t

)
≤ 2 exp

( −t2

2tmix(8(n + 2tmix)Vf + 20tC)

)
.
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Proof of Theorem 6. Since f is assumed periodic we see that f (Xk�) = f (Ẋk�), where we
recall Ẋ = X mod 1. Denote by ṗb(t, x, y) the transition densities of Ẋ, that is, ṗb(t, x, y) =∑

j∈Z pb(t, x, y + j) (see the proof of Proposition 9 in Nickl and Söhl [24] for an argument that

the sum converges). Theorem 2.6 in Bhattacharya et al. [4] tells us that if Ẋ0 has a density η0 on
[0,1], then Ẋt has a density ηt satisfying

‖ηt − πb‖TV ≤ 1

2
‖η0/πb − 1‖TV exp

(
− 1

2Mb

t

)
,

where Mb := supz∈[0,1]{(σ 2(z)πb(z))
−1

∫ z

0 πb(x)dx
∫ 1
z

πb(y)dy}. We can regularise to extend
the result so that it also applies when the initial distribution of Ẋ is a point mass: if Ẋ0 = x then
Ẋ1 has density ṗb(1, x, ·), hence the result applies to show

∥∥ṗb(t, x, ·) − πb

∥∥
TV ≤ 1

2

∥∥ṗb(1, x, ·)/πb − 1
∥∥

TV exp

(
− 1

2Mb

(t − 1)

)
.

Moreover, note ‖ṗb(1, x, ·)/πb − 1‖TV ≤ π−1
L ‖ṗb(1, x, ·) − πb‖TV ≤ π−1

L . Also note we can
upper bound Mb by a constant M = M(I): precisely, we can take M = σ−2

L π−1
L π2

U .
Thus, we see that for t ≥ 1, we have

∥∥ṗb(t, x, ·) − πb

∥∥
TV ≤ K exp

(
− 1

2M
t

)

for some constant K = K(I), uniformly across x ∈ [0,1]. It follows that, for each fixed �,
the discrete time Markov chain (Ẋk�)k≥0 is uniformly ergodic with mixing time tmix ≤ 1 +
2M log(4K)�−1 ≤ K ′�−1 for some constant K ′. Theorem 7 applies to tell us

Pr

(∣∣∣∣∣
n∑

i=1

f (Xk�) − Eμ[f ]
∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

2K ′�−1(8(n + 2K ′�−1)Vf + 20tC)

)
.

Since n� → ∞ by assumption, we see 8(n+ 2K ′�−1) ≤ K ′′n for some constant K ′′. Using the
bound 2/(a + b) ≥ min(1/a,1/b) for a, b > 0 and upper bounding the centred moments Vf and
C by the uncentered moments ‖f ‖2

μ and ‖f ‖∞, we deduce (8).
The result (9) is obtained by a change of variables. For the supremum result (10), we use a

standard chaining argument, for example, as in Baraud [2], Theorem 2.1, where we use (9) in
place of Baraud’s Assumption 2.1, noting that Baraud only uses Assumption 2.1 to prove an
expression mirroring (9), and the rest of the proof follows through exactly. Precisely, following
the proof, we can take κ̃ = 36κ . �

Remark. The proof simplifies if we restrict � to consist only of those b satisfying Ib(1) = 0. In
this case, the invariant density (upon changing normalising constant to some Gb) reduces to the
more familiar form πb(x) = (Gbσ

2(x))−1eIb(x). The diffusion is reversible in this case, and we
can use Theorem 3.3 from [26] instead of Theorem 3.4 to attain the same results but with better
constants.
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4.1.2. Hölder continuity properties of diffusions

Define

wm(δ) = δ1/2((log δ−1)1/2 + log(m)1/2), δ ∈ (0,1]
for m ≥ 1, and write wm(δ) := w1(δ) for m < 1. The key result of this section is the following.

Lemma 8. Let X solve the scalar diffusion equation (1), and grant Assumptions 1 and 2.
Then there exist positive constants λ, C and τ , all depending on I only, such that for any
u > C max(log(m),1)1/2 and for any initial value x,

P
(x)
b

(
sup

s,t∈[0,m],
t �=s,|t−s|≤τ

( |Xt − Xs |
wm(|t − s|)

)
> u

)
≤ 2e−λu2

.

Remarks.

i. We will need to control all increments X(j+1)� − Xj� simultaneously, hence we include
the parameter m, which we will take to be the time horizon n� when applying this result.
Simply controlling over [0,1] and using a union bound does not give sharp enough results.

ii. Lemma 8 applies for any distribution of X0, not only point masses, by an application of the
tower law.

The modulus of continuity wm matches that of Brownian motion, and indeed the proof is to
reduce to the corresponding result for Brownian motion. First, by applying the scale function (see
the supplement – Abraham [1] – for details) one transforms X into a local martingale, reducing
Lemma 8 to the following result, also useful in its own right.

Lemma 9. Let Y be a local martingale with quadratic variation satisfying |〈Y 〉t − 〈Y 〉s | ≤
A|t − s|, for some constant A ≥ 1. Then there exist positive constants λ = λ(A) and C = C(A)

such that for any u > C max(log(m),1)1/2,

Pr

(
sup

s,t∈[0,m],s �=t,

|t−s|≤A−1e−2

( |Yt − Ys |
wm(|t − s|)

)
> u

)
≤ 2e−λu2

.

In particular the result applies when Y is a solution to dYt = σ̃ (Yt )dWt , provided ‖σ̃ 2‖∞ ≤ A.

Lemma 9, proved in the supplement (Abraham [1]), follows from the corresponding re-
sult for Brownian motion by a time change (i.e., the (Dambis–)Dubins–Schwarz Theorem:
see Rogers and Williams [30] (34.1)). It is well known that Brownian motion has modulus
of continuity δ1/2(log δ−1)1/2 in the sense that there almost surely exists a C > 0 such that
|Bt − Bs | ≤ C|t − s|1/2(log(|t − s|−1))1/2, for all t, s ∈ [0,1] sufficiently close, but Lemmas 8
and 9 depend on the following quantitative version of this statement, proved in the supplement
(Abraham [1]) using Gaussian process techniques.
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Lemma 10. Let B be a standard Brownian motion on [0,m]. There are positive (universal)
constants λ and C such that for u > C max(log(m),1)1/2,

Pr

(
sup

s,t∈[0,m],
s �=t,|t−s|≤e−2

( |Bt − Bs |
wm(|t − s|)

)
> u

)
≤ 2e−λu2

.

4.2. Concentration of a drift estimator

4.2.1. Defining the estimator

We adapt an estimator introduced in Comte et al. [9]. The estimator is constructed by considering
drift estimation as a regression-type problem. Specifically, defining

Zk� = 1

�

∫ (k+1)�

k�

σ(Xs)dWs, Rk� = 1

�

∫ (k+1)�

k�

(
b(Xs) − b(Xk�)

)
ds,

we can write
X(k+1)� − Xk�

�
= b(Xk�) + Zk� + Rk�.

Note Rk� is a discretization error which vanishes as � → 0 and Zk� takes on the role of noise.
We introduce the empirical norm and the related empirical loss function, defined for u : [0,1] →
R by

‖u‖2
n = 1

n

n∑
k=1

u(Xk�)2, γn(u) = 1

n

n∑
k=1

[
�−1(X(k+1)� − Xk�) − u(Xk�)

]2
.

In both we leave out the k = 0 term for notational convenience.
Recalling that Sm is a Meyer-type wavelet space as described in Section 2.1 and K0 is an

upper bound for the C1
per-norm of any b ∈ �, for ln to be chosen we define b̃n as a solution to the

minimisation problem

b̃n ∈ argmin
u∈S̃ln

γn(u), S̃m := {
u ∈ Sm : ‖u‖∞ ≤ K0 + 1

}
,

where we choose arbitrarily among minimisers in the (typical) situation that there is no unique
minimiser.

4.2.2. Main concentration result

For the estimator defined above, we will prove the following concentration inequality.

Theorem 11. Consider data X(n) = (Xk�)0≤k≤n sampled from a solution X to (1) under As-
sumptions 1–4. Let εn → 0 be a sequence of positive numbers and let ln → ∞ be a se-
quence of positive integers such that n�ε2

n/ log(n�) → ∞ and, for some constant L and all n,
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Dln ≤ Ln�ε2
n. For these ln, let b̃n be defined as above and let �n ⊆ {b ∈ � : ‖πlnb − b‖2 ≤ εn}

contain b0, where πln is the L2-orthogonal projection map onto Sln .
Then for any D > 0 there is a C = C(I,L0,D,L) > 0 such that, uniformly across b ∈ �n,

Pb

(‖b̃n − b‖2 > Cεn

) ≤ e−Dn�ε2
n ,

for all n sufficiently large.

Remark. Previous proofs of Bayesian contraction rates using the concentration of estimators
approach (for example, see [15,24,29]) have used duality arguments, i.e. the fact that ‖f ‖2 =
supv:‖v‖2=1〈f, v〉, to demonstrate that the linear estimators considered satisfy a concentration
inequality of the desired form. A key insight of this paper is that for the model we consider
we can achieve the required concentration using the above minimum contrast estimator (see
Birgé and Massart [5]), for which we need techniques which differ substantially from duality
arguments.

Before proceeding to the proof, we demonstrate how this can be used to prove the existence of
tests of b0 against suitably separated alternatives.

Proof of Lemma 5. Let b̃n be the estimator outlined above and let D > 0. Let C =
C(I,L0,D,L) be as in Theorem 11 and let M = 2C. It’s not hard to see that ψn =
1{‖b̃n − b‖2 > CεN } is a test with the desired properties. �

Proof of Theorem 11. It is enough to show that, uniformly across b ∈ �n, for any D > 0 there is
a C > 0 such that Pb(‖b̃n −b‖2 > Cεn) ≤ 14e−Dn�ε2

n , because by initially considering a D′ > D

and finding the corresponding C′, we can eliminate the factor of 14 in front of the exponential.
The proof is structured as follows. Our assumptions ensure that the L2- and L2(μ)-norms are

equivalent. We further show that the L2(μ)-norm is equivalent to the empirical norm ‖ · ‖n on
an event of sufficiently high probability. Finally, the definition of the estimator will allow us to
control the empirical distance ‖b̃n − b‖n.

To this end, write t̃n = (b̃n − πlnb)‖b̃n − πlnb‖−1
μ (defining t̃n = 0 if b̃n = πlnb) and introduce

the following set and events:

In = {
t ∈ Sln : ‖t‖μ = 1,‖t‖∞ ≤ C1ε

−1
n

}
,

An = {
t̃n ∈ In

} ∪ {
t̃n = 0

}
,

�n =
{∣∣‖t‖2

n − 1
∣∣ ≤ 1

2
, ∀t ∈ In

}
,

where the constant C1 is to be chosen. Then we can decompose

Pb

(‖b̃n − b‖2 > Cεn

) ≤ Pb

(‖b̃n − b‖21Ac
n
> Cεn

) + Pb

(
�c

n

) + Pb

(‖b̃n − b‖21An∩�n
> Cεn

)
.

Thus, we will have proved the theorem once we have completed the following:

1. Show the theorem holds (deterministically) on Ac
n, for a large enough constant C.
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2. Show that Pb(�
c
n) ≤ 4e−Dn�ε2

n for a suitable choice of C1.
3. Show that, for any D, we can choose a C such that Pb(‖b̃n − b‖21An∩�n

> Cεn) ≤
10e−Dn�ε2

n .

Step 1

Intuitively we reason thus. The event Ac
n can only occur if the L2(μ)-norm of b̃n − πlnb is small

compared to the L∞-norm. Since we have assumed a uniform supremum bound on functions
b ∈ �, in fact An holds unless the L2(μ)-norm is small in absolute terms. But if ‖b̃n − πlnb‖μ

is small, then so is ‖b̃n − b‖2. We formalise this reasoning now.
For a constant C2 to be chosen, define

A′
n = {‖b̃n − πlnb‖μ > C2εn

}
.

On A′
n we have ‖t̃n‖∞ ≤ (‖b̃n‖∞ + ‖πlnb‖∞)C−1

2 ε−1
n . Note ‖b̃n‖∞ ≤ K0 + 1 by definition.

Since, for n large enough, ‖πlnb − b‖∞ ≤ 1 uniformly across b ∈ �n ⊆ � by (4) so that
‖πlnb‖∞ ≤ ‖b‖∞ + 1 ≤ K0 + 1, we deduce that on A′

n, ‖t̃n‖∞ ≤ (2K0 + 2)C−1
2 ε−1

n . Since
also ‖t̃n‖μ = 1 (or t̃n = 0) by construction, we deduce A′

n ⊆An if C2 ≥ C−1
1 (2K0 + 2).

Then on (A′
n)

c ⊇Ac
n we find, using that b ∈ �n and using ‖ · ‖2 ≤ π

−1/2
L ‖ · ‖μ,

‖b̃n − b‖2 ≤ ‖b̃n − πlnb‖2 + ‖πlnb − b‖2 ≤ (
C2π

−1/2
L + 1

)
εn.

So on Ac
n, we have ‖b̃n − b‖2 ≤ Cεn deterministically for any C ≥ C2π

−1/2
L + 1. That is,

Pb(‖b̃n − b‖21Ac
n
> Cεn) = 0 for C large enough (depending on C1 and I).

Step 2

We show that for n sufficiently large, and C1 = C1(I,D,L) sufficiently small, Pb(�
c
n) ≤

4e−Dn�ε2
n .

For t ∈ In we have |‖t‖2
n − 1| = n−1|∑n

k=1 t2(Xk�) − Eμ[t2]|. Thus Theorem 6 can be ap-
plied to �c

n = {supt∈In
n−1|∑n

k=1 t2(Xk�) − Eμ[t2]| > 1/2}. Each t ∈ In has ‖t2‖∞ ≤ C2
1ε−2

n

and ‖t2‖2
μ = Eμ[t4] ≤ ‖t2‖∞‖t‖2

μ ≤ C2
1ε−2

n . Since the indexing set In lies in a vector space of
dimension Dln , we apply Theorem 6 with x = Dn�ε2

n to see

Pb

(
sup
t∈In

∣∣∣∣∣
n∑

k=1

t2(Xk�) − Eμ

[
t2]∣∣∣∣∣ ≥ 36 max{A,B}

)
≤ 4e−Dn�ε2

n ,

where A =
√

κ̃C2
1n�−1ε−2

n (Dn�ε2
n + Dln) and B = κ̃C2

1�−1ε−2
n (Dn�ε2

n + Dln), for some
constant κ̃ = κ̃(I). Provided we can choose C1 so that 36 max{A/n,B/n} ≤ 1/2 the result is
proved. Such a choice for C1 can be made as we have assumed Dln ≤ Ln�ε2

n.
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Step 3

Since b ∈ �n and πln is an L2-orthogonal projection, we have ‖b̃n − b‖2
2 ≤ ‖b̃n − πlnb‖2

2 + ε2
n.

Recall that ‖ · ‖2 ≤ π
−1/2
L ‖ · ‖μ and note that on An ∩ �n, we further have 1

2‖b̃n − πlnb‖2
μ ≤

‖b̃n − πlnb‖2
n.

Since also ‖b̃n − πlnb‖2
n ≤ 2(‖πlnb − b‖2

n + ‖b̃n − b‖2
n) we deduce that

‖b̃n − b‖2
21An∩�n

≤ 1

πL

(
4‖πlnb − b‖2

n + 4‖b̃n − b‖2
n1An∩�n

) + ε2
n,

where we have dropped indicator functions from terms on the right except where we will need
them later. Thus, using a union bound,

Pb

(‖b̃n − b‖21An∩�n
> Cεn

) ≤ Pb

(‖πlnb − b‖2
n > C′ε2

n

) + Pb

(‖b̃n − b‖2
n1An∩�n

> C′ε2
n

)
,

for some constant C′ (precisely we can take C′ = πL(C2 − 1)/8). It remains to show that both
probabilities on the right are exponentially small.

Bounding Pb(‖πlnb − b‖n > Cεn). We show that for any D > 0 there is a constant C such that

Pb(‖πlnb − b‖n > Cεn) ≤ 2e−Dn�ε2
n , for all n sufficiently large.

Since Eb‖g‖2
n = ‖g‖2

μ for any 1-periodic deterministic function g and ‖πlnb − b‖2
μ ≤

πU‖πlnb − b‖2
2 ≤ πUε2

n for b ∈ �n, it is enough to show that

Pb

(∣∣‖πlnb − b‖2
n − Eb‖πlnb − b‖2

n

∣∣ > Cε2
n

) ≤ 2e−Dn�ε2
n (11)

for some different C. As in step 2, we apply Theorem 6, but now working with the single func-
tion (πlnb − b)2. For large enough n we have the bounds ‖πlnb − b‖∞ ≤ 1 (derived from (4)),

and ‖(πlnb − b)2‖μ ≤ ‖πlnb − b‖∞‖πlnb − b‖μ ≤ π
1/2
U εn (because b ∈ �n) and so applying

Theorem 6 with x = Dn�ε2
n gives

Pb

(∣∣∣∣∣
n∑

k=1

[
(πlnb − b)2(Xk�) − ‖πlnb − b‖2

μ

]∣∣∣∣∣ ≥ max{a, b}
)

≤ 2e−Dn�ε2
n ,

for a = √
κn�−1πUε2

nDn�ε2
n = nε2

n

√
κπUD and b = κ�−1Dn�ε2

n = nε2
nκD, for some con-

stant κ = κ(I). We see that a/n and b/n are both upper bounded by a constant multiple of ε2
n,

hence, by choosing C large enough, (11) holds.

Bounding Pb(‖b̃n − b‖2
n1An∩�n

> Cε2
n). We show that Pb(‖b̃n − b‖2

n1An∩�n
> Cε2

n) ≤
8e−Dn�ε2

n for some constant C.
Recall an application of (4) showed us that ‖πlnb‖∞ ≤ K0 + 1 for sufficiently large n, hence

we see that πlnb lies in S̃ln , so by definition γn(b̃n) ≤ γn(πlnb). We now use this to show that

1

4
‖b̃n − b‖2

n1An∩�n
≤ 7

4
‖πlnb − b‖2

n + 8νn(t̃n)
21An

+ 8

n

n∑
k=1

R2
k�, (12)
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where νn(t) = 1
n

∑n
k=1 t (Xk�)Zk� and we recall that t̃n = (b̃n − πlnb)‖b̃n − πlnb‖−1

μ . The argu-
ment, copied from [9], Sections 3.2 and 6.1, is as follows. Using that �−1(X(k+1)� − Xk�) =
b(Xk�) + Zk� + Rk� and that γn(b̃n) − γn(b) ≤ γn(πlnb) − γn(b), one shows that

‖b̃n − b‖2
n ≤ ‖πlnb − b‖2

n + 2νn(b̃n − πlnb) + 2

n

n∑
k=1

Rk�(b̃n − πlnb)(Xk�). (13)

Repeatedly applying the AM–GM-derived inequality 2ab ≤ 8a2 + b2/8 yields

2

n

n∑
k=1

Rk�(b̃n − πlnb)(Xk�) ≤ 8

n

n∑
k=1

R2
k� + 1

8
‖b̃n − πlnb‖2

n,

2νn(b̃n − πlnb) = 2‖b̃n − πlnb‖μνn(t̃n) ≤ 8νn(t̃n)
2 + 1

8
‖b̃n − πlnb‖2

μ.

Next recall that on An ∩ �n, we have ‖b̃n − πlnb‖2
μ ≤ 2‖b̃n − πlnb‖2

n, and further recall that

‖b̃n −πlnb‖2
n ≤ 2‖b̃n −b‖2

n + 2‖πlnb −b‖2
n. Putting all these bounds into (13) yields (12), where

on the right-hand side we have only included indicator functions where they will help us in future
steps. Next, by a union bound, we deduce

Pb

(‖b̃n − b‖2
n1An∩�n

> Cε2
n

) ≤ Pb

(‖πlnb − b‖2
n > C′ε2

n

)
+ Pb

(
νn(t̃n)

21An
> C′ε2

n

) + Pb

(
1

n

n∑
k=1

R2
k� > C′ε2

n

)
,

for some constant C′ (we can take C′ = C/96). We have already shown that for a large enough
constant C we have Pb(‖πlnb − b‖n > Cεn) ≤ 2e−Dn�ε2

n , thus the following two lemmas con-
clude the proof. �

Lemma 12. Under the conditions of Theorem 11, for any D > 0 there is a constant C =
C(I,L0,D) > 0 for which, for n sufficiently large, Pb(

1
n

∑n
k=1 R2

k� > Cε2
n) ≤ 2e−Dn�ε2

n .

Lemma 13. Under the conditions of Theorem 11, for any D > 0 there is a constant C =
C(I,D,L) > 0 for which, for n sufficiently large, Pb(νn(t̃n)1An

> Cεn) ≤ 4e−Dn�ε2
n .

Proof of Lemma 12. Recall Rk� = 1
�

∫ (k+1)�

k�
(b(Xs)−b(Xk�))ds, and recall any b ∈ � is Lip-

schitz, with Lipschitz constant at most K0, so |Rk�| ≤ K0 maxs≤� |Xk�+s −Xk�|. It is therefore
enough to bound sup{|Xt − Xs | : s, t ∈ [0, n�], |t − s| ≤ �}.

We apply the Hölder continuity result (Lemma 8) with u = D1/2λ−1/2(n�ε2
n)

1/2 for λ = λ(I)

the constant of Lemma 8, noting that the assumption n�ε2
n/ log(n�) → ∞ ensures that u is

large enough compared to m = n� that the conditions for Lemma 8 are met, at least when n is
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large. We see that

sup
s,t∈[0,n�]
|t−s|≤�

|Xt − Xs | ≤ �1/2(log(n�)1/2 + log
(
�−1)1/2)

D1/2λ−1/2(n�ε2
n

)1/2
,

on an event D of probability at least 1 − 2e−Dn�ε2
n (we have used that, for n large enough, � ≤

min(τ, e−1) in order to take the supremum over |t − s| ≤ � and to see supδ≤� wm(δ) = wm(�)).
Now observe that log(n�)1/2 ≤ (log(�−1)1/2) for large enough n because n�2 → 0 (so n� ≤

�−1 eventually). Further, from the assumption n�2 log(�−1) ≤ L0 we are able to deduce that
�1/2 log(�−1)1/2(n�ε2

n)
1/2 ≤ L

1/2
0 εn. It follows that on D, we have Rk� ≤ Cεn for a suitably

chosen constant C (independent of k and n), which implies the desired concentration. �

Proof of Lemma 13. Recall for t : [0,1] → R we defined νn(t) = 1
n

∑n
k=1 t (Xk�)Zk�, where

Zk� = 1
�

∫ (k+1)�

k�
σ(Xs)dWs . The martingale-derived concentration result Lemma 2 in Comte

et al. [9] (the model assumptions in [9] are slightly different to those made here, but the proof of

the lemma equally applies in our setting) tells us Pb(νn(t) ≥ ξ,‖t‖2
n ≤ u2) ≤ exp(− n�ξ2

2σ 2
U u2 ), for

any t , any u, and any drift function b ∈ �, so that

Pb

(
νn(t) ≥ ξ

) ≤ exp

(
− n�ξ2

2σ 2
Uu2

)
+ Pb

(‖t‖2
n > u2). (�)

We can apply Theorem 6 to see that, for some constant κ = κ(I),

Pb

(‖t‖2
n > u2) = Pb

(
1

n

(
n∑

k=1

t (Xk�)2 − ‖t‖2
μ

)
> u2 − ‖t‖2

μ

)

≤ exp

(
− 1

κ
�min

{
n2(u2 − ‖t‖2

μ)2

n‖t2‖2
μ

,
n(u2 − ‖t‖2

μ)

‖t2‖∞

})

≤ exp

(
− 1

κ
n�

(
u2 − ‖t‖2

μ

)‖t‖−2∞ min
(
u2‖t‖−2

μ − 1,1
))

,

where to obtain the last line we have used that ‖t2‖2
μ ≤ ‖t‖2∞‖t‖2

μ.

Now choose u2 = ‖t‖2
μ + ξ‖t‖∞. Then ξ2/u2 ≥ 1

2 min(ξ2/‖t‖2
μ, ξ/‖t‖∞) so that, returning

to (�), we find

Pb

(
νn(t) ≥ ξ

) ≤ exp

(
− n�

4σ 2
U

min
(
ξ2‖t‖−2

μ , ξ‖t‖−1∞
)) + exp

(
− 1

κ
n�ξ min

(
ξ‖t‖−2

μ ,‖t‖−1∞
))

≤ 2 exp

(
− 1

κ ′ n�min
(
ξ2‖t‖−2

μ , ξ‖t‖−1∞
))

,

for some constant κ ′ = κ ′(I).
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By changing variables we attain the bound Pb(νn(t) ≥ max(
√

v2x,ux)) ≤ 2 exp(−x), where
v2 = κ ′(n�)−1‖t‖2

μ and u = κ ′(n�)−1‖t‖∞. Then, as in Theorem 6, a standard chaining argu-
ment allows us to deduce that

Pb

(
sup
t∈In

νn(t) ≥ κ̃
(√

V 2(Dln + x) + U(Dln + x)
)) ≤ 4e−x,

for V 2 = supt∈In
‖t‖2

μ(n�)−1 = (n�)−1, U = supt∈In
‖t‖∞(n�)−1 = C1ε

−1
n (n�)−1, and for a

constant κ̃ = κ̃(I). Taking x = Dn�ε2
n and recalling the assumption Dln ≤ Ln�ε2

n we obtain
the desired result (conditional on t̃n ∈ In, which is the case on the event An). �

5. Small ball probabilities

Now we show that the Kullback–Leibler divergence between the laws corresponding to differ-
ent parameters b0 and b can be controlled in terms of the L2-distance between the parameters.
Denote by K(p,q) the Kullback–Leibler divergence between probability distributions with den-
sities p and q , that is, K(p,q) = Ep log(

p
q
) = ∫

log(
p(x)
q(x)

)dp(x). Also write

KL(b0, b) = Eb0

[
log

(
p0(�,X0,X�)

pb(�,X0,X�)

)]
.

Recalling that p
(n)
b (x(n)) = πb(x0)

∏n
i=1 pb(�,x(i−1)�, xi�) is the density on Rn+1 of X(n) un-

der Pb , we introduce the following Kullback–Leibler type neighbourhoods: for ε > 0, define

B
(n)
KL(ε) =

{
b ∈ � : K(

p
(n)
0 ,p

(n)
b

) ≤ (n� + 1)ε2,V arb0

(
log

p
(n)
0

p
(n)
b

)
≤ (n� + 1)ε2

}
,

and, noting that KL(b0, b) (hence also the following set) depends implicitly on n via �, define

Bε =
{
b ∈ � : K(π0,πb) ≤ ε2,Varb0

(
log

π0

πb

)
≤ ε2,KL(b0, b) ≤ �ε2,Varb0

(
log

p0

pb

)
≤ �ε2

}
.

The main result of this section is the following.

Theorem 14. Consider data X(n) = (Xk�)0≤k≤n sampled from a solution X to (1) under As-
sumptions 1–4. Let εn → 0 be a sequence of positive numbers such that n�ε2

n → ∞. Then there
is a constant A = A(I) such that, for all n sufficiently large, {b ∈ � : ‖b − b0‖2 ≤ Aεn} ⊆
B

(n)
KL(εn).

Proof. Applying Lemma 22 from Appendix A where it is shown that

Varb0 log

(
p

(n)
0 (X(n))

p
(n)
b (X(n))

)
≤ 3 Varb0

(
log

π0(X0)

πb(X0)

)
+ 3nVarb0

(
log

p0(X0,X�)

pb(X0,X�)

)
.
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and noting also that K(p
(n)
0 ,p

(n)
b ) = K(π0,πb) + nKL(b0, b) by linearity, we observe that

B
εn/

√
3 ⊆ B

(n)
KL(εn). It is therefore enough to show that there is an A = A(I) such that

{b ∈ � : ‖b − b0‖2 ≤ Aεn} ⊆ B
εn/

√
3. This follows immediately by applying Lemma 15 below

to ξn = εn/
√

3. �

Lemma 15. Under the conditions of Theorem 14, there is an A = A(I) such that, for all n

sufficiently large, {b ∈ � : ‖b − b0‖2 ≤ Aεn} ⊆ Bεn .

The key idea in proving Lemma 15 is to use the Kullback–Leibler divergence between the laws
P

(x)
b and P

(x)
b0

of the continuous-time paths to control the Kullback–Leibler divergence between
pb and p0. This will help us because we can calculate the Kullback–Leibler divergence between
the full paths using Girsanov’s Theorem, which gives us an explicit formula for the likelihood
ratios.

Let P
(x)
b,T denote the law of (Xt )0≤t≤T conditional on X0 = x, i.e. the restriction of P

(x)
b to

C([0, T ]). We write W
(x)
σ,T for P

(x)
b,T when b = 0. Throughout this section, we will simply write

P
(x)
b for P

(x)
b,� and similarly with W

(x)
σ . We have the following.

Theorem 16 (Girsanov’s Theorem). Assume b0 and b lie in �, and σ satisfies Assumption 1.
Then the laws P

(x)
b0,T

and P
(x)
b,T are mutually absolutely continuous with, for X ∼ P

(x)
b,T , the almost

sure identification

dP
(x)
b0,T

dP
(x)
b,T

(
(Xt )t≤T

) = exp

[∫ T

0

b0 − b

σ 2
(Xt )dXt − 1

2

∫ T

0

b2
0 − b2

σ 2
(Xt )dt

]
.

Proof. See Liptser and Shiryaev [22], Theorem 7.19, noting that the assumptions are met be-
cause b, b0 and σ are all Lipschitz and bounded, and σ is bounded away from 0. �

We write

p̃
(x)
0 = dP

(x)
b0

dW(x)
σ

, p̃
(x)
b = dP

(x)
b

dW(x)
σ

(14)

for the Radon–Nikodym derivatives (i.e., densities on C([0,�]) with respect to W
(x)
σ ) whose

existence Girsanov’s Theorem guarantees. We will simply write X for (Xt )t≤� where context
allows, and similarly with U . Since p̃

(x)
0 (X) = 0 for any path X with X0 �= x, we will further omit

the superscripts on our densities in general, writing p̃0(X) for p̃
(X0)
0 (X), and similarly for p̃b .

Proof of Lemma 15. We break the proof into a series of lemmas. We will upper bound the
variances in the definition of Bεn by the corresponding uncentered second moments. For some
constant A = A(I), we show the following.

1. A2 KL(b0, b) ≤ �‖b − b0‖2
2, which shows that KL(b0, b) ≤ �ε2

n whenever ‖b − b0‖2 ≤
Aεn. This is the content of Lemma 17.
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2. If ‖b − b0‖2 ≤ Aεn then we have Eb0[log(p0/pb)
2] ≤ �ε2

n. This is the content of
Lemma 18. Note that the other steps do not need any assumptions on εn, but this step
uses n�ε2

n → ∞.
3. A2 max{K(π0,πb),Eb0 [log(π0/πb)

2]} ≤ ‖b0 −b‖2
2, which shows that K(π0,πb) ≤ ε2

n and
Eb0[log(π0/πb)

2] ≤ ε2
n whenever ‖b − b0‖2 ≤ Aεn. This is the content of Lemma 19.

Together, then, the three lemmas below conclude the proof. �

Lemma 17. Under the conditions of Theorem 14, there is a constant A = A(I) such that
A2 KL(b0, b) ≤ �‖b0 − b‖2

2.

The proof is essentially the same as that of van der Meulen and van Zanten [34], Lemma 5.1,
with minor adjustments to fit the periodic model and non-constant σ used here. Further, all the
ideas needed are exhibited in the proof of Lemma 18. Thus, we omit the proof.

Lemma 18. Under the conditions of Theorem 14, there is a constant A = A(I) so that, for n

sufficiently large, Eb0[log(p0/p)2] ≤ �ε2
n whenever ‖b − b0‖2 ≤ Aεn.

Proof. We first show that we can control the second moment of log(p0/pb) by the second mo-
ment of the corresponding expression log(p̃0/p̃b) for the full paths, up to an approximation error
which is small when � is small. Consider the smallest convex function dominating log(x)2,
given by

h(x) =
{

log(x)2, x < e,

2e−1x − 1, x ≥ e

(it is in fact more convenient, and equivalent, to think of h as dominating the function x �→
(logx−1)2). Let X ∼ P

(x)
b0

and let U ∼W
(x)
σ . Intuitively, the probability density of a transition of

X from x to y, with respect to the (Lebesgue) density p∗ of transitions of U from x to y, can be
calculated by integrating the likelihood p̃0(U) over all paths of U which start at x and end at y,
and performing this integration will yield the conditional expectation of p̃

(x)
0 (U) given U�. That

is to say,

p0(�,x, y)

p∗(�,x, y)
= E

W
(x)
σ

[
p̃0(U) | U� = y

]
. (15)

The above argument is not rigorous because we condition on an event of probability zero, but
the formula (15) is true, and is carefully justified in Lemma 23 in Appendix A. A corresponding
expression holds for pb(�,x, y), so that

Eb0

[
log

(
p0(�,X0,X�)

pb(�,X0,X�)

)2]
≤ Eb0

[
h(pb/p0)

] = Eb0

[
h

(E
W

(X0)
σ

[p̃b(U) | U� = X�]
E
W

(X0)
σ

[p̃0(U) | U� = X�]
)]

.

Lemma 21 in Appendix A allows us to simplify the ratio of conditional expectations. We ap-
ply with P = W

(X0)
σ , Q = P

(X0)
b0

and g = p̃
(X0)
b /p̃

(X0)
0 , then further apply conditional Jensen’s
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inequality and the tower law to find

Eb0

[(
log

p0

pb

)2]
≤ Eb0

[
h

(
E

P
(X0)

b0

[
p̃b

p̃0
(X)

∣∣∣∣ X�

])]

≤ Eb0

[
h

(
p̃b

p̃0
(X)

)]

≤ Eb0

[(
log

p̃0

p̃b

(X)

)2]
+ Eb0

[(
2e−1 p̃b

p̃0
(X) − 1

)
1

{
p̃b

p̃0
(X) ≥ e

}]
,

which is the promised decomposition into a corresponding quantity for the continuous case and
an approximation error. We conclude by showing that each of these two terms is bounded by
1
2�ε2

n, provided ‖b − b0‖2 ≤ Aεn for some sufficiently small constant A = A(I).

Showing Eb0[(log p̃0
p̃b

)2] ≤ 1
2�ε2

n. Writing f = b0−b
σ

, we apply Girsanov’s Theorem (Theo-
rem 16) to find

Eb0

[(
log

p̃0

p̃b

(X)

)2]
= Eb0

[(∫ �

0
f (Xt )dWt + 1

2

∫ �

0
f 2(Xt )dt

)2]

= Eb0

[(∫ �

0
f (Xt )dWt

)2]
+ 1

4
Eb0

[(∫ �

0
f 2(Xt )dt

)2]
.

The cross term has vanished in the final expression because:

• ∫ �

0 f (Xt )dWt is a martingale for X ∼ Pb0 (this follows from the fact that f is bounded
thanks to Assumptions 1 and 2, and a bounded semimartingale integrated against a square
integrable martingale yields a martingale, as in [30], IV.27.4).

• ∫ �

0 f 2(Xt )dt is a finite variation process.
• The expectation of a martingale against a finite variation process is zero (see, e.g., [30],

IV.32.12).

For the first term on the right, we use Itô’s isometry ([30], IV.27.5), Fubini’s Theorem, period-
icity of f and stationarity of μ0 for the periodised process Ẋ = X mod 1 to find

Eb0

(∫ �

0
f (Xt )dWt

)2

= Eb0

∫ �

0
f 2(Xt )dt =

∫ �

0
Eb0f

2(Ẋt )dt = �‖f ‖2
μ0

.

The second term 1
4Eb0[(

∫ �

0 f 2(Xt )dt)2] is upper bounded by 1
4�2‖f ‖2∞‖f ‖2

μ0
(this can be

seen from the bound (
∫ �

0 f 2)2 ≤ �‖f ‖2∞
∫ �

0 f 2), hence is dominated by �‖f ‖2
μ0

when n is
large. Thus, for some constant A = A(I) we find

Eb0

[(
log

p̃0

p̃b

(X)

)2]
≤ 2�‖f ‖2

μ0
≤ 1

2
A−2�‖b0 − b‖2

2,
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where Assumptions 1 and 2 allow us to upper bound ‖f ‖μ0 by ‖b0 − b‖2, up to a constant
depending only on I . For ‖b0 − b‖2 ≤ Aεn we then have Eb0[(log(p̃b/p̃0))

2] ≤ �ε2
n/2.

Showing Eb0 [(2e−1 p̃b

p̃0
(X) − 1)1{ p̃b

p̃0
(X) ≥ e}] ≤ 1

2�ε2
n. We have

Eb0

[(
2e−1 p̃b

p̃0
(X) − 1

)
1

{
p̃b

p̃0
(X) ≥ e

}]
≤ 2e−1Pb

[(
p̃b

p̃0
(X)

)
≥ 1

]
.

By the tower law (noting 2e−1 ≤ 1) it suffices to show P
(x)
b [log(

p̃b

p̃0
(X)) ≥ 1] ≤ 1

2�ε2
n for each

x ∈ [0,1]. Applying Girsanov’s Theorem (Theorem 16) we have, for f = (b0 − b)/σ , and for n

large enough that �‖f ‖2∞ ≤ 1,

P
(x)
b

(
log

p̃b

p̃0
(X) > 1

)
= P

(x)
b

(∫ �

0
−f (Xt )dWt + 1

2

∫ �

0
f (Xt )

2 dt > 1

)

≤ P
(x)
b

(∫ �

0
−f (Xt )dWt > 1/2

)
.

Write Mt = ∫ t

0 −f (Xs)dWs . Since A = max(1, (2K0/σL)2) uniformly upper bounds ‖f ‖2∞
for b ∈ �, we see that M is a martingale whose quadratic variation satisfies |〈M〉t − 〈M〉s | ≤
A|t − s|. Recalling that w1(δ) = δ1/2 log(δ−1)1/2, we apply Lemma 9 with u = w1(�)−1/2 to
yield that, for n large enough,

P
(x)
b

(
log

p̃b

p̃0
(X) > 1

)
≤ P

(x)
b

(
sup

s,t≤�,s �=t

|Mt − Ms |
w1(|t − s|) >

1

2
w1(�)−1

)

≤ 2 exp
(−λw1(�)−2),

where λ is a constant depending only on I .
Recall we assume n� → ∞ and n�2 → 0. It follows that for large enough n we have

log(�−1) ≤ log(n), and � ≤ λ log(n)−2. Then observe

� ≤ λ log(n)−2 =⇒ � ≤ λ
(
log�−1)−1 log(n)−1

=⇒ log(n) ≤ λ�−1(log�−1)−1
,

so that exp(−λw1(�)−2) ≤ n−1 for n large. Finally, since n�ε2
n → ∞, we see 2n−1 ≤ 1

2�ε2
n for

n large enough, as required. �

Lemma 19. Under the conditions of Theorem 14, there is a constant A = A(I) such that
A2 max{K(π0,πb),Eb0 [log(π0/πb)

2]} ≤ ‖b0 − b‖2
2.

Proof. By the comment after Lemma 8.3 in [11], it suffices to prove h2(π0,πb)‖π0/πb‖∞ ≤
C‖b − b0‖2

2 for some C = C(I), where h is the Hellinger distance between densities, defined by
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h2(p, q) = ∫
(
√

p − √
q)2. Since π0 and πb are uniformly bounded above and away from zero,

we can absorb the term ‖π0/πb‖∞ into the constant.
We initially prove pointwise bounds on the difference between the densities π0 and πb . Recall

we saw in Section 2 that, for Ib(x) = ∫ x

0
2b

σ 2 (y)dy, we have

πb(x) = eIb(x)

Hbσ 2(x)

(
eIb(1)

∫ 1

x

e−Ib(y) dy +
∫ x

0
e−Ib(y) dy

)
, x ∈ [0,1],

Hb =
∫ 1

0

eIb(x)

σ 2(x)

(
eIb(1)

∫ 1

x

e−Ib(y) dy +
∫ x

0
e−Ib(y) dy

)
dx.

We can decompose: |πb(x) − π0(x)| ≤ D1 + D2 + D3 + D4, where

D1 = eIb(x)

σ 2(x)

∣∣∣∣ 1

Hb

− 1

Hb0

∣∣∣∣
(

eIb(1)

∫ 1

x

e−Ib(y) dy +
∫ x

0
e−Ib(y) dy

)
,

D2 = |eIb(x) − eIb0 (x)|
Hb0σ

2(x)

(
eIb(1)

∫ 1

x

e−Ib(y) dy +
∫ x

0
e−Ib(y) dy

)
,

D3 = eIb0 (x)

Hb0σ
2(x)

∣∣∣∣(eIb(1) − eIb0 (1)
)∫ 1

x

e−Ib(y) dy

∣∣∣∣,
D4 = eIb0 (x)

Hb0σ
2(x)

∣∣∣∣eIb0 (1)

∫ 1

x

(
e−Ib(y) − e−Ib0 (y)

)
dy +

∫ x

0

(
e−Ib(y) − e−Ib0 (y)

)
dy

∣∣∣∣.
We have the bounds σ−2

U e−6K0σ
−2
L ≤ Hb ≤ σ−2

L e6K0σ
−2
L , and e−2K0σ

−2
L ≤ eIb(x) ≤ e2K0σ

−2
L . An

application of the mean value theorem then tells us

∣∣eIb(x) − eIb0 (x)
∣∣ ≤ C(I)

∫ x

0

2|b0 − b|
σ 2

(y)dy ≤ C′(I)‖b0 − b‖2,

for some constants C, C′, and the same expression upper bounds |e−Ib(x) − e−Ib0 (x)|.
It follows that, for some constant C = C(I), we have Di ≤ C‖b − b0‖2 for i = 2,3,4. For

i = 1 the same bound holds since | 1
Hb

− 1
Hb0

| ≤ |Hb−Hb0 |
HbHb0

and a similar decomposition to the

above yields |Hb − Hb0 | ≤ C(I)‖b − b0‖2.
Thus, we have shown that |πb(x) − π0(x)| ≤ C(I)‖b − b0‖2. Integrating this pointwise

bound, we find that ‖π0 −πb‖2 ≤ C(I)‖b0 − b‖2. Finally, since h2(π0,πb) ≤ 1
4πL

‖π0 −πb‖2
2 ≤

C′(I)‖b0 − b‖2
2, for some different constant C′, we are done. �

6. Main contraction results: Proofs

We now have the tools we need to apply general theory in order to derive contraction rates.
Recall that K(p,q) denotes the Kullback–Leibler divergence between probability distributions
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with densities p and q , and recall the definition

B
(n)
KL(ε) =

{
b ∈ � : K(

p
(n)
0 ,p

(n)
b

) ≤ (n� + 1)ε2,Varb0

(
log

p
(n)
0

p
(n)
b

)
≤ (n� + 1)ε2

}
.

We have the following abstract contraction result, from which we deduce Theorem 1.

Theorem 20. Consider data X(n) = (Xk�)0≤k≤n sampled from a solution X to (1) under As-
sumptions 1–4. Let the true parameter be b0. Let εn → 0 be a sequence of positive numbers and
let ln be a sequence of positive integers such that, for some constant L we have, for all n,

Dln = 2ln ≤ Ln�ε2
n, and n�ε2

n/ log(n�) → ∞. (16)

For each n let �n be S-measurable and assume

b0 ∈ �n ⊆ {
b ∈ � : ‖πlnb − b‖2 ≤ εn

}
, (17)

where πln is the L2-orthogonal projection map onto Sln as described in Section 2.1. Let �(n) be
a sequence of priors on (�,S) satisfying

(a) �(n)(�c
n) ≤ e−(ω+4)n�ε2

n ,

(b) �(n)(B
(n)
KL(εn)) ≥ e−ωn�ε2

n ,

for some constant1 ω > 0. Then there is a constant M = M(I,L0,ω,L) such that, under the law
Pb0 of X, �(n)({b ∈ � : ‖b − b0‖2 ≤ Mεn} | X(n)) → 1 in probability.

The proof, given the existence of tests, follows the standard format of Ghosal–Ghosh–van der
Vaart [11] and is given in the supplement (Abraham [1]).

Proof of Theorem 1.

A. We apply Theorem 20. The key idea which allows us to control the bias and obtain this
adaptive result with a sieve prior is undersmoothing. Specifically, when we prove the small
ball probabilities, we do so by conditioning on the hyperprior choosing a resolution jn

which corresponds to the minimax rate (n�)−s/(1+2s) rather than corresponding to the
slower rate (n�)−s/(1+2s) log(n�)1/2 at which we prove contraction. This logarithmic gap
gives us the room we need to ensure we can achieve the bias condition (a) and the small
ball condition (b) for the same constant ω. The argument goes as follows.

Write ε̄2
n = (n�)−2s/(1+2s) and let ε2

n = (n�)−2s/(1+2s) log(n�). Choose jn and ln nat-
ural numbers satisfying (at least for n large enough)

1

2
n�ε̄2

n ≤ Djn = 2jn ≤ n�ε̄2
n,

1

2
Ln�ε2

n ≤ Dln = 2ln ≤ Ln�ε2
n,

1In fact we can replace the exponent ω + 4 in (a) with any B > ω + 1. We choose ω + 4 because it simplifies the
exposition and the exact value is unimportant.
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where L is a constant to be chosen. Note that (16) holds by definition. Recall now
from our choice of approximation spaces in Section 2.1 that we have ‖πmb0 − b0‖2 ≤
K(s)‖b0‖Bs

2,∞2−ms . For any fixed L we therefore find that for n large enough, writing
K = K(s)2s‖b0‖Bs

2,∞ , we have

‖πlnb0 − b0‖2 ≤ K
(
Ln�ε2

n

)−s = K
(
Ln�ε̄2

n log(n�)
)−s = KL−s ε̄n log(n�)−s

≤ εn.

Similarly, it can be shown that, with A = A(I) the constant of the small ball result
(Theorem 14) and for n large enough, we have ‖b0 − πjnb0‖2 ≤ Aεn/2.

Set �n = {b0} ∪ (Sln ∩ �) and observe that the above calculations show that the bias
condition (17) holds (since also for b ∈ �n, if b �= b0 we have ‖πlnb − b‖2 = 0).

Next, for the small ball condition (b), recall Theorem 14 tells us that, for n large enough,
{b ∈ � : ‖b − b0‖2 ≤ Aεn} ⊆ B

(n)
KL(εn). Thus it suffices to show, for some ω > 0 for

which we can also achieve (a), that �({b ∈ � : ‖b − b0‖2 ≤ Aεn}) ≥ e−ωn�ε2
n . Using

that ‖b − b0‖2 ≤ ‖b − πjnb0‖2 + ‖πjnb0 − b0‖2 ≤ ‖b − πjnb0‖2 + Aεn/2, and using our
assumptions on h and �m, we see that

�
({

b ∈ � : ‖b − b0‖2 ≤ Aεn

})
=

∑
m

h(m)�m

({
b ∈ Sm : ‖b − b0‖2 ≤ Aεn

})
≥ h(jn)�jn

({
b ∈ Sjn : ‖b − πjnb0‖2 ≤ Aεn/2

})
≥ h(jn)(εnAζ/2)Djn

≥ B1 exp(−β1Djn + Djn

[
log(εn) + log(Aζ/2)

])
≥ B1 exp

(−Cn�ε̄2
n − Cn�ε̄2

n log
(
ε−1
n

))
for some constant C = C(I, β1, ζ ). Since log(ε−1

n ) = s
1+2s

log(n�) − 1
2 log log(n�) ≤

log(n�), we deduce that �({b ∈ � : ‖b − b0‖2 ≤ Aεn}) ≥ B1e
−C′n�ε̄2

n log(n�) =
B1e

−C′n�ε2
n , with a different constant C′. Changing constant again to some ω =

ω(I, β1,B1, ζ ), we absorb the B1 factor into the exponential for large enough n.
For (a), since �(�c) = 0 by assumption, we have �(�c

n) ≤ �(Sc
ln
) = ∑∞

m=ln+1 h(m).

We have assumed that h(m) ≤ B2e
−β2Dm , which ensures that the sum is at most a constant

times e−β2Dln ≤ e− 1
2 Lβ2n�ε2

n . For the ω = ω(I, β1,B1, ζ ) for which we proved (b) above,
we can therefore choose L large enough to guarantee �(�c

n) ≤ e−(ω+4)n�ε2
n .

B. Let εn and jn be as in the statement of Theorem 1 and define ln as above (here we can take
L = 1). Similarly to before, we apply results from Section 2.1 to see

‖πlnb − b‖2 ≤ εn

‖πjnb − b‖2 ≤ εn

}
for all n sufficiently large and all b ∈ �s(A0).
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Set �n = �s(A0) for all n. Our assumptions then guarantee the bias condition (a) will
hold for any ω (indeed, �(n)(�c

n) = 0). Thus, it suffices to prove for some constant ω that

�(n)({b ∈ �s(A0) : ‖b − b0‖2 ≤ 3εn}) ≥ e−ωn�ε2
n , since we can absorb the factor of 3 into

the constant M by applying Theorem 20 to ξn = 3εn.
Because the prior concentrates on �s(A0) and b0 lies in �s(A0), we see both that

�(n)({b : ‖πjnb − b‖2 ≤ εn}) = 1 and that ‖πjnb0 − b0‖2 ≤ εn. Thus

�(n)
({

b ∈ �s(A0) : ‖b − b0‖2 ≤ 3εn

}) ≥ �(n)
({

b ∈ �s(A0) : ‖πjnb − πjnb0‖2 ≤ εn

})
.

From here the argument is very similar to the previous part (indeed, it is slightly simpler)
so we omit the remaining details. �

Proof of Proposition 2. We verify that the conditions of Theorem 1A are satisfied. Condition
(i) holds by construction. The Bs

∞,1-norm can be expressed as

‖f ‖Bs∞,1
= |f−1,0| +

∞∑
l=0

2l(s+1/2) max
0≤k<2l

|flk|, (18)

(see [16], Section 4.3) hence any b drawn from our prior lies in B1∞,1 with ‖b‖B1∞,1
≤ (B + 1)×

(2 + ∑
l≥1 l−2). It follows from standard Besov spaces results (e.g., [16], Proposition 4.3.20,

adapted to apply to periodic Besov spaces) that b ∈ C1
per([0,1]), with a C1

per-norm bounded in
terms of B . Thus �(�) = 1 for an appropriate choice of K0. We similarly see that b0 ∈ �. It
remains to show that condition (ii) holds. We have

‖b − πmb0‖2
2 =

∑
−1≤l<m

0≤k<2l

τ 2
l (ulk − βlk)

2

≤
(

1 +
m−1∑
l=0

2−2l

)
max

−1≤l<m,

0≤k<2l

|ulk − βlk|2

< 4 max
−1≤l<m,

0≤k<2l

|ulk − βlk|2,

so that �({b ∈ Sm : ‖b − πmb0‖2 ≤ ε}) ≥ �(|ulk − βlk| ≤ ε/2 ∀l, k,−1 ≤ l < m,k < 2l ). Since
we have assumed |βlk| ≤ Bτl and q(x) ≥ ζ for |x| ≤ B , it follows from independence of the ulk

that the right-hand side of this last expression is lower bounded by (εζ/2)Dm , so that condition
(ii) holds with ζ/2 in place of ζ . �

Appendix A: Technical lemmas

The following results are proved in the supplement (Abraham [1]).
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Lemma 21. Let Q and P be mutually absolutely continuous probability measures and write
f = dQ

dP . Then, for any measurable g and any sub-σ -algebra G, EQ[g | G] = EP[fg|G]
EP[f |G] .

Lemma 22. The variance of the log likelihood ratio tensorises in this model, up to a constant.

Precisely, Varb0 log(
p

(n)
0 (X(n))

p
(n)
b (X(n))

) ≤ 3 Varb0(log π0(X0)
πb(X0)

) + 3nVarb0(log p0(X0,X�)
pb(X0,X�)

).

Lemma 23. Let p̃0 be as in (14). Let p∗(�,x, y) be the density with respect to Lebesgue mea-
sure of transitions from x to y in time � for a process U ∼W

(x)
σ . Then

p0(�,x, y)

p∗(�,x, y)
= E

W
(x)
σ

[
p̃0(U) | U� = y

]
.

Appendix B: Notation

We collect most of the notation used in the course of this paper.
X: A solution to dXt = b(Xt )dt + σ(Xt )dWt .
Ẋ: The periodised diffusion Ẋ = X mod 1.
b, σ : Drift function, diffusion coefficient.
μ = μb; πb: Invariant distribution/density of Ẋ.
P

(x)
b : Law of X on C([0,∞]) (on C([0,�]) in Section 5) for initial condition X0 = x.

Eb; Pb; Varb: Expectation/probability/variance according to the law of X started from μb .
Eμ;Varμ, and similar: Expectation/variance according to the subscripted measure.

W
(x)
σ : Notation for P

(x)
b when b = 0.

pb(t, x, y), ṗb(t, x, y): Transition densities of X, Ẋ (with respect to Lebesgue measure).
p̃b: Density (with respect to W

(x)
σ ) of P

(x)
b on C([0,�]).

Ib(x) = ∫ x

0 (2b/σ 2)(y)dy.

X(n) = (X0, . . . ,Xn�); x(n) = (x0, . . . , xn�); p
(n)
b (x(n)) = πb(x0)

∏n
i=1 pb(�,x(i−1)�, xi�).

b0: The true parameter generating the data.
μ0, π0, p0 etc.: Shorthand for μb0 , πb0 , pb0 etc.
σL > 0; σU < ∞: A lower and upper bound for σ .
L0: A constant such that n�2 log(1/�) ≤ L0 for all n.
� = �(K0): The maximal paramater space: � = {f ∈ C1

per([0,1]) : ‖f ‖C1
per

≤ K0}.
�s(A0) = {f ∈ � : ‖f ‖Bs

2,∞ ≤ A0}, for Bs
2,∞ a (periodic) Besov space.

I = {K0, σL,σU }.
Sm: Wavelet approximation space of resolution m, generated by periodised Meyer-type

wavelets: Sm = span{ψlk : −1 ≤ l < m,0 ≤ k < 2l}, where ψ−1,0 is used as notation for the
constant function 1.

Dm = dim(Sm) = 2m; πm =(L2-)orthogonal projection onto Sm.
wm(δ) = δ1/2(log(δ−1)1/2 + log(m)1/2) if m ≥ 1, wm := w1 if m < 1.
1A: Indicator of the set (or event) A.
K(p,q): Kullback–Leibler divergence between densities p, q: K(p,q) = Ep[log(p/q)].
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KL(b0, b) = Eb0 log(p0/pb).

B
(n)
KL(ε) = {b ∈ � : K(p

(n)
0 ,p

(n)
b ) ≤ (n� + 1)ε2,Varb0(log(p

(n)
0 /p

(n)
b )) ≤ (n� + 1)ε2}.

Bε = {b ∈ � : K(π0,πb) ≤ ε2,Varb0(log π0
πb

) ≤ ε2,KL(b0, b) ≤ �ε2,Varb0(log p0
pb

) ≤ �ε2}.
�: The prior distribution.
�(· | X(n)): The posterior distribution given data X(n).
〈·, ·〉: the L2([0,1]) inner product, 〈f,g〉 = ∫ 1

0 f (x)g(x)dx.

‖ · ‖2: The L2([0,1])-norm, ‖f ‖2
2 = ∫ 1

0 f (x)2 dx.

‖ · ‖μ: The L2(μ)-norm, ‖f ‖2
μ = ∫ 1

0 f (x)2μ(dx) = ∫ 1
0 f (x)2πb(x)dx.

‖ · ‖∞: The L∞ (supremum) norm, ‖f ‖∞ = supx∈[0,1] |f (x)| (all functions we use are con-
tinuous hence we can take the supremum rather than needing the essential supremum).

‖ · ‖C1
per

: The C1
per-norm, ‖f ‖C1

per
= ‖f ‖∞ + ‖f ′‖∞.

‖ · ‖n: The empirical L2-norm ‖f ‖2
n = ∑n

k=1 f (Xk�)2.
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