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Functional estimation and hypothesis testing
in nonparametric boundary models
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Consider a Poisson point process with unknown support boundary curve g, which forms a prototype of
an irregular statistical model. We address the problem of estimating non-linear functionals of the form∫

�(g(x)) dx. Following a nonparametric maximum-likelihood approach, we construct an estimator which
is UMVU over Hölder balls and achieves the (local) minimax rate of convergence. These results hold under
weak assumptions on � which are satisfied for �(u) = |u|p , p ≥ 1. As an application, we consider the
problem of estimating the Lp-norm and derive the minimax separation rates in the corresponding nonpara-
metric hypothesis testing problem. Structural differences to results for regular nonparametric models are
discussed.
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1. Introduction

Point processes serve as canonical models for dealing with support estimation. Poisson point
processes (PPP) appear in the continuous limit of nonparametric regression models with one-
sided or irregular error variables, cf. Meister and Reiß [13], and thus form counterparts of the
Gaussian white noise (GWN) model. In this paper, we consider the observation of a PPP on
[0,1] ×R with intensity function

λg(x, y) = n1
(
y ≥ g(x)

)
, x ∈ [0,1], y ∈R, (1.1)

where g is an unknown support boundary curve and n ∈ N. A prototypical regression model
corresponding to this PPP model with n replaced by αn is given by

Yi = g(i/n) + εi, i = 1, . . . , n, (1.2)

with one-sided i.i.d. error variables εi ≥ 0, satisfying P(εi ≤ x) = αx + O(x2) as x ↓ 0, cf. the
discussion in Reiß and Selk [15]. The important point to keep in mind is that in these support
boundary models, the standard parametric rate is n−1 due to the behaviour of extreme value
statistics.

In Korostelev and Tsybakov [8], Chapter 8, the problem of estimating functionals of a binary
image boundary from noisy observations has been studied. Although the noise is regular, the
Hellinger metric is an L1-distance exactly as in our PPP model. In both models, the minimax
rate of convergence for estimating linear functionals of the form 〈g,ψ〉 = ∫ 1

0 g(x)ψ(x)dx, ψ ∈
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Table 1. Minimax rates for regularity β in the Poisson point process (PPP) and Gaussian white noise
(GWN) model

Rate PPP GWN

estimate g(x) n−β/(β+1) n−β/(2β+1)

estimate 〈g,ψ〉 n−(β+1/2)/(β+1) n−1/2

estimate ‖g‖p
p n−(β+1/2)/(β+1) p = 2: n−4β/(4β+1) ∨ n−1/2

estimate ‖g‖p n−(β+1/(2p))/(β+1) p even: n−β/(2β+1−1/p)

testing n−(β+1/(2p))/(β+1) n−β/(2β+1/2+(1/2−1/p)+)

L2([0,1]), is n−(β+1/2)/(β+1) over the Hölder ball

Cβ(R) = {
g : [0,1] → R : ∣∣g(x) − g(y)

∣∣ ≤ R|x − y|β∀x, y ∈ [0,1]}
with β ∈ (0,1] and radius R > 0. For the PPP model Reiß and Selk [15] build up a nonparametric
maximum-likelihood approach and construct an unbiased estimator achieving this rate. Besides
minimax optimality, their estimator has the striking property of being UMVU (uniformly of
minimum variance among all unbiased estimators) over Cβ(R).

Here, we consider the problem of estimating and testing non-linear functionals of the form

F�(g) =
∫ 1

0
�

(
g(x)

)
dx, (1.3)

where � : R → R is a known weakly differentiable function with derivative �′ ∈ L1
loc(R) (i.e.

�(u) = �(0) + ∫ u

0 �′(v) dv, u ∈ R, holds). An important class of functionals of the form (1.3)
is given by p-th powers ‖g‖p

p of Lp-norms using �(u) = |u|p , p ≥ 1.
We show that it is still possible to construct an unbiased estimator of F�(g) which is UMVU

over Cβ(R). Moreover, under weak assumptions on �′, we compute the minimax risk of es-
timation over small neighbourhoods of g and show that the estimator achieves the local mini-
max rate of convergence ‖�′ ◦ g‖2n

−(β+1/2)/(β+1). For the special case of estimating ‖g‖p
p and

the Lp-norm ‖g‖p , we prove that the minimax rates of convergence are n−(β+1/2)/(β+1) and
n−(β+1/(2p))/(β+1), respectively.

Based on these results we consider the testing problem H0 : g = g0 versus H1 : g ∈ {g0 +
h ∈ Cβ(R) : ‖h‖p ≥ rn}, where the nonparametric alternative is separated by a ball of radius
rn > 0 in Lp-norm. We show that the minimax separation rate is n−(β+1/(2p))/(β+1) and that
this rate can be achieved by a plug-in test, using a minimax optimal estimator of the Lp-norm
of g. In particular, the minimax rates of testing and estimation coincide, and they are located
strictly between the parametric rate n−1 and the rate n−β/(β+1), corresponding to the problem of
estimating the function g itself (see e.g. Jirak, Meister and Reiß [5] and the references therein).

These fundamental questions have been studied extensively in the mean regression and Gaus-
sian white noise (GWN) model. In the latter, we observe a realisation of

dX(t) = g(t) dt + n−1/2 dW(t), t ∈ [0,1],



Functional estimation in nonparametric boundary models 2599

Figure 1. Testing rate exponents for the Poisson point process (PPP) and Gaussian white noise (GWN)
model as a function of the regularity β .

where g is the unknown regression function and (W(t) : t ∈ [0,1]) is a standard Brownian mo-
tion. Significant differences appear. Consider, for instance, the case �(u) = |u|p with p ∈N. For
p even and β large enough, the smooth functional (1.3) can be estimated with the parametric rate
of convergence n−1/2, using the method from Ibragimov, Nemirovski and Khasminski [3] (see
Table 1 for the case p = 2 and the monograph by Nemirovski [14] for more general functionals).
Estimation of the Lp-norm has been considered by Lepski, Nemirovski and Spokoiny [11]. For
p even, the optimal rate of convergence is n−β/(2β+1−1/p), while for p odd, the standard non-
parametric rate n−β/(2β+1) can only be improved by logn factors. In Table 1, we compare these
GWN estimation rates with the PPP rates. A structural difference is that for vanishing regularity
β ↓ 0 the GWN convergence rates become arbitrarily slow, while in the PPP case the rates always
remain faster than n−1/2 and n−1/(2p), respectively. This phenomenon will be further discussed
at the beginning of Section 2. More generally, the PPP rates hold universally for all 1 ≤ p < ∞,
while the GWN rates depend on p in a very delicate way, showing that Lp-norm estimation is to
some extent a regular estimation problem in the otherwise rather irregular PPP statistical model.

Further differences arise in the testing problem, which for the GWN model is the topic of
the monograph by Ingster and Suslina [4]. The testing problem H0 : g = 0 versus H1 : g ∈ {h ∈
L2([0,1]) : ‖h‖p ≥ rn and ‖h‖β,q ≤ R} is considered, where ‖ · ‖β,q is a Sobolev or Besov norm
with smoothness measured in Lq -norm. For instance, in the case 1 ≤ p ≤ 2 and q = ∞, the
minimax separation rate is n−2β/(4β+1) which coincides with the minimax rate for estimating
the Lp-norm if p = 2 but not if p = 1. The general minimax GWN separation rates for the case
q ≥ p are given in the last row of Table 1 (for the cases 1 ≤ p ≤ 2, p ≤ q ≤ ∞ and 2 < p = q <

∞), results for the case q < p can be found in Lepski and Spokoiny [12]. Figure 1 visualises
the differences between the GWN and the PPP case by plotting the separation rate exponents for
the range of p ∈ [1,∞) as a function of the regularity β . In the GWN model the rates become
arbitrarily slow when β approaches zero and they do not change for p ∈ [1,2] (elbow effect),
which is not the case in the PPP case. The absence of an elbow effect in the PPP model may be
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understood by a different Hellinger geometry: the Hellinger distance is given by an L1-distance
between the curves, while it is based on the L2-distance in the GWN model.

In the next Section 2, we construct the estimator, compute its mean and variance using the
underlying point process geometry and martingale arguments, and we derive the (local) minimax
rates of convergence. In Sections 3 and 4, we focus on the special case where �(u) = |u|p and
apply our results to the problem of estimating the Lp-norm and to the corresponding hypothesis
testing problem.

2. Estimation of non-linear functionals

2.1. The estimator

Let (Xj ,Yj )j≥1 be the observed support points of a Poisson point process on [0,1] × R with
intensity function given by (1.1). The support boundary curve g is supposed to lie in the Hölder
ball Cβ(R) with β ∈ (0,1]. The aim is to estimate the functional in (1.3). Similarly to [15], our
estimation method can be motivated as follows. Suppose that we know a deterministic function
ḡ ∈ Cβ(R) with ḡ(x) ≥ g(x) for all x ∈ [0,1]. Then the sum

1

n

∑
j≥1

�′(Yj )1
(
ḡ(Xj ) ≥ Yj

)
(2.1)

is a.s. finite, has expectation equal to

1

n

∫ 1

0

∫
R

�′(y)1
(
ḡ(x) ≥ y

)
λg(x, y) dy dx =

∫ 1

0

(
�

(
ḡ(x)

) − �
(
g(x)

))
dx

and variance equal to

1

n2

∫ 1

0

∫
R

�′(y)21
(
ḡ(x) ≥ y

)
λg(x, y) dy dx

= 1

n

∫ 1

0

∫
R

�′(y)21
(
ḡ(x) ≥ y ≥ g(x)

)
dy dx, (2.2)

provided the last integral is finite (see, e.g., [9], Lemma 1.1 or [10], Theorem 4.4). Thus,

F̂
pseudo
� =

∫ 1

0
�

(
ḡ(x)

)
dx − 1

n

∑
j≥1

�′(Yj )1
(
ḡ(Xj ) ≥ Yj

)

forms an unbiased pseudo-estimator (relying on the knowledge of ḡ) of F�(g) whose variance
is given by (2.2). The closer ḡ is to g, the smaller the variance. Concerning the rate results for
p-th powers of Lp-norms in Table 1 note that already the very minor knowledge of some upper
bound of g suffices to construct an estimator with convergence rate n−1/2, which explains why
in the PPP case even for β ↓ 0 estimation and testing rates remain consistent.
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The main idea is now to find a data-driven upper bound of g which is as small as possible.
A solution to this problem is given by

ĝMLE(x) = min
k≥1

(
Yk + R|x − Xk|β

)
, x ∈ [0,1], (2.3)

which is the maximum-likelihood estimator over Cβ(R) [15], Section 3. Indeed, ĝMLE is an upper
bound for g noting that Yk ≥ g(Xk) and g(Xk) + R|x − Xk|β ≥ g(x) for all k ≥ 1, where the
latter follows from g ∈ Cβ(R).

The idea is now that the sum

1

n

∑
j≥1

�′(Yj )1
(
ĝMLE(Xj ) ≥ Yj

)

is a.s. finite and satisfies

E

[
1

n

∑
j≥1

�′(Yj )1
(
ĝMLE(Xj ) ≥ Yj

)] = 1

n

∫ 1

0

∫
R

�′(y)E
[
1
(
ĝMLE(x) ≥ y

)]
λg(x, y) dy dx

=
∫ 1

0
E

[
�

(
ĝMLE(x)

)]
dx −

∫ 1

0
�

(
g(x)

)
dx,

provided that the integral in the second line is well-defined. For the first equality observe that

1
(
ĝMLE(Xj ) ≥ Yj

) = 1
(

min
k≥1:k �=j

(
Yk + R|Xj − Xk|β

) ≥ Yj

)

where the term j = k can be dropped. This implies that the observation (Xj ,Yj ) can be integrated
out, by following the usual arguments for computing sums with respect to a Poisson process (see,
e.g., [10], Theorem 4.4). To summarise, we propose the following estimator

F̂� =
∫ 1

0
�

(
ĝMLE(x)

)
dx − 1

n

∑
j≥1

�′(Yj )1
(
ĝMLE(Xj ) ≥ Yj

)
, (2.4)

which is indeed an unbiased estimator of F�(g) under the appropriate integrability condition.

Proposition 2.1. Suppose that∫ 1

0

∫ ∞

0

∣∣�′(g(x) + u
)∣∣P(

ĝMLE(x) − g(x) ≥ u
)
dudx < ∞. (2.5)

Then F̂� from (2.4) is an unbiased estimator of F�(g).

Remark 2.2. The above argument can be worked out for more general functionals of the form∫ 1
0 . . .

∫ 1
0 �(x1, . . . , xm,g(x1), . . . , g(xm)) dx1 · · · dxm, but then involves complex expressions in

mixed partial derivatives of �. We therefore focus on estimation of the basic functional F�.
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Remark 2.3. For the one-sided regression model (1.2) the discrete functional F̂
(n)
� = (1/n) ×∑n

i=1 �(g(i/n)) can be estimated analogously by

1

n

n∑
i=1

�
(
ĝrMLE(i/n)

) − 1

αn

n∑
i=1

�′(Yi)1
(
ĝrMLE(i/n) ≥ Yi

)

with the regression analogue ĝrMLE(x) = mini (Yi + R|x − i/n|β) of ĝMLE. This estimator can
be analysed with the martingale arguments of the next section, compare the results in [15] for the
linear case.

2.2. The martingale approach

We pursue a martingale-based analysis of the estimator F̂� in (2.4). The following result extends
[15], Theorem 3.2 to non-linear functionals.

Theorem 2.4. Suppose that the right-hand side in (2.6) below is finite. Then the estimator F̂� is
UMVU over g ∈ Cβ(R) with variance

Var(F̂�) = 1

n

∫ 1

0

∫ ∞

0

(
�′(g(x) + u

))2
P
(
ĝMLE(x) − g(x) ≥ u

)
dudx. (2.6)

Remark 2.5. If the right-hand side in (2.6) is finite, then Condition (2.5) holds since
P(ĝMLE(x) − g(x) ≥ u) is integrable in u, see also (2.8) below.

Proof. We first show the formula for the variance. Let λ = (λt ) be the process defined by λt =
n

∫ 1
0 1(g(x) ≤ t ≤ ĝMLE(x)) dx, t ∈ R. Making a linear change of variables, the right-hand side

in (2.6) can be written as

n−2
E

[∫ ∞

t0

�′(s)2λs ds

]
,

where t0 is a lower bound for g. In the proof of Theorem 3.2 in [15], it is shown that the pure
counting process N = (Nt ) defined by

Nt =
∑
j≥1

1
(
Yj ≤ t ∧ ĝMLE(Xj )

)
, t ≥ t0,

has compensator A = (At ) given by At = ∫ t

t0
λs ds and that M = N − A is a square-integrable

martingale with respect to the filtration Ft = σ((Xj ,Yj )1(Yj ≤ t), j ≥ 1). Its predictable
quadratic variation is

〈M〉t =
∫ t

t0

λs ds
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(see also [7], Proposition 2.32). We conclude (e.g., via [6], Theorem 26.2) that

(
�′ · M)

t
=

∫ t

t0

�′(s) dMs =
∑
j≥1

�′(Yj )1
(
Yj ≤ t ∧ ĝMLE(Xj )

) −
∫ t

t0

�′(s)λs ds

is an L2-bounded martingale with

〈
�′ · M 〉

t
=

∫ t

t0

�′(s)2λs ds,

noting that E[〈�′ ·M〉t ] is bounded by the right-hand side in (2.6), which is finite by assumption.
For t → ∞, the process ((�′ · M)t) converges almost surely to

(
�′ · M)

∞ =
∑
j≥1

�′(Yj )1
(
Yj ≤ ĝMLE(Xj )

) −
∫ ∞

t0

�′(s)λs ds

=
∑
j≥1

�′(Yj )1
(
Yj ≤ ĝMLE(Xj )

) − n

∫ 1

0
�

(
ĝMLE(x)

)
dx + n

∫ 1

0
�

(
g(x)

)
dx.

Moreover, the process (〈�′ · M〉t ) converges almost surely and in L1 to

〈
�′ · M 〉

∞ =
∫ ∞

t0

�′(s)2λs ds.

Hence, unbiasedness and (2.6) follow from

E
[(

�′ · M)
∞

] = 0 and E
[(

�′ · M)2
∞ − 〈

�′ · M 〉
∞

] = 0, (2.7)

which holds due to the L2-convergence of �′ · M [6], Corollary 6.22.
Finally, the fact that F̂� is UMVU follows from the Lehmann–Scheffé theorem and [15],

Proposition 3.1 which says that (ĝMLE(x) : x ∈ [0,1]) is a sufficient and complete statistic for
Cβ(R). �

2.3. Rates of convergence

In this section, we derive convergence rates for the estimator F̂�. Using the argument leading to
[15], Equation (3.3), we have the following deviation inequality for x ∈ [0,1]:

P
(
ĝMLE(x) − g(x) ≥ u

) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp

(
−nβ(2R)

− 1
β u

β+1
β

β + 1

)
, if u ∈ [0,2R],

exp

(
−n

(
u − 2R

β + 1

))
, if u > 2R.

(2.8)
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Thus, the right-hand side in (2.6) is finite if (�′)2 has at most exponential growth with parameter
strictly smaller than n. In particular, this holds for �(u) = |u|p , p ≥ 1, in which case we have
�′(u) = p|u|p−1 sgn(u). A more detailed analysis gives:

Corollary 2.6. Let p ≥ 1 be a real number and consider �(u) = |u|p , g ∈ Cβ(R). Then

F̂p =
∫ 1

0

∣∣ĝMLE(x)
∣∣p dx − 1

n

∑
j≥1

p|Yj |p−1 sgn(Yj )1
(
ĝMLE(Xj ) ≥ Yj

)
(2.9)

is an unbiased estimator of ‖g‖p
p with

E
[(

F̂p − ‖g‖p
p

)2] ≤ C max
(‖g‖2p−2

2p−2n
− 2β+1

β+1 , n
− 2βp+1

β+1
)
, (2.10)

where C is a constant depending only on R, β and p. Here, we use the notation ‖ · ‖q also for
q < 1 with ‖g‖0

0 := 1.

Remark 2.7. In the proof, a more precise upper bound is derived in which the dependence on the
constant R is explicit, see (2.12). For an asymptotically more precise result see Corollary 2.10
below.

Remark 2.8. Since �(u) = |u|p is non-negative, the positive part (F̂p)+ of F̂p always improves
the estimator. This means that F̂p is not an admissible estimator in the decision-theoretic sense,
while (F̂p)+ on the other hand is no longer unbiased.

Proof. Throughout the proof C > 0 denotes a constant depending only on β and p that may
change from line to line. By Theorem 2.4 and the discussion above, we have

E
[(

F̂p − ‖g‖p
p

)2] = 1

n

∫ 1

0

∫ ∞

0
p2

∣∣u + g(x)
∣∣2p−2

P
(
ĝMLE(x) − g(x) ≥ u

)
dudx.

Applying (2.8) and the inequality |u + g(x)|2p−2 ≤ 22p−2(u2p−2 + |g(x)|2p−2), the last term is
bounded by

p222p−2

n

∫ 2R

0

(‖g‖2p−2
2p−2 + u2p−2) exp

(
−nβ(2R)

− 1
β u

β+1
β

β + 1

)
du

+ p222p−2

n

∫ ∞

2R

(‖g‖2p−2
2p−2 + u2p−2) exp

(
−n

(
u − 2R

β + 1

))
du

=: (I) + (II).
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By a linear substitution, we have for q ≥ 0

∫ 2R

0
uq exp

(
−nβ(2R)

− 1
β u

β+1
β

β + 1

)
du

≤
(

β + 1

β

) β(q+1)
β+1

(2R)
q+1
β+1 n

− β(q+1)
β+1

∫ ∞

0
vq exp

(−v
β+1
β

)
dv

=
(

β + 1

β

) βq−1
β+1

(2R)
q+1
β+1 	

(
β(q + 1)

β + 1

)
n

− β(q+1)
β+1 (2.11)

with the Gamma function 	. Consequently,

(I) ≤ CR
1

β+1 ‖g‖2p−2
2p−2n

− 2β+1
β+1 + CR

2p−1
β+1 n

− 2βp+1
β+1 .

Next, consider the remainder term (II). We have∫ ∞

2R

exp

(
−n

(
u − 2R

β + 1

))
du = n−1e

− 2βRn
β+1

and ∫ ∞

2R

u2p−2 exp

(
−n

(
u − 2R

β + 1

))
du ≤

∫ ∞

2R

u2p−2 exp

(
− nβu

β + 1

)
du

≤
(

β + 1

nβ

)2p−1 ∫ ∞

2βRn/(β+1)

v2p−2 exp(−v)dv

≤ Cn−2p+1e
− βRn

β+1 .

Note that the last integral can be computed using partial integration. Thus

(II) ≤ C‖g‖2p−2
2p−2n

−2e
− 2βRn

β+1 + Cn−2pe
− βRn

β+1 .

Summarising, we have

E
[(

F̂p − ‖g‖p
p

)2] ≤ CR
1

β+1 ‖g‖2p−2
2p−2n

− 2β+1
β+1 + CR

2p−1
β+1 n

− 2βp+1
β+1

+ C‖g‖2p−2
2p−2n

−2e
− 2βRn

β+1 + Cn−2pe
− βRn

β+1 , (2.12)

and the claim follows. �

One might wonder whether F̂p achieves the rate n−(β+1/2)/(β+1) uniformly over g ∈ Cβ(R) ∩
Bp(R) with the Lp-ball Bp(R) = {g ∈ Lp([0,1]) : ‖g‖p ≤ R}. For 1 ≤ p ≤ 2 this follows from
the inclusion Bp(R) ⊆ B2p−2(R). For p > 2 this holds as well and is a consequence of the
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following useful lemma (with q = 2p −2) providing a simple interpolation result. Results of this
type are well known (cf. Bergh and Löfström [1]), but since only Hölder semi-norms appear, we
provide a self-contained proof in the Appendix.

Lemma 2.9. Let 1 ≤ p ≤ q ≤ ∞ and f ∈ Cβ(R). Then we have

‖f ‖q ≤ C‖f ‖p max
(
1,R/‖f ‖p

) 1/p−1/q
β+1/p ,

where C > 0 is a constant depending only on β , p and q and the right-hand side is understood
to be zero for f = 0.

Let us come to another corollary of Theorem 2.4 which provides a local asymptotic upper
bound for the minimax risk under weak assumptions on the functional:

Corollary 2.10. Suppose that there is a constant C > 0 such that |�′(u)| ≤ C exp(C|u|) for all
u ∈R. Let f ∈ Cβ(R). Suppose that ‖�′ ◦ f ‖2 �= 0 and that the map F ′ : Cβ(R) ⊆ L2([0,1]) →
L2([0,1]), F ′(g) = �′ ◦ g is continuous at g = f with respect to the L2-norms. Then the esti-
mator F̂�,n = F̂� satisfies the local asymptotic upper bound

lim
δ→0

lim sup
n→∞

sup
g∈Cβ(R):
‖f −g‖2≤δ

n
2β+1
β+1 Eg

[(
F̂�,n − F�(g)

)2] ≤ 	

(
β

β + 1

)(
2Rβ

β + 1

) 1
β+1 ∥∥�′ ◦ f

∥∥2
2

with the Gamma function 	.

Proof. By Theorem 2.4 and Equation (2.8), we have

Eg

[(
F̂� − F�(g)

)2] ≤ 1

n

∫ 2R

0

∥∥�′ ◦ (u + g)
∥∥2

2 exp

(
−nβ(2R)

− 1
β u

β+1
β

β + 1

)
du

+ 1

n

∫ ∞

2R

∥∥�′ ◦ (u + g)
∥∥2

2 exp

(
− nβu

β + 1

)
du.

By Lemma 2.9, applied to f − g and with p = 2, q = ∞, we infer from g ∈ Cβ(R) with ‖f −
g‖2 ≤ δ that

‖f − g‖∞ ≤ C′R1/(2β+1)δ2β/(2β+1) (2.13)

holds with some constant C′, provided that δ ≤ R. Using that �′ has at most exponential growth,
we get that ‖�′ ◦ (u + g)‖2

2 ≤ C exp(C|u|) uniformly over all g ∈ Cβ(R) with ‖f − g‖2 ≤ δ

(adjusting C appropriately). This shows that the second term is of smaller order than n−2 and
thus asymptotically negligible for our result. Similarly, for every fixed δ′ > 0 the first integral
from δ′ to 2R becomes exponentially small in n. Thus, for any δ′ > 0 the left-hand side in
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Corollary 2.10 is bounded by

lim
δ→0

lim sup
n→∞

sup
g∈Cβ(R):
‖f −g‖2≤δ

n
β

β+1

∫ δ′

0

∥∥�′ ◦ (u + g)
∥∥2

2 exp

(
−nβ(2R)

− 1
β u

β+1
β

β + 1

)
du. (2.14)

By the continuity of F ′
� at f and the fact that ‖�′ ◦ f ‖2 �= 0, for every ε > 0 there exist δ, δ′ > 0

such that ‖�′ ◦ (u + g)‖2 ≤ (1 + ε)‖�′ ◦ f ‖2 for all |u| ≤ δ′ and g ∈ Cβ(R) with ‖f − g‖2 ≤ δ.
We conclude that (2.14) is bounded by (using the computation in (2.11) for q = 0)

	

(
β

β + 1

)(
2Rβ

β + 1

) 1
β+1 ∥∥�′ ◦ f

∥∥2
2,

and the claim follows. �

Remark 2.11. By Lemma 2.9 continuity of F ′
� on Cβ(R) with respect to L2-norm implies

continuity with respect to supremum norm. Under the assumptions of Corollary 2.10, one can
indeed show that the functional F� is Fréchet-differentiable in f along Cβ(R) with derivative
F ′

�(f ) = �′ ◦ f .

Remark 2.12. Local asymptotic minimax results for estimating smooth functionals in the GWN
model can be found in Nemirovski [14], Chapter 7. The rate is different (see the discussion in
the Introduction), but the term ‖F ′

�(g)‖2
2 appears as well. The latter fact can be explained by

linearising F� at g.

Remark 2.13. The estimators are non-adaptive in the sense that they rely on the knowledge of
the regularity parameters β and R. In [15] the Lepski method has been employed to construct
adaptive estimators in the linear case, based on a blockwise estimator. We conjecture that this
approach would also give an adaptive rate-optimal estimator here. Note also the restriction β ≤ 1
on the regularity parameter. The reason is that the MLE for g ∈ Cβ(R) with β > 1 does not
necessarily provide a pointwise upper bound for g such that the present approach may fail.

2.4. Lower bounds

In this section, we establish lower bounds corresponding to Corollaries 2.6 and 2.10. We will
apply the method of two fuzzy hypotheses (see [16], Chapter 2.7.4) with a prior corresponding to
independent non-identical Bernoulli random variables. Our main result states a local asymptotic
lower bound in the case that � is continuously differentiable. Possible extensions are discussed
afterwards.



2608 M. Reiß and M. Wahl

Theorem 2.14. Let � be continuously differentiable and f ∈ Cβ(R) with ‖�′ ◦ f ‖2 �= 0. Then
there is a constant c1 > 0, depending only on β , such that

lim
δ→0

lim inf
n→∞ inf

F̃n

sup
g∈Cβ(R):
‖f −g‖2≤δ

n
2β+1
β+1 Eg

[(
F̃n − F�(g)

)2]
> c1R

1
β+1

∥∥�′ ◦ f
∥∥2

2.

The infimum is taken over all estimators in the PPP model with intensity (1.1).

Proof. We want to apply the χ2-version of the method of two fuzzy hypotheses as described in
[16], Theorem 2.15. Consider the functions

gθ =
m∑

k=1

θkgk with θk ∈ {0,1}

and

gk(x) = cRhβK

(
x − (k − 1)h

h

)
= cRhβ+1Kh

(
x − (k − 1)h

)
with h = 1/m, triangular kernel K(u) = 4(u ∧ (1 − u))1[0,1](u), Kh(·) = K(·/h)/h and c > 0
sufficiently small such that gθ ∈ Cβ(R) for all m and θ . Let πn be the probability measure on
{0,1}m obtained when θ1, . . . , θm are independent (non-identical) Bernoulli random variables
with success probabilities p1, . . . , pm. Let Pg denote the law of the observations in the PPP
model with intensity function (1.1). We set P0,n = Pf and

P1,n(·) =
∫

Pf +gθ (·)πn(dθ).

In order to obtain the result, it suffices to find m ≥ 1 and probabilities p1, . . . , pm (both depending
on n) as well as a constant c1 > 0, only depending on β , and an absolute constant c2 < ∞, such
that

(i) For each fixed δ > 0 the inequality ‖gθ‖2 ≤ δ holds for all n sufficiently large and for
n → ∞ the prior satisfies

πn

(
F�(f + gθ ) ≥ F�(f ) + 2c1

∥∥�′ ◦ f
∥∥

2R
1/2
β+1 n

− β+1/2
β+1

) → 1;
(ii) lim supn→∞ χ2(P1,n,P0,n) ≤ c2.

We start with the following lemma on the χ2-distance.

Lemma 2.15. Suppose that the success probabilities satisfy
∑m

k=1 p2
k = 1. Then

χ2(P1,n,P0,n) =
∫ (

dP1,n

dP0,n

)2

dP0,n − 1 ≤ exp

(
exp

(
n

∫
I1

g1(x) dx

)
− 1

)
− 1

holds, where I1 = [0, h).



Functional estimation in nonparametric boundary models 2609

Proof of Lemma 2.15. We abbreviate
∫

gk = ∫
Ik

gk(x) dx, where Ik = [(k − 1)h, kh) for k < m

and Im = [1 − h,1]. Let us first see that

dP1,n

dP0,n

=
m∏

k=1

(
1 − pk + pke

n
∫

gk1
(∀Xj ∈ Ik : Yj ≥ f (Xj ) + gk(Xj )

))
. (2.15)

Indeed, by definition the left-hand side is equal to

∑
θ∈{0,1}m

( ∏
k:θk=0

(1 − pk)
∏

k:θk=1

pk

)
dPf +gθ

dPf

=
∑

θ∈{0,1}m

( ∏
k:θk=0

(1 − pk)
∏

k:θk=1

pke
n

∫
gk1

(∀Xj ∈ Ik : Yj ≥ f (Xj ) + gk(Xj )
))

=
m∏

k=1

(
1 − pk + pke

n
∫

gk1
(∀Xj ∈ Ik : Yj ≥ f (Xj ) + gk(Xj )

))
,

where we used the formula (see [9], Theorem 1.3 or [15], Section 3)

dPf +gθ

dPf

= en
∫

gθ 1
(∀j : Yj ≥ f (Xj ) + gθ (Xj )

)
=

∏
k:θk=1

en
∫

gk1
(∀Xj ∈ Ik : Yj ≥ f (Xj ) + gk(Xj )

)

in the first equality. By the defining properties of the PPP, under P0,n, the right-hand side in (2.15)
is a product of independent random variables and the corresponding indicators have success
probabilities e−n

∫
gk . Thus, we obtain

∫ (
dP1,n

dP0,n

)2

dP0,n =
m∏

k=1

(
(1 − pk)

2 + 2pk(1 − pk) + p2
ke

n
∫

gk
)

=
m∏

k=1

(
1 + p2

k

(
en

∫
gk − 1

))

≤
m∏

k=1

ep2
k (en

∫
g1−1) = een

∫
g1−1,

where we used the bound 1 + x ≤ ex and the assumption
∑m

k=1 p2
k = 1. �

Using Lemma 2.15 and the identity

n

∫
I1

g1(x) dx = cRnhβ+1,
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we get (ii) provided that we choose m = 1/h of size (Rn)1/(β+1) and p1, . . . , pm such that∑m
k=1 p2

k = 1. Thus it remains to choose the pk such that the second convergence in (i) is satis-
fied.

We first consider the case that �′ ◦ f ≥ 0. Let ε > 0 be a small constant to be chosen later.
Since �′ is uniformly continuous on compact intervals, there is a δ′ > 0 such that

∫ 1

0
�

(
f (x) + g(x)

)
dx −

∫ 1

0
�

(
f (x)

)
dx ≥

∫ 1

0
�′(f (x)

)
g(x)dx − ε

∫ 1

0

∣∣g(x)
∣∣dx

for all g ∈ Cβ(R) with ‖f − g‖2 ≤ δ′ (using (2.13) above). Thus, for n sufficiently large, we get

F�(f + gθ ) − F�(f ) ≥ 〈
�′ ◦ f,gθ

〉 − ε〈1, gθ 〉

=
m∑

k=1

θk

〈
�′ ◦ f,gk

〉 − ε

m∑
k=1

θk〈1, gk〉

= cRhβ+1

(
m∑

k=1

θk

〈
�′ ◦ f,Kh

(· − (k − 1)h
)〉 − ε

m∑
k=1

θk

)
.

Setting ak = 〈�′ ◦ f,Kh(· − (k − 1)h)〉, this can be written as

F�(f + gθ ) − F�(f ) ≥ cRhβ+1

(
m∑

k=1

akθk − ε

m∑
k=1

θk

)
. (2.16)

The first sum is a weighted sum of independent non-identical Bernoulli random variables and the
maximising choice for the success probabilities is

pk = ak

‖a‖2
(2.17)

(the ak satisfy ak ≥ 0 since we assumed �′ ◦ f ≥ 0). By the mean value theorem and the fact
that �′ ◦ f is continuous, we get ak = �′(f (xk)) with xk ∈ [(k − 1)h, kh] and also

1

m
‖a‖q

q = 1

m

m∑
k=1

a
q
k →

∫ 1

0
(�′(f (x)

)q
dx = ∥∥�′ ◦ f

∥∥q

q
as n → ∞ (2.18)

for each q ≥ 1. Using the Chebyshev inequality, we get

πn

(
m∑

k=1

akθk < ‖a‖2/2

)
= πn

(
m∑

k=1

ak(θk − pk) < −‖a‖2/2

)

≤ 4
∑m

k=1 a2
kpk(1 − pk)

‖a‖2
2

≤ 4

(‖a‖3

‖a‖2

)3
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and the latter converges to 0 as n → ∞ by (2.18). Similarly,

πn

(
m∑

k=1

θk > 2‖a‖1/‖a‖2

)
= πn

(
m∑

k=1

(θk − pk) > ‖a‖1/‖a‖2

)

≤ ‖a‖2
2

∑m
k=1 pk(1 − pk)

‖a‖2
1

≤ ‖a‖2

‖a‖1

and the latter converges to 0 as n → ∞ by (2.18). Combining these two bounds with (2.16) we
get

πn

(
F�(f + gθ ) − F�(f ) ≥ cRhβ+1/2

(
1

2
√

m
‖a‖2 − ε

2√
m

‖a‖1

‖a‖2

))
→ 1 (2.19)

as n → ∞. This implies (i) if ε is chosen small enough since ‖a‖2/
√

m and ‖a‖1/(
√

m‖a‖2)

have non-zero limits by (2.18) and the assumption ‖�′ ◦ f ‖2 �= 0. This completes the proof in
the case �′ ◦ f ≥ 0.

If �′ ◦f ≤ 0, then we may follow the same line of arguments where (ii) is replaced with a left-
deviation inequality (which corresponds to apply the above arguments to the functional F−�).
Next, if �′ ◦ f takes both, positive and negative values, then we may choose pk = ak+/‖a+‖2
(resp. pk = ak−/‖a−‖2) leading to a lower bound with ‖�′ ◦ f ‖2

2 replaced by ‖(�′ ◦ f )+‖2
2

(resp. ‖(�′ ◦ f )−‖2
2). Summing up both lower bounds gives the claim in the general case. �

Remark 2.16. If � is convex, then we can replace (2.16) by

F�(f + gθ ) − F�(f ) ≥ 〈
�′ ◦ f,gθ

〉 = cRhβ+1
m∑

k=1

akθk,

leading to a shortening of the above proof. In this case, the lower bound also holds without
continuity of �′. The arguments, however, must be adapted slightly since the convergence in
(2.18) may not hold in this case.

Remark 2.17. By making the constants in the proof of Theorem 2.14 explicit, one can also
establish non-asymptotic lower bounds which include lower-order terms. Consider for instance
�(u) = |u|p , p ∈N and f ≡ a > 0. Then we have

F�(a + gθ ) − ap =
(

m∑
k=1

θk

)
p∑

j=1

(
p

j

)
ap−j cjRjhβj+1‖K‖j

j

≥
(

m∑
k=1

θk

)
max

(
pap−1cRhβ+1, cpRp‖K‖p

phβp+1). (2.20)

We choose

p1 = · · · = pm = 1/
√

m and m = ⌊
2(cRn)1/(β+1)

⌋
.
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In order to ensure ‖gθ‖2 ≤ δ, it suffices that m ≥ 1 and 2cRhβ ≤ δ hold, which is satisfied if
n ≥ c1 with c1 depending only on c, R and δ. Now, by Lemma 2.15 and the choice of m we have
χ2(P0,n,P1,n) ≤ ee−1 − 1. Moreover, using the simplification of Remark 2.16, (2.19) becomes

πn

(
F�(a + gθ ) ≥ ap + 1

2
max

(
pap−1cRhβ+1/2, cpRp‖K‖p

phβp+1/2)) ≥ 1 − 4/
√

m.

Inserting the value of h and applying [16], Theorem 2.15(iii), we get

inf
F̃n

sup
g∈Cβ(R):
‖a−g‖2≤δ

Pg

(∣∣F̃n − F�(g)
∣∣ ≥ max

(
c2pap−1R

1/2
β+1 n

− β+1/2
β+1 , c3R

p−1/2
β+1 n

− βp+1/2
β+1

))

≥ 1

4
exp

(−(
ee−1 − 1

)) − 2/
√

m,

provided that n ≥ c1, where c2 is a constant depending only on β and c3 is a constant depending
only on β and p. Thus we obtain a lower bound which has the form of the upper bound in
Corollary 2.6 (resp. (2.12)).

Remark 2.18. In the case of linear functionals, the above proof can be used to obtain the lower
bound in [15], Theorem 2.6. Instead of using the method of fuzzy hypothesis, one can also try to
apply the method used in Reiß and Selk [15] and Korostelev and Tsybakov [8] which is based on
a comparison of the minimax risk with a Bayesian risk. This works for instance for the special
case �(u) = |u|p , p ∈ N, and f ≡ a > 0, but it is not clear whether this structurally different
prior can produce the correct lower bounds more generally.

3. Hypothesis testing

3.1. Main result

In this section, we use the previous results to address the hypothesis testing problem

H0 : g = g0 vs. H1 : g ∈ g0 + Gn,

where g0 is a known function and

Gn = Gn(β,R,p, rn) = {
g ∈ Cβ(R) : ‖g‖p ≥ rn

}
.

In the sequel, we restrict to the case g0 = 0, since the general case can be reduced to this one by
a simple shift of the observations. We propose the following plug-in test

ψn,p = 1
(
F̂p ≥ r

p
n /2

)
, (3.1)

with the estimator F̂p from (2.9). We follow a minimax approach to hypothesis testing, see, for
example, [4], Chapter 2.4. Our main result of this section states that ψn,p achieves the minimax
separation rates:
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Theorem 3.1. Let p ≥ 1 be a real number and

r∗
n = n

− β+1/(2p)
β+1 .

Then, the following holds as n → ∞:

(a) If rn/r∗
n → ∞, then the tests ψn,p from (3.1) satisfy

E0[ψn,p] + sup
g∈Gn

Eg[1 − ψn,p] → 0.

(b) If rn/r∗
n → 0, then we have

inf
ψn

(
E0[ψn] + sup

g∈Gn

Eg[1 − ψn]
)

→ 1,

where the infimum is taken over all tests in the PPP model with intensity (1.1).

3.2. Proof of the upper bound

Throughout the proof, C > 0 denotes a constant depending only on R, β and p that may change
from line to line. Under the null hypothesis we have, using the Chebyshev inequality and Corol-
lary 2.6,

E0[ψn,p] = P0
(
F̂p ≥ r

p
n /2

) ≤ 4E0[F̂ 2
p ]

r
2p
n

≤ C
n

− 2βp+1
β+1

r
2p
n

= C

(
r∗
n

rn

)2p

(3.2)

and by assumption the right-hand side tends to zero as n → ∞. Next, consider the type-two error
Eg[1 − ψn,p] with g ∈ Gn. Let k ∈ N be such that 2k−1r

p
n ≤ ‖g‖p

p < 2kr
p
n and set rn,k = 2k/prn.

By the Chebyshev inequality, we have

Eg[1 − ψn,p] = Pg

(
F̂p < r

p
n /2

)
= Pg

(‖g‖p
p − F̂p > ‖g‖p

p − r
p
n /2

)
≤ Pg

(‖g‖p
p − F̂p > r

p
n,k/4

)
≤ 16Eg[(F̂p − ‖g‖p

p)2]
r

2p
n,k

. (3.3)

Now, we may restrict ourselves to the case that

‖g‖2p−2
2p−2n

− 2β+1
β+1 ≥ n

− 2βp+1
β+1 . (3.4)
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Indeed, if (3.4) does not hold, then the maximal type-two error is also bounded by C(r∗
n/rn)

2p ,
as can be seen by the same argument as in (3.2). By (3.3), (3.4) and Corollary 2.6, we obtain

Eg[1 − ψn,p] ≤ C‖g‖2p−2
2p−2

n
− 2β+1

β+1

r
2p
n,k

. (3.5)

Let us consider the cases 1 ≤ p ≤ 2 and p > 2 separately. If 1 < p ≤ 2, then we have ‖g‖2p−2 ≤
‖g‖p ≤ rn,k by the Hölder inequality and the definition of k. Thus, for 1 ≤ p ≤ 2, we get

Eg[1 − ψn,p] ≤ C
n

− 2β+1
β+1

r2
n,k

≤ C

(
r∗
n

rn,k

)2

n
− 2β+1

β+1 + 2β+1/p
β+1 ≤ C

(
r∗
n

rn

)2

.

Taking the supremum over all g ∈ Gn, the right-hand side tends to zero as n → ∞. Next, consider
the case p > 2. Applied with q = 2p − 2 > p, Lemma 2.9 gives

‖g‖2p−2
2p−2 ≤ C‖g‖2p−2

p max
(
1,‖g‖−1

p

) 1−2/p
β+1/p . (3.6)

If ‖g‖p > 1, then the claim follows as in the case 1 ≤ p ≤ 2. If ‖g‖p ≤ 1, then by (3.5) and (3.6),
we have

Eg[1 − ψn,p] ≤ Cr
−2− 1−2/p

β+1/p

n,k n
− 2β+1

β+1

= C

(
r∗
n

rn,k

) 2β+1
β+1/p

n
2β+1
β+1/p

β+1/2p
β+1 − 2β+1

β+1 ≤ C

(
r∗
n

rn

) 2β+1
β+1/p

.

Again, taking the supremum over all g ∈ Gn, the right-hand side tends to zero as n → ∞. This
completes the proof of (i). �

3.3. Proof of the lower bound

We set P1,n(·) = ∫
Pgθ (·)πn(dθ) and P0,n = P0 with gθ and πn as in the proof of Theorem 2.14

with the choice

p1 = · · · = pm = 1/
√

m. (3.7)

By [4], Proposition 2.9 and Proposition 2.12, in order that Theorem 3.1(ii) holds, we have to
show that as n → ∞,

(i) πn(gθ ∈ Gn) → 1;
(ii) χ2(P1,n,P0,n) → 0.

For (i), note that

‖gθ‖p =
(

m∑
k=1

θk

)1/p

cRhβ+1/p‖K‖p.
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By the Chebyshev inequality, we have

πn

((
m∑

k=1

θk

)1/p

≤ 2−1/pm1/(2p)

)
= πn

(
m∑

k=1

(θk − 1/
√

m) ≤ −√
m/2

)

≤ 4m(1/
√

m)(1 − 1/
√

m)

m
,

where the right-hand side tends to zero as m → ∞. Thus (i) holds provided that we choose
m−1 = h of size

c1r
1

β+1/(2p)
n

with c1 > 0 depending only on R and p. Moreover, by Lemma 2.15 and (3.7), we have

χ2(P1,n,P0,n) ≤ exp
(
exp

(
cRnhβ+1) − 1

) − 1.

Inserting the above choice of h, the last expression goes to zero as n → ∞, since

nr

β+1
β+1/(2p)
n = (

rn/r∗
n

) β+1
β+1/(2p) → 0.

This completes the proof. �

4. Estimating the Lp-norm

Finally let us consider the problem of estimating the Lp-norm of g. We define the estimator T̂

of ‖g‖p by

T̂ = (
max(F̂p,0)

)1/p = (F̂p)
1/p
+ .

Our main result of this section is as follows:

Theorem 4.1. Let p ≥ 1 be a real number. Then we have

sup
g∈Cβ(R)

Eg

[∣∣T̂ − ‖g‖p

∣∣] ≤ Cn
− β+1/(2p)

β+1

with a constant C > 0 depending only on R, β and p.
On the other hand, we have

lim inf
n→∞ n

β+1/(2p)
β+1 inf

T̃n

sup
g∈Cβ(R)

Eg

[∣∣T̃n − ‖g‖p

∣∣] > 0,

where the infimum is taken over all estimators in the PPP model with intensity (1.1). In particular,
the minimax rate of estimation over Cβ(R) is n−(β+1/(2p))/(β+1).
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Proof. The lower bound follows from the lower bound in Theorem 3.1. To see this, let rest
n =

inf
T̃n

supg∈Cβ(R) Eg[|T̃n − ‖g‖p|] be the minimax risk. If the lower bound in Theorem 4.1 was
false, then rest

nk
/r∗

nk
→ 0 along a subsequence (nk). Now construct (rnk

) such that rnk
/r∗

nk
→ 0

and rnk
/rest

nk
→ ∞. Using [4], Proposition 2.17 and the fact that rnk

/rest
nk

→ ∞, we would get
E0[ψnk

] + supg∈Gnk
Eg[1 − ψnk

] → 0 for suitable plug-in tests ψnk
based on minimax optimal

estimators, contradicting the lower bound in Theorem 3.1 and the fact that rnk
/r∗

nk
→ 0.

It remains to prove the upper bound. Throughout the proof C > 0 denotes a constant depending
only on R, β and p that may change from line to line. Since the case p = 1 is covered in
Corollary 2.6, we restrict to the case p > 1. By the convexity of y �→ yp , we have (for non-
negative real numbers a �= b the inequality (bp − ap)/(b − a) ≥ max(a, b)p−1 holds)

∣∣T̂ − ‖g‖p

∣∣ ≤ |T̂ p − ‖g‖p
p|

‖g‖p−1
p

.

Hence,

Eg

[∣∣T̂ − ‖g‖p

∣∣] ≤ Eg[(T̂ p − ‖g‖p
p)2]1/2

‖g‖p−1
p

≤ Eg[(F̂p − ‖g‖p
p)2]1/2

‖g‖p−1
p

, (4.1)

where we also used the fact that T̂ p = (F̂p)+ improves F̂p (see also Remark 2.8). On the other
hand, we also have |T̂ − ‖g‖p| ≤ |T̂ | + ‖g‖p , which leads to

Eg

[∣∣T̂ − ‖g‖p

∣∣] ≤ Eg

[
T̂ p

]1/p + ‖g‖p

≤ Eg

[∣∣T̂ p − ‖g‖p
p

∣∣]1/p + 2‖g‖p

≤ Eg

[(
F̂p − ‖g‖p

p

)2]1/(2p) + 2‖g‖p, (4.2)

where we applied the Hölder inequality and the concavity of the function y �→ y1/p (for non-
negative real numbers a �= b the inequality (a + b)1/p ≤ a1/p + b1/p holds).

If ‖g‖p ≤ n−(β+1/(2p))/(β+1), then by (4.2) and Corollary 2.6 it suffices to show

max
(‖g‖2p−2

2p−2n
− 2β+1

β+1 , n
− 2βp+1

β+1
)1/(2p) ≤ Cn

− β+1/(2p)
β+1 ,

which itself follows from ‖g‖2p−2 ≤ Cn−β/(β+1). For p ≤ 2 the latter holds because of
‖g‖2p−2 ≤ ‖g‖p ≤ n−(β+1/(2p))/(β+1). For p > 2 this is implied by Lemma 2.9:

‖g‖2p−2 ≤ C max
(‖g‖p,‖g‖(β+1/(2p−2))/(β+1/p)

p

) ≤ C‖g‖β/(β+1/(2p))
p ≤ Cn−β/(β+1),

using first ‖g‖p ≤ 1 and then 1/(2p − 2) ≥ 1/(2p).
In the opposite case ‖g‖p > n−(β+1/(2p))/(β+1) we apply (4.1), Corollary 2.6 and obtain the

result if

max
(‖g‖p−1

2p−2n
− β+1/2

β+1 , n
− βp+1/2

β+1
) ≤ C‖g‖p−1

p n−(β+1/(2p))/(β+1).
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For p ≤ 2 this follows again by ‖g‖2p−2 ≤ ‖g‖p . For p > 2 Lemma 2.9 yields the bound

‖g‖p−1
2p−2 ≤ C‖g‖p−1

p max
(
1,‖g‖(1/2−(p−1)/p)/(β+1/p)

p

) ≤ C‖g‖p−1
p n(1/2−1/(2p))/(β+1),

using ((p − 1)/p − 1/2)(β + 1/(2p)) = (1/2 − 1/p)(β + 1/(2p)) < (1/2 − 1/(2p))(β + 1/p).
Inserting the bound thus gives the result also for p > 2. �

Remark 4.2. For the problem of estimating g in L∞-norm, Drees, Neumeyer and Selk [2] es-
tablished the rate (n−1 logn)β/(β+1) (in a boundary regression model). This result is then used to
analyse goodness-of-fit tests for parametric classes of error distributions.

Remark 4.3. Note that we can consider the minimax risk over the whole Hölder class Cβ(R) in
the case of estimating the norm ‖g‖p . In distinction to Corollary 2.6, the upper bound does not
depend on any Lq -norm of g.

Inspecting the proof, we see more precisely that the minimax rate is driven by functions whose
Lp-norm is smaller than n−(β+1/(2p))/(β+1). For functions which have a substantially larger norm
we get the rate of convergence n−(β+1/2)/(β+1) corresponding to a smooth functional. This is
explained by the fact that the Lp-norm is a non-smooth functional at g = 0.

Remark 4.4. There is a close connection between Theorem 4.1 and Theorem 3.1. First, the upper
bound in Theorem 3.1 follows from Theorem 4.1 by using for example, [4], Proposition 2.17.
Second, the lower bound in Theorem 4.1 is a consequence of the lower bound in Theorem 3.1.

Appendix: Proof of Lemma 2.9

Let us first show that the general case can be deduced from the special case q = ∞ and suppose
that

‖f ‖∞ ≤ C‖f ‖p max
(
1,R/‖f ‖p

) 1/p
β+1/p (A.1)

holds. Clearly, we have

‖f ‖q
q ≤ ‖f ‖q−p∞ ‖f ‖p

p. (A.2)

Now, if ‖f ‖p > R, then (A.1) and (A.2) give ‖f ‖q ≤ C1−p/q‖f ‖p . On the other hand, if ‖f ‖p ≤
R, then (A.1) and (A.2) give

‖f ‖q
q ≤ Cq−p‖f ‖q

p

(
R/‖f ‖p

) (q−p)/p
β+1/p

and thus

‖f ‖q ≤ C1−p/q‖f ‖p

(
R/‖f ‖p

) 1/p−1/q
β+1/p .

It remains to prove (A.1). Using the definition of Cβ(R), we get

‖f ‖p
p =

∫ 1

0

∣∣f (x)
∣∣p dx ≥

∫ min(1,(‖f ‖∞/R)1/β )

0

(‖f ‖∞ − Rxβ
)p

dx.
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Setting a = ‖f ‖∞ and b = (‖f ‖∞/R)1/β , we obtain

∫ 1

0

∣∣f (x)
∣∣p dx ≥

∫ min(1,b)

0

(
a − a(x/b)β

)p
dx

= ap

∫ min(1,b)

0

(
1 − (x/b)β

)p
dx

≥ ap min(1, b)

∫ 1

0

(
1 − yβ

)p
dy,

where we make the substitution x = by if b ≤ 1 and use the inequality 1 − (x/b)β ≥ 1 − xβ if
b > 1. Thus we have proven

‖f ‖p ≥ ‖f ‖∞ min
(
1,‖f ‖∞/R

) 1
βp

∥∥1 − yβ
∥∥

p
,

which gives (A.1).
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