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In this paper, we study the vertex cut-trees of Galton–Watson trees conditioned to have n leaves. This
notion is a slight variation of Dieuleveut’s vertex cut-tree of Galton–Watson trees conditioned to have
n vertices. Our main result is a joint Gromov–Hausdorff–Prokhorov convergence in the finite variance
case of the Galton–Watson tree and its vertex cut-tree to Bertoin and Miermont’s joint distribution of
the Brownian CRT and its cut-tree. The methods also apply to the infinite variance case, but the prob-
lem to strengthen Dieuleveut’s and Bertoin and Miermont’s Gromov–Prokhorov convergence to Gromov–
Hausdorff–Prokhorov remains open for their models conditioned to have n vertices.
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1. Introduction

Consider a rooted planar tree (t, ρ). Specifically, t consists of a finite vertex set V (t) including
the root ρ ∈ V (t), a set E(t) of directed edges u → v, one edge for each u ∈ V (t) \ {ρ} without
creating cycles, and a planar order, which we describe below. We call v the parent of u and
kv(t) = #{w ∈ V (t) : w → v} the number of children or degree of v ∈ V (t). A vertex v ∈ V (t)
with kv(t) = 0 is called a leaf. We denote by Lf(t) = {v ∈ V (t) : kv(t) = 0} the set of leaves of
t, and by ζ(t) = #V (t) and λ(t) = # Lf(t) the numbers of vertices and leaves, respectively. Non-
leaf vertices, including the root, if ζ(t) ≥ 2, are called branch points. The set of branch points is
Br(t) = V (t) \ Lf(t). The planar order specifies for each v ∈ Br(t) a total order on the set of its
kv(t) children. Unless otherwise stated, we will assume that kv(t) �= 1 for all v ∈ V (t).

• Let n = λ(t). We use as vertex splitting rule the pruning rule of [3] and select a branch
point at random, v ∈ Br(t) with probability (kv(t) − 1)/(n − 1). We fragment the vertex set
into kv(t) + 1 connected components by removing the edges w → v from all the children w

of the selected branch point v. The component of ρ now has v as a leaf, while the kv(t) other
components are now rooted at the children of v. We apply the splitting rule independently and
repeatedly until all components are singleton leaves. We define our vertex cut-tree cut◦HW(t) as
the rooted planar tree taking as vertex set the set of components (subsets of V (t)) that ever
exist, as edge relation the relation between each component and its fragments, as root the initial

1350-7265 © 2019 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
https://doi.org/10.3150/18-BEJ1055
mailto:hehui@bnu.edu.cn
mailto:winkel@stats.ox.ac.uk


2302 H. He and M. Winkel

Figure 1. Illustration of t, cutHW(t) and cutD (̂t) for n = 8. Dotted lines capture components of cutHW(t).
To see cut◦HW(t), omit the singleton components of cutHW(t) with coloured bullets.

single component (V (t)) that contains all vertices, and as planar order the order that has for the
component split at v the component of v first and the other kv(t) components in the order their
roots have in t as children of v.

This is illustrated in Figure 1. Our notion of a cut-tree appears to be new, but is closely related to
other cut-trees that have been studied and indeed motivated us for this work:

• Let n = ζ(t). Meir and Moon [36] introduced an edge splitting rule, as follows. Select
an edge uniformly at random. Remove the edge (as a singleton) and retain up to two further
components (above/below). Pitman [43] and Bertoin [12] studied the forest of components in
connection to additive coalescents and forest fires. Bertoin and Miermont [13] introduced the
associated edge cut-tree cutBM(t). In the case of finite-variance Galton–Watson trees conditioned
to have n vertices, they showed Gromov–Prokhorov (GP) convergence of tree and cut-tree to a
pair (TBr, cut(TBr)) of Brownian Continuum Random Trees (CRTs).

• Let n = ζ(t). Dieuleveut’s [17] vertex splitting rule and vertex-cut tree cutD(t) are, as
follows. Select v ∈ Br(t) with probability kv(t)/(n−1). Fragment the edge set into up to 2kv(t)+
1 components including all edges above the vertex as singletons. In the case of finite-variance
Galton–Watson trees conditioned to have n vertices, Dieuleveut showed GP convergence of the
tree and her cut-tree to the same pair (TBr, cut(TBr)). She also obtained an infinite-variance result
with a pair of stable CRTs as limiting trees.

• Let n = ζ(t). Broutin and Wang [14] studied an inhomogeneous vertex splitting rule and
vertex cut-tree cutpn(t) based on a distribution pn on vertices, and applied this to Camarri and
Pitman’s [15] pn-trees. They showed GP/Gromov–Hausdorff–Prokhorov (GHP) convergence of
pn-trees to Aldous and Pitman’s inhomogeneous CRTs [10] implies the convergence of pairs of
trees and cut-trees in the same mode of convergence. This does not include conditioned Galton–
Watson trees beyond a result for uniform trees of [12].

Before the constructions of cut-trees, the evolution of the root component had received particular
attention [1,5,12,31,36,42]. In the cut-tree, this pruning process corresponds to a single spine.
Pruning processes of Galton–Watson trees were studied by Aldous and Pitman [9] pruning at
edges, and by Abraham et al. [3] pruning at vertices. Limit theorems for pruning processes were
obtained in [29] in both cases. These are for forests of Galton–Watson trees. In the domain of
attraction of the Brownian forest, this is the same (up to the conditioning on numbers of leaves
or vertices) as the joint convergence of the tree and a spine of the cut-tree.
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Let G be a Galton–Watson tree. In our vertex cut-tree model, conditioning on λ(G) = n, the
splitting rule turns out to give some random number k + 1 of conditioned Galton–Watson trees
whose numbers of leaves add up to n + 1. Hence, the cut-tree is almost a Markov branching tree
in the sense of Haas and Miermont [28]. This property fails for all cut-trees of Galton–Watson
trees conditioned on ζ(G) = n, except for the edge cut-tree of a Poisson–Galton–Watson tree,
which gives the uniform model studied in [9,12,43]. Informally, the root component is biased
by the number of its leaves. While in general, GHP convergence appears to be much harder to
prove than GP convergence (hence the weaker results in [13,17]), we present here a way to apply
the results of [28] and obtain the stronger mode of convergence. Kortchemski [34] obtained tight
bounds between numbers of leaves and vertices, so there is scope to transfer asymptotic results
for n-leaf trees to n-vertex trees. We leave this for future work.

One of the key ideas is not to focus on the number of leaves, but on n := 2n − 1. Then the
“split” of n leaves into n1 +· · ·+nk+1 = n+1 means that n1 +· · ·+nk+1 = 2(n+1)−k−1 ≤ n

for all k ≥ 2. We will obtain a Markov branching cut-tree in terms of numbers n = 2n − 1
associated with numbers n of leaves. For k ≥ 3, there is loss of mass, so we proceed, as follows.

• Let n = λ(t). We add k − 2 singleton components to cut◦HW(t) for every split into k + 1
components (summing to 2k − 1 = k components), k ≥ 2. We modify our vertex cut-tree to
include the additional singleton components. We denote this vertex cut-tree by cutHW(t).

Proposition 1.1. Let G(n) be an n-leaf Galton–Watson tree with offspring distribution ν. Then
the vertex cut-tree cutHW(G(n)) is a Markov branching tree with splitting probabilities

qn(#blocks = k) = k − 1

k + 1
νk

n + 1

n − 1

P(Sk+1 = n + 1)

ν0P(S1 = n)
, k ≥ 2,

where Sk = X1 + · · · + Xk for independent GW(ν)-trees Gj with Xj = λ(Gj ) leaves, j ≥
1; and given k blocks, the ranked block sizes are like the non-increasing rearrangement of
(X1, . . . ,Xk+1) conditionally given X1 + · · · + Xk+1 = n + 1, with an additional k − 2 blocks
of size 1 appended.

We provide a proof in Section 3.1.
Now recall the following notation: let

• G(n) be a Galton–Watson tree rooted at an ancestor, conditioned to have n leaves,
• cut◦HW(G(n)) our vertex cut-tree of the beginning of this introduction, where in an n-leaf

tree a branch point with k children is cut with probability (k − 1)/(n − 1),
• and cutHW(G(n)) its modification as just above Proposition 1.1, that is, cut◦HW(G(n)) with

k − 2 singleton blocks added to the cut-tree when cutting a branch point with k children.

The goal is to show that suitably scaled, we get convergence to (TBr, cut(TBr)), where TBr is the
Brownian CRT and cut(TBr) is the Brownian cut-tree introduced by Bertoin and Miermont [13],
see Section 2.3. We assume for simplicity that the offspring distribution ν satisfies ν1 = 0. This
is no loss of generality since our conditioning does not affect single-child vertices. To pass from
this special case to the case of a general offspring distribution, we can associate the offspring
distribution conditioned not to produce a single child and represent the desired Galton–Watson
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tree with single-child vertices as the tree with the conditioned offspring distribution, but with
edge lengths added that are independent geometrically distributed with success parameter 1 −
ν1. The impact on limiting distances of G(n) is a constant factor of 1/(1 − ν1). Cut-trees are
unaffected.

Let us modify G(n) to a

• random tree Ĝ(n) in which every branchpoint of G(n) with k children has k − 2 more
children added (to the left of the k children, say), who themselves have no offspring.

If G(n) is binary, then Ĝ(n) = G(n), with 2n − 1 vertices and 2n − 2 edges. In general, the effect
of this modification is that the tree with previously n leaves but fewer than 2n − 2 edges receives
k − 2 new edges for any branch point of degree k, for all k ≥ 2. We note an elementary lemma.

Lemma 1.2. The random tree Ĝ(n) has 2n − 1 vertices and 2n − 2 edges almost surely.

The modification of adding k−2 edges to G(n) is related to adding k−2 singleton components
to cut◦HW(G(n)) to form cutHW(G(n)), which we did in order to obtain a Markov branching tree
without loss of mass in Proposition 1.1. In both cases, the effect on the Gromov–Hausdorff (GH)
distances of the trees is an elementary consequence of the definition (recalled in Section 2.2).

Lemma 1.3. We have dGH(G(n), Ĝ(n)) ≤ 1 and dGH(cut◦HW(G(n)), cutHW(G(n))) ≤ 1.

After scaling, as n → ∞, the GH scaling limits will be identical, that is, the scaled pair con-
verges to the same limiting tree. Comparison in the GHP distance dGHP is less straightforward.

Recall that Dieuleveut’s vertex cut-tree cutD(t) selects each branch point with k children with
probability proportional to k, while our vertex cut-tree cutHW(t) selects each branch point with
k children with probability proportional to k − 1. Now note that Ĝ(n) has 2k − 2 ≥ 2 children
wherever G(n) has k ≥ 2 children, and in Ĝ(n), Dieuleveut would select a branch point with
2k − 2 children with probability proportional to 2k − 2 = 2(k − 1). Hence, we can couple the
constructions of cutHW(G(n)) and cutD(Ĝ(n)). However, Dieuleveut proceeds slightly differently
when building the cut-tree. The branch points of cutHW(G(n)) and cutD(Ĝ(n)) can be taken the
same, but the numbers of leaves at any particular branch point are typically different, while the
total numbers of leaves are 2n − 1 and 2n − 2, respectively. See, for example, Figure 1.

Specifically, for v ∈ Br(G(n)) with k = kv(G(n)) children, our cut-tree cutHW(G(n)) always has
k + 1 main components, some of which may be singleton vertices, and k − 2 more singleton
components, giving 2k − 1 altogether. On the other hand, cutD(Ĝ(n)) records components of the
edge set, and depending on when the k edges are removed, they may or may not have subtrees
above them. As an extreme example, suppose that all k initially had subtrees above them, and v

is not the root. If this is the first split, there are k + 1 components above and below, plus a further
k singletons for the removed edges, 2k + 1 altogether. If, however, this is the last split, there are
only the k singletons, all other “components” already being empty. In any case, this yields the
following proposition.

Proposition 1.4. We have dGH(cutD(Ĝ(n)), cutHW(G(n))) ≤ 1 for a suitable coupling.
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Turning to dGHP, the question arises what mass measures we place onto the cut-trees. Bertoin,
Miermont and Dieuleveut actually consider trees with n edges (n − 1 vertices) and obtain cut-
trees with n leaves, so it is natural to put the uniform measure in leaves onto their cut-trees in their
framework. In our framework, we equip cutHW(G(n)) with the uniform measure on its 2n−1 = n

leaves and cutD(Ĝ(n)) with the uniform measure on its 2n − 2 leaves. We also equip G(n) with
the uniform measure on its n leaves and Ĝ(n) with the uniform measure on its 2n − 2 edges. Our
programme has three steps, here given for the finite variance case, for suitable cn and c′

n, which
will be discussed in Sections 2.1 and 3.1, respectively.

Step 1: We show cutHW(G(n))/c′
n → TBr in GHP, using the Markov branching convergence

criterion of [28], deduce(
cutD

(
Ĝ(n)

)
/c′

n, cutHW
(
G(n)

)
/c′

n, cut◦HW

(
G(n)

)
/c′

n

) → (TBr,TBr,TBr) in GH3;

Step 2: We show Ĝ(n)/cn → TBr in GHP, based on [16,37], deduce(
G(n)/cn, Ĝ(n)/cn

) → (TBr,TBr) in GHP2;

Step 3: We show, adapting the arguments of [17], that(
Ĝ(n)/cn, cutD

(
Ĝ(n)

)
/c′

n

) → (
TBr, cut(TBr)

)
, in GP2.

Here GHP, GH3, GHP2 and GP2 denote convergences in distribution on product spaces, where
each component is equipped with the GHP, GH or GP topologies, as appropriate, see Section 2.2.

We deduce that TBr
d= cut(TBr), as was already shown in [13]. More importantly, we conclude

the following theorem.

Theorem 1.5. With any finite-variance offspring distribution (G(n)/cn, Ĝ(n)/cn) → (TBr,TBr) in
GHP2 in distribution, also jointly with (cutHW(G(n))/c′

n, cutD(Ĝ(n))/c′
n) → (cut(TBr), cut(TBr))

in GHP2, as n → ∞ in {n ≥ 1 : P(λ(G) = n) > 0} for an associated Galton–Watson tree G.

Given the three steps, the remaining proof is mainly a standard argument via tightness and
uniqueness of subsequential limit distributions, see Section 2.4, but also requires the following
result, which is part of the folklore on the Brownian CRT (TBr,μBr), but we were unable to locate
it in the literature, so we quickly derive it from well-known results in Section 2.4.

Proposition 1.6. The measured tree (TBr,μBr) is a measurable function of the unmeasured TBr.

This proposition will also hold for stable trees, but the argument would be more involved, and
since we do not need this here, we do not work out the details.

The structure of this paper is as follows. In Section 2, we note a local limit theorem for the
number of leaves, recall the three relevant topologies GP, GH and GHP, we prove Proposition 1.6,
and we deduce Theorem 1.5 from the three steps given above. In Section 3, we prove Proposi-
tion 1.1 and turn to the three main steps and hence complete the above programme in the finite
variance case, and we indicate how corresponding results in the stable case can be approached.
We also include the brief Appendix B summarising the use of different normalisations of the
Brownian CRT in the literature.
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2. Preliminaries

2.1. A local limit theorem for the number of leaves

Consider a critical offspring distribution ν in the domain of attraction of a stable distribution
with index α ∈ (1,2]. Specifically, suppose that for a random walk W with step distribution
P(W1 = n) = νn+1, n ≥ −1,

Wn

an

d−→
n→∞ X1, (1)

where an is regularly varying with index α and E(exp(−rX1)) = exp(rα). Then the classical
local limit theorem holds for W , see Ibragimov and Linnik [30], Theorem 4.2.1, or Kortchemski
[34], Theorem 1.10, for a statement:

sup
k∈Z

∣∣∣∣anP(Wn = k) − p1

(
k

an

)∣∣∣∣ → 0 as n → ∞,

where p1 is the continuous density of X1, which is p1(x) = 1
2
√

π
exp(−x2/4), x ∈ R, for α = 2.

Consider the stopping times K0 = 0 and Kn+1 = inf{k ≥ Kn +1 : Wk −Wk−1 = −1} of down-
moves and the time-changed process W̃n = WKn , n ≥ 0, of values after down-moves. This can be
viewed as a transformation on trees that in some sense removes all non-leaf branch points. See
Rizzolo [47] for generalisations removing all branch points with multiplicities not in a set A ⊂N.
Note that the original tree can be recovered from W , but not in general from W̃ . Effectively, some
of the leaves of the tree encoded in W now act as branch points of the transformed tree encoded
in W̃ (replacing one or more removed branch points).

Lemma 2.1. The increment distribution of W̃ is in the domain of attraction of the same stable
distribution as ν. Specifically,

W̃n

ãn

d−→
n→∞ X1,

where ãn = an/ν
1/α

0 . If W1 has finite variance σ 2, we can choose an = σ
√

n/2.

Proof. This is rather elementary: by definition, we can write W̃1 = A1 + · · · + AG − 1, where
G ∼ geom(ν0) is independent of an independent and identically distributed sequence of up-
moves An, n ≥ 1, with P(An = j) = νj+1/(1 − ν0), j ≥ 0. Here

E
[
exp(−rW̃1)

] = er ν0

1 − (1 − ν0)E[erA1] = erν0

1 − (E[e−rW1] − ν0er)
.

By assumption,(
E

[
exp

(
− r

an

W1

)])n

−→ exp
(
rα

)
that is, n

(
E

[
exp

(
− r

an

W1

)]
− 1

)
−→ rα.
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Hence

n

(
E

[
exp

(
− r

ãn

W̃1

)]
− 1

)
= n(1 −E[exp(− rν

1/α
0
an

W1)])
1 −E[exp(− rν

1/α
0
an

W1)] + ν0 exp(
rν

1/α
0
an

)

−→ (rν
1/α

0 )α

ν0
= rα.

If σ 2 < ∞, then an = σ
√

n/2 is the central limit theorem with limiting variance 2. �

Corollary 2.2. Under the assumption (1), the time-changed process W̃ satisfies the local limit
theorem

sup
k∈Z

∣∣∣∣̃anP(W̃n = k) − p1

(
k

ãn

)∣∣∣∣ → 0 as n → ∞.

Now denote by Sj respectively, SV
j the random number of leaves respectively, vertices in j

independent Galton–Watson trees with offspring distribution ν. Following Haas and Miermont
[28], we note the classical argument based on the observation that we can think of the steps of W

as corresponding to vertices of the trees (e.g., exploring the trees in depth first order) adding each
time the number of children minus one so that Wk is the number of unexplored vertices whose
parent has been explored minus j while the j th tree is being explored. Then

SV
j = n ⇐⇒ Wn = −j and Wm > −j, m < n,

which via the cyclic lemma (e.g., Feller [25], Lemma XII.6.1) for the downward skip-free random
walk W yields

P
(
SV

j = n
) = j

n
P(Wn = −j).

The following result was noted in [47], Corollary 1, and has been implicit in Kortchemski [34].

Proposition 2.3. We have P(Sj = n) = j
n
P(W̃n = −j) for all 1 ≤ j ≤ n.

Proof. Just note that W̃ is also downward skip-free since it does not skip any down-moves of W .
Each step now corresponds to a leaf and −j is first reached when all leaves have been explored
so that

Sj = n ⇐⇒ W̃n = −j and W̃m > −j, m < n,

and we conclude via the cyclic lemma for W̃ . �

Corollary 2.4. We have supj≥1 |ñan
1
j
P(Sj = n) − p1(

−j
ãn

)| → 0 as n → ∞.
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Recall that given a planar tree t with root ρ, we denote by ζ(t) and λ(t) the total number of
vertices and leaves of t, respectively. For v ∈ V (t) with v = vk → vk−1 → ·· · → v1 → v0 = ρ,
we say that v has generation |v| = k. Denote by ζk(t) and λk(t) the number of vertices and leaves
of t at generation k. Let t(k) be t restricted to generation at most k, that is,

t(k) = {
v ∈ t : |v| ≤ k

}
.

Let G(n) be a critical Galton–Watson tree conditioned to have n leaves, with offspring distribution
ν, and Ĝ(n) its modification with extra leaves as defined just before Lemma 1.2.

Lemma 2.5. If the offspring distribution has finite variance, there exists a constant C > 0 such
that

sup
n≥1

E
[
ζk

(
Ĝ(n)

)] ≤ 2 sup
n≥1

E
[
ζk

(
G(n)

)] ≤ Ck, k ≥ 1.

Proof. The first inequality is elementary. For the second inequality, we adapt Janson’s idea of
proving [31], Theorem 1.13. Our proof will be divided into four subparts. We use c,C,C1,C2, . . .

for constants independent of n and k.
Subpart 1. Let G be a Galton–Watson tree and G∞ the so-called Kesten tree arising as local

limit of G(n) as n → ∞; see Abraham and Delmas [2]. It is well known [33], (1.15), that for any
tree t

P
(
G(k) = t(k)

) = ζk(t)P
(
G∞(k) = t(k)

)
.

Let t be a tree with ζk(t) = m. Define N = n − ∑
i≤k−1 λi(t(k)). Then by conditioning on gen-

eration k and using Kortchemski [34], Theorem 3.1, and Proposition 2.3, we obtain

P
(
G(n)(k) = t(k)

) = P(G(k) = t(k), λ(G) = n)

P(λ(G) = n)

≤ C1n
3/2

P
(
G(k) = t(k)

)
P(Sm = N)

= C1n
3/2

P
(
G(k) = t(k)

)m

N
P(W̃N = −m) (2)

≤ C2m

(
n

N

)3/2

e−cm2/N
P
(
G(k) = t(k)

)
= C2

(
n

N

)3/2

e−cm2/N
P
(
G∞(k) = t(k)

)
,

where in the second inequality we use Lemma 2.1 above and [31], Lemma 2.1.
The argument in Subparts 2–4 is very similar to the proof of [31], Theorem 1.13, with only

slight modifications.
Subpart 2. For each k ≥ 1, define

	k =
{ ∑

i≤k−1

λi

(
G(n)(k)

) ≤ n/2

}
and ζ ∗

k

(
G(n)(k)

) = ζk

(
G(n)(k)

)
1	k

.
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By (2), for any tree t with
∑

i≤k−1 λi(t(k)) ≤ n/2 and ζk(t) > 0, we have

P
(
G(n)(k) = t(k)

) ≤ C3P
(
G∞(k) = t(k)

)
,

which implies

P
(
ζ ∗
k

(
G(n)

) = i
) ≤ C4P

(
ζk

(
G∞) = i

)
, for all i ≥ 1.

Thus,

E
[
ζ ∗
k

(
G(n)

)] = E
[
ζk

(
G(n)

)
1	k

] ≤ C4E
[
ζk

(
G∞)] ≤ C5k, (3)

where the last inequality follows from [31], Lemma 2.3.
Subpart 3. On 	c

k , one can find a (random) integer L ≤ k such that

L−1∑
i=1

λi

(
G(n)

) ≤ n/2 and
L∑

i=1

λi

(
G(n)

)
> n/2.

Thus on 	c
k ,

k∑
i=0

ζ ∗
i

(
G(n)

) =
L∑

i=0

ζ ∗
i

(
G(n)

) =
L∑

i=0

ζi

(
G(n)

)
>

L∑
i=0

λi

(
G(n)

)
> n/2.

By the Markov inequality and (3),

P
(
	c

k

) ≤ 2

n
E

[
k∑

i=0

ζ ∗
i

(
G(n)

)] ≤ C6k
2

n
.

Hence, we obtain

E
[
ζk

(
G(n)

)
1	c

k
1{ζk(G(n))≤√

n}
] ≤ √

nP
(
	c

k

) ≤
√

nP
(
	c

k

) ≤ √
C6k. (4)

Subpart 4. For any t with ζk(t) ≥ √
n, according to (2), we have

P
(
G(n)(k) = t(k)

) ≤ C7

(
n

N

)3/2

e−cn/N
P
(
G∞(k) = t(k)

) ≤ C8P
(
G∞(k) = t(k)

)
,

which, by reasoning similar as for (3), yields

E
[
ζk

(
G(n)

)
1{ζk(G(n))>

√
n}

] ≤ C8E
[
ζk

(
G∞)] ≤ C9k. (5)

Then the desired result follows from (3), (4) and (5). We have completed the proof. �
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2.2. GH, GP and GHP topologies

According to [23,24,26,38] and references therein, we can define a Gromov–Hausdorff–
Prokhorov (Gromov–Hausdorff or Gromov–Prokhorov) distance on the set of measure-
preserving isometry classes of pointed measured compact metric spaces to turn the set (of equiv-
alence classes modulo measure or modulo restriction to the support of the measure) into a Polish
space.

Specifically, let (Z,dZ) be a metric space. For Borel sets A,B ⊆ Z, set

dZ
H (A,B) = inf

{
ε > 0 : A ⊆ Bε and B ⊆ Aε

}
,

the Hausdorff distance between A and B , where Aε = {x ∈ Z : infy∈A dZ(x, y) ≤ ε}. Let Mf (Z)

be the set of all Borel probability measures on (Z,dZ). For μ,μ′ ∈ Mf (Z), we define

dZ
P

(
μ,μ′) = inf

{
ε > 0 : μ(A) ≤ μ′(Aε

) + ε and μ′(A) ≤ μ
(
Aε

) + ε for all closed A ⊆ Z
}
,

the Prokhorov distance between μ and μ′.
A pointed measured metric space T = (T , d,ρ,μ) is a metric space (T , d) with a distinguished

element ρ ∈ T and a Borel probability measure μ on (T , d). For two compact pointed measured
metric spaces T = (T , d,ρ,μ) and T′ = (T ′, d ′, ρ′,μ′), the Gromov–Hausdorff–Prokhorov dis-
tance is

dGHP
(
T,T′) = inf

�,�′,Z

(
dZ

H

(
�(T ),�′(T ′)) + dZ

(
�(ρ),�′(ρ′)) + dZ

P

(
�∗μ,�′∗μ′)),

where the infimum is taken over all isometric embeddings � : T ↪→ Z and �′ : T ′ ↪→ Z into
some common Polish metric space (Z,dZ) and �∗μ is the measure μ transported by �. Simi-
larly, we define Gromov–Hausdorff and Gromov–Prokhorov distances, respectively, as

dGH
(
T,T′) = inf

�,�′,Z

(
dZ

H

(
�(T ),�′(T ′)) + dZ

(
�(ρ),�′(ρ′))),

dGP
(
T,T′) = inf

�,�′,Z

(
dZ

(
�(ρ),�′(ρ′)) + dZ

P

(
�∗μ,�′∗μ′)).

A compact metric space (T , d) is called a real tree if for any two x, y ∈ T , there is an
isometry fx,y : [0, d(x, y)] → T with fx,y(0) = x and fx,y(d(x, y)) = y, and if for all injec-
tive g : [0,1] → T with g(0) = x and g(1) = y we have g([0,1]) = fx,y([0, d(x, y)]). Ev-
ery real tree (T , d) is naturally equipped with a (sigma-finite) length measure T , for which
T (fx,y([0, d(x, y)])) = d(x, y), x, y ∈ T . We refer to a pointed real tree (T , d,ρ) as a rooted
real tree, to points x ∈ T \ {ρ} for which T \ {x} is connected, respectively, disconnected into
three or more connected components, as leaves, respectively branch points.

For any rooted real tree (T , d,ρ), we define the height ht(T ) = max{d(ρ, x), x ∈ T }. For any
x ∈ T , we define the subtree Tx = {y ∈ T : x ∈ fρ,y([0, d(ρ, y)])} above x. For ε > 0, we define
Neveu’s [39] notion of ε-erasure of T as Rε(T ) = {ρ} ∪ {x ∈ T : ht(Tx) ≥ ε}. Then Rε(T ) is a
rooted real tree with finitely many leaves and branch points; see also [23,40,41].

Examples of pointed measured compact real trees are obtained from continuous functions
h : [0,1] → [0,∞) with h(0) = h(1) = 0. For s, t ∈ [0,1], let s ∼h t iff dh(s, t) = 0, where
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dh(s, t) = h(t) + h(s) − 2 inf{h(r),min(s, t) ≤ r ≤ max(s, t)}. Then the quotient space Th =
[0,1]/ ∼h is a compact real tree when equipped with the quotient metric, again denoted by dh.
We further equip (Th, dh) with the root ρh = [0]∼h

and the measure μh obtained as the push-
forward of Lebesgue measure on [0,1] under the quotient map. The function h is called the
height function of (Th, dh,ρh,μh). See, for example, [20], Section 2.

2.3. Bertoin and Miermont’s Brownian cut-tree

A Brownian Continuum Random Tree (CRT) is a random pointed measured compact metric
space introduced by Aldous [6]. One construction is to take h = 2Bex as height function, for a
normalised excursion Bex of linear Brownian motion.

Let (TBr,μBr) be a Brownian CRT. Conditionally on TBr, let
∑

i∈I δ(ti ,xi )(dt, dx) be a Poisson
point measure on [0,∞) × TBr with intensity dt × dBr, where Br is the length measure on TBr.
Denote by TBr(t) the “forest” obtained by removing points {xi : i ∈ I, ti ≤ t} that are marked
before t . For any x ∈ TBr, let TBr(x, t) be the connected component of TBr(t) that contains x with
the convention that TBr(x, t) = ∅ if x /∈ TBr(t). Define μBr(x, t) = μBr(TBr(x, t)). We further
define a function δ from (TBr ∪ {0})2 into [0,+∞] such that δ(0,0) = 0 and

δ(0, x) = δ(x,0) =
∫ ∞

0
μBr(x, t) dt and δ(x, y) =

∫ ∞

t (x,y)

(
μBr(x, t) + μBr(y, t)

)
dt,

where t (x, y) = inf{t ≥ 0 : TBr(x, t) �= TBr(y, t)}.
Let ξ0 = 0 and (ξi, i ∈ N) be an i.i.d. sequence distributed as μBr. For all k ≥ 1, let Rk be the

random real tree spanned by {ξ0, ξ1, . . . , ξk} with metric δ. Then cut(TBr) is defined as

cut(TBr) =
⋃
k≥1

Rk,

the completion of the metric space (
⋃

k≥1 Rk, δ). Then (cut(TBr), δ,0), equipped with the limit-
ing empirical measure of (ξi, i ∈ N), is again a Brownian CRT; see Bertoin and Miermont [13]
for details of how to make this construction precise.

2.4. Deduction of Theorem 1.5 from the statements of Steps 1–3

Since the proof of Theorem 1.5 requires Proposition 1.6, we prove the proposition first.

Proof of Proposition 1.6. First consider H = 2B for a Brownian motion B . For ε > 0, we
follow [44], Section 7.6, and define alternating up- and down-crossing times as D

(ε)
0 = 0 and, for

m ≥ 0,

U
(ε)
m+1 = inf

{
t ≥ D(ε)

m : H(t) − min
{
H(s),D(ε)

m ≤ s ≤ t
} = ε

}
,

D
(ε)
m+1 = inf

{
t ≥ U

(ε)
m+1 : H(t) − max

{
H(s),U

(ε)
m+1 ≤ s ≤ t

} = −ε
}
.
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Then D
(ε)
m is precisely ε below a previous local maximum of H for all m ≥ 1. Let X

(ε)
m =

H(D
(ε)
m ) and Y

(ε)
m = min{H(s) : D

(ε)
m ≤ s ≤ D

(ε)
m+1}, m ≥ 0.

The excursions above the minimum of H are scaled copies of 2Bex and hence encode scaled
Brownian CRTs. The subtrees spanned by D

(ε)
m , m ≥ 1, are ε-erasures of the Brownian CRTs

with leaves at heights X
(ε)
m − min{Y (ε)

k ,0 ≤ k ≤ m − 1}, m ≥ 1, and roots and branch points at

heights Y
(ε)
m , m ≥ 0. Consider the function H(ε), which is piecewise linear at alternating slopes

of ±2/ε interpolating the alternating walk X
(ε)
0 , Y

(ε)
0 ,X

(ε)
1 , Y

(ε)
1 , . . . . By [44], Corollary 7.17, we

have H(ε) → H locally uniformly and almost surely, as ε ↓ 0.
Our aim is to deduce that the ε-erasure Rε(TBr) equipped with a scaled length measure με =

εBr|Rε(TBr) converges to (TBr,μBr) in GHP. Measurability (actually GH-GHP-continuity) of
(ε, T ) �→ (T , εT |Rε(T )) is formally established in Lemma A.1.

The convergence H(ε) → H includes the first excursion of height greater than r > 0, jointly
with the excursion length, so that convergence holds under the Brownian Itô excursion measure
nBr conditioned on excursions of height greater than r , for all r > 0. See [46], Chapter XII. By
disintegration and the scaling property of nBr (e.g., [32], Theorem 22.15), this convergence also
holds under the distribution of 2Bex, which is the normalised excursion measure nBr(·|ζ = 1),
where ζ(h) = inf{t ≥ 0 : h(t) = 0}, for continuous h : [0,1] → [0,∞).

For any continuous h : [0,1] → [0,∞), let h(ε) be constructed from h as H(ε) was constructed
from H . Then Th(ε) is isometric to Rε(T )h) and, with this isometry, the quotient map ∼h(ε) pushes
forward Lebesgue measure onto ε times the length measure of Rε(Th). Uniform convergence
jointly with excursion lengths implies GHP convergence of encoded trees equipped with the
push-forward of Lebesgue measure (see, e.g., [4]). This completes the proof. �

We noted in the Introduction that while Proposition 1.6 will also hold for stable trees, the argu-
ment will be more involved and beyond the scope of this paper, since we focus on the Brownian
case here. While ε-erasure of stable trees has been studied in [21], this paper does not construct
the mass measure from the length measure. [19] study height functions, but “Poisson sampling”
instead of ε-erasure. For Poisson sampling, their results yield the analogous almost sure and
locally uniform convergence of contour functions. While [21] have shown that ε-erasure and
Poisson sampling yield the same marginal distribution, the joint distributions are not the same,
and hence we only obtain convergence in distribution. But this is not good enough here. To study
ε-erasure directly and get almost sure convergence in GHP back to the stable tree, [22] may help,
where a reconstruction procedure demonstrates how subtrees (which contain all the mass) are
attached to the ε-erased tree in order to get the stable tree back.

Proof of Theorem 1.5. From the three steps listed in the Introduction (and completed in Sec-
tion 3), we have marginal convergence in GH or GHP for each of the four components of
(G(n)/cn, Ĝ(n)/cn, cutHW(G(n)/c′

n, cutD(Ĝ(n)/c′
n)). As GH-tightness implies GHP-tightness (see

Miermont [38], Proposition 8), the joint laws are GHP4-tight. Take any subsequence along which
we have convergence in distribution in GHP4. By Skorokhod’s representation theorem, we may
assume that convergence holds almost surely, to a vector ((T1,μ1), . . . , (T4,μ4)) of measured
limiting trees.

As GHP2-convergence implies GP2-convergence, Step 3 yields ((T2,μ2), (T4,μ4)) ∼
((TBr,μBr), (cut(TBr),μcut)), by uniqueness of GP2-limits. By Step 2, we obtain (T1,μ1) =
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(T2,μ2) a.s. By Step 1, we obtain T3 = T4 a.s. Finally, (TBr,μBr) is a measurable function of
TBr, by Proposition 1.6, and therefore, both (T3,μ3) by GP convergence in Step 3 and (T4,μ4)

by GHP convergence in Step 1 are this measureable function of T3 = T4 a.s. This completely
specifies the joint distribution of ((T1,μ1), . . . , (T4,μ4)), which furthermore does not depend
on the chosen subsequence. Therefore, joint convergence in distribution holds with the limiting
distribution thus identified. �

3. Proof of the statements of Steps 1–3

3.1. Step 1: GHP convergence of vertex cut-trees as Markov branching
trees

Proof of Proposition 1.1. Denote by T the set of (combinatorial) rooted planar trees. Let G be
a T-valued Galton–Watson tree, and denote by X = λ(G) the number of leaves of G. First note
that for all trees t ∈ T with n leaves and root ρ, we have

P
(
G = t|λ(G) = n

) = P(G = t|X = n) = P(G = t)
P(X = n)

= 1

P(X = n)

∏
v∈V (t)

νkv(t),

where V (t) denotes the set of vertices of t and kv(t) the degree (number of subtrees of vertex
v ∈ V (t), not counting the component containing ρ). For any branch point v ∈ Br(t), splitting t
into t1, . . . , tk+1 by removing the edges w → v for all children w of v, where t1 is the component
containing ρ and v, and t2, . . . , tk+1 are the components of each of the children of v, in planar
order, we obtain

k+1∏
j=1

P(G = tj ) = ν0

νk

P(G = t).

Note that if we also record the new leaf v ∈ Lf(t1), we can uniquely reconstruct (t, v) from
(t1, . . . , tk+1, v). Hence, the probability that the first cut is at a branch point with k children is

qn(#blocks = k) :=
∑

t∈T : λ(t)=n

∑
v∈Br(t) : kv(t)=k

P
(
G = t|λ(G) = n

) k − 1

n − 1

=
∑

t1,...,tk+1∈T :
λ(t1)+···+λ(tk+1)=n+1

∑
v∈Lf(t1)

1

P(X = n)

k − 1

n − 1

νk

ν0

k+1∏
j=1

P(G = tj ).

By symmetry, this value is exactly the same if the second sum is taken over v ∈ Lf(ti ) for any
i = 1, . . . , k +1. Hence, summing over i and dividing by k +1, the second sum captures all n+1
leaves leaving the first sum to sum over all (k + 1)-tuples of trees with total n + 1 leaves, so that

qn(#blocks = k) = (n + 1)(k − 1)νkP(X1 + · · · + Xk+1 = n + 1)

(k + 1)P(X = n)(n − 1)ν0
,
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for independent Xj , 1 ≤ j ≤ k + 1, with the same distribution as X = λ(G), as required. The
joint distribution of the k + 1 non-trivial and k − 2 trivial components follows by a refinement of
the above argument: denote by S1 the root component and by S2, . . . ,Sk+1 the subtrees, then the
argument yields a probability to see a Galton–Watson tree G(n) with n leaves split into S1 = s1

and S2 = s2, . . . ,Sk+1 = sk+1 of

1

P(X = n)

k − 1

n − 1

νk

ν0
λ(s1)P(G = s1)

k+1∏
j=2

P(G = sj ),

and a simple combinatorial argument to handle equal block sizes yields the probability that the
ranked split of n + 1 is (λ(S1), . . . , λ(Sk+1))

↓ = (m1, . . . ,mk+1) as

1

P(X = n)

k − 1

n − 1

νk

ν0

(n + 1)k!∏
1≤≤n r!

k+1∏
j=1

P(X = mj),

where r = #{1 ≤ j ≤ k + 1 : mj = } is the number of block sizes equal to . Hence, the
conditional probability to see a split into S1 = s1, . . . ,Sk+1 = sk+1 given a ranked split of
(m1, . . . ,mk+1) is

λ(s1)

n + 1

∏
1≤≤n r!

k!
k+1∏
j=1

P
(
G = sj |X = λ(sj )

)
.

The Markov branching property follows if we can show that conditionally given the ranked split
(m1, . . . ,mk+1), the multiset of trees {{S1, . . . ,Sk+1}} has the same distribution as the multiset
of k + 1 independent trees with respective distribution P(G = ·|X = mj), 1 ≤ j ≤ k + 1. First,
suppose that the trees t1, . . . , tk+1 are distinct. Then the probability that the multiset of trees
{{S1, . . . ,Sk+1}} equals {t1, . . . , tk+1} is the sum over all s1, . . . , sk+1 that are permutations of
t1, . . . , tk+1. In particular, s1 can be any ti , giving different factors λ(ti ), and there are k! equally
likely ways to match the others:

k!
k+1∑
i=1

λ(ti )
n + 1

∏
1≤≤n r!

k!
k+1∏
j=1

P
(
G = sj |X = λ(sj )

)

=
∏

1≤≤n

r!
k+1∏
j=1

P
(
G = sj |X = λ(sj )

)
.

When some of the trees t1, . . . , tk+1 are equal, there is duplication in some of the matchings of
s1, . . . , sk+1 and t1, . . . , tk+1, and we lose some factors from

∏
1≤≤n r!. In each case, we get the

probability that the multiset of independent conditioned Galton–Watson trees equals the multiset
of t1, . . . , tk+1, as required. �
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Proposition 3.1. Suppose α = 2 and the offspring variance σ 2 is finite. Let (Tn,n ≥ 1) be a
family of Markov branching trees with splitting rule as given in Proposition 1.1, so that Tn is the
genealogical tree of a fragmentation process starting from an initial block of size n = 2n − 1,
equipped with the uniform measure on the n leaves of Tn. Then

Tn√
n

→
√

ν0

σ
TBr, in distribution in GHP,

where TBr is a Brownian Continuum Random Tree equipped with its usual mass measure.

Proof. Like Rizzolo [47] who applied the arguments of [28], Section 5.1, for his results on
trees with numbers of vertices in a given set of degrees, we only present the part of the ar-
gument that differs from their’s in some details and thereby reveals the constants in the lim-
iting expression. Let l1([0,∞)) be the space of nonnegative summable sequences with sum
bounded by 1 equipped with the l1-norm, and f : l1([0,∞)) → [0,∞) bounded continuous. Set
g(x) = (1 − maxx)f (x). Then numerous applications of the local limit theorem (Corollary 2.4)
yield that for all η > 0 and η′ < η small enough there is n0 ≥ 1 and ε > 0 such that for all n ≥ n0,
1 ≤ k ≤ ε

√
n and m = (m1, . . . ,mk) with n1/8 ≤ m1 ≤ (1 − η)n and (1 − η′)n ≤ m1 + m2 ≤ n

and m1 + · · · + mk = n

(k − 1)νk

ν0
(1 − η) ≤ qn(#blocks = k) ≤ (k − 1)νk

ν0
(1 + η),(

g

(
(m1, n − m1,1,0, . . .)

n

)
− η

)+
≤ g

(
m

n

)
≤ g

(
(m1, n − m1,1,0, . . .)

n

)
+ η,

k + 1

(n + 1)3/2

√
ν0√

2πσ 2
(1 − η) ≤ P(τk+1 = n + 1) ≤ k + 1

(n + 1)3/2

√
ν0√

2πσ 2
(1 + η),

1

m
3/2
1

1

m
3/2
2

ν0

2πσ 2
(1 − η)2 ≤ P(X1 = m1)P(X2 = m2) ≤ 1

m
3/2
1

1

m
3/2
2

ν0

2πσ 2
(1 + η)2,

1 − η ≤ P
(
τε

√
n ≤ η′n

) ≤ 1,(
1 − η′

η

)
(n − m1) ≤ m2 ≤ n − m1.

These estimates allow us to check the criterion of [28], Display (3), in terms of normalised
splitting rules, which take the following form in our context:

q∗
n(g) :=

∑
k≥1

∑
m:=(m1,...,mk+1,1,...,1) : m1+···+mk=n

qn(m)g

(
m

n

)
.
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Specifically, by taking lim sup and lim inf as n → ∞ and then the limit as η → 0, under which
contributions outside the above ranges of k, m1 and m2 vanish, we see that

√
nq∗

n(g) ∼ √
n

∑
k≥1

qn(#blocks = k)
∑
m

g

(
m

n

)
(k + 1)m1

n

km2

n − m1

P(X1 = m1)P(X2 = m2)

P(τk+1 = n + 1)

× P
(
X∗

3 = m3, . . . ,X
∗
k

= mk|X∗
1 = m1,X

∗
2 = m2, τk+1 = n + 1

)
−→ 1√

2πσ 2ν0

∑
k≥1

(k − 1)kνk

∫ 1

0
g(x,1 − x,0, . . .)

1

x1/2(1 − x)3/2
dx,

where the first line only fails to be an equality because X∗ = (X∗
1, . . . ,X∗

k
) is a size-biased

rearrangement of (X1, . . . ,Xk+1,1, . . . ,1), so the exact expressions in the negligible cases where
m1 = 1 or m2 = 1 are different. Since

∑
k≥1(k − 1)kνk = σ 2, we conclude by the convergence

theorem of Haas and Miermont, [28], Theorem 1. In particular, we see from the multiplicative
constant of the limiting measure that the limiting tree has (ranked) dislocation measure

σ√
2πν0

(
1

x1/2(1 − x)3/2
+ 1

(1 − x)1/2x3/2

)
1[1/2,1)(x) dx = σ

2
√

πν0
νB(dx),

which is associated with
√

ν0σ
−1TBr; see Appendix B for a discussion of normalisations of the

Brownian CRT and its dislocation measure. �

This identifies c′
n = √

ν0
√

n/σ . Note that Step 3 of our programme therefore is to show, for
Galton–Watson trees G(n) with n leaves, joint GP convergence in distribution of(√

ν0√
n

σG(n),
1√

ν0
√

n
σcutHW

(
G(n)

)) → (
TBr, cut(TBr)

)
.

For Galton–Watson trees G(n)
V with n vertices, Bertoin, Miermont and Dieuleveut showed(
1√
n
σG(n)

V ,
1√
n

1

σ
cutBM

(
G(n)

V

)) → (
TBr, cut(TBr)

)
,(

1√
n
σG(n)

V ,
1√
n

(
σ + 1

σ

)
cutD

(
G(n)

V

)) → (
TBr, cut(TBr)

)
.

We understand the appearance of
√

ν0, which is simply due to the different conditioning: G(n)

is conditioned to have n leaves, while G(n)
V is conditioned to have n vertices. Dieuleveut gave a

heuristic interpretation of her factor σ + 1/σ , comparing to just 1/σ for Bertoin and Miermont
by referring to the fact that the number of edges removed in a vertex fragmentation is k ≥ 2, so
she gets

∑
k kνk × k = σ 2 + 1 as the speed-up compared to Bertoin and Miermont. Here, the



GHP convergence of vertex cut-trees of GW trees 2317

first k in the sum reflects the fact that a branch point with k children is selected with probability
proportional to k. This is what we have changed. Therefore, the average number of edges we
remove is smaller when we drop the rate to being proportional to k − 1, and we get

∑
k(k −

1)νk × k = σ 2 as the speed-up compared to Bertoin and Miermont.

We deduce (cutD(Ĝ(n))/c′
n, cutHW(G(n))/c′

n, cut◦HW(G(n))/c′
n) → (TBr,TBr,TBr) in GH3 by

Lemma 1.3 and Proposition 1.4 and since GHP convergence implies GH convergence, com-
pleting Step 1 for finite variance offspring distribution. Step 1 for offspring distributions in the
domain of an infinite variance stable distribution is beyond the scope of this paper. The interested
reader is referred to [28], Section 5.2, where Haas and Miermont establish the invariance princi-
ple for infinite-variance Galton–Watson trees using their convergence criterion. Their arguments
would need to be adapted to cut-trees with splitting rule given in Proposition 1.1.

3.2. Step 2: Coding function convergence of modified Galton–Watson trees

Given a rooted planar tree t, recall that ζ(t) and λ(t) denote the total number of vertices and
leaves of t, respectively. Define the Lukasiewicz path, contour function and height function,
denoted by X (t),C(t),H(t), as follows. To define C(t), consider a particle that visits the tree in
planar order, starting from the root and moving continuously at unit speed up and down the edges
of unit length, for each branch point exploring the subtrees in the (left to right) planar order. Then
for s ∈ [0,2ζ(t)], let Cs(t) be the distance of the particle to the root at time s. To define X (t) and
H(t), let {vj (t) : j = 0,1, . . . , ζ(t) − 1} be the vertices of t in the order encountered by C(t),
without duplication. The height function H(t) is defined by letting Hj (t) be the generation or
height |vj (t)| of vertex vj (t). The Lukasiewicz path is defined by X0(t) = 0 and

Xj+1(t) =Xj (t) + kvj (t)(t) − 1, j = 0, . . . , ζ(t) − 1,

where kvj (t)(t) is the number of children of vj (t) in t. Further denote by

�0(t) = 0, �k(t) = #
{
j ≤ k : Xj (t) −Xj−1(t) = −1

}
, 1 ≤ k ≤ ζ(t),

the leaf counting process of t. See Figure 2 for an illustration of these functions.
Let G(n) be a critical Galton–Watson tree with n leaves. We recall from [34], Theorem 8.1, and

[35], Theorem 3.3, the invariance principle for Galton–Watson trees in terms of coding functions,
expressed as a joint convergence on the Skorokhod space D[0,1] of càdlàg functions on [0,1].

Proposition 3.2. In the setting of Section 2.1, we have that

sup
0≤t≤1

∣∣∣∣�[ζ(G(n))t](G(n))

n
− t

∣∣∣∣ (6)

together with(
1

aζ(G(n))

X[ζ(G(n))t]
(
G(n)

)
,
aζ(G(n))

ζ(G(n))
C2ζ(G(n))t

(
G(n)

)
,
aζ(G(n))

ζ(G(n))
H[ζ(G(n))t]

(
G(n)

))
0≤t≤1

(7)
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Figure 2. Illustration for some G(n) with n = 8. Top row: C(Ĝ(n)), H(Ĝ(n)), H(G(n)), X (G(n)), bottom
row: Ĝ(n), ϕn and ψn and �(G(n)). Coloured lines only illustrate how functions relate.

converge in distribution in [0,1] × (D[0,1])3, as n → ∞, to (0,X,H,H), where X is a nor-
malised stable excursion and H is Duquesne and Le Gall’s [19] stable height function. If
an = σ

√
n/2, then H = X = √

2Bex is a multiple of the normalized excursion Bex of linear
Brownian motion.

Recall that Ĝ(n) is the modified tree associated with G(n) as introduced just before Lemma 1.2.
Let us be precise and extend the planar order of G(n) to Ĝ(n) by placing all extra children to the
left. Following ideas of Miermont [37] and de Raphélis [16], we introduce the following notation.
Let û(i) = vi(Ĝ(n)), i = 0,1, . . . , ζ(Ĝ(n)) − 1, and u(j) = vj (G(n)), j = 0,1, . . . , ζ(G(n)) − 1},
be the planar enumerations of V (Ĝ(n)) and V (G(n)), respectively. For 0 ≤ i ≤ ζ(Ĝ(n))− 1, define

ϕn(i) = j if
u(j) = û(i) ∈ G(n)

or u(j) is the parent of û(i) /∈ G(n).
(8)

This means that ϕn(i) is the index of the corresponding vertex in G(n) ⊆ Ĝ(n), or if û(i) is an extra
child, ϕn(i) is the index of its parent, which will be in G(n) as no extra children have offspring. For
0 ≤ j ≤ ζ(G(n)) − 1, define ψn(j) = #{v ∈ Ĝ(n) : v ≺ u(j)}, where v = û(k) ≺ u(j) = û(ϕn(i))

if and only if k < j , that is, v has strictly smaller index in Ĝ(n) than u(j). Then ϕn(ψn(j)) = j ,
but ψn(ϕn(i)) = i only if û(i) ∈ G(n). See Figure 2.

Hence, the function ( 1
ζ(Ĝ(n))

ψn([ζ(G(n))t]),0 ≤ t ≤ 1) can be regarded as the right inverse of

( 1
ζ(G(n))

ϕn([ζ(Ĝ(n))t]),0 ≤ t ≤ 1), in the approximate sense that their composition is the step

function with steps 1/ζ(G(n)) at times j/ζ(G(n)), 1 ≤ j ≤ ζ(G(n)). As ζ(G(n)) ≥ λ(G(n)) = n

will tend to infinity, this composition will approach the identity on [0,1] uniformly in t ∈ [0,1].
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Proposition 3.3. In the setting of the previous theorem, with ãn = an/ν
1/α

0 , we also have joint
convergence in distribution in [0,1]2 × (D[0,1])3 of

sup
0≤t≤1

∣∣∣∣�[ζ(G(n))t](G(n))

n
− t

∣∣∣∣, sup
0≤t≤1

∣∣∣∣ϕn([ζ(Ĝ(n))t])
ζ(G(n))

− t

∣∣∣∣,
together with (

1

ãn

X[ζ(G(n))t]
(
G(n)

)
,
ãn

n
C2ζ(G(n))t

(
G(n)

)
,
ãn

n
H[ζ(Ĝ(n))t]

(
Ĝ(n)

))
0≤t≤1

(9)

to (0,0,X,H,H).

The proof will be based on the following lemma.

Lemma 3.4. We have

sup
0≤t≤1

∣∣∣∣ 1

ζ(G(n))
ϕn

([
ζ
(
Ĝ(n)

)
t
]) − t

∣∣∣∣ → 0, in probability, as n → ∞.

Proof. According to the definition of ψn, and by the convention that extra children are placed to
the left of other children (and hence enumerated first), we have for any  < ζ(G(n)),

ψn( + 1) = �+1
(
G(n)

) +
∑
j≤

1{u(j)∈Br(G(n))} +
∑
j≤

1{u(j)∈Br(G(n))}
(
ku(j)

(
G(n)

) − 2
)
.

Meanwhile, by definition of the Lukasiewicz path, we have∑
j≤

1{u(j)∈Br(G(n))}
(
ku(j)

(
G(n)

) − 1
) − �

(
G(n)

) =X

(
G(n)

)
.

Thus,

ψn( + 1) = �+1
(
G(n)

) + �

(
G(n)

) +X

(
G(n)

)
.

Since ζ(Ĝ(n)) = 2n − 1 and ãn ∼ o(n), one can immediately see from Proposition 3.2 that
X(G(n)) is asymptotically negligible when scaling by ζ(Ĝ(n) and

sup
0≤t≤1

∣∣∣∣ 1

ζ(Ĝ(n))
ψn

([
ζ
(
G(n)

)
t
]) − t

∣∣∣∣ −→ 0, in probability.

By definition of ϕn and ψn, one sees ϕn(ψn(k)) = k. So for fixed t ∈ [0,1], as n → ∞,

1

ζ(G(n))
ϕn

([
ζ
(
Ĝ(n)

)
t
]) −→ t, in probability.
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Since t �→ ϕn([ζ(Ĝ(n))t]) is non-decreasing for each n ≥ 1, Dini’s theorem yields(
1

ζ(G(n))
ϕn

([
ζ
(
Ĝ(n)

)
t
])

,0 ≤ t ≤ 1

)
−→(t,0 ≤ t ≤ 1) in distribution.

And hence the desired result holds since the identity function is deterministic and continuous. �

Remark 3.5. The tree Ĝ(n) can be regarded as a 2-type Galton–Watson tree. The analogue
of Lemma 3.4 was obtained by Miermont [37] for irreducible and non-degenerate multi-type
Galton–Watson trees under a “small exponential moment” condition; see Lemma 6 and the proof
of Theorem 2 there.

Proof of Proposition 3.3. We see that∣∣Hϕn([ζ(Ĝ(n))t])
(
G(n)

) −H[ζ(Ĝ(n))t]
(
Ĝ(n)

)∣∣ ≤ 1.

Thus with Lemma 3.4 and Proposition 3.2, we obtain as n → ∞,(
aζ(G(n))

ζ(G(n))
Hϕn(ζ(Ĝ(n))t)

(
G(n)

))
0≤t≤1

d−→ H.

Meanwhile, by [34], Lemma 2.7, we have

ζ(G(n))

n
−→ 1

ν0
,

in distribution and hence in probability. Then a standard argument based on the Skorokhod rep-
resentation theorem establishes the desired result. �

Uniform convergence of either height functions or contour functions with measures being
pushed forward by the quotient maps implies GHP convergence, cf. [45], Lemma 1. Hence,
Proposition 3.3 together with (6) completes Step 2 with cn = n/(

√
2̃an), not just in the finite-

variance case with cn = √
n/(σ

√
ν0) by Lemma 2.1, but also for offspring distributions in the

stable domain of attraction. In fact, the convergence of Lukasiewicz paths of Ĝ(n) can be proved
similarly.

3.3. Step 3: Joint GP convergence of the modified tree and its cut-tree

In the sequel, we mainly have the case of a finite-variance modified Galton–Watson tree in mind,
but we include the stable case, where the argument is the same. From here, we follow Dieuleveut
[17], Section 4, closely (and [17], Section 2, for the stable case, which contains some of the
details also needed for the finite variance case). Let ζn = ζ(G(n)) and ζ̂n = ζ(Ĝ(n)). Also write
(X(n),H (n),C(n)) for suitably scaled Lukasiewicz path X (G(n)), height function H(G(n)) and
contour function C(G(n)), n ≥ 1, which converge to the corresponding triplet (X,H,H) associ-
ated with a stable tree T (including the Brownian CRT, in which case X = H = √

2Bex).
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Lemma 3.6 (cf. [17] Lemmas 2.4, 4.2). If (H (n),C(n),X(n)) → (H,H,X) in distribution in
(D[0,1])3, then (H (n),X(n), X̃(n)) → (H,X, X̃) in distribution in (D[0,1])3, where X̃(n) and X̃

are Lukasiewicz paths with all orders of children reversed.

Proof. Dieuleveut’s argument only uses the identical distribution of reversed quantities (X̃, C̃),
the fact that X̃ is a measurable function of the jump sizes and jump times of X to identify the
limit in the stable case, and the symmetry C̃

(n)
t = C

(n)
1−t and continuity of H to identify the limit

in the case of a Brownian limit. Hence, her argument also establishes this analogous result. �

Lemma 3.7 (cf. [17] Lemmas 2.7–2.8, 4.3–4.4). Let (X(n),H (n), X̃(n),U(n)) → (X,H, X̃,U)

almost surely, for some U(n) = (U
(n)
i , i ≥ 1) and U = (Ui, i ≥ 1) with U

(n)
i ∈ { j

ζn
,1 ≤ j ≤ ζn},

and i.i.d. Ui ∼ Unif(0,1) independent of (X,H, X̃). Then we also have the following limits.

• The shape of the subtree R(n)(k) of G(n) spanned by 0,U
(n)
1 , . . . ,U

(n)
k is constant a.s. for

n large enough, equal to the shape R(k) of the subtree R(k) of T spanned by 0,U1, . . . ,Uk .
• For every edge e = (v → v′) ∈ E(R(k)), denote by e

(n)
+ (k), e

(n)
− (k) ∈ V (R(n)(k)) the

vertices corresponding to v = e+(k) and v′ = e−(k), and by V
(n)
e (k) the set of vertices between

e
(n)
+ (k) and e

(n)
− (k). Then the rescaled lengths of the edge converge a.s.:

ãn

n

(
1 + #V (n)

e (k)
) = H

(n)

bn(e
(n)
+ (k))

− H
(n)

bn(e
(n)
− (k))

→ Hb(e+(k)) − Hb(e−(k)),

where bn(w) is the first time of H(n) corresponding to w ∈ V (G(n)), similarly b(w), w ∈ T .
• For every branch point v ∈ Br(R(k)), rescaled numbers of children converge a.s., that is,

1

ãn

kv

(
G(n)

) ∼ 1

ãn

(
kv

(
G(n)

) − 1
) = �X

(n)
bn(v) → �Xb(v),

which vanishes in the finite-variance case.
• For every edge e ∈ E(R(k)), sums of rescaled numbers of children converge a.s., as fol-

lows:

1

ãn

∑
v∈V

(n)
e (k)

(
kv

(
G(n)

) − 1
) → (Xb(e+) + X̃b̃(e+)) − (Xb(e−) + X̃b̃(e−)) − �Xb(e−),

which in the finite-variance case simplifies to Hb(e+) − Hb(e−). If we replace (kv(Tn) − 1) by
kv(Tn), we get the same limit in the stable case, while in the finite-variance case, n/a2

n = 1/σ 2

and we obtain a limit (1 + 1/σ 2)(Hb(e+) − Hb(e−)) instead.

Proof. Dieuleveut’s arguments are entirely deterministic, just requiring the limiting random vari-
ables to avoid certain degeneracies a.s. In our context, take independent (Ui, i ≥ 1) and use Sko-
rokhod’s representation theorem to have the convergences of Proposition 3.3 and Lemma 3.6
jointly and almost surely. �
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To apply Lemma 3.7, we now use Ui to sample a uniform edge in Ĝ(n) and take as U
(n)
i the

corresponding time of H(n), i.e. U
(n)
i = ϕn([(2n − 2)Ui] + 1)/ζ(G(n)), which is not indepen-

dent of G(n), but since ϕn converges uniformly to the identity on [0,1], the almost sure con-
vergence needed to apply Lemma 3.7 holds, with limit Ui independent of the limiting coding
functions.

Proposition 3.8 (cf. [17] Propositions 2.5 and 4.1). Consider edge samples ξn(i) in Ĝ(n) and
the continuous-time Dieuleveut vertex fragmentation of Ĝ(n) that removes the edges above vertex
v ∈ Br(Ĝ(n)) at rate kv(Ĝ(n))/2̃an. Define mass processes (μn,ξn(i)(t))t≥0 capturing the evolu-
tion of the proportion of leaves in the component containing ξn(i), i ≥ 1, and separation times
τn(i, j) of ξn(i) and ξn(j), i, j ≥ 1. Then in GP × [0,∞)N × (D[0,1])N, in distribution, as
n → ∞, (

ãn

n
Ĝ(n),

(
τn(i, j)

)
i,j≥1,

(
μn,ξn(i)(t)

)
t≥0,i≥1

)
→ (

T ,
(
c−1τ(i, j)

)
i,j≥1,

(
μξ(i)(ct)

)
t≥0,i≥1

)
,

where c = 1 in the stable case and/or when rates are proportional to k − 1, while it is
c = 1 + 1/σ 2 only in the finite variance case when rates are proportional to k.

Proof. Dieuleveut’s arguments work since we can still sample ξn(i) from U
(n)
i in [0,1], and the

remaining arguments only depend on tree convergences and rate convergences (up to a factor of
c), both of which we have, from Proposition 3.3, Lemma 3.6 and Lemma 3.7. �

The convergences achieved so far imply the convergence of certain modified distances for the
discrete cut-trees. These modified distances resemble the Brownian cut-tree distances and take
the following form. We enumerate the 2n − 2 edges of Ĝ(n) by 1, . . . ,2n − 2 and define for
i, j ∈ {1, . . . ,2n − 2}

δ′
n(0, i) =

∫ ∞

0
μn,i(t) dt and δ′(i, j) =

∫ ∞

tn(i,j)

(
μn,i(t) + μn,j (t)

)
dt,

where tn(i, j) is the most recent time when edges i and j were in the same component in the
continuous-time vertex fragmentation of Ĝ(n).

Lemma 3.9 (cf. [17] Lemma 2.1). For all i, j ∈ {1, . . . ,2n − 2}, we have

E

[∣∣∣∣ ãn

n − 1
δn(i, j) − δ′

n(i, j)

∣∣∣∣2]
≤ ãn

n − 1
E

[
δ′
n(0, i) + δ′

n(0, j)
]
.
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Proof. Dieuleveut works conditionally given the tree, so the argument applies to the tree Ĝ(n)

with 2n − 2 edges and the rates kv(Ĝ(n))/2̃an that specify the continuous-time cutting. �

Lemma 3.10 (cf. [17] Lemma 4.5). Assume ν1 = 0 and finite variance σ 2. Let ξn be uniform on
{1, . . . ,2n − 2}. Then

lim
→∞ sup

n≥1
E

[∫ ∞

2

μn,ξn(t) dt

]
= 0 and E

[
δ′
n(0, ξn)

] ≤ C0

for some C0 ∈ (0,∞).

Proof. We use the same ideas from [13], Corollary 2, and [17], Lemma 4.5, to prove the result.
We focus on where the arguments differ. As Dieuleveut pointed out, there is a coupling between
vertex-fragmentation and edge-fragmentation by a deterministic procedure. So we directly follow
the argument in [13] by considering uniform edge-cutting on Ĝ(n). Recall that V (t) is the set of
vertices of t. For a vertex u ∈ V (Ĝ(n)), let eu be the edge pointing down from u towards the root,
and for an edge e of Ĝ(n), let v(e) be the vertex such that ev(e) = e. Then given Ĝ(n), v(ξn) is
uniform in V ∗(Ĝ(n)) = V (Ĝ(n)) \ {ρ}. Following Bertoin and Miermont’s argument, we obtain

E
[
nμn,ξn(t)

] ≤ e−t/
√

n +E

[ ∑
u∈V ∗(Ĝ(n))\{v(ξn)}

e−d(u,v(ξn))t/
√

n

]

= e−t/
√

n + 1

2n − 2
E

[ ∑
u,v∈V ∗(Ĝ(n)),u �=v

e−d(u,v)t/
√

n

]
(10)

≤ e−t/
√

n + 4

2n − 2
E

[ ∑
u,v∈V ∗(G(n)),u �=v

e−d(u,v)t/
√

n

]
,

where the last inequality follows from the following observation: for each vertex v ∈ V (G(n))

with kv ≥ 2 children, say v1, . . . , vkv , there are kv − 2 further children in V (Ĝ(n)) \ V (G(n)), say
v′

1, . . . , v
′
kv−2. Then for u ∈ V (Ĝ(n)), we have d(u, vi)+2 = d(u, v′

i ) if vi is an ancestor of u; and
d(u, vi) = d(u, v′

i ) otherwise. If we replace d(u, v′
i ) by d(u, vi), then each vi would be counted

at most twice. We can similarly reduce the sum over u and gain another factor 2.
Denote by GW∗ the sigma-finite measure on the space of pointed trees such that

GW∗(t, v) = P(G = t),

where G is the planted version of G, with an edge and vertex added below the root, t denotes a
generic planted planar tree and v ∈ V (t); see Sections 1.2 and 4 in [13]. Then notice that the set of
pointed trees (t, v) with exactly n leaves has GW∗-measure equal to E[ζ(G)1{λ(G)=n}] ∈ (0,∞).
So the conditional law GW∗(·|λ(t) = n) on the space of pointed tree with n leaves is well defined

and is the same to the distribution of (G(n)
, η), where η is a uniformly chosen vertex in V (G(n)).
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We also note that if ν1 = 0, then #V (G(n)) = ζ(G(n)) ≤ 2n. Thus, one can deduce that

E
[
nμn,ξn(t)

] ≤ e−t/
√

n + 2

n − 1
E

[ ∑
u,v∈V ∗(G(n)),u �=v

e−d(u,v)t/
√

n

]

≤ e−t/
√

n + 4n

n − 1
GW∗

[ ∑
u∈V (t)\{v}

e−d(u,v)t/
√

n
∣∣∣ λ(t) = n

]

≤ e−t/
√

n + 8n

n − 1

∑
k≥1

e−kt/
√

n
E

[
ζk

(
G(n)

)]
,

where the last inequality follows from the same argument as [13] by replacing #V (t) with λ(t).
Using Lemma 2.5, we obtain

E
(
μn,ξn(t)

) ≤ e−t/
√

n

n
+ 4C

n

∑
k≥1

ke−kt/
√

n ≤ C′ exp(−t/
√

n)

n(1 − exp(−t/
√

n))2
.

Then it is easy to see that

lim
l→∞ sup

n≥1
E

∫ ∞

2l

μn,ξn(t) dt = 0 and sup
n≥1

E
(
δ′
n(ξn,0)

) = sup
n≥1

∫ ∞

0
E

(
μn,ξn(t)

)
dt < ∞.

This completes the proof. �

Recall that Ĝ(n) is the modified Galton–Watson tree conditioned to have n leaves, where the
modification is the addition of k − 2 extra leaves attached to branch points with k children, for
every k ≥ 3, for every branch point. This tree has 2n − 2 edges and is equipped with the uniform

measure on those 2n − 2 edges. Recall further that cutD(Ĝ(n)) denotes the Dieuleveut cut-tree
of Ĝ(n). This tree has 2n − 2 leaves and is equipped with the uniform measure on those 2n − 2
leaves, which we enumerate 1, . . . ,2n − 2. Let cn = √

n/(σ
√

ν0) and c′
n = √

ν0
√

n/σ .

Theorem 3.11 (cf. [17] Theorem 1.4). If the offspring distribution ν has finite variance σ 2, then
we have ( 1

cn
Ĝ(n), 1

c′
n
cutD(Ĝ(n))) −→ (TBr, cut(TBr)) in distribution in GP2, as n → ∞.

Proof. With Proposition 3.8 and Lemmas 3.9 and 3.10, we have provided all ingredients for
Dieuleveut’s proof to apply to Ĝ(n). �

It should be possible to approach Lemmas 2.5 and 3.10 in the stable case and hence complete
Step 3 also in the stable case, at least under some technical assumptions on the tail of the offspring
distribution. Dieuleveut’s corresponding arguments for her vertex cut-trees in [17], Section 2.3,
are by far the most technical part of her paper, spread over 14 pages, and we do not see any new
insights from adapting them, hence we do not pursue this here.
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Appendix A: Measurable construction of ε-erased length
measures

Recall from Section 2.2 the definitions of the GH- and GHP-spaces of equivalence classes of
compact real trees, which we denote by T and Tw. We further recall the notion of ε-erasure and
the definition of the length measure T of a real tree (T , d). Specifically, for a rooted real tree
(T , d,ρ), we denote by T |Rε(T ) := T (· ∩ Rε(T )) the length measure of T restricted to the ε-
erased subtree Rε(T ) ⊂ T , as a finite measure on T . Recall from [38] that there are alternative
representations of the GH- and GHP-metrics, as follows:

dGH
(
(T , d,ρ),

(
T ′, d ′, ρ′)) = 1

2
inf

R∈Cc(T ,T ′) : (ρ,ρ′)∈R
dis(R),

where Cc(T ,T ′) is the set of all correspondences, compact subsets R ⊂ T × T ′ with coordinate
projections T , T ′, and distortion dis(R) = sup{|d(x, y) − d ′(x′, y′)| : (x, x′), (y, y′) ∈ R}. Also

dGHP
(
(T , d,ρ,μ),

(
T ′, d ′, ρ′,μ′)) = 1

2
inf

R∈Cc(T ,T ′),ν∈Mp(μ,μ′) : (ρ,ρ′)∈R
dis(R) ∨ 2ν

(
Rc

)
,

where Mp(μ,μ′) is the set of all partial couplings ν, finite measures on (T ×T ′)∪T ∪T ′ with
marginals μ and μ′ in the sense that ν(· × T ′) + ν(· ∩ T ) = μ and ν(T × ·) + ν(· ∩ T ′) = μ′.
We interpret the component on T × T ′ as the coupled part and the components on T and T ′ as
uncoupled. This extends Miermont’s expression based on full couplings of probability measures.

Lemma A.1. The association (ε, T ) �→ (T , T |Rε(T )) induces a continuous function (0,∞) ×
T → Tw.

Proof. Fix a rooted compact real tree (T , d,ρ) and ε ∈ (0,∞). Denote by n the number of leaves
of Rε/2(T ). Let δ > 0 be so small that δ < ε/16 and that the shortest branch (between adjacent
branch points or between a branch point and a leaf) of Rε(T ) has length greater than 50δ.

Let (T ′, d ′, ρ′) be such that dGH(T ,T ′) < δ and ε′ so that |ε − ε′| < δ. Then

dGH
(
Rε(T ),Rε′+4δ

(
T ′)) ≤ dGH

(
Rε(T ),Rε

(
T ′)) + dGH

(
Rε

(
T ′),Rε′+4δ

(
T ′))

< 3δ + ∣∣ε′ + 4δ − ε
∣∣ < 8δ.

Hence, there is a correspondence R between Rε(T ) and Rε′+4δ(T
′) of distortion less than 16δ.

In particular, the midpoint of each branch of Rε(T ) is in correspondence with points on a cor-
responding branch of Rε′+4δ(T

′), and indeed all branches of Rε′+4δ(T
′) of length greater than

48δ are attained by this branch correspondence and are arranged in the same shape as in Rε(T ).
Note that Rε′+4δ(T

′) may have further internal branches of shorter length, but only at most k − 2
branches for every branch point of Rε(T ) of degree k ≥ 3. While Rε′(T ′) may also have further
external subtrees, these are all of height less than 3δ + ε − ε′, hence not part of Rε′+4δ(T

′).
We now define a new correspondence R′ between Rε(T ) and Rε′+4δ(T

′), in which we include
(x, y′) whenever there is (y, y′) ∈ R with d(x, y) ≤ 24δ or (x, x′) ∈ R with d ′(x′, y′) ≤ 24δ.
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Then it is not hard to see that for each pair of corresponding branches, R′ includes the following
special pairs: the endpoints closer to the respective root and the points at distance s from this
endpoint for each s up to and including the length of the shorter of the two branches. Furthermore,
the special pairs couple most of the length. The uncoupled length is bounded by (2n − 1)48δ for
each of Rε(T ) and Rε′+4δ(T

′). This specifies a partial coupling ν′ with ν′((R′)c) < (2n−1)96δ.
Finally considering the pair of Rε/2(T ) and Rε/2+4δ(T

′) ⊃ Rε′(T ′), we argue as above to
identify their tree shapes, so that Rε′(T ′) \ Rε′+4δ(T

′) consists of subtrees of height at most 4δ

that together have fewer than 2n − 1 branches of length at most 4δ. Since dis(R′) < 40δ, we can
extend R′ to a correspondence R′′ between Rε(T ) and Rε′(T ′) that has distortion dis(R′′) ≤ 48δ

and extend the uncoupled part of ν′ to get a partial coupling ν′′. Then

dGH
(
T ,T ′) < δ,

∣∣ε−ε′∣∣ < δ ⇒ dGHP
(
(T , T |Rε(T )),

(
T ′, T ′ |Rε′ (T ′)

))
< (2n−1)100δ.

Since this bound does not depend on the isometry class of T , this establishes continuity of the
induced map (0,∞) ×T → Tw at the pair ε in (0,∞) with the isometry class of T in T. �

Appendix B: Three constant multiples of the Brownian CRT

Aldous [6–8] introduced the Brownian CRT TAld via the line-breaking construction based on an
inhomogeneous Poisson process of rate t dt . Since distances between consecutive points of the
Poisson process are lengths in trees, intensity ct dt yields TAld/c. Aldous’s choice of intensity
is such that the convergence of discrete uniform random trees with n vertices labelled 1, . . . , n

to TAld is obtained when scaling edges by
√

n. Aldous shows in [8], Corollary 22, that TAld has
the same distribution as the tree T2Bex = 2TBex , where TBex is the tree whose height function is
the standard Brownian excursion Bex of duration 1. He also shows that σG(n)

V /
√

n → TAld in

distribution as n → ∞, when G(n)
V is a Galton–Watson tree with finite variance non-arithmetic

offspring distribution conditioned to have n vertices.
By Bertoin [11], the tree TBex in a Brownian excursion gives rise to a self-similar fragmentation

at heights with binary dislocation measure νB(dx) = √
2/πx−3/2(1 − x)−3/21[1/2,1)(x) dx. In

the terminology of [27], this means that TBex is a self-similar CRT with dislocation measure νB .
Haas and Miermont [28] reprove Aldous’s Galton–Watson convergence result and refer to νB as
the Brownian dislocation measure and to TBex as the Brownian continuum random tree, hence
their choice is THM := TBex = TAld/2.

Kortchemski [34] does not use the term “Brownian CRT” except when referring to the work
of Rizzolo [47] and then without identifying constants. [34], Remark 4.6, specifies the height
function that encodes his standard limiting tree in the case α = 2 as H = √

2Bex. In particular,
his limiting CRT is TKor := √

2TBex = √
2THM = TAld/

√
2. Kortchemski’s motivation is to align

with other stable laws with Laplace exponent rα and hence with the other stable trees of index
α ∈ (1,2). In this, he follows Duquesne and Le Gall [19], p. 105, and Duquesne [18], p. 1002, but
they only make qualitative remarks and refer to “proportional” when comparing with Brownian
excursions, as this is not important for their results.

Bertoin and Miermont [13] and Dieuleveut [17] use TBr := TAld = 2TBex = 2THM = √
2TKor.



GHP convergence of vertex cut-trees of GW trees 2327

Acknowledgements

This work was started during a research visit of the second author to Beijing Normal University.
We would like to thank Beijing Normal University and EPSRC (EP/K02979/1) for providing sup-
port for this research visit. H. He is supported by NSFC (No. 11671041, 11531001, 11371061).
We would like to thank the referee for carefully reading our paper, spotting several inaccuracies
and for making valuable suggestions to improve the presentation.

References

[1] Abraham, R. and Delmas, J.-F. (2012). Record process on the continuum random tree. Ann. Probab.
40 1167–1211.

[2] Abraham, R. and Delmas, J.-F. (2014). Local limits of conditioned Galton–Watson trees: The conden-
sation case. Electron. J. Probab. 19 no. 56, 29. MR3227065

[3] Abraham, R., Delmas, J.-F. and He, H. (2012). Pruning Galton–Watson trees and tree-valued Markov
processes. Ann. Inst. Henri Poincaré Probab. Stat. 48 688–705. MR2976559

[4] Abraham, R., Delmas, J.-F. and Hoscheit, P. (2013). A note on the Gromov–Hausdorff–Prokhorov
distance between (locally) compact metric measure spaces. Electron. J. Probab. 18 no. 14, 21.
MR3035742

[5] Addario-Berry, L., Broutin, N. and Holmgren, C. (2014). Cutting down trees with a Markov chainsaw.
Ann. Appl. Probab. 24 2297–2339. MR3262504

[6] Aldous, D. (1991). The continuum random tree. I. Ann. Probab. 19 1–28. MR1085326
[7] Aldous, D. (1991). The continuum random tree. II. An overview. In Stochastic Analysis (Durham,

1990). London Mathematical Society Lecture Note Series 167 23–70. Cambridge Univ. Press, Cam-
bridge. MR1166406

[8] Aldous, D. (1993). The continuum random tree. III. Ann. Probab. 21 248–289. MR1207226
[9] Aldous, D. and Pitman, J. (1998). Tree-valued Markov chains derived from Galton–Watson processes.

Ann. Inst. Henri Poincaré Probab. Stat. 34 637–686. MR1641670
[10] Aldous, D. and Pitman, J. (2000). Inhomogeneous continuum random trees and the entrance boundary

of the additive coalescent. Probab. Theory Related Fields 118 455–482. MR1808372
[11] Bertoin, J. (2002). Self-similar fragmentations. Ann. Inst. Henri Poincaré Probab. Stat. 38 319–340.

MR1899456
[12] Bertoin, J. (2012). Fires on trees. Ann. Inst. Henri Poincaré Probab. Stat. 48 909–921. MR3052398
[13] Bertoin, J. and Miermont, G. (2013). The cut-tree of large Galton–Watson trees and the Brownian

CRT. Ann. Appl. Probab. 23 1469–1493. MR3098439
[14] Broutin, N. and Wang, M. (2017). Cutting down p-trees and inhomogeneous continuum random trees.

Bernoulli 23 2380–2433. MR3648034
[15] Camarri, M. and Pitman, J. (2000). Limit distributions and random trees derived from the birthday

problem with unequal probabilities. Electron. J. Probab. 5 no. 2, 18. MR1741774
[16] de Raphélis, L. (2017). Scaling limit of multitype Galton–Watson trees with infinitely many types.

Ann. Inst. Henri Poincaré Probab. Stat. 53 200–225. MR3606739
[17] Dieuleveut, D. (2015). The vertex-cut-tree of Galton–Watson trees converging to a stable tree. Ann.

Appl. Probab. 25 2215–2262. MR3349006
[18] Duquesne, T. (2003). A limit theorem for the contour process of conditioned Galton–Watson trees.

Ann. Probab. 31 996–1027. MR1964956
[19] Duquesne, T. and Le Gall, J.-F. (2002). Random trees, Lévy processes and spatial branching processes.

Astérisque 281 vi+147. MR1954248

http://www.ams.org/mathscinet-getitem?mr=3227065
http://www.ams.org/mathscinet-getitem?mr=2976559
http://www.ams.org/mathscinet-getitem?mr=3035742
http://www.ams.org/mathscinet-getitem?mr=3262504
http://www.ams.org/mathscinet-getitem?mr=1085326
http://www.ams.org/mathscinet-getitem?mr=1166406
http://www.ams.org/mathscinet-getitem?mr=1207226
http://www.ams.org/mathscinet-getitem?mr=1641670
http://www.ams.org/mathscinet-getitem?mr=1808372
http://www.ams.org/mathscinet-getitem?mr=1899456
http://www.ams.org/mathscinet-getitem?mr=3052398
http://www.ams.org/mathscinet-getitem?mr=3098439
http://www.ams.org/mathscinet-getitem?mr=3648034
http://www.ams.org/mathscinet-getitem?mr=1741774
http://www.ams.org/mathscinet-getitem?mr=3606739
http://www.ams.org/mathscinet-getitem?mr=3349006
http://www.ams.org/mathscinet-getitem?mr=1964956
http://www.ams.org/mathscinet-getitem?mr=1954248


2328 H. He and M. Winkel

[20] Duquesne, T. and Le Gall, J.-F. (2005). Probabilistic and fractal aspects of Lévy trees. Probab. Theory
Related Fields 131 553–603. MR2147221

[21] Duquesne, T. and Winkel, M. (2012). Hereditary tree growth and Lévy forests. Stoch. Proc. Appl. To
appear. Available at arXiv:1211.2179.

[22] Duquesne, T. and Winkel, M. (2017). Hereditary tree growth and decompositions. In preparation.
[23] Evans, S.N., Pitman, J. and Winter, A. (2006). Rayleigh processes, real trees, and root growth with

re-grafting. Probab. Theory Related Fields 134 81–126. MR2221786
[24] Evans, S.N. and Winter, A. (2006). Subtree prune and regraft: A reversible real tree-valued Markov

process. Ann. Probab. 34 918–961. MR2243874
[25] Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II. 2nd ed. New

York–London–Sydney: Wiley. MR0270403
[26] Greven, A., Pfaffelhuber, P. and Winter, A. (2009). Convergence in distribution of random metric mea-

sure spaces (�-coalescent measure trees). Probab. Theory Related Fields 145 285–322. MR2520129
[27] Haas, B. and Miermont, G. (2004). The genealogy of self-similar fragmentations with negative index

as a continuum random tree. Electron. J. Probab. 9 57–97. MR2041829
[28] Haas, B. and Miermont, G. (2012). Scaling limits of Markov branching trees with applications to

Galton–Watson and random unordered trees. Ann. Probab. 40 2589–2666. MR3050512
[29] He, H. and Winkel, M. (2014). Invariance principles for pruning processes of Galton–Watson trees.

Available at arXiv:1409.1014.
[30] Ibragimov, I.A. and Linnik, Yu.V. (1971). Independent and Stationary Sequences of Random Vari-

ables. Groningen: Wolters-Noordhoff Publishing. MR0322926
[31] Janson, S. (2006). Random cutting and records in deterministic and random trees. Random Structures

Algorithms 29 139–179. MR2245498
[32] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd ed. Probability and Its Applications

(New York). New York: Springer. MR1876169
[33] Kesten, H. (1986). Subdiffusive behavior of random walk on a random cluster. Ann. Inst. Henri

Poincaré Probab. Stat. 22 425–487. MR0871905
[34] Kortchemski, I. (2012). Invariance principles for Galton–Watson trees conditioned on the number of

leaves. Stochastic Process. Appl. 122 3126–3172. MR2946438
[35] Kortchemski, I. (2014). Random stable laminations of the disk. Ann. Probab. 42 725–759.

MR3178472
[36] Meir, A. and Moon, J.W. (1970). Cutting down random trees. J. Aust. Math. Soc. 11 313–324.

MR0284370
[37] Miermont, G. (2008). Invariance principles for spatial multitype Galton–Watson trees. Ann. Inst.

Henri Poincaré Probab. Stat. 44 1128–1161. MR2469338
[38] Miermont, G. (2009). Tessellations of random maps of arbitrary genus. Ann. Sci. Éc. Norm. Supér. (4)

42 725–781. MR2571957
[39] Neveu, J. (1986). Erasing a branching tree. Adv. in Appl. Probab. 18 101–108. MR0868511
[40] Neveu, J. and Pitman, J. (1989). Renewal property of the extrema and tree property of the excursion

of a one-dimensional Brownian motion. In Séminaire de Probabilités, XXIII. Lecture Notes in Math.
1372 239–247. Springer, Berlin. MR1022914

[41] Neveu, J. and Pitman, J.W. (1989). The branching process in a Brownian excursion. In Séminaire de
Probabilités, XXIII. Lecture Notes in Math. 1372 248–257. Springer, Berlin. MR1022915

[42] Panholzer, A. (2006). Cutting down very simple trees. Quaest. Math. 29 211–227. MR2233368
[43] Pitman, J. (1999). Coalescent random forests. J. Combin. Theory Ser. A 85 165–193. MR1673928
[44] Pitman, J. (2006). Combinatorial Stochastic Processes. Lecture Notes in Math. 1875. Berlin: Springer.

MR2245368

http://www.ams.org/mathscinet-getitem?mr=2147221
http://arxiv.org/abs/arXiv:1211.2179
http://www.ams.org/mathscinet-getitem?mr=2221786
http://www.ams.org/mathscinet-getitem?mr=2243874
http://www.ams.org/mathscinet-getitem?mr=0270403
http://www.ams.org/mathscinet-getitem?mr=2520129
http://www.ams.org/mathscinet-getitem?mr=2041829
http://www.ams.org/mathscinet-getitem?mr=3050512
http://arxiv.org/abs/arXiv:1409.1014
http://www.ams.org/mathscinet-getitem?mr=0322926
http://www.ams.org/mathscinet-getitem?mr=2245498
http://www.ams.org/mathscinet-getitem?mr=1876169
http://www.ams.org/mathscinet-getitem?mr=0871905
http://www.ams.org/mathscinet-getitem?mr=2946438
http://www.ams.org/mathscinet-getitem?mr=3178472
http://www.ams.org/mathscinet-getitem?mr=0284370
http://www.ams.org/mathscinet-getitem?mr=2469338
http://www.ams.org/mathscinet-getitem?mr=2571957
http://www.ams.org/mathscinet-getitem?mr=0868511
http://www.ams.org/mathscinet-getitem?mr=1022914
http://www.ams.org/mathscinet-getitem?mr=1022915
http://www.ams.org/mathscinet-getitem?mr=2233368
http://www.ams.org/mathscinet-getitem?mr=1673928
http://www.ams.org/mathscinet-getitem?mr=2245368


GHP convergence of vertex cut-trees of GW trees 2329

[45] Pitman, J. and Rizzolo, D. (2015). Schröder’s problems and scaling limits of random trees. Trans.
Amer. Math. Soc. 367 6943–6969. MR3378819

[46] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd ed. Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293. Berlin:
Springer. MR1725357

[47] Rizzolo, D. (2015). Scaling limits of Markov branching trees and Galton–Watson trees conditioned
on the number of vertices with out-degree in a given set. Ann. Inst. Henri Poincaré Probab. Stat. 51
512–532. MR3335013

Received October 2017 and revised June 2018

http://www.ams.org/mathscinet-getitem?mr=3378819
http://www.ams.org/mathscinet-getitem?mr=1725357
http://www.ams.org/mathscinet-getitem?mr=3335013

	Introduction
	Preliminaries
	A local limit theorem for the number of leaves
	GH, GP and GHP topologies
	Bertoin and Miermont's Brownian cut-tree
	Deduction of Theorem 1.5 from the statements of Steps 1-3

	Proof of the statements of Steps 1-3
	Step 1: GHP convergence of vertex cut-trees as Markov branching trees
	Step 2: Coding function convergence of modiﬁed Galton-Watson trees
	Step 3: Joint GP convergence of the modiﬁed tree and its cut-tree

	Appendix A: Measurable construction of epsilon-erased length measures
	Appendix B: Three constant multiples of the Brownian CRT
	Acknowledgements
	References

