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Let D ⊂ R
d (d ≥ 2) be an open simply-connected bounded domain with smooth boundary ∂D and 0 =

(0, . . . ,0) ∈ D. Fix any rotationally invariant probability μ on closed unit ball {z ∈ R
d : |z| ≤ 1} with

μ({0}) < 1. Let {Sμ
n }∞

n=0 be the random walk with step-distribution μ starting at 0. Denote by ωδ(0,dz;D)

the discrete harmonic measure for {δSμ
n }∞

n=0 (δ > 0) exiting from D, which is viewed as a probability on
∂D by projecting suitably the first exiting point to ∂D. Denote by ω(0,dz;D) the harmonic measure for
the d-dimensional standard Brownian motion exiting from D. Then in the weak convergence topology,

lim
δ→0

1

δ

[
ωδ(0,dz;D) − ω(0,dz;D)

]= cμρD(z) |dz|,

where ρD(·) is a smooth function depending on D but not on μ, cμ is a constant depending only on μ,
and |dz| is the Lebesgue measure with respect to ∂D. Additionally, ρD(z) is determined by the following
equation: For any smooth function g on ∂D,∫

∂D
g(z)ρD(z) |dz| =

∫
∂D

∂f

∂nz
(z)HD(0, z) |dz|,

where f is the harmonic function in D with boundary values given by g, HD(0, z) is the Poisson kernel
and derivative ∂f

∂nz
is with respect to the inward unit normal nz at z ∈ ∂D.
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1. Introduction

We study in this paper the universality for the first order correction between discrete and contin-
uous harmonic measures in R

d with d ≥ 2, which was initiated by Kennedy [12] and Jiang and
Kennedy [10] in R

2.
To begin, denote 0 = (0, . . . ,0) ∈ R

d , x = (x1, . . . , xd) for any x ∈ R
d . Let {Xi}∞i=0 be an i.i.d.

sequence of random variables in R
d with common distribution μ such that{

E[Xi] = 0, E
[
X

(n)
i X

(m)
i

]= 0, n �= m,

E
[(

X
(1)
i

)2]= · · · = E
[(

X
(d)
i

)2]= κ ∈ (0,∞),
(1.1)
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where Xi = (X
(1)
i , . . . ,X

(d)
i ). For any s0 ∈ R

d , we define the random walk {Sμ
n }n≥0 with step

distribution μ starting at s0 by

S
μ
0 = s0, Sμ

n = s0 + X1 + · · · + Xn, n ≥ 1.

The rescaled process {δ(Sμ

	δ−2t
 − s0)}t≥0 converges in law to {B(κt)}t≥0 as δ → 0, where 	x

is the integer part of x ∈ R and {B(t)}t≥0 is the d-dimensional standard Brownian motion in R

d

starting at 0.
Let D ⊂ R

d be an open simply-connected bounded domain with smooth boundary ∂D and
0 ∈ D. It is known that D is regular (Gilbarg and Trudinger [7], p. 27 and Karatzas and Shreve
[11], pp. 245–250), in the sense that,

Pz{τD = 0} = 1 ∀z ∈ ∂D;
where τD = inf{t ≥ 0 : B(t) /∈ D} and Pz is the law of {B(t)}t≥0 starting from z. Let ω(x,dz;D)

be the continuous harmonic measure for {B(t)}t≥0 exiting from D when staring at x ∈ D, that is,

ω(x,dz;D) = Px

(
B(τD) ∈ dz

)
.

It is known that for fixed x ∈ D, ω(x,dz;D) is absolutely continuous with respect to |dz|, the
Lebesgue measure on ∂D. More precisely,

ω(x,dz;D) = HD(x, z) |dz|,
where HD(x, z) is the Poisson kernel in D and may be defined as the derivative of the Green
function GD(x, z) in the direction nz, the inward unit normal at z ∈ ∂D, that is,

HD(x, z) = ∂GD(x, z)

∂nz

.

Since ∂D is smooth, we have that HD(x, z) is smooth in z ∈ ∂D (cf. [9] and Gilbarg and
Trudinger [7]). For more details on harmonic measures, please refer to Axler, Bourdon and Wade
[1], Garnett and Marshall [5], Karatzas and Shreve [11], Möters and Peres [15].

Now we back to the discrete setting. Without loss of generality, in the rest of this paper we
will always assume S

μ
0 = s0 = 0, unless otherwise specified. Let

TD = TD(δ) = inf
{
n ≥ 0 : δSμ

n /∈ D
}
.

Define the discrete harmonic measure ω̂δ(0,dz;D) for {δSμ
n }n≥0 exiting from D by

ω̂δ(0,�;D) = P
(
δS

μ
TD

∈ �
) ∀ measurable � ⊆ ∂D, (1.2)

where δS
μ
TD

is the point on ∂D with the smallest distance to δS
μ
TD

. Note that the choice for δS
μ
TD

is unique when δ is sufficiently small. Indeed, the following map

ϕa : z ∈ ∂D → z − anz ∈ ∂D(a) := {y − any : y ∈ ∂D}
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is smooth for any a ∈ [0,1], and ϕa(z) is smooth in (z, a) ∈ ∂D × [0,1]; and the Jacobian deter-
minant Ja(z) of ϕa is smooth in z ∈ ∂D for any a ∈ [0,1] and Ja(z) is smooth in (z, a) ∈ ∂D ×
[0,1]. Thus from J0(z) ≡ 1, for small enough a > 0, Ja(z) > 0, z ∈ ∂D,namely ϕa(·)is injective;
which implies that for any x /∈ ∂D with dist(x, ∂D) ≤ a, there is a unique y ∈ ∂D satisfying
dist(x, ∂D) = |x − y|. Here dist(x, ∂D) := infz∈∂D |x − z| is the distance between x and ∂D.

Note that ω̂δ(0, ·;D) converges weakly to ω(0, ·;D) as δ ↓ 0. Our primary motivation is to
study the following conjecture of universality problem which was pioneered by Kennedy [12].

lim
δ→0

1

δ

[
ω̂δ(0,dz;D) − ω(0,dz;D)

]= cμρD(z) |dz| (in the weak convergence topology),

where cμ > 0 is a constant depending on μ but not on D, and ρD(z) is a measurable function on
∂D independent of μ.

The above universality may not hold for the random walk {δSμ
n }n≥0 whose μ is not rotation-

ally invariant. The reason is that the standard d-dimensional Brownian motion starting at 0 is
rotationally invariant. Thus, it is natural to use the following ωδ(0, ·;D) to replace ω̂δ(0, ·;D):

ωδ(0,dz;D) =
∫

O(d)

ω̂δ,α(0,dz;D)dm̃(α);

where m̃ is the normalized Haar measure on O(d), the group of d × d orthogonal matrices, and
ω̂δ,α(0,dz;D) is the image of ω̂δ(0,dz;D) under rotation α ∈ O(d). For a detailed discussion
on the above replacement in R

2, refer to Kennedy [12].
Now we restate the universality problem as follows.

Conjecture 1.1. Assume that D ⊂R
d is an open simply-connected bounded domain with 0 ∈ D

and ∂D is smooth. Let g be any smooth function on ∂D. Then

lim
δ→0

1

δ

(∫
∂D

g(z)ωδ(0,dz;D) −
∫

∂D

g(z)ω(0,dz;D)

)
= cμ

∫
∂D

g(z)ρD(z) |dz|, (1.3)

where cμ > 0 is a constant depending only on μ, and ρD(z) is a measurable function on ∂D

independent of μ.
Moreover, ρD(z) is determined by the following equation:∫

∂D

g(z)ρD(z) |dz| =
∫

∂D

∂f

∂nz

(z)HD(0, z) |dz|, (1.4)

where f is the harmonic function in D with boundary values given by g, and derivative ∂f
∂nz

is
with respect to the inward unit normal nz at z ∈ ∂D.

For any r > 0 and z0 ∈ R
d , write

B
d(z0, r) = {|z − z0| < r : z ∈R

d
}
, Bd(z0, r) = {|z − z0| ≤ r : z ∈R

d
}
.
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Let ∂Bd(z0, r) be the boundary of Bd(z0, r). For convenience, put

B
d
r := B

d(0, r), B
d := B

d(0,1).

When μ is the uniform probability measure on B
2, Jiang and Kennedy [10] proved Conjecture

1.1 in R
2. We attribute the above conjecture to Kennedy [12] and Jiang and Kennedy [10], though

in Kennedy [12] this conjecture was stated for three kinds of random walk models (simple ran-
dom walk, the nearest neighbor random walk not allowed to backtrack, the smart kinetic walk) on
square, triangular and hexagonal planar lattices; and we are responsible for any possible mistake.

In the rest of the paper, we assume that μ is a rotationally invariant probability measure on Bd

such that μ({0}) < 1. Under this setting, there is a probability measure ν on [0,1] with ν({0}) < 1
such that ∫

f dμ =
∫ 1

0

∫
Sd−1

f (rα)dν(r)dm(α) (1.5)

for all positive measurable function f , where m is the uniform distribution on the unit sphere
S

d−1. Hence, the rotational invariant property of μ implies that

ωδ(0, ·;D) = ω̂δ(0, ·;D) = ω̂δ,α(0, ·;D).

Let

H
d = {(x1, x2, . . . , xd) ∈R

d : xd > 0
}
, ∂Hd = {(x1, x2, . . . , xd) ∈R

d : xd = 0
}
,

and THd := inf{n ≥ 0, S
μ
n /∈H

d}. Define hμ(�) on [0,1] by

hμ(�) =
∫

[�,1]
�(d/2)√
π�(d−1

2 )

[
(r2 − �2)(d−1)/2

(d − 1)rd−2

(1.6)

+ 2F1

(
1

2
,

3 − d

2
; 3

2
; �2

r2

)
�2

r

]
dν(r) − �

2
ν
([�,1]),

where 2F1(a, b; c; z) is the hypergeometric function given by

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n! ,

and (x)n = x(x + 1) · · · (x + n − 1) is the Pochhammer symbol. For hypergeometric functions,
see Gasper and Rahman [6]. Let

cμ = 2

κ

∫ 1

0

(
� +E

�
[
V
(
S

μ
T
Hd

)])
hμ(�)d�, (1.7)

where E
� is the expectation with respect to the distribution of {Sμ

n }n≥0 starting at s0 =
(0, . . . ,0, �) ∈ H

d , and

V
(
S

μ
T
Hd

)= ∣∣Sμ
T
Hd

− S
μ
T
Hd

∣∣.
We state our main result as follows.
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Theorem 1.2. Assume that μ is a rotationally invariant probability on Bd and μ({0}) < 1. Then
Conjecture 1.1 holds for constant cμ specified in (1.7) and smooth function ρD(z) specified by

ρD(z) = lim
δ→0

1

δ

{∫
∂D

HD(0, ζ )HD(z + δnz, ζ ) |dζ | − HD(0, z)

}
, z ∈ ∂D. (1.8)

The limit of (1.8) does exist, see the proof of Lemma 2.12.

Remark 1.3. (i) The most difficult situation for Conjecture 1.1 is the case that μ is not a rotation-
ally invariant probability measure. Refer to Kennedy [12] and Dai [4] for several very interesting
discrete random walks.

(ii) As pointed out by Kennedy [12], there is another very natural way to define the “exit”
point in ∂D when the random walk exits D: By linearly interpolating between the steps of the
random walk so that it becomes a piece-wise linear curve in R

d , we can consider the first point
where this curve intersects ∂D as the exit point. In this setting, Theorem 1.2 also holds.

The paper is organized as follows. In Section 2, we recall firstly some preliminary facts on
harmonic measures and random walks; then after giving a series of lemmas on discrete and
continuous harmonic measures, we prove Theorem 1.2. In Section 3, we take several examples
for Theorem 1.2.

2. Proof of Theorem 1.2

In Section 2.1, we recall some preliminary knowledge. Then in Section 2.2, we prove a series of
lemmas which will be used to prove Theorem 1.2. Finally in Section 2.3, we finish the proof of
Theorem 1.2.

Recall in R
2, by using the conformal mapping from D to B

2, Kennedy computed ρD(z) in
Kennedy [12] Section 3 and Jiang and Kennedy deduced a formula for ρD(z) in Jiang and
Kennedy [10] Proposition 3. In this paper, we have found a more general approach without resort-
ing the conformal mapping to compute explicitly the function ρD(z) for d-dimensional (d ≥ 2)
domain D. This together with Jiang and Kennedy [10] lead that we can extend main result of
Jiang and Kennedy [10] to higher dimensional Rd and any non-degenerate rotationally invariant
step-distribution on Bd . Our proof is similar to that of Jiang and Kennedy [10], but we need some
new insights in higher dimensional Rd which scatter in proofs of lemmas in Section 2.2.

2.1. Preliminaries

For small δ > 0, let

D2 = {z ∈ D : dist(z, ∂D) < δ
}
,

(2.1)
D3 = {z ∈ R

d \ D : dist(z, ∂D) < δ
}
,

D1 = D \ D2, D+ = D ∪ D3. (2.2)



2284 L. Wang, K. Xiang and L. Zou

For any continuous function g on ∂D, consider the following Dirichlet problem:{
�f (z) = 0, z ∈ D,

f (z) = g(z), z ∈ ∂D.
(2.3)

Recall that D is regular. The unique solution to (2.3) can be written as

f (z) =
∫

∂D

g(ξ)ω(z,dξ ;D). (2.4)

Furthermore, if g is smooth on ∂D, then f ∈ 3C∞(D) (Gilbarg and Trudinger [7], p. 111 Theo-
rem 6.19) and therefore f has a C∞-extension to a larger domain D+, which is still denoted by
f by abusing notations.

Clearly the generator �δ for the random walk {δSμ
n }n≥0 is given by

�δf (z) =
∫
Bd

[
f (z + δξ) − f (z)

]
dμ(ξ), (2.5)

for any bounded measurable function f on R
d . Consider the following discrete Dirichlet prob-

lem: {
�δfδ(z) = 0, z ∈ D,

fδ(z) = g(̃z), z ∈ D3; (2.6)

where D3 is given by (2.1), and z̃ ∈ ∂D satisfies |̃z − z| = min{|ζ − z| : ζ ∈ ∂D}. It is easy to see
that the function fδ defined by

fδ(z) =
∫

∂D

g(ξ)ωδ(z,dξ ;D) (2.7)

is the unique solution to (2.6) (the uniqueness follows from the maximum principle).
Let Px,δ be the law of {δSμ

n }n≥0 with δS
μ
0 = x, and E

x,δ the corresponding expectation. Define

the following probability on Bd : For any measurable subset A of Bd ,

μ̂(A) = 1

1 − μ({0})μ
(
A \ {0}).

Note that the random walks {δSμ
n }n≥0 and {δSμ̂

n }n≥0 have the same discrete harmonic measure.
Thus in the rest of this paper, we assume that

μ
({0})= 0.

Notice that μ is rotationally invariant on Bd (d ≥ 2) with μ({0}) = 0. By Zabczyk [17], the
k-fold convolution

μ ∗ μ ∗ · · · ∗ μ︸ ︷︷ ︸
k
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with k ≥ 2 is absolutely continuous with respect to the d-dimensional Lebesgue measure. Define
the transition probability density for the random walk {δSμ

n }n≥0:

pδ(0, x, y) = δ(x, y),
(2.8)

pδ(n, x, y) = lim
ε→0

P
x,δ(|δSμ

n − y| ≤ ε)

2πd/2εd/(d�(d/2))
, n ≥ 2,

where δ(x, y) is the Dirac delta function giving unit mass to x. In general, for n = 1, the limit
above does not exist and so pδ(1, x, y) may be a distribution rather than a function.

Likewise, define the transition probability density for {δSμ
n }n≥0 killed on exiting D as follows:

For any x ∈ D and y ∈ R
d ,

pD,δ(0, x, y) = δ(x, y),

pD,δ(n, x, y) = lim
ε→0

P
x,δ(|δSμ

n − y| ≤ ε,n < TD)

2πd/2εd/(d�(d/2))
, n ≥ 2.

Here pD,δ(n, x, y) does exist by (2.8) for n ≥ 2.

2.2. Some lemmas

By the Markov property for {δSμ
n }n≥0, we may rewrite pD,δ(n, x, y) as

pD,δ(n, x, y) =
∫
Bd

pD,δ(n − 1, x, y + δξ)dμ(ξ), x, y ∈ D,n ≥ 3. (2.9)

The killed discrete Green function is defined by

Gδ(x, y) =
∞∑

n=0

pD,δ(n, x, y), x ∈ D,y ∈ D \Bd(x,2δ),

where pD,δ(1, x, y) is viewed as 0 due to |y − x| > 2δ. In fact in the above definition,
pD,δ(n, x, y) with n ≤ 2 make no contribution to Gδ(x, y). Recall D3 from (2.1).

Lemma 2.1. For any fixed x ∈ D,{
�δGδ(x, y) = 0, y ∈ D \Bd(x,2δ),

Gδ(x, y) = 0, y ∈ D3.
(2.10)

Proof. The boundary condition is obvious. By (2.9) and the Fubini theorem, for any y ∈ D \
Bd(x,2δ),

Gδ(x, y) =
2∑

n=0

pD,δ(n, x, y) +
∞∑

n=3

∫
Bd

pD,δ(n − 1, x, y + δξ)dμ(ξ)
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=
∫
Bd

∞∑
n=3

pD,δ(n − 1, x, y + δξ)dμ(ξ) =
∫
Bd

Gδ(x, y + δξ)dμ(ξ),

where we used the facts that pD,δ(0, x, y + δξ) = pD,δ(1, x, y + δξ) = 0 for y ∈ D \ Bd(x,2δ)

and ξ ∈ Bd . Hence,

�δGδ(x, y) =
∫
Bd

Gδ(x, y + δξ)dμ(ξ) − Gδ(x, y) = 0, y ∈ D \Bd(x,2δ). �

Similarly to Jiang and Kennedy [10], Lemma 3, we can prove the following lemma.

Lemma 2.2. In the settings of Theorem 1.2, for smooth function g on ∂D,

fδ(0) − f (0) =
∫

D2

Gδ(0, z)�δf (z)dz. (2.11)

Define potential kernel aδ(x) for the random walk {δSμ
n }n≥0 by

aδ(x) =
∞∑

n=3

pδ(n,0, x), x ∈ R
d (2.12)

for d ≥ 3 and by

aδ(x) =
∞∑

n=3

[
pδ(n,0,0) − pδ(n,0, x)

]
, x ∈ R

2 (2.13)

for d = 2.
For convenience, when δ = 1, we define

a(x) := a1(x), p(n, x, y) := p1(n, x, y).

Lemma 2.3. Assume d ≥ 3. Then a(x) is well defined, and

a(x) = �(d−2
2 )

2κπd/2

1

|x|d−2
+ O

(|x|−d
)
, |x| → ∞, (2.14)

where the constant in big O term only depends on μ.

Proof. Let X = (X(1),X(2), . . . ,X(d)) be a random variable with distribution μ, and i = √−1.
Let

φ(θ) = E
(
eiθ ·X)= E

(
exp

{
i

d∑
j=1

θjX
(j)

})
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be the characteristic function of X, where θ = (θ1, . . . , θd) ∈ R
d . By the rotational invariance of

μ, for any n ≥ 1,

E
[
(θ · X)n

]= E
[{(

0, . . . ,0, |θ |) · (X(1), . . . ,X(d)
)}n]= |θ |nE[(X(d)

)n];
and φ(θ) is rotationally invariant in θ , namely a function in |θ |:

φ(θ) = χ
(|θ |). (2.15)

Note |θ · X| ≤ |θ |. Then as θ → 0,

E

[ ∞∑
n=3

(−1)n

(2n)! (θ · X)2n

]
=

∞∑
n=3

(−1)n

(2n)! E
[
(θ · X)2n

]= ∞∑
n=3

(−1)n

(2n)! |θ |2n
E
[(

X(d)
)2n]= O

(|θ |6).
Since the Taylor series at 0 of cos(x) is

∑∞
n=0(−1)n x2n

(2n)! , we have that

φ(θ) = E
(
cos(θ · X) + i sin(θ · X)

)= E
(
cos(θ · X)

)
= E

(
1 − (θ · X)2

2
+ (θ · X)4

24
+

∞∑
n=3

(−1)n

(2n)! (θ · X)2n

)
(2.16)

= 1 − κ|θ |2
2

+ 1

24
E
[(

X(d)
)4]|θ |4 + O

(|θ |6), θ → 0.

From (2.27) in Hughes [8], the function χ(·) has the following form:

χ(q) = �(d/2)

∫ 1

0

(
2

rq

)d/2−1

Jd/2−1(rq)dν(r), q ≥ 0. (2.17)

Here Jv(z) is the Bessel function of the first kind of order v (see Watson [16]), which is defined
by the series

Jv(z) =
(

1

2
z

)v ∞∑
k=0

(− 1
4z2)k

k!�(v + k + 1)
.

Clearly, for any n ≥ 3, p(n,0, x) is rotationally invariant in x. Let

p(n,0, x) = ψn

(|x|).
Then by (2.34) in Hughes [8],

ψn(ρ) = 2

(4π)d/2

∫ ∞

0

(
2

qρ

)d/2−1

Jd/2−1(qρ)qd−1χn(q)dq, (2.18)

where χ(q) is given by (2.17). By (2.15) and (2.16), and ln(1 + ε) = ε + O(ε2) (ε → 0), we get
that

χn(q) = en ln(χ(q))
∼ e− κ

2 nq2
as q → 0. (2.19)
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Recall the following definite integral in Watson [16] page 394:∫ ∞

0
qv+1Jv(βq)e−α2q2

dq = βv

(2α2)v+1
e−β2/(4α2). (2.20)

Thus the large n behaviour of the integral in (2.18) is governed by the small q behaviour of χ(q),
and by (2.19)–(2.20),

p(n,0, x) = ψn

(|x|)∼ 1

(2πκn)d/2
e− |x|2

2nκ . (2.21)

For any n ≥ 1 and x ∈R
d , let

p(n,0, x) = 1

(2πκn)d/2
e− |x|2

2nκ . (2.22)

By Lawler and Limic [14], Lemma 4.3.2, we have that for any b > 1, as r → ∞,

∞∑
n=3

n−be−r/n = �(b − 1)

rb−1
+ O

(
1

rb+1

)
. (2.23)

Plugging b = d/2, r = |x|2
2κ

into (2.23), we obtain that as |x| → ∞,

∞∑
n=3

p(n,0, x) = �(d−2
2 )

2κπd/2

1

|x|d−2
+ O

(
1

|x|d+2

)
. (2.24)

Let E(n,x) = |p(n,0, x) − p(n,0, x)|. Similarly to the proof of Lawler [13], Lemma 1.5.2,
we can verify that

∞∑
n=3

E(n,x) = O

(
1

|x|d
)

, (2.25)

where the constant in O(·) does not depend on x but on μ.
Now from (2.24)–(2.25), we see the lemma holds immediately. �

Lemma 2.4. When d = 2, a(x) is well defined, and there exists a constant C0 depending on μ

such that as |x| → ∞,

a(x) = 1

κπ
ln |x| + C0 + O

(|x|−2), (2.26)

where the constant in big O term only depends on μ.

Proof. We rewrite

a(x) =
∑

3≤n≤|x|2/κ

[
p(n,0,0) − p(n,0, x)

]+ ∑
n>|x|2/κ

[
p(n,0,0) − p(n,0, x)

]
. (2.27)
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For any n ≥ 1 and x ∈R
2, let

p(n,0, x) = 1

2πκn
e− |x|2

2nκ .

It is easy to see that (2.16)–(2.21) are also true for d = 2.
Let E(n,x) = |p(n,0, x)−p(n,0, x)|. Similarly to the proof of Theorem 1.2.1 in Lawler [13],

we can check that

E(n,x) = O

(
1

n2

)
, n → ∞,

where the constant in O(·) does not depend on x but on μ.
Hence

p(n,0,0) = 1

2πκ

1

n
+ O

(
1

n2

)
, n ≥ 3;

∑
3≤n≤|x|2/κ

p(n,0,0) =
∑

3≤n≤|x|2/κ

1

2πκ

1

n
+

∑
3≤n≤|x|2/κ

O

(
1

n2

)
.

Recall that ∑
3≤n≤|x|2/κ

1

n
= 2 ln |x| + γ − lnκ − 3

2
+ O

(|x|−2),
where γ is Euler’s constant. So for some constant C1 depending on μ,

∑
3≤n≤|x|2/κ

p(n,0,0) = 1

κπ
ln |x| + C1 + O

(|x|−2).
By the martingale maximal inequality, there exist β > 0, c > 0 depending on μ such that for

all n and all s > 0,

P

{
max

0≤j≤n

∣∣Sμ
j

∣∣≥ s
√

n
}

≤ ce−βs2
.

This implies that
∑

n<|x| p(n,0, x) decays faster than any power of |x| as |x| → ∞, particularly∑
n<|x|

p(n,0, x) = o
(|x|−2).

Similarly to the proof of Theorem 4.4.4 in Lawler and Limic [14], we can show that for some
constant c depending on μ, ∑

|x|≤n≤|x|2/κ

∣∣p(n,0, x) − p(n,0, x)
∣∣≤ c|x|−2.



2290 L. Wang, K. Xiang and L. Zou

Therefore, as |x| → ∞,∑
|x|≤n≤|x|2/κ

p(n,0, x) =
∑

|x|≤n≤|x|2/κ

p(n,0, x) + O
(|x|−2)

=
∑

|x|≤n≤|x|2/κ

1

2πnκ
e− |x|2

2nκ + O
(|x|−2)

= 1

2πκ

∫ |x|2
κ

|x|
1

t
e− |x|2

2κt dt + O
(|x|−2)

= 1

2πκ

∫ ∞

1

1

y
e−y/2 dy + O

(|x|−2).
So far we have proved that∑

n≤|x|2/κ

[
p(n,0,0) − p(n,0, x)

]= 1

κπ
ln |x| + C′ + O

(|x|−2), |x| → ∞, (2.28)

holds for some constant C′ depending on μ.
Likewise, consider the case when n > |x|2/κ , similarly to the proof of Theorem 4.4.4 in

Lawler and Limic [14], we can verify that∑
n>|x|2/κ

[
p(n,0,0) − p(n,0, x)

]
(2.29)

= 1

2πκ

∫ 1

0

1

y

(
1 − e−y/2)dy + O

(|x|−2), |x| → ∞.

By (2.28) and (2.29), we finish proving the lemma. �

Let GD(0, ·) be the Green function for the killed Brownian motion in D starting at 0. Then
GD(0, z) is the unique harmonic function on D \ {0} such that GD(0, z) → 0 as z → ∂D. When
d ≥ 3, let ϕ(z) be the harmonic function in z ∈ D satisfying that⎧⎨⎩�ϕ(z) = 0, z ∈ D,

ϕ(z) = −1

4
π−d/2�

(
d − 2

2

)
1

|z|d−2
, z ∈ ∂D.

(2.30)

It is well known that for d ≥ 3,

GD(0, z) = 1

4
π−d/2�

(
d − 2

2

)
1

|z|d−2
+ ϕ(z), z ∈ D \ {0};

and 1
4π−d/2�(d−2

2 ) 1
|z|d−2 is harmonic in z ∈ R

d \ {0}, and thus ϕ(z) can be extended to a har-

monic function in the domain D+ for small enough δ > 0.
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Lemma 2.5. There exists a constant C > 0 depending on μ but not on δ such that∣∣∣∣δ2Gδ(0, z) − 2

κ
GD(0, z)

∣∣∣∣≤ Cδ (2.31)

holds uniformly in z ∈ D with |z| > δ1/d .

Proof. When d = 2, proof of the lemma is similar to that of Lemma 5 in Jiang and Kennedy [10].
Assume d ≥ 3, and δ is small enough such that Bd

δ1/d ⊆ D. Let

Hδ(z) = δ2
2∑

n=0

pδ(n,0, z) + δ2−da(z/δ), z ∈ R
d \Bd

2δ.

Then by Lemma 2.3, we have that

Hδ(z) = �(d−2
2 )

2κπd/2

1

|z|d−2
+ O

(
δ2/|z|d), z ∈ D \Bd

δ1/d .

Define the following function on R
d :

eδ(z) =

⎧⎪⎨⎪⎩
Hδ(z) − δ2Gδ(0, z), z ∈R

d \Bd
2δ,

δ2−da(z/δ) − δ2
∞∑

n=3

pD,δ(n,0, z), z ∈ B
d
2δ.

Then by (2.10), we obtain that⎧⎪⎨⎪⎩
�δeδ(z) = 0, z ∈ D,

eδ(z) = �(d−2
2 )

2κπd/2

1

|z|d−2
+ O

(
δ2/|z|d), z ∈ D3.

(2.32)

Recall that ϕ(z) can be extended to a harmonic function in the domain D+ for small enough
δ > 0. Therefore, for sufficiently small δ > 0,⎧⎨⎩�δϕ(z) = 0, z ∈ D,

ϕ(z) = −1

4
π−d/2�

(
d − 2

2

)
1

|z|d−2
+ O(δ), z ∈ D3.

(2.33)

Combining with (2.32)–(2.33), we get that⎧⎪⎨⎪⎩
�δ

[
eδ(z) + 2

κ
ϕ(z)

]
= 0, z ∈ D,

eδ(z) + 2

κ
ϕ(z) = O(δ), z ∈ D3.



2292 L. Wang, K. Xiang and L. Zou

Then the maximum principle for �δ implies that

eδ(z) + 2

κ
ϕ(z) = O(δ), z ∈ D.

Therefore, when δ is small enough, for any z ∈ D with |z| > δ1/d ,

δ2Gδ(0, z) = Hδ(z) − eδ(z) = 2

κ

�(d−2
2 )

4πd/2

1

|z|d−2
+ 2

κ
ϕ(z) + O(δ)

= 2

κ
GD(0, z) + O(δ). �

Proofs of the following Lemmas 2.6–2.7 are similar to those of Lemmas 6 and 8 in Jiang and
Kennedy [10], respectively.

Lemma 2.6. As δ → 0, for � ∈ [0, δ], uniformly in x ∈ ∂D,

GD(0, x + �nx) = �HD(0, x) + O
(
δ2).

Note D2 is specified in (2.1).

Lemma 2.7. Let F(z) be a Lebesgue measurable bounded function on D2. Then the following
holds for sufficiently small δ > 0:∫

D2

F(z)dz = (1 + O(δ)
) ∫

∂D

∫ δ

0
F(x + �nx)d� |dx|,

where O(δ) only depends on D.

Lemma 2.8. Define the following function in (�, δ) with 0 ≤ � ≤ δ:

hμ(�, δ) =
∫

[�/δ,1]

{
�(d/2)√
π�(d−1

2 )

[
(δ2r2 − �2)(d−1)/2

(d − 1)(δr)d−2

+ 2F1

(
1

2
,

3 − d

2
; 3

2
; �2

δ2r2

)
�2

δr

]
− �

2

}
dν(r).

Let f be given by (2.3) with smooth function g. Then as δ → 0, for � ∈ [0, δ],

�δf (x + �nx) = hμ(�, δ)
∂f (x)

∂nx

+ O
(
δ2),

and O(δ2) only depends on f,D and μ.
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Proof. For ξ = (x1, x2, . . . , xd) ∈ R
d , we introduce the d-dimensional spherical polar coordi-

nates transform: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 = r sin(ϕ1) · · · sin(ϕd−2) sin(ϕd−1),

x2 = r sin(ϕ1) · · · sin(ϕd−2) cos(ϕd−1),

...

xd−1 = r sin(ϕ1) cos(ϕ2),

xd = r cos(ϕ1),

(2.34)

where 0 ≤ r ≤ 1,0 ≤ ϕd−1 ≤ 2π , 0 ≤ ϕi ≤ π,1 ≤ i ≤ d − 2. Then the corresponding Jacobian
determinant Jd satisfies that

Jd = ∂(x1, x2, . . . , xd−1, xd)

∂(ϕ1, ϕ2, . . . , ϕd−1, r)
= rd−1(sinϕ1)

d−2(sinϕ2)
d−3 · · · sinϕd−2. (2.35)

For the convenience of calculation, we rewrite dμ(ξ) as the form of spherical coordinates:

dμ(ξ) = dμ(r,ϕ1, . . . , ϕd−1) = �(d/2)

2πd/2rd−1
dν(r)dϕ1 · · ·dϕd−1,

(2.36)
(r, ϕ1, . . . , ϕd−1) ∈ [0,1] × [0,π)d−2 × [0,2π).

Case 1. d = 2. From (2.36), dμ(r,ϕ1) = 1
2πr

dν(r)dϕ1. Let

hμ(�, δ) =
∫

[�/δ,1]
1

π

[√
δ2r2 − �2 − � arccos

(
�

δr

)]
dν(r).

Similarly to Lemma 9 of Jiang and Kennedy [10], we can prove that as δ → 0, for � ∈ [0, δ],

�δf (x + �nx) = hμ(�, δ)
∂f (x)

∂nx

+ O
(
δ2).

Case 2. d ≥ 3. For any ξ ∈ Bd , write ρ := ρ(r,ϕ1, ϕ2, . . . , ϕd−1) for ξ in the spherical polar
coordinates. Notice (2.36). Then

�δf (x + �nx)

=
∫
Bd

[
f (x + �nx + δξ) − f (x + �nx)

]
dξ

=
∫ 1

0

∫ 2π

0

∫ π

0
· · ·
∫ π

0

[
f (x + �nx + δρ) − f (x + �nx)

]
Jd dμ(r,ϕ1, . . . , ϕd−1)

=
∫

[0,�/δ)

∫ 2π

0

∫ π

0
· · ·
∫ π

0

[
f (x + �nx + δρ) − f (x + �nx)

]
Jd dμ(r,ϕ1, . . . , ϕd−1)

+
∫

[�/δ,1]

∫ 2π

0

∫ π

0
· · ·
∫ π

0

[
f (x + �nx + δρ) − f (x + �nx)

]
Jd dμ(r,ϕ1, . . . , ϕd−1)
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=
∫

[�/δ,1]

∫ 2π

0

∫ π

0
· · ·
∫ π

0

[
f (x + �nx + δρ) − f (x + �nx)

]
Jd dμ(r,ϕ1, . . . , ϕd−1) (2.37)

=
∫

[�/δ,1]

∫ 2π

0

∫ π

0
· · ·
∫ π/2+arcsin ( �

δr
)

0

[
f (x + �nx + δρ) − f (x + �nx)

]
× Jd dμ(r,ϕ1, . . . , ϕd−1)

+
∫

[�/δ,1]

∫ 2π

0

∫ π

0
· · ·
∫ arccos ( �

δr
)

0

[
f (x + �nx − δρ) − f (x + �nx)

]
× Jd dμ(r,ϕ1, . . . , ϕd−1)

= I1(x, �) + I2(x, �).

The smoothness and boundedness of ∂D implies that there are positive constants C1,C2, . . . ,

Cd such that for any x ∈ ∂D,

∂D ∩Bd(x, δ) ⊂ [−C1δ,C1δ] · t1
x + [−C2δ,C2δ] · t2

x + · · · + [−Cdδ2,Cdδ2] · nx,

where {t1
x, t2

x, . . . , td−1
x }x∈∂D is a moving tangent orthonormal frame of ∂D.

Since f has a C2-extension, which is still denoted by f , to D+, by the Taylor expansion of f

at x ∈ ∂D with respect to coordinate directions nx and t1
x, . . . , td−1

x , we get that

I1(x, �) = ∂f (x)

∂nx

∫
[�/δ,1]

∫ 2π

0

∫ π

0
· · ·
∫ π/2+arcsin ( �

δr
)

0
δr cos(ϕ1)

× Jd dμ(r,ϕ1, . . . , ϕd−1) + O
(
δ2).

Recall ∫ 2π

0

∫ π

0
· · ·
∫ π

0
(sinϕ2)

d−3 · · · sinϕd−2 dϕ2 · · · dϕd−2 dϕd−1 = 2π(d−1)/2

�(d−1
2 )

.

Hence by (2.36),

I1(x, �)

= ∂f (x)

∂nx

∫
[�/δ,1]

∫ π/2+arcsin ( �
δr

)

0

2π(d−1)/2

�(d−1
2 )

�(d/2)

2πd/2rd−1
δrd

× cos(ϕ1) sind−2(ϕ1)dϕ1 dν(r) + O
(
δ2)

= ∂f (x)

∂nx

∫
[�/δ,1]

�(d/2)√
π�(d−1

2 )

(δ2r2 − �2)(d−1)/2

(d − 1)(δr)d−2
dν(r) + O

(
δ2).
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Likewise, we have that

I2(x, �) = ∂f (x)

∂nx

∫
[�/δ,1]

∫ π

0
· · ·
∫ arccos ( �

δr
)

0
−�Jd

�(d/2)

2πd/2(δr)d−1
dϕ1 · · · dϕd−2 dν(r) + O

(
δ2)

= ∂f (x)

∂nx

∫
[�/δ,1]

∫ arccos ( �
δr

)

0
−�

�(d/2)√
π�(d−1

2 )
sind−2(ϕ1)dϕ1 dν(r) + O

(
δ2).

From Brychkov [2],∫
sind−2(ϕ1)dϕ1 = − cos(ϕ1)2F1

(
1

2
,

3 − d

2
; 3

2
; cos2(ϕ1)

)
+ C, 0 ≤ ϕ1 ≤ π,

2F1

(
1

2
,

3 − d

2
; 3

2
;1

)
=

√
π�(d−1

2 )

2�(d/2)
.

Therefore, the lemma follows by a simple computation. �

Lemma 2.9. Fix a ∈ (0,∞) and θ ∈ [ 1
8π,π]. Let

� = �(a, θ) = {x = (x1, . . . , xd) ∈ ∂Bd
a : xd ≥ a cos θ

}
.

Then there exists a constant C, depending on μ, but being independent of a and θ , such that
when δ is small enough,

ωδ

(
u,�;Bd

a

)≥ C > 0 for all u ∈ B
d
a/2.

Proof. The proof is similar to that of Lemma 2.10 in Chelkak and Smirnov [3]. Write x =
(x1, . . . , xd) in the d-dimensional spherical polar coordinates transform given by (2.34). For any
ρ ∈ (0,1/4), let

�1(ρ) = {x ∈R
d : r = |x| ∈ (1 − ρ,1 + ρ),ϕ1 ∈ [0,π/8]},

�2(ρ) = {x ∈R
d : r = |x| ∈ (1 − ρ,1 + ρ),ϕ1 ∈ (π/8,π]};

and hρ(·) be the continuous harmonic measure of {x ∈ R
d : |x| = 1 + ρ,ϕ1 ∈ [0, 1

9π]}, and

c1 := 1

2
lim inf
ρ→0

min|x|≤1/2

{
hρ(x)

}
> 0.

Choose ρ small enough such that

min
|x|≤ 1

2 +ρ

{
hρ(x)

}≥ 3c1/2 and max
x∈�2(ρ)

{
hρ(x)

}≤ c1/2.

Then choose constant c2 > 0 sufficiently small such that c2(1 + ρ)2 ≤ 1
2c1. Let

φ0(x) := hρ(x) − c1 + c2|x|2, x ∈ B
d
1+ρ.
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Then smooth function φ0 : Bd
1+ρ → R satisfies that

(i) φ0(x) ≤ 1 for all x ∈ �1(ρ);
(ii) φ0(x) ≤ 0 for any x ∈ �2(ρ);

(iii) φ0 is subharmonic, and �φ0 ≥ 2dc2;
(iv) φ0(x) ≥ c1/2 for all x ∈ B

d
1/2+ρ .

Let

φ(x) = φ0

(
x

a

)
, x ∈ Bd

a .

Then φ ≤ 1 on � and φ ≤ 0 on ∂Bd
a \ �.

Notice limδ→0 sup
x∈Bd

a
|( κ

2 �φ − �δφ)(x)| = 0. By (iii), for small enough δ, φ is �δ-

subharmonic in B
d
a . By the maximum principle, for some constant C > 0 which depends on

μ but is independent of a and θ , when δ is sufficiently small,

ωδ

(
x,�;Bd

a

)≥ φ(x) ≥ C > 0, x ∈ B
d
a/2. �

Lemma 2.10. There exist two constants β > 0 and C > 0 depending on μ such that for any
simply-connected bounded regular domain D, u ∈ D and V ⊆ ∂D, and sufficiently small δ > 0,

P
u,δ
(
δS

μ
TD

∈ V
)≤ C

[
dist(u, ∂D)

distD(u;V )

]β

,

where δS
μ
TD

is the orthogonal projection of δS
μ
TD

onto ∂D, and

distD(u;V ) = inf
{
R > 0 : u and V are connected in D ∩B

d(u,R)
}
.

Proof. The proof is similar to that of Proposition 2.11 in Chelkak and Smirnov [3]. Let a =
dist(u, ∂D) and r = distD(u;V ). Recall that ωδ(u,V ;D) is equal to the probability that the
first exit point of {δSμ

n }n≥0 (δS
μ
0 = u) from D whose orthogonal projection onto ∂D is in V .

By Lemma 2.9, without loss of generality, we assume a < r/2. It is easy to show that for each
a ≤ r ′ ≤ r

2 the probability to cross the annulus Bd(u,2r ′) \ Bd(u, r ′) inside D without touching
its boundary is bounded above by some constant p > 0 depending on μ that does not depend on
r ′ and D. Hence,

ωδ(u,V ;D) ≤ plog2(r/a)−1 = p−1 · (a/r)− log2 p,

so the lemma holds true with the exponent β = − log2 p. �

Note Lemma 2.5. The proof of the following Lemma 2.11 is similar to that of Jiang and
Kennedy [10] Proposition 2.

Lemma 2.11. Given any ε ∈ (0,1/2). Then as δ → 0, for any � ∈ [0, δ] and x ∈ ∂D,

δ2Gδ(0, z) − 2

κ
GD(0, z) − 2

κ
HD(0, x)E�

[
V
(
S

μ
T
Hd

)]= O
(
δ1+εβ

)+ O
(
δ2−2ε

)
,

where z = x + �nx ∈ D2 and the big O terms depend on D and μ.



First order correction to harmonic measure 2297

Lemma 2.12. Let f be the harmonic function in D with boundary values given by the smooth
function g. Then (1.4) holds for C∞-function ρD(z) specified in (1.8).

Proof. Let h(·) be the harmonic function on D with boundary values given by the smooth func-
tion HD(0, ·). Then h ∈ C∞(D). Since �f (z) = 0, z ∈ D, by the divergence theorem,∫

∂D

HD(0, z)
∂f

∂nz

(z) |dz| = −
∫

D

∇h(z) · ∇f (z) + h(z) · �f (z)dz

= −
∫

D

∇h(z) · ∇f (z)dz.

Moreover, note �h(z) = 0, z ∈ D, by the divergence theorem again,∫
∂D

HD(0, z)
∂f

∂nz

(z) |dz| = −
∫

D

�h(z) · f (z) + ∇h(z) · ∇f (z)dz

=
∫

∂D

g(z)
∂h

∂nz

(z) |dz|.

The mean value and regularity property of harmonic function h(·) implies that for any z ∈ ∂D,

∂h

∂nz

(z) = lim
δ→0

1

δ

[
h(z + δnz) − h(z)

]
= lim

δ→0

1

δ

{∫
∂D

HD(0, ζ )HD(z + δnz, ζ ) |dζ | − HD(0, z)

}
.

For any z ∈ ∂D, let

ρD(z) = ∂h

∂nz

(z).

Thus (1.4) holds for C∞-function ρD(z) specified in (1.8). �

2.3. Proof of Theorem 1.2

Recall (2.4) and (2.7). By Lemmas 2.2 and 2.7, we get that

fδ(0) − f (0) =
∫

D2

Gδ(0, z)�δf (z)dz

= (1 + O(δ)
) ∫

∂D

∫ δ

0
Gδ(0, x + �nx)�δf (x + �nx)d� |dx|.

By Lemma 2.8,

�(δ) :=
∫

∂D

∫ δ

0
Gδ(0, x + �nx)�δf (x + �nx)d� |dx|
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=
∫

∂D

∂f (x)

∂nx

∫ δ

0
Gδ(0, x + �nx)

[
hμ(�, δ) + O

(
δ2)]d� |dx|.

Combining with Lemma 2.11, we have that

�(δ) =
∫

∂D

∂f (x)

∂nx

∫ δ

0

2

κδ2

[
GD(0, x + �nx) + HD(0, x)E�

[
V
(
S

μ
T
Hd

)]+ o(δ)
]

× [hμ(�, δ) + O
(
δ2)]d� |dx|.

By Lemma 2.6,

�(δ) =
∫

∂D

∂f (x)

∂nx

∫ δ

0

2

κδ2

[
�HD(0, x) + HD(0, x)E�

[
V
(
S

μ
T
Hd

)]+ o(δ)
]

× [hμ(�, δ) + O
(
δ2)]d� |dx|.

A straightforward calculation gives that

�(δ) = cμδ

∫
∂D

∂f (x)

∂nx

HD(0, x)|dx| + o(δ),

where cμ is given by (1.7). Therefore,

fδ(0) − f (0) = δcμ

∫
∂D

∂f (x)

∂nx

HD(0, x) |dx| + O
(
δ2),

combining with Lemma 2.12, then (1.3), (1.4) and (1.8) hold. So far we have completed proving
Theorem 1.2. �

3. Several examples for Theorem 1.2

In this section, we consider a class of random walks {δSμ
n }n≥0 for Theorem 1.2 such that μ has

the form specified by (1.5) with

ν(r) := ν
([0, r])= 1 − [1 − r1/α

]1/β
, r ∈ [0,1], (3.1)

where α ≥ 0 and β > 0. A tedious and straightforward calculation shows that κ in (1.1) is given
by

κ = κ(d,α,β) = �(d/2)�(2 + 2α)�(1/β)

2β(1 + 2α)�(d/2 + 1)�(1/β + 2α + 1)
. (3.2)

Let d = 2, β = 1, α = 1
2 , then ν(r) = r2, r ∈ [0,1], κ = 1

4 , and the random walk {δSμ
n }n≥0 is

exactly the case of continuous-state random walk in Jiang and Kennedy [10].
The following corollary is a consequence of some tedious but straightforward calculuses.
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Corollary 3.1. In (3.1), let d,β,α be as follows.
(i) When d = 2, β = 1 and α = 0, that is, ν(r) = I{r=1}, κ = 1

2 , then step-distribution of
random walk {Sμ

n }n≥0 is the uniform distribution on the unit circle, and

cμ = 4

9π
+ 4

π

∫ 1

0

[√
1 − �2 − � arccos (�)

]
E

�
[
V
(
S

μ
T
H2

)]
d�.

(ii) When d = 3, β = 1 and α = 0, that is, ν(r) = I{r=1}, κ = 1
3 , then step-distribution of

random walk {Sμ
n }n≥0 is the uniform distribution on the unit spherical surface in R

3, and

cμ = 1

8
+
∫ 1

0

(
3

2
− 3� + 3�2

2

)
E

�
[
V
(
S

μ
T
H3

)]
d�.

(iii) When d = 3, β = 1 and α = 1/3, i.e. ν(r) = r3, r ∈ [0,1], κ = 1
5 , then step-distribution of

random walk {Sμ
n }n≥0 is the uniform distribution on the closed 3-dimensional unit ball, and

cμ = 5

48
+ 5

8

∫ 1

0
(3 + �)(1 − �)3

E
�
[
V
(
S

μ
T
H3

)]
d�.

(iv) When d = 4, β = 1 and α = 0, that is, ν(r) = I{r=1}, κ = 1
4 , then step-distribution of

random walk {Sμ
n }n≥0 is the uniform distribution on the unit spherical surface in R

4, and

cμ = 16

45π
+
∫ 1

0

(
16

3π

(
1 − �2)3/2 − 8�

π
arccos(�) + 8�2

π

√
1 − �2

)
E

�
[
V
(
S

μ
T
H4

)]
d�.

(v) When d = 4, β = 1 and α = 1/4, that is, ν(r) = r4, r ∈ [0,1], κ = 1
6 , then step-distribution

of random walk {Sμ
n }n≥0 is the uniform distribution on the closed 4-dimensional unit ball, and

cμ = 32

105π
+
∫ 1

0

(
32

5π

(
1 − �2)5/2 − 4

π
�2(2�2 − 5

)√
1 − �2 − 12

π
� arccos(�)

)
E

�
[
V
(
S

μ
T
H4

)]
d�.
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