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In this paper, we consider the problem of estimating the marginal density in some autoregressive time series
models for which the conditional mean and variance have a parametric specification. Under some regularity
conditions, we show that a kernel type estimate based on the residuals can be root-n consistent even if the
noise density is unknown. Our results substantially extend those existing in the literature. Our assumptions
are carefully checked for some standard time series models such as ARMA or GARCH processes. Asymp-
totic expansion of our estimator is obtained by combining some martingale type arguments and a coupling
method for time series which is of independent interest. We also study the uniform convergence of our
estimator on compact intervals.
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1. Introduction

Nonparametric density estimation is an important tool for the analysis of time dependent data,
especially for economic and financial time series. For instance, estimating the marginal density
often provides important information on the shape and tail behavior of the distribution of stock
prices or market indices. A discussion of more specific applications in econometrics or finance
can be found in Liao and Stachurski [16] and the references therein. In time series analysis, short-
term prediction is an important issue and most of the statistical models used by practitioners
are based on the conditional density which is the main quantity of interest in this context. The
so-called ARCH processes introduced in the literature to model the dynamics of conditionally
heteroscedastic time series, illustrate this approach quite well. However, as pointed out in Francq
and Zakoïan [10], the marginal density of time series becomes the relevant quantity for long-
term prediction or long-term value-at-risk evaluation. We can also mention that an important
application of marginal density estimation is in model checking. For some interest rates series,
Aït-Sahalia [1] tested model adequacy by comparing a nonparametric estimator of the marginal
density and the corresponding estimator implied by a parametric diffusion model and shows that
the linearity of the drift imposed by the literature is the main source of misspecification. See
also Gao and King [12] and Corradi and Swanson [5] for similar test procedures for diffusion
processes.

Nonparametric density estimation has been extensively studied in the literature. Kernel density
estimation is probably one of the most popular methods used for this problem and the properties
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of the so-called Parzen–Rosenblatt estimator have been investigated under various mixing type
conditions. For instance, by Robinson [19], Ango Nze and Doukhan [2], Doukhan and Louhichi
[8] or Roussas [20]. See also the monograph of Bosq [3] for the kernel density estimation for
strong mixing sequences and Dedecker et al. [6] for numerous weak dependence conditions
ensuring consistency properties of this estimator.

When additional structure is assumed however, for the stochastic process of interest, kernel
density estimation can be used more cleverly to obtain sharper rates of convergence, in particular√

n-consistency. This atypical rate of convergence in the nonparametric density estimation has
been first noticed for the estimation of the density of some functionals of independent random
variables. See Frees [11], Schick and Wefelmeyer [23] and Giné and Mason [13]. In time series,
existing contributions exploit the representation of the marginal density as a convolution product
between the innovation density and the marginal density of a predictable process. Such an ap-
proach has been used by Saavedra and Cao [21], Schick and Wefelmeyer [22,24] for estimating
the marginal density of invertible, moving average processes. In the latter contribution, sharper
results are obtained for possibly infinite moving average processes. More recently, Kim et al. [14]
obtained some results for nonlinear and homoscedastic autoregressive processes of order 1 for
which the conditional mean has a parametric specification. However, the authors did not study
the case of conditionally heteroscedastic time series and used a different approach to test model
adequacy in the presence of a time-varying conditional variance. Another recent contribution has
been made by Delaigle et al. [7] who constructed a

√
n-consistent estimator of the density of the

log-volatility for a GARCH(1,1) process. Note however that the purpose of this latter contribu-
tion was not the estimation of the marginal distribution and the volatility process was not directly
observed. Moreover, the approach used seems specific to the autoregressive equation followed
by the GARCH(1,1).

In the literature,
√

n-consistent estimation of the marginal density in conditionally het-
eroscedastic time series models has not been considered. Moreover, even in the homoscedastic
case, a general approach has not been studied for obtaining this convergence rate. In this paper,
we consider the problem of estimating the marginal density with the

√
n rate of convergence in

some autoregressive time series models, conditionally homoscedastic or heteroscedastic. We will
restrict our study to short memory models with a location-scale formulation

Xt = mt(θ) + σt (θ)εt , t ∈ Z,

where the conditional mean mt(θ) and volatility σt (θ) depend smoothly on a finite-dimensional
parameter θ and are random variables measurable with respect to σ(Xt−1,Xt−2, . . .). With re-
spect to the existing results, our approach covers many cases, from the ARMA processes with
independent and identically distributed innovations to ARMA processes with a GARCH noise.
Let us also mention that our contribution provides an answer to a question addressed in Zhao [29],
a paper in which an estimator similar to ours was suggested for density estimation in autoregres-
sive time series models. It also suggests that such a convergence rate is not due to a convolution
representation of the marginal density but on a U -statistics representation of our estimator, in
the spirit of the method proposed by Frees [11] or Giné and Mason [13]. For heteroscedastic
parametric regression models, the root-n rate of a similar estimator is also conjectured in Li and
Tu [15], Section 6.1 and with straightforward modifications, our results apply in this case. How-
ever, apart from some classical smoothness conditions, the root-n consistency of our estimator
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is only guaranteed under the square integrability, with respect to the noise distribution, of the
conditional density of the marginal Xt given the noise component εt . For independent data, this
kind of condition is classical for deriving the asymptotic properties of Free’s estimators. See Giné
and Mason [13], Theorem 1, assumption (b). Such an assumption is not always satisfied and has
to be checked for the model under study. In this paper, we show in particular that ARMA pro-
cesses with GARCH errors generally satisfy this integrability condition. A similar integrability
condition is discussed by Müller [18] for estimating the marginal density in some homoscedastic
regression models. See also Schick and Wefelmeyer [25] who showed that estimating a convo-
lution of some powers of independent random variables can lead to a slower rate of convergence
when this condition fails to hold.

This convergence rate is not only interesting for theoretical reasons. A classical application is
to test model adequacy using the marginal density in the spirit of Aït-Sahalia [1] who popular-
ized this approach for diffusion processes. For time series, Kim et al. [14] have recently used a
statistics based on a comparison between the standard kernel estimator and a convolution esti-
mator. However, the method given in Kim et al. [14] for conditionally heteroscedastic time series
models, is not based directly on the estimation of the marginal density. Our contribution has the
benefit of providing precise assumptions under which such a root-n consistent density estima-
tion can be obtained in some semiparametric time series models. This estimator can be used in
turn, to construct adequation tests which naturally extends the test derived by Kim et al. [14] for
conditionally homoscedastic time series models. We discuss such a test in Section 2.3.

The paper is organized as follows. In Section 2, we define our estimator and give its asymptotic
properties. In Section 3, we check the assumptions of our theorems for some standard examples
of time series models. We also compare our assumptions with that used in the aforementioned
references. In Section 4, we provide a simulation study which shows that our estimator out-
performs the standard kernel estimator when the data generating process is an ARMA/GARCH
process. Proofs of some of our results are postponed to the last section of the paper. A Supple-
mentary material [27] available online provides additional technical lemmas as well as a proof
of some technical points.

2. Marginal density estimation of a time series

2.1. Model and marginal density estimator

We first introduce the general model used in the following. Let (εt )t∈Z be a sequence of i.i.d.
square integrable random variables. If � denotes a Borel subset of Rd , we consider two measur-
able functions H,G : �×R

N → R. We assume that for a θ0 ∈ �, (Xt )t∈Z is a stationary process
such that

Xt = H(θ0;Xt−1,Xt−2, . . .) + εtG(θ0;Xt−1,Xt−2, . . .). (1)

Note that the two functions H and G will be more precisely defined λd ⊗ PX almost every-
where, where λd denotes the Lebesgue measure on R

d and PX the probability distribution of
(Xt−1,Xt−2, . . .). We also assume that Xt ∈ σ(εt , εt−1, . . .), that is,

Xt = E(εt , εt−1, . . .),
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for a suitable measurable function E : RN → R defined Pε almost everywhere. We also set

mt(θ) = H(θ;Xt−1,Xt−2, . . .), σt (θ) = G(θ;Xt−1,Xt−2, . . .).

The generation of all the past values are not available. We then assume that there exist measurable
functions, Ht,Gt : � ×R

t →R such that Ht(θ;Xt−1, . . . ,X1) (and Gt(θ;Xt−1, . . . ,X1)) is an
approximation of mt(θ) (and σt (θ)). We then use the notations

mt(θ) = Ht(θ;Xt−1, . . . ,X1), σ t (θ) = Gt(θ;Xt−1, . . . ,X1).

In general, these approximations are obtained by replacing Xt−i by 0 for i ≥ t in the expressions
of H and G. For instance, for an invertible moving average of order 1, Xt = εt − θ0εt−1, one can
set

mt(θ) = −
∑
j≥1

θjXt−j , mt (θ) = −
t−1∑
j=1

θjXt−j , t ≥ 2.

Our estimator is based on the representation of the marginal density fX of the stationary pro-
cess (Xt )t∈Z as a smooth functional of the noise density fε . More precisely, setting X−

t =
(Xt−1,Xt−2, . . .) and denoting by f (·|X−

t ) the conditional density of Xt given X−
t , we have

for v ∈R,

fX(v) = E
[
f
(
v|X−

t

)]= E

[
1

σi(θ0)
fε

(
v − mi(θ0)

σi(θ0)

)]
. (2)

Imagine first that a sample (Xi,mi(θ0), σi(θ0))1≤i≤n is available. Then the vector of innovations
(ε1, . . . , εn) is also observed. The noise density fε can be estimated by the classical Parzen–
Rosenblatt kernel estimator. If K : R → R+ is a symmetric probability density with compact
support [−1,1], which will be assumed to be continuously differentiable in the following, we set

f̂ε(z) = 1

n

n∑
i=1

Kb(z − εi), Kb(x) = 1

b
K

(
x

b

)
.

Then, using the expression (2), we define the following unfeasible estimator

f̌X(v) = 1

n

n∑
i=1

1

σi(θ0)
f̂ε

(
Lv,i(θ0)

)
= 1

n2

n∑
i,j=1

1

σi(θ0)
Kb

[
Lv,i(θ0) − εj

]
,

with Lv,i(θ) = v−mi(θ)
σi (θ)

for (v, θ) ∈ R × �. In practice, the parameter θ0 has to be estimated
and only the vector (X1,X2, . . . ,Xn) is observed. Let us introduce additional notations. For

(v, θ) ∈ R × �, we set εj (θ) = Xj −mj (θ)

σj (θ)
. We call the process (εj (·))j∈Z the residual process.

We also denote by εj (θ) and Lv,i(θ) the truncated versions of εj (θ) and Lv,i(θ) respectively,

for example, εj (θ) = Xj −mj (θ)

σ j (θ)
.
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Then, if θ̂ denotes an estimator of θ0, the feasible estimator of fX(v) is defined by

f̂X(v) = 1

n2

n∑
i,j=1

1

σ i(θ̂ )
Kb

[
Lv,i(θ̂ ) − εj (θ̂ )

]
.

Note that (εj (θ̂ ))1≤j≤n are the residuals obtained after the estimation step.
In the homosecedastic case, that is, there exists σ > 0 such that σt (θ) = σ for all (t, θ) ∈

Z× �, our estimator is simply defined by

f̂X(v) = 1

n2

n∑
i,j=1

Kb

[
v − mi(θ̂) − Xj + mj(θ̂)

]
. (3)

Note that the estimation of the variance σ 2 is unnecessary in the homoscedastic case. An es-
timator of type (3) already appears in the literature but using a convolution approach. See, for
instance, Schick and Wefelmeyer [24] for linear processes, Müller [18] for homoscedastic regres-
sion models and Kim et al. [14] for some non linear conditionally homoscedastic time series. In
this case, the kernel K is a convolution product of type k ∗ k and the estimator (3) is obtained
as a convolution product of two kernel estimators: the Parzen–Rosenblatt estimator, with kernel
k, of the density of mt(θ0) and that of fε with the same kernel. In this paper, we will consider
an arbitrary continuously differentiable and symmetric kernel K and the homoscedastic case as
a special case of the conditionally heteroscedastic case, by in this case, setting the two quantities
σt and σ t to 1 in all our statements.

2.2. Assumptions and asymptotic behavior of the marginal density
estimate

We now give our assumptions for deriving the asymptotic behavior of the unfeasible estimator
f̌X and the feasible estimator f̂X . In the following, we will denote by ‖ ·‖ a norm on R

d whatever
the value of the integer d . We will still denote by ‖ · ‖ the corresponding operator norm. For a
family {A(θ); θ ∈ �} of matrices and a family {B(θ) : θ ∈ �} of real numbers, we set |A|∞,ε =
supθ∈�0,ε

‖A(θ)‖ and |A,B|∞,ε = supθ,θ ′∈�0,ε
‖ A(θ)

B(θ ′)‖, where �0,ε = {θ ∈ � : ‖θ − θ0‖ < ε}.
Finally, since for i ∈ Z, mi(θ) and σi(θ) are measurable functions of Yi = (εi, εi−1, . . .), we

define some coupling versions of these two quantities (mi , σi do not depend on εi but we keep
this additional variable for simplicity of notations). For an integer � ≥ 1, we denote by (ε

(i)
j )j∈Z,

an independent copy of (εj )j∈Z and we denote by mi�(θ) and σi�(θ) the two random variables
defined as mi(θ) and σi(θ) but for which Yi is replaced with

Yi� = (εi, εi−1, . . . , εi−�+1, ε
(i)
i−�, ε

(i)
i−�−1, . . .

)
.

One can note that (mi�(θ), σi�(θ)) has the same distribution as (mi(θ), σi(θ)). The interest of
such a coupling method will be explained in Section 5. The following assumptions will be
needed.
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A1 The parameter θ ∈ � where � is a subset of Rd .
A2 The volatility is bounded away from zero, that is, there exists γ > 0 such that

infθ∈� σi(θ) ≥ γ a.s. We also assume infθ∈� σ i(θ) ≥ γ a.s. Moreover, there exists s, a ∈ (0,1)

and κ > 0 such that

E

[
sup

θ∈�0,ε

∣∣mt(θ)
∣∣s + sup

θ∈�0,ε

∣∣σt (θ)
∣∣s]< ∞,

E

[
sup

θ∈�0,ε

∣∣mi(θ) − mi�(θ)
∣∣s + sup

θ∈�0,ε

∣∣σ 2
i (θ) − σ 2

i�(θ)
∣∣s]≤ κa�

and

E

[
sup

θ∈�0,ε

∣∣mi(θ) − mi(θ)
∣∣s + sup

θ∈�0,ε

∣∣σ 2
i (θ) − σ 2

i (θ)
∣∣s]≤ κai .

A3 The two functions θ �→ σt (θ) and θ �→ mt(θ) are twice differentiable over �. Moreover,
there exists ε > 0 such that the following random variables are integrable.

|ṁi , σi |3∞,ε,
∣∣σ̇ 2

i , σ 2
i

∣∣3∞,ε
, |ṁi , σi |2∞,ε · ∣∣σ̇ 2

i , σ 2
i

∣∣2∞,ε
, |σi, σi |∞,ε · |m̈i , σi |∞,ε ,

|mi,σi |∞,ε · ∣∣σ̈ 2
i , σ 2

i

∣∣∞,ε
,

∣∣σ̈ 2
i , σ 2

i

∣∣6/5
∞,ε

,

where for a function g : � → R, ġ and g̈ denote the gradient and the Hessian matrix of g,
respectively.

A4 There exists an estimator θ̂ of θ0 such that θ̂ − θ0 = OP( 1√
n
).

A5 The noise density fε is twice differentiable and its second derivative f ′′
ε is bounded (hence

fε and f ′
ε are also bounded).

A6 Let I a compact interval on the real line. For all v ∈ I , we assume that the ratio v−mt (θ0)
σt (θ0)

has a density denoted by hv and for x ∈R, we set

gv(x) = E

[
1

σt (θ0)

∣∣∣∣ v − mt(θ0)

σt (θ0)
= x

]
· hv(x).

We assume that the application (x, v) �→ gv(x) is jointly measurable and also that there exists
s0 > 0 such that for all v ∈ I ,∫

gv(x)2 dμ(x) < ∞, dμ(x) = sup
|s|≤s0

fε(x + s) dx.

A7 The envelope function G defined by G(x) = supv∈I gv(x) satisfies
∫

G(x)2+o dμ(x) < ∞
for some o ∈ (0,1). Moreover, there exist some constants η,C > 0 such that

N[·]
(
ε,G,L2(μ)

)≤ Cε−η,

where N[·](ε,G,L2(μ)) denotes the bracketing numbers of the family GI = {gv : v ∈ I }.
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Notes

1. Different constants a, s and κ can be found for the three bounds given assumptions A2.
However, we can always take the minimal value of the exponents s, the maximum value of
the constant a and the maximum value of the constants κ ≥ 1. There is therefore, no loss
of generality in assuming the same constants for the three bounds.

2. Assumption A2 imposes a restriction on the dependence structure of the time series models.
These conditions, which are usually referred to as short-memory properties, are satisfied
for the standard ARMA or GARCH processes. Roughly speaking, this weak dependence
condition means that a perturbation of initial conditions in the data generating process is
forgotten exponentially fast. This type of dependence condition is also used by Zhao [29]
or Kim et al. [14].

Discussion of Assumption A6

Our results require some regularity conditions for the family of functions {gv : v ∈ I }. The inte-
grability condition assumed on gv is necessary for root n consistency, as shown in Theorem 1
stated below. One can also relate this function to the conditional density of Xt |εt . Indeed, if
h : R2 → R+ is a measurable function, we have, setting for simplicity of notations mt = mt(θ0)

and σt = σt (θ0),

E
[
h(Xt , εt )

] = E

∫
h(mt + σtx, x)fε(x) dx

= E

∫
h

(
v,

v − mt

σt

)
1

σt

fε

(
v − mt

σt

)
dv

=
∫ ∫

h(v, x)gv(x)fε(x) dx dv.

This shows that v �→ gv(x) can be seen as a version of the conditional density of Xt given that
εt = x. In what follows, we discuss alternative expressions for the function gv as well as some
sufficient conditions ensuring the square integrability of gv required in A6.

1. For the homoscedastic model, the volatility σt (·) equals a constant σ . Then if mt(θ0) has a
density denoted by fm, we have gv(x) = fm(v − σx). In this case, estimation of parameter
σ will be unnecessary. Assumption A6 holds true as soon as fε is bounded and fm is
square-integrable.

2. For a pure heteroscedastic model, that is, the conditional mean mt(·) being reduced to
a constant m, we assume that σt (θ0) has a density fσ . Assumption A6 can hold only if
v 
= m. For v 
= m, one can show that for x 
= 0, gv(x) = 1

|x|fσ (v−m
x

). In this case, we have
for v 
= m, ∫

gv(x)2μ(dx) ≤ ‖fε‖∞
|v − m|

∫ ∞

0
f 2

σ (y) dy.

Then if for instance fσ 2(y) = 1
2
√

y
fσ (

√
y) is bounded, the integrability condition given in

A3 is guaranteed as soon as Eσt (θ0) < ∞, which is not a strong restriction.
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3. In the location-scale case with a non degenerate conditional mean, we assume that the
distribution of the pair (mt (θ0), σt (θ0)) has a density denoted by fm,σ . Then if v ∈ R, the
distribution of the couple (

v−mt (θ0)
σt (θ0)

, 1
σt (θ0)

) has a density ω given by

ω(x, y) = 1

y3
fm,σ

(
v − x

y
,

1

y

)
.

We deduce that

gv(x) =
∫ 1/γ

0

1

y2
fm,σ

(
v − x

y
,

1

y

)
dy. (4)

Using Jensen inequality and a change of variables, one can show that∫
gv(x)2 dx ≤ 1

γ
·E[σt (θ0)fm,σ

(
mt(θ0), σt (θ0)

)]
. (5)

Then the integrability condition given in A3 follows if fε is bounded and if the integral∫
yf 2

m,σ (x, y) dx dy is finite.

Discussion of Assumption A3

Assumption A3 imposes some moment restrictions and smoothness conditions. In the pure het-
eroscedastic case, we only have to check the integrability of∣∣σ̇ 2

i , σ 2
i

∣∣3∞,ε
,

∣∣σ̈ 2
i , σ 2

i

∣∣6/5
∞,ε

.

In the homoscedastic case, these conditions reduce to the integrability of

|mi |2∞,ε , |ṁi |3∞,ε, |m̈i |∞,ε .

These moment restrictions are explained by the technique used for the proof of Theorem 2 given
below and which consists in studying the derivative of f̂ with respect to θ̂ , the estimator of θ0.
For a general heteroscedastic time series model, other conditions could be possible, the single re-
quirement is to get the conclusions of Lemma 4 and Lemmas 5 and 6 given in the Supplementary
material [27].

We now give the asymptotic behavior of our estimates. We first start with the unfeasible esti-
mator f̌X .

Theorem 1. Let nb2+δ → ∞ and nb4 → 0 for some δ ∈ (0,1).

1. Assume that Assumptions A2, A5 and A6 hold true. Then for all v ∈ I , we have
√

n
[
f̌X(v) − fX(v)

]
(6)

= 1√
n

n∑
i=1

[
gv(εi) + 1

σi(θ0)
fε

(
v − mi(θ0)

σi(θ0)

)
− 2fX(v)

]
+ oP(1).

In particular, for all v ∈ I , we have
√

n[f̌X(v) − fX(v)] = OP(1).
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2. If in addition Assumption A7 holds true, the approximation (6) is uniform in v ∈ I . In
particular

√
n sup

v∈I

∣∣f̌X(v) − fX(v)
∣∣= OP(1).

Note

The proof of Theorem 1 relies on the decomposition of a U -statistic for which the degenerate part
is shown to be negligible under our bandwidth conditions. The bandwidth condition

√
nb2 → 0

is a bias condition, the bias of our estimator has to decrease faster than the rate 1/
√

n. However,
our estimator will be first approximated by a U-statistic involving �-dependent random variables
in order to facilitate the study of its asymptotic behavior.

In the next result, we compare the asymptotic behavior of the feasible estimator f̂X with that
of the unfeasible one. For θ ∈ �, we denote by fθ the density of εi(θ). We also set

hθ (v) = E

(
1

σi(θ)
fθ

(
v − mi(θ)

σi(θ)

))
.

In the following ḣθ (v) will denote the partial derivative with respect to θ of the function (θ, v) �→
hθ (v). By convention, we represent ḣθ (v) by a column vector. Moreover, AT will denote the
transpose of a matrix A.

Theorem 2. Let nb3+δ → ∞ and nb4 → 0 for some δ ∈ (0,1) and assume that the Assumptions
A1–A6 hold true. We then have

√
n sup

v∈I

∣∣f̂X(v) − f̌X(v) − ḣθ0(v)T (θ̂ − θ0)
∣∣= oP(1).

Note

For the comparison of the two estimators f̂ and f̌ , we do not use U -statistics arguments. We
wanted to avoid additional regularity conditions on the function gv and its local approximation
when θ → θ0, these conditions being difficult to check for practical examples. For the proof of
Theorem 2, we first show that the effect of truncations of mi , σi is negligible. We then use �-
dependent approximations of these quantities. Finally, we study a Taylor expansion of order 1
and control the local approximation of the derivatives using martingale tools and integration with

respect to the residual process θ �→ Xj −mj (θ)

σj (θ)
. Then regularity conditions exclusively concern the

densities θ �→ fθ of this residual process. One can note that the range of bandwidths allowed in
Theorem 2 is reduced compared to Theorem 1.

In the next result, we provide the asymptotic distribution of the feasible estimator f̂X of fX .
To this end, it is necessary to use a particular representation of the estimator θ̂ . Similar represen-
tations are used in Zhao [29] or Kim et al. [14].

A8 There exists a square integrable process Zi(θ0) = Hθ0(εi−1, εi−2, . . .) taking values in

Md,d̄ (R), the space of real matrices of size d × d̄ and a measurable function F : R → R
d̄ such
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that EF(ε0) = 0, Yi(θ0) and F(ε0) are square integrable, E‖Zi(θ0) − Zi�(θ0)‖2 ≤ κa� (where
κ > 0 and a ∈ (0,1)) and

√
n(θ̂ − θ0) = 1√

n

n∑
i=1

Zi(θ0)F (εi) + oP(1).

For stating our next result, we define for v ∈ I and i ∈ Z,

Mi,v = gv(εi) + 1

σi(θ0)
fε

(
v − mi(θ0)

σi(θ0)

)
+ ḣθ0(v)T Zi(θ0)F (εi).

The proof of the following corollary is given in the Supplementary material [27].

Corollary 1. Under the assumptions A1–A6 and A8, the process (
√

n[f̂X(v) − fX(v)])v∈I

converges in the sense of finite dimensional distributions towards a centered Gaussian process
(Wv)v∈I such that for v1, v2 ∈ I ,

Cov(Wv1,Wv2) = Cov(M0,v1 ,M0,v2)

+
∑
i≥1

[
Cov(M0,v1 ,Mi,v2) + Cov(M0,v2 ,Mi,v1)

]
.

Moreover if assumption A7 also holds, the convergence occurs in �∞(I ).

Notes

1. In the homoscedastic case, one can check that the covariance structure of the Gaussian
process (Wv)v∈I is the same as in Theorem 2 of Kim et al. [14]. Thus, our result can be
seen as an extension of the result obtained in their paper, allowing for an arbitrary number
of lags in the conditional mean and also conditional heteroscedasticity.

2. The proofs of Theorem 1, Theorem 2 and Corollary 1 extensively make use of the coupling
method discussed at the beginning of Section 5. This method allows an approximation
to be made of some processes by �-dependent processes which has the same marginal
distribution.

2.3. Adequation test for semiparametric time series models

In this section, we show that our results can be used to derive an adequation test in the spirit of the
tests studied in Kim et al. [14] for semiparametric time series models. For ARCH-type processes,
the test considered by these authors is based on the maximum deviation between the kernel
density estimator of Xt/σt (θ0) and the convolution estimator of the sum mt(θ0)/σt (θ0)+εt . This
strategy was used to circumvent the nonparametric estimation of the marginal density under the
model assumption whose consistency was found more difficult to get. Alternately, it is possible
to use our estimator to define test statistics based on the marginal distribution of the process and
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which naturally extends the homoscedastic case considered in Kim et al. [14]. See also Gao and
King [12] for a test based on the marginal density for diffusion processes.

Let f #
X be the kernel density estimator of fX , that is,

f #
X(v) = 1

n

n∑
i=1

Kb(v − Xi), v ∈ I.

We set

�n = √
nb sup

v∈I
|f #

X(v) − f̂X(v)|√
f̂X(v)

∫
K2(u) du

.

The proof of the following result is straightforward, using Theorem 2.2 in Liu and Wu [17].
Details are given in the Supplementary material [27]. The length of a compact interval I is
denoted by |I |.

Corollary 2. Assume that the assumptions A1–A7 hold true and in addition that fε is positive
everywhere. Setting

b̄ = b/|I | and CK = 1

2
log

{∫ [
K ′(u)

]2
du
/∫

K2(u) du

}
− log(2π),

we have

P
([

2 logb
−1]1/2

�n − 2 logb
−1
n − CK ≤ z

)→ e−2e−z

.

Testing the hypothesis H0: (mt , σt ) = (mt (θ0), σt (θ0)) can be based on the statistics �n. In
Section 11 of the Supplementary material [27], we discuss the implementation of such a test as
well as a numerical comparison with the test of Kim et al. [14] for testing ARCH type structures.

3. Examples

In this section, we explain how to check the assumptions A1–A8 for some classical time series
models.

3.1. Conditionally homoscedastic times series

Let us assume that

Xt = mt(θ0) + εt , t ∈ Z.

We recall that gv(x) = fm(v−x) where fm denotes the density of mt . In this case, assumption A6
holds true as soon as fε is bounded and

∫
f 2

m(x)dx < ∞. The latter condition holds for instance
if fm is bounded which is the case when mt(θ0) is linear (see below the example of ARMA pro-
cesses). However, fm can be bounded even if mt(θ0) is also nonlinear with for instance, mt(θ0) =
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θ01X
+
t−1 + θ02X

−
t−1 (a, b 
= 0) which corresponds to a threshold model discussed in Tong [26].

Note also that a semi-linear autoregressive model mt(θ0) = θ01Xt−1 + hθ02(Xt−2, . . . ,Xt−p)

checks this condition if θ01 
= 0. As pointed out by a referee, the boundedness of fm is very
restrictive as it excludes many functions H(θ0; ·) whose gradient can vanish. However for a
model with one lag, the square integrability of fm can still hold but if a is a critical point,
x �→ |∂xH(θ0;x)| should be bounded from below by something such as |x − a|α , for some
α ∈ (0,1). This is a serious restriction because it excludes the existence of higher order deriva-
tives and then two “flat” regression functions. In this case, Schick and Wefelmeyer [25] have
shown that Free’s estimator has a slower convergence rate. For a detailed discussion of the re-
quired shape for H in the context of regression models, see Müller [18], Section 5. However, for
a model with several lags, it is more difficult to give a clear sufficient condition. Note also that
our result can be applied to more complex autoregressive structures. See in particular the notes
in Section 3.2 with the example of logX2

t where (Xt )t is a GARCH process.
Assumption A7 is satisfied if, in addition, fm is Lipschitz and

∫ |f ′
ε(x)|dx < ∞. Indeed, the

latter condition entails that the measure μ of assumption A7 has a finite mass and in this case, the
polynomial decay of the bracketing number is classical. See van der Vaart [28], Example 19.7. If
fm is of bounded variation, A7 is also satisfied. See van der Vaart [28], Example 19.11.

For homoscedastic and autoregressive time series with one lag, Kim et al. [14] obtained a
root-n consistent estimation of the marginal density by using a representation of the density of
mt(θ0) + εt as a convolution product. In that paper, similar regularity assumptions are used for
the noise distribution. These authors use bandwidth conditions similar to ours (see Theorem 2
of their paper). Their moment conditions for θ �→ mt(θ0) and its derivative are less restrictive
than ours but at the same time more regularity conditions on the density of mt(θ0) have to be
checked for their non-linear models. See Assumption 4 and Assumption 6 of that paper for a
precise statement of their regularity conditions. One advantage of our approach is to present a
unified approach for homoscedastic and heteroscedastic time series and for which the dynamic
can depend on an arbitrary and possibly infinite number of lags.

The case of ARMA processes

Let us now consider the case of ARMA processes, that is, there exist two integers p and q such
that

Xt = η0 +
p∑

i=1

a0i (Xt−i − η0) + εt −
q∑

j=1

b0j εt−j , t ∈ Z.

As usual, we assume that for θ = (η, a1, . . . , ap, b1, . . . , bq) ∈ �, the roots of the two polynomi-
als P(z) = 1 −∑p

i=1 aiz
i and Q(z) = 1 −∑q

j=1 bj z
j are outside the unit disc. Then defining

Zt(θ) = Xt − η −
p∑

j=1

aj (Xt−j − η) +
q∑

j=1

bjZt−j (θ)

and Zt(θ) = (Zt (θ),Zt−1(θ), . . . ,Zt−q+1(θ))T , we have

Zt(θ) = A1(θ)Zt−1(θ) + B1,t (θ),
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where A1(θ) denotes the companion matrix associated to a1, . . . , ap and

B1,t (θ) =
(

Xt − η −
p∑

j=1

aj (Xt−j − η),0, . . . ,0

)T

.

We then have

Zt(θ) =
∞∑

j=0

A1(θ)jB1,t−j (θ),

mt (θ) = η +
p∑

j=1

aj (Xt−j − η) −
q∑

j=1

bjZt−j (θ).

(7)

Moreover, mt(θ) can be defined by setting X0,X−1, . . . to 0 in (7). We now explain how to check
Assumptions A3–A6. Assumption A2 will be checked directly for ARMA-GARCH processes.

• Assumption A3 holds if E|εt |3 < ∞. Indeed, using the well-known infinite moving-average
representation

Xt = ζ0 + εt +
∞∑

j=1

ζj εt−j ,

∞∑
j=1

|ζj | < ∞,

we have E|Xt |3 < ∞. Assumption A3 then holds true using (7) (the order of the derivative
can be arbitrary in this example).

• Now Assumptions A6–A7 follow from the fact that fm is bounded and Lipschitz. Indeed,
using the infinite moving average representation, we have mt(θ0) = ζ0 +∑∞

j=1 ζj εt−j . If
we assume, without loss of generality, that ζ1 
= 0 and also ζ1 = 1 for simplicity, we have

fm(z) =
∫

fε(z − x)ν(dx),

where ν denotes the probability distribution of the random variable ζ0 +∑∞
j=2 ζj εt−j .

Hence the boundedness and Lipschitz property of fm follows from Assumption A5.
• Finally, Assumptions A4, A8 hold true using for instance, conditional maximum likelihood

estimators. See Brockwell and Davis [4], Chapter 8, for some asymptotic results for differ-
ent inference methods of ARMA parameters.

Let us now compare our results with that of Schick and Wefelmeyer [24]. The results obtained
by these authors are very general for applications to linear processes which contain ARMA
processes as a special case. Their results are sharper than ours because they obtained uniform
convergence of their convolution estimate on the real line whereas we consider uniformity only
on compact intervals. However, our results apply if ε0 has a moment of order 3, whereas Schick
and Wefelmeyer [24] use a moment of order 4 (see Assumption F of the paper). Moreover,
the kernels used in Schick and Wefelmeyer [24] cannot be non-negative (see the assumption K

applied with an order m ≥ 2 for the kernel) and then the estimator of the density can take negative
values. This excludes some classical kernels often used by the practitioners.
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3.2. Pure GARCH models

In this subsection, we consider the process

Xt = m0 + εtσt (θ0), σ 2
t (θ0) = α00 +

Q∑
j=1

α0j (Xt−j − m0)
2 +

P∑
j=1

β0j σ
2
t−j (θ0),

with Eε0 = 0, Eε2
0 = 1. We set θ = (m,α0, . . . , αQ,β1, . . . , βP ). Moreover let

σ 2
t (θ) = α0 +

Q∑
j=1

αj (Xt−j − m)2 +
Q∑

j=1

βjσ
2
t−j (θ).

Then (Xt )t∈Z is (up to parameter m0) a GARCH(p, q) process. We set

Y t = ((Xt − m0)
2, . . . , (Xt−Q+1 − m0)

2, σ 2
t (θ0), . . . , σ

2
t−P+1(θ0)

)′
.

There exist a sequence of i.i.d. random matrices (At )t∈Z of size (p+q)× (p+q) and a sequence
of random vectors (Bt )t∈Z of dimension p + q such that

Y t = AtY t−1 + Bt , t ∈ Z. (8)

We refer the reader to Francq and Zakoïan [9], p. 29, for a precise expression of (At ,Bt ) as
well as the definition of the Lyapunov exponent γ (A) of the sequence (At )t∈Z. The following
assumptions will be needed.

G1 γ (A) < 0 and for all θ ∈ �,
∑P

j=1 βj < 1.
G2 We have α0,j > 0 and β0,j ′ > 0 for 0 ≤ j ≤ Q and 1 ≤ j ′ ≤ P .

In the following, we denote by C a generic positive constant. Under the assumption G1, there
exist s > 0 and an integer k ≥ 1 such that c = E

1/k(‖AkAk−1 · · ·A1‖s) < 1 and Eσ 2s
t (θ0) < ∞.

Using the representation

Y t = Bt +
∞∑

j=1

At · · ·At−j+1Bt−j

and the fact that At,Bt ∈ σ(εt ), we get

E‖Y t − Y t�‖s ≤ 2
∑
j≥�

E‖At · · ·At−j+1Bt−j‖s

≤ C
∑
j≥�

cj

≤ Cc�.

We also then have E|X2
t − X2

t�|s ≤ Cc�. We now check the assumptions A2, A3, A4 and A8, A5
and A6.
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1. We first check A2. Setting for t ∈ Z,

σ 2
t (θ) = (σ 2

t (θ), σ 2
t−1(θ), . . . , σ 2

t−P+1(θ)
)T

we have the recursive equations σ 2
t (θ) = A2(θ)σ 2

t (θ) + B2,t (θ) with

B2,t (θ) =
(

α0 +
Q∑

j=1

αj (Xt−j − m)2,0, . . . ,0

)T

, A2(θ) =

⎛⎜⎜⎜⎝
β1 · · · βP

0

IP−1
...

0

⎞⎟⎟⎟⎠ .

A2(θ) is then the companion matrix associated with P(z) = 1 − ∑P
j=1 βjz

j . Since∑P
j=1 β0j < 1, the spectral radius of A2(θ) is less than 1 and there exists a positive integer

k such that ‖A2(θ0)
k‖ < 1 and then ρk = |Ak

2|∞,ε = supθ∈�0,ε
‖A2(θ)k‖ < 1 if ε > 0 is

sufficiently small, using the continuity of θ �→ A2(θ). In particular, we have the expansion

σ 2
t (θ) =

∑
j≥0

A2(θ)jB2,t−j (θ).

Then, using the fact that the sequence (|Aj

2|∞,ε)j≥1 is bounded and EX2s
t < ∞, we deduce

that

E sup
θ∈�0,ε

∥∥σ 2
t (θ) − σ 2

t�(θ)
∥∥s ≤ C

[ �
2∑

j=1

c(�−j)s +
∑

j> �
2 +1

∣∣Aj

2

∣∣s∞,ε

]

≤ C
(
c

�s
2 + ρ

s�
2
)

≤ C
[
c

s
2 ∨ ρ

s
2
]�

.

This shows that E[maxθ∈�0,ε
|σ 2

t (θ) − σ 2
t�(θ)|s] ≤ Ca� for some a ∈ (0,1). The proof of

E

[
max

θ∈�0,ε

σ 2s
t (θ)

]
< ∞, E

[
max

θ∈�0,ε

∣∣σ 2
t (θ) − σ 2

t (θ)
∣∣s]< ∞

is similar, using the expansion of σ 2
t (θ) and the fact that EX2s

t < ∞.

2. The assumption A3 follows from the fact that the random variables |σ̇ 2
t , σ 2

t |∞,ε and

|σ̈ 2
t , σ 2

t |∞,ε have moments of any order if ε is sufficiently small (see the proof Theorem
7.2 in Francq and Zakoïan [9], part c for the main arguments used for showing these prop-
erties).

3. For checking A4 and A8, one can use the Gaussian QML estimator. When all the GARCH
coefficients are assumed to be positive, the representation A8 holds for the correspond-
ing estimator (see Francq and Zakoïan [9], p. 159–160). Note that the representation A8
requires the assumptions G1 and G2.
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4. Finally, we check the assumptions A5 or A6. First, we note that assumption A5 does not
hold when v = m0. In this case, the ratio v−m0

σt (θ0)
is degenerate and does not have a density.

For estimating f (m0), one can use the classical kernel estimate, the approach proposed in
this paper has no interest because the convergence rate will be similar. In the following,
we assume that m0 /∈ I . Using Lemma 7 given in the Supplementary material [27] and the
representation of GARCH processes as an ARCH(∞) process, one can see that Eσt (θ0) <

∞ is sufficient for A5. Moreover, using the additional assumptions Eσt (θ0)
e < ∞ and

u �→ |u|efε(u) is bounded for e > 3
2 , Assumption A6 also holds if I ⊂ (m0,∞) or I ⊂

(−∞,m0). Note that the moment condition Eσt (θ0)
e < ∞ is satisfied under the classical

condition
∑Q

j=1 α0,j +∑P
j=1 β0,j < 1 which implies Eσt (θ0)

2 < ∞.

Notes

1. If we assume that m = 0 in the model, one can use the logarithm to get

log
(
X2

t

)= log
(
σ 2

t (θ0)
)+ log

(
ε2
t

)
.

One can apply our results for directly estimating the density of log(X2
t ). Setting Zt =

log(ε2
t ) and mt(θ0) = log(σ 2

t (θ0)), one can show that the density of Zt satisfies the
Assumption A5 if we also assume that u �→ u3f ′′

ε (u) is bounded. Moreover, we have
gv(x) = fm(v − x) = ev−xfσ 2(ev−x) where fm denotes the density of mt(θ0). One can
then show that Assumption A6 is satisfied if Eσ 2

t (θ) < ∞, which is a classical condition
found in practice in using GARCH models. Moreover, it is also possible to show that As-

sumption A7 is satisfied under the additional condition: u �→ u
3
2 +δfε(u) is bounded. The

proof is omitted since one can use the third point of Lemma 7 as well as some arguments
used in the proof of Lemma 7. All the other assumptions are automatically satisfied if G1
and G2 hold true. Note that the root n consistent estimation of the density of logσ 2

t (θ0) is
studied in Delaigle et al. [7], for a GARCH(1,1) process. We consider here, the estimation
of the density of logX2

t which is a different problem but this convergence rate also holds.
Note also that we consider a more general GARCH(P,Q) model in this work.

2. One can prove similar results for pure ARCH processes (i.e. β1 = · · · = βp = 0 in the
GARCH model), assuming α1, . . . , αq > 0. However Assumption A6 (resp. Assumption
A7) requires q ≥ 2 (resp. q ≥ 3). See Lemma 7 for details. Let us show that Assumption A6
is not satisfied in the case of q = 1. In the case of q = 1, we have σ 2

t (θ0) = α00 + α01X
2
t−1.

Then if fX is the marginal density of the process, we have

fσ 2(y) = 1(α00,∞)(y)

√
α01

2
√

y − α00
fX

(√
y − α00

α01

)
.

Let us assume that 0 < α01 < 1, v is positive and f (0) > 0 (the last condition holds true
when fε(0) > 0). We then have

∫
gv(x)2fε(x) dx = ∞ when fε(

v√
α00

) > 0. However, one

can check that
∫

gv(x)2−δ dx < ∞ for any δ ∈ (0,1). Indeed, we have∫
g2−δ

v (x) dx ≤ C

∫ ∞

α00

√
yfσ 2(y)2−δ dy
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which is finite (the integrability holds around the singularity y = α00, fσ 2 is bounded out-
side a neighborhood of α0,0 and

∫ √
yfσ 2(y) dy = E[σt (θ0)] < ∞). We recover a phe-

nomenon described by Schick and Wefelmeyer [25] when Frees estimator is applied for
estimating the density of a sum of powers of two independent random variables. In general,
a slower convergence rate is obtained when square integrability of the density fails. See
Schick and Wefelmeyer [25], Theorem 2, where the rate n

log(n)
is obtained in the estimation

of the density of a sum of squares X2
1 + X2

2.
3. When some parameters of the GARCH process are equal to zero, Assumption A3 is not

always guaranteed unless assuming E(X6
t ) < ∞. In this case Assumption A3 is automatic.

3.3. ARMA processes with GARCH noises

In this subsection, we consider the model

Xt − η0 =
p∑

j=1

a0j (Xt−j − η0) + Zt −
q∑

j=1

b0jZt−j , Zt = εtσt (θ0),

σ 2
t (θ0) = α00 +

Q∑
j=1

α0jZ
2
t−j +

P∑
j=1

β0j σ
2
t−j (θ0).

We define for θ = (η, a1, . . . , ap, b1, . . . , bq,α0, . . . , αQ,β1, . . . , βP ). As for ARMA processes,
we define

Zt(θ) = Xt − η −
p∑

j=1

aj (Xt−j − η) +
q∑

j=1

bjZt−j (θ),

σ 2
t (θ) = α0 +

Q∑
j=1

αjZ
2
t−j (θ) +

P∑
j=1

βjσ
2
t−j (θ).

In addition to Assumption G1 for the Garch parameters (α0, . . . , αQ,β1, . . . , βP ), we consider
the following classical assumption which guarantees causality and invertibility of the ARMA
part.

AG1 The roots of the two polynomials P and Q defined by

P(z) = 1 −
p∑

j=1

a0,j z
j , Q(z) = 1 −

q∑
j=1

b0,j z
j

are outside the unit disc.
AG2 We have EZ6

t < ∞.

Note the if ε > 0 is sufficiently small, the Assumption AG1 will also be valid for all θ ∈ �0,ε .
Assumption AG2 is restrictive but we do not find a way to avoid this moment condition for
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checking Assumption A3. This restriction is due to the technique used for the proof of Theorem 2,
with a control of the derivative of our estimator with respect to θ when θ is close to θ0. Note that,
under the Assumptions AG1–AG2, we have EX6

t < ∞.
We now check the Assumptions A2–A8, except A5 and A7 which we were able to check only

in the pure GARCH case.

1. For the Assumption A2, one can use the following expansions for θ ∈ �0,ε . If

Xt = (Xt ,Xt−1, . . . ,Xt−P+1)
T , Zt (θ) = (Zt(θ), . . . ,Zt−Q+1(θ)

)T
,

σ 2
t (θ) = (σ 2

t (θ), . . . , σ 2
t−q+1(θ)

)T
,

we have

Xt = A3(θ)Xt−1 − ηA3(θ)1 + η1 + B3,t (θ), Zt (θ) = A1(θ)Zt−1(θ) + B1,t (θ),

σ 2
t (θ) = A2(θ)σ 2

t−1(θ) + B2,t (θ),

where A1(θ), A2(θ) and A3(θ) are the companion matrices associated with (a1, . . . , ap),
(b1, . . . , bq) and (β1, . . . , βP ) respectively and

B2,t (θ) =

⎛⎜⎜⎜⎜⎜⎜⎝
α0 +

Q∑
j=1

αjZ
2
t−j (θ)

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎠ , B3,t (θ) =

⎛⎜⎜⎜⎜⎜⎜⎝
Zt(θ) −

q∑
j=1

bjZt−j (θ)

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

B1,t (θ) =

⎛⎜⎜⎜⎜⎜⎜⎝
Xt − η −

p∑
j=1

aj (Xt−j − η)

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Then Assumption A2 follows from the fact that if ε > 0 is sufficiently small, there exists
three positive integers k1, k2, k3 such that supθ∈�0,ε

‖Ai(θ)ki ‖ < 1 for i = 1,2,3. The proof
uses the same arguments as in the pure GARCH case and is omitted.

2. The Assumption A3 holds true if we assume AG2. In this case, using the expansions

σ 2
t (θ) =

∞∑
j=0

A2(θ)jB2,t−j (θ), Zt (θ) =
∞∑

j=0

A1(θ)jB1,t−j

and the equation for Xt to show that on can show that |σ 2
t |∞,ε , |σ̇ 2

t |∞,ε and |σ̈ 2
t |∞,ε have

a moment of order 3. Moreover, one can show that |mi |∞,ε , |ṁi |∞,ε and |m̈i |∞,ε have a
moment of order 6. This is sufficient for checking A3.
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3. Assumptions A4 and A8 hold true if we consider the Gaussian quasi-maximum likelihood.
See the proof of Theorem 7.5 in Francq and Zakoïan [9]. Note that the expansion given in
A8 requires that θ0 lies in the interior of � and that EZ4

t < ∞.
4. Assumption A6 is a consequence of Lemma 8 given in the Supplementary material [27].

Indeed, if fε is bounded, the conditional density of Zt |Zt−1,Zt−2, . . . is bounded. Since

the pair (mt (θ0), σt (θ0)) can be expressed as (
∑∞

j=1 ψjZt−j ,
√

α0 +∑∞
j=1 αjZ

2
t−j ) for

some summable sequences of coefficients (ψj )j≥1 and (αj )j≥1, Lemma 8 guarantees that
the density fm,σ of this pair can be bounded as follows: fm,σ (x, y) ≤ Cy for a positive
constant C. One can then conclude using inequality (5) and Assumption AG2 which entails
the condition Eσt (θ0)

2 < ∞.

4. Simulation study

In this section, by means of a simulation, we compare the mean-square error of our estimator with
that of the classical kernel density estimate. Our estimator is implemented using the quadratic
kernel. The standard kernel density estimate is computed using the function Density of the soft-
ware R. Bandwidth selection for our estimator is beyond the scope of this paper. However, we
use the simple approach proposed in Kim et al. [14] which consists in multiplying the bandwidth

selected for the kernel density estimate by a factor n
1
5 −κ where κ is compatible with our theoret-

ical results. For a bandwidth b̂ = Ĉn− 1
5 with the optimal rate, we then keep the constant Ĉ and

simply modify the rate. In our simulations, we found that the exponent κ = 2/7 provides good
results.

In the following, we consider three simulation scenarios.

1. In the first scenario, we consider the conditionally homoscedastic case, with the AR process
Xt = 0.5Xt−1 + εt such that (εt )t∈Z is i.i.d. with ε1 ∼ t (5) (the Student distribution with 5
degrees of freedom).

2. In the second scenario, we consider the pure ARCH case with a GARCH(1,1) process
Xt = εtσt such that σ 2

t = 0.1 + 0.1X2
t−1 + 0.8σ 2

t−1. The noise component ε still follows a
t (5) distribution.

3. In the last scenario, we consider an AR process with a GARCH(1,1) noise,

Xt = 0.5Xt−1 + Zt , Zt = εtσt , σ 2
t = 0.1 + 0.1X2

t−1 + 0.8σ 2
t .

We assume that εt follows a standard Gaussian. One can show that the moment condition
EZ6

t < ∞ required for applying our results, is not satisfied in this example.

Note that GARCH parameters are chosen so that the expectation of the square equals 1 and lag
coefficients have typical values encountered in practice.

The marginal density is evaluated at 10 equally spaced points, starting from v = 0 to v = 5.
The true density is approximated by

fX(v) ≈ 1

N

N∑
i=1

1

σi

fε

(
v − mi

σi

)
, N = 500,000.
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Figure 1. RMSE for the AR-GARCH process. The bandwidth is obtained using an optimal rate with con-
stant 1 (left, n = 200) or cross-validation (right, n = 200).

The (normalized) RMSE is
√
E[f̂X(v) − fX(v)]2/fX(v). This RMSE is approximated by its

empirical counterpart using 103 samples. GARCH parameters are estimated using the function
garchFit of the package fGarch. The R code is available upon request from the author.

In Figures 1, 2 and 3, the blue curve represents the normalized RMSE for kernel density
estimation and the red curve that for our method. Whatever the original bandwidth selection,
our estimator performs better for estimating accurately GARCH processes, even if the sample
size n is small. A notable exception is the second scenario when v is in a neighborhood of 0. In
this case, the standard method performs better. This is not surprising because of the singularity
at point v = 0, a point for which our method is almost equivalent to the standard one and our
bandwidth parameter does not have the optimal convergence rate. This problem is less perceptible
for the larger sample size n = 500. A general finding is the notable superiority of our method for
estimating the tails, which have an important role in financial time series.

Figure 2. RMSE for the AR process. The bandwidth for the kernel estimate is obtained by Silverman’s
rule of thumb (left, n = 100), cross-validation (middle, n = 100) and optimal rate with constant 1 (right,
n = 100).
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Figure 3. RMSE for the GARCH process. The bandwidth is obtained using an optimal rate with constant 1
(left, n = 200), cross-validation (middle, n = 200) and cross-validation (right, n = 500).

5. Proofs of the results

In the subsequent proofs, C > 0 will denote a generic constant that can change from line to line.
Moreover, if X is a random variable, we set X = X −E(X).

For deriving our results, we first introduce a coupling method which will be very useful. The
goal of this coupling method is to construct �-dependent random sequences which approximate
some weakly dependent random sequences. We then show that our initial estimator is asymptoti-
cally equivalent to an estimator involving an �-dependent random sequence, provided that � = �n

grows with a polynomial rate.

5.1. From dependence to �-dependence via coupling

Let F : RN → G be a measurable application taking values to an arbitrary measurable space
(G,G). If Zi = F(εi, εi−1, . . .), we set

Zi� = F
(
εi, . . . , εi−�+1, ε

(i)
i−�, ε

(i)
i−�−1, . . .

)
,

where {ε(i)
t : (i, t) ∈ Z

2} is a family of i.i.d. random variables independent of (εt )t∈Z and such
that for all (i, t) ∈ Z

2, ε(i)
t has the same distribution as ε0. In this case, the sequence (Zi�)i∈Z is �-

dependent. This means that for all i ∈ Z, the two σ -algebra σ(Zj� : j ≥ i) and σ(Zj� : j ≤ i −�)

are independent. We call this new sequence an �-dependent approximation of (Zi)i∈Z. Note that
Zi� has the same distribution as Zi . Note that the two processes (mi)i∈Z and (σi)i∈Z are of
this form, if G denotes the set of real-valued functions defined on the set �. We will denote
their corresponding �-dependent approximations by mi� and σi�. These coupling versions of the
conditional mean/variance of the process will be central to our proofs. One can note that mi�, σi�

and their derivatives with respect to θ have the same distribution as the original quantities.
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5.2. A martingale decomposition

The control of the derivative of our estimator will be done using appropriate martingale differ-
ences. In this subsection, we set for i ∈ Z,

Yi� = (εi, εi−1, . . . , εi−�+1, ε
(i)
i−�, ε

(i)
i−�−1, . . .

)
.

Let n′ = k� and In = {1 ≤ i, j ≤ n′ : i ≤ j − � or i ≥ j + �}. Here k denotes the integer part of
the ratio n/� and � ∈ (0, n) is an integer. For s = 1,2, . . . , �, we set [s] = {s +g� : 0 ≤ g ≤ k−1}.
For each s, we define two filters. We set for g = 0,1, . . . , k − 1,

Gs,g = σ
(
εi, ε

(i) : i ≤ s + g�
)
, Gs,g = σ

(
εi, ε

(i) : i > n′ − s − g�
)
.

Now if Tij (v, θ) is a random variable measurable with respect to σ(Yi�, Yj�), we set

Ms(T )g(v, θ) =
s+(g−1)�∑

i=1

[
Ti,s+g�(v, θ) −E

(
Ti,s+g�(v, θ)|Gs,g−1

)]
,

and Ms(T )g(v, θ) =∑n′
i=n′−s−(g−1)�[Ti,n′−s−g�(v, θ)−E(Ti,n′−s−g�(v, θ)|Gs,g)]. Then for each

s = 1, . . . , �, {(Ms(T )g,Gs,g) : 0 ≤ g ≤ k − 1} and {(Ms(T )g,Gs,g) : 0 ≤ g ≤ k − 1} are two
martingale differences. Moreover, if EYi�

denotes integration with respect to the distribution of
Yi�, we have

∑
(i,j)∈In

[
Tij (v, θ) −EYj�

(
Tij (v, θ)

)]= �∑
s=1

[
k−1∑
g=0

Ms(T )g(v, θ) +
k−1∑
g=0

Ms(T )g(v, θ)

]
. (9)

5.3. Proof of Theorem 1

For simplicity of notations, we drop the parameter θ0 and simply write for instance σi instead of
σi(θ0). Let 0 < δ1 < δ and t ∈ (0,1/2) sufficiently small such that nt

nb2+δ1
→ 0 and nt√

nb
→ 0. We

denote by � the integer part of nt and by k the integer part of the ratio n/�. We then set n′ = k�

and In = {1 ≤ i, j ≤ n′ : i ≤ j − � or i ≥ j + �}. Note that the cardinal |In| of the set In satisfies
(n − �)(n − 3� − 1) ≤ |In| ≤ n2. We set f̌�(v) = 1

n2

∑
(i,j)∈In

Av,ij , Av,ij = 1
σi�

Kb(
v−mi�

σi�
− εj ).

Note first that
√

n sup
v∈I

∣∣f̌X(v) − f̌�(v)
∣∣= oP(1). (10)

From Lemma 2,
√

n supv∈I |f̌X(v) − 1
n2

∑
1≤i,j≤n Av,ij | = oP(1) and there exists a constant

C > 0 such that
√

n supv∈I |f̌�(v) − 1
n2

∑
1≤i,j≤n Av,ij | ≤ C�√

nb
→ 0. Hence (10) follows. In the

following, we study the behavior of the estimator f̌�(v).
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5.3.1. Bias part

We recall that fX(v) = E[ 1
σi

fε(
v−mi

σi
)]. Since f ′′

ε is bounded, there exists a C > 0 such that for
all x,h ∈R, ∣∣fε(x + h) − fε(x) − hf ′

ε(x)
∣∣≤ Ch2. (11)

From (11), we deduce that

E[Av,ij ] − f (v) = E

∫
1

σi

K(w)

[
fε

(
v − mi

σi

− bw

)
− fε

(
v − mi

σi

)]
dw

= O
(
b2).

Using the condition
√

nb2 → 0, we get
√

n(E[f̌�(v)] − f (v)) = o(1).

5.3.2. The variance part

The main points of this part concern the limiting behavior of two U -statistics

1

n3/2

n′−1∑
j=�

n′∑
i=n′−j+�

Av,i(n′−j) and
1

n3/2

n′∑
j=�+1

j−�∑
i=1

Av,i(n′−j). (12)

We focus mainly on the degenerate part of the first one. We set

Sv,ij = Av,i(n′−j) − 1

σi�

∫
K(w)fε

[
v − mi�

σi�

− bw

]
dw

−
∫

K(h)gv(εn′−j + bh)dh +E[Av,i(n′−j)],

one can show (see the Supplementary material [27]) that

sup
v∈I

1

n3/2

∣∣∣∣∣
n′−1∑
j=�

n∑
i=n′−j−�

Sv,ij

∣∣∣∣∣= oP(1). (13)

Using the same type of arguments, one can also show that the degenerate part of the second U

statistics in (12) satisfies supv∈I
1

n3/2 |∑n′
j=�+1

∑j−�

i=1 S̄v,ij | = oP(1), with

S̄v,ij = Av,ij −
∫

K(w)

σi�

fε

[
v − mi�

σi�

− bw

]
dw −

∫
K(h)gv(εj + bh)dh +E[Av,ij ].

Next, we discuss the behavior of the two empirical process parts of the U -statistics (12). Since
fε is C2, we have (see also the control of the bias)

1

n3/2
sup
v∈I

∣∣∣∣ ∑
(i,j)∈In

∫
K(w)

σi�

[
fε

[
v − mi�

σi�

− bw

]
− fε

[
v − mi�

σi�

]]
dw

∣∣∣∣= OP

(√
nb2).
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The next tedious step of the proof consists in showing that

1

n3/2
sup
v∈I

∣∣∣∣ ∑
(i,j)∈In

∫
K(h)

[
gv(εj + bh) − gv(εj )

]∣∣∣∣= oP(1). (14)

A proof of (14) is also given in the Supplementary material [27].

5.4. End of the proof of Theorem 1

Collecting the results of the two previous subsections, we have shown that for cn,j =
n−1∑n′

i=1 1|i−j |≥�,

√
n
(
f̌X(v) − fX(v)

)= 1√
n

n′∑
j=1

cn,j gv(εj ) + 1√
n

n′∑
i=1

cn,i

1

σi�

fε

(
v − mi�

σi�

)
+ oP(1),

uniformly on I and with a uniform convergence on I for the partial sum involving gv if Assump-
tion A7 holds true. It is then straightforward to show that one can replace cn,i and cn,j by 1 in
this asymptotic expansion. Indeed, we have

√
n|cn,i − 1| ≤ n − n′ + 2� − 1√

n
→ 0

and for the uniform convergence over I , one can use the bounds

gv(εj ) ≤ G(εj ),
1

σi�

fε

(
v − mi�

σi�

)
≤ 1

γ
‖fε‖∞.

Using the same arguments, n′ can be replaced with n. Finally, using the arguments given in the
proof of Lemma 2, we have

1√
n

sup
v∈I

n∑
i=1

∣∣∣∣σ−1
i� fε

(
v − mi�

σi�

)
− σ−1

i fε

(
v − mi

σi

)∣∣∣∣= oP(1).

The proof of the tightness of v �→ 1√
n

∑n
i=1 σ−1

i [fε(
v−mi

σi
) − fX(v)] will be studied in detail in

the proof of Corollary 1.

5.5. Proof of Theorem 2

Using Lemma 1 and our bandwidth conditions, we have supv∈I |f̂X(v) − f̃X(v)| = oP(1/
√

n),
where f̃X is defined as f̂X but the quantities mi and σ i being replaced with mi and σi re-
spectively. This shows that possible truncations of the conditional mean/variance only us-
ing X1, . . . ,Xn are asymptotically negligible for our estimator. Now, for θ ∈ �, we recall
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that (mi�(θ))i∈Z and (σi�(θ))i∈Z denote the �-dependent approximations of (mi(θ))i∈Z and
(σi(θ))i∈Z respectively. Then setting Xj� = mj�(θ0) + εjσj�(θ0), we define

Lv,i�(θ) = v − mi�(θ)

σi�(θ)
, εj�(θ) = Xj� − mj�(θ)

σj�(θ)

and f̃�(v) = 1
n2

∑
1≤i,j≤n

1
σi�(θ̂)

Kb[Lv,i�(θ̂ )− εj�(θ̂)]. In the rest of the proof, we fix a real num-

ber t such that 0 < t < δ
2(3+δ)

and we denote by � the integer part of nt . Using Lemma 2, we
have

sup
v∈I

∣∣f̃X(v) − f̃�(v)
∣∣= oP(1/

√
n).

We will also suppress some terms in the estimator f̃� in order to get stochastic independence
between the two pairs of random functions (mi�, σi�) and (mj�, σj�) involved in the U-statistic.
To this end, for θ ∈ �, v ∈ I and 1 ≤ i, j ≤ n, we set

Av,ij (θ) = 1

σi�(θ)
Kb

[
Lv,i�(θ) − εj�(θ)

]
.

Using the condition �√
nb

= o(1), we have supv∈I |f̃�(v) − 1
n2

∑
(i,j)∈In

Av,ij (θ̂ )| = oP(1).

5.5.1. Outline of the proof

The goal of the proof is to show that

sup
v∈I

∣∣∣∣ 1

n3/2

∑
1≤i,j≤n

[
Av,ij (θ̂ ) − Av,ij (θ0) − Ȧv,ij (θ0)

T (θ̂ − θ0)
]∣∣∣∣= oP(1) (15)

and in a second step that

sup
v∈I

∣∣∣∣ 1

n2

∑
(i,j)∈In

Ȧv,ij (θ0) − ḣθ0(v)

∣∣∣∣= oP(1). (16)

In the proof of Theorem 1, we have already shown that

√
n sup

v∈I

∣∣∣∣f̌X(v) − 1

n2

∑
(i,j)∈In

Av,ij (θ0)

∣∣∣∣= oP(1).

Note that from Assumption A4, assertion (15) will hold if for all M > 0 and integers n such that
M/

√
n < ε, we have

sup
v∈I,θ∈�0,n

∣∣∣∣ 1

n2

∑
1≤i,j≤n

[
Av,ij (θ) − Av,ij (θ0) − Ȧv,ij (θ0)

T (θ − θ0)
]∣∣∣∣= oP(1/

√
n),
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where �0,n is a short notation for �0,M/
√

n. We will show the following sufficient condition

sup
v∈I,θ∈�0,n

∥∥∥∥ 1

n2

∑
1≤i,j≤n

[
Ȧv,ij (θ) − Ȧv,ij (θ0)

]∥∥∥∥= oP(1).

The two assertions (15) and (16) (and Theorem 2) will then follow if we show that

1

n2
sup

v∈I,θ∈�0,n

∥∥∥∥ ∑
(i,j)∈In

[
Ȧv,ij (θ) −EYj�

Ȧv,ij (θ)
]∥∥∥∥= oP(1), (17)

1

n2
sup

v∈I,θ∈�0,n

∥∥∥∥ ∑
(i,j)∈In

[
EYj�

Ȧv,ij (θ) −EYj�
Ȧv,ij (θ0)

]∥∥∥∥= oP(1) (18)

and

sup
v∈I

∥∥∥∥ 1

n2

∑
(i,j)∈In

EYj�
Ȧv,ij (θ0) − ḣθ0(v)

∥∥∥∥= oP(1), (19)

where the function hθ is defined before the statement of Theorem 2. Assertion (17) will be studied
using martingale properties (see the Section 5.2). Proofs of assertions (18) and (19) follow from
more tedious arguments and are given in the Supplementary material [27]. Note that we have the
following expression.

Ȧv,ij (θ) = ˙σ−1
i�(θ)Kb

[
Lv,i�(θ) − εj�(θ)

]+ L̇v,i�(θ) − ε̇j�(θ)

σi�(θ)
K ′

b

[
Lv,i�(θ) − εj�(θ)

]
.

Proof of assertion (17)

We set

Sn(v, θ) = 1

n2

∑
(i,j)∈In

[
Ȧv,ij (θ) −EYj�

(
Ȧv,ij (θ)

)]
.

Let η = ηn a sequence of positive real numbers such that η/b3 = oP(1). We take for instance

η = n− 3
3+δ . Let {(vh, θh) : h ∈ H} a family of points in I × �0,n such that for (v, θ) ∈ I × �0,n,

there exists h ∈ H such that max{|v − vh|,‖θ − θh‖} ≤ η. The set H can be chosen such that

|H| = O(η−d−1) = O(n
3(d+1)

3+δ ). Using Lemma 4(3), we first notice that

sup
(v,θ)∈I×�0,n

∥∥Sn(v, θ)
∥∥− sup

(v,θ)∈H

∥∥Sn(v, θ)
∥∥= OP

(
η

b3

)
= oP(1).

To show (17), it remains to prove that

sup
(v,θ)∈H

∥∥Sn(v, θ)
∥∥= oP(1).

But this is a consequence of Lemma 3 applied coordinate wise to Sn(·, ·), using the martingale
decomposition (9). The assumptions used in Lemma 3 can be checked using Lemma 4.
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5.6. Auxiliary lemmas

This subsection contains several auxiliary lemmas which are central to the proof of Theorem 2.
Their proofs are given in the Supplementary material [27].

The two first results assert that under our assumptions, truncated versions mt and σ t of mt

and σt have no effect in the asymptotic expansion of our estimator. Moreover, mt and σt can
be replaced with their �-dependent approximations, provided � = �n grows at an arbitrary small
power of n.

In what follows, we set for 1 ≤ i, j ≤ n and (v, θ) ∈ I × �0,ε ,

Lv,ij (θ) = Lv,i(θ)− εj (θ), Lv,ij�(θ) = Lv,i�(θ)− εj�(θ), Lv,ij (θ) = Lv,i(θ)− εj (θ).

Here Lv,ij�(θ) = v−mi�(θ)
σi�(θ)

and εj�(θ) = Xj�−mj�(θ)

σj�(θ)
. We also set

f̃X(v) = 1

n2

n∑
i,j=1

1

σi(θ̂)
Kb

[
Lv,ij (θ̂ )

]
.

Lemma 1. Assume that there exists δ ∈ (0,1) such that nb2+δ → ∞. We then have
supv∈I |f̂X(v) − f̃X(v)| = oP( 1√

n
).

Lemma 2. Assume that � = nt with t > 0 and that nb → ∞. Then if

f̃�(v) = 1

n2

n∑
i,j=1

1

σi�(θ̂)
Kb

[
Lv,i�(θ̂ ) − εj�(θ̂)

]
.

We have supv∈I |f̃X(v) − f̃�(v)| = oP(n−1/2).

The following lemma will be needed in the following for controlling triangular arrays of mar-
tingale differences. Its proof is based on the Freedman’s inequality for martingales.

Lemma 3. Assume that for a δ ∈ (0,1), nb3+δ → ∞. Let (Hn)n be a sequence of finite sets such
that |Hn| = O(nγ ) for some γ > 0. For each h ∈ Hn, let (ξ

(h,s)
n,g ,T (s)

n,g )0≤g≤kn be a martingale
difference. We assume that

max
h∈Hn

�n∑
s=1

kn∑
g=1

E
(∣∣ξ (h,s)

n,g

∣∣2|T (s)
n,g

)= OP

(
1

nb3

)

and that

max
h∈Hn

1≤s≤�n
1≤g≤kn

∣∣ξ (h,s)
n,g

∣∣= OP

(
1

n2/3b2

)
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with �n = O(nt ), 0 < t < δ
2(3+δ)

. We then get the conclusion:

max
h∈Hn

∣∣∣∣∣
�n∑

s=1

kn∑
g=1

ξ (h,s)
n,g

∣∣∣∣∣= oP(1).

We now state a lemma which will be useful for checking the assumptions of the previous
lemma in our context. We set n′ = k� where k is the integer part of n/�. Moreover, we set

In = {1 ≤ i, j ≤ n′ : i ≤ j − � or i ≥ i + �
}
.

Lemma 4. Assume that Assumptions A3 and A5 hold true.

1. We set Bv,ij (θ) = Ȧv,ij (θ) −EYj�
[Ȧv,ij (θ)]. Then we have

∑
(i,j)∈In

sup
v∈Iθ∈B(θ0,ε)

EYj�

∥∥Bv,ij (θ)
∥∥2 = OP

(
n2

b3

)
.

2. We have

max
1≤j≤n

n∑
i:(i,j)∈In1≤i≤n

sup
v∈I

|Bv,ij |∞,ε = OP

(
n4/3

b2

)
.

3. Let η be a positive number. We have

∑
(i,j)∈In

sup
|v−w|≤η‖θ−ζ‖≤η

∥∥Bv,ij (θ) − Bw,ij (ζ )
∥∥= OP

(
ηn2

b3

)
.

Supplementary Material

Supplement to “Root-n consistent estimation of the marginal density in semiparametric
autoregressive time series models” (DOI: 10.3150/18-BEJ1047SUPP; .pdf). We provide addi-
tional proofs and a simulation study for adequation tests.
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