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Asymptotic theory of tail index estimation has been studied extensively in the frequentist literature on
extreme values, but rarely in the Bayesian context. We investigate whether popular Bayesian kernel mixture
models are able to support heavy tailed distributions and consistently estimate the tail index. We show that
posterior inconsistency in tail index is surprisingly common for both parametric and nonparametric mixture
models. We then present a set of sufficient conditions under which posterior consistency in tail index can
be achieved, and verify these conditions for Pareto mixture models under general mixing priors.
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1. Introduction

Datasets from a variety of fields, such as environmental science, finance, industrial engineering,
and telecommunications, demonstrate heavy tailed behavior that can substantially influence sta-
tistical inference and decision making. It is of interest to develop estimation methods that can
capture both the bulk of the data and the tails accurately. Bayesian kernel mixture models pro-
vide a flexible framework for density estimation with strong large sample guarantees. Some of
the most popular models include finite mixtures (MFM, Richardson and Green [45], Green and
Richardson [26]), Dirichlet process mixtures (DPM, Ferguson [17], Lo [38], MacEachern [39],
Escobar and West [15], Neal [41]), and mixtures with mixing measures given by normalized
random measures with independent increments (NRMI, Regazzini, Lijoi and Priinster [44], Li-
joi, Mena and Priinster [36], James, Lijoi and Priinster [32], Lijoi and Priinster [37], Barrios et
al. [1], Favaro and Teh [16]). However, most of the existing literature on Bayesian asymptotics
for density estimation, including results on posterior consistency and convergence rates, assumes
that the true density has either a compact support or exponentially decaying tails (Ghosal, Ghosh
and Ramamoorthi [22], Ghosal, Ghosh and van der Vaart [23], Ghosal and van der Vaart [24],
Kruijer, Rousseau and van der Vaart [33], Shen, Tokdar and Ghosal [47]). A few exceptions such
as Tokdar [50] and Wu and Ghosal [54] have shown posterior consistency for some heavy tailed
densities for specific kernel mixture models. There exist fundamental limitations and barriers
in understanding the tail behavior of kernel mixture models and their large sample properties,
especially for models with nonparametric mixing priors.
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The current paper investigates theory on the tail behavior of popular Bayesian kernel mixture
models, assessing whether they are suitable for modeling heavy tailed distributions. We focus on
studying the tails of univariate continuous densities and assume that the true density has polyno-
mially decaying tails. Such power law behavior has been observed in many real data applications
(see Clauset, Shalizi and Newman [7] for a review). Denote fjy and Fy as the true density function
and the true cumulative distribution function (cdf) on R. Let F(x) = 1 — F(x) for x € R be the
survival function of F. For sufficiently large x, a distribution F with a polynomially decaying
right tail can be described by the relation

Fx)=x"O L), 1.1

where o (F) > 0 is the right tail index, and Lf is a slowly varying function that satisfies
limy_, y oo Lr(xy)/LF(y) =1 for any x > 0. In this paper, we will only consider a true distribu-
tion Fy that satisfies the relation (1.1). The decay rate in the right tail of Fj can be characterized
by the right tail index o (Fp), up to some slowly varying function L g,. The left tail index can
be defined similarly. If oy (Fp) € (0, +00), then from extreme value theory, the distribution Fy
falls within the class of Fréchet maximum domain of attraction (FMDA, Beirlant et al. [2]). Ex-
amples of distributions satisfying (1.1) with a (Fp) € (0, +00) include the Pareto distribution,
the Student’s ¢ distribution, the F distribution, the inverse gamma distribution, the log-gamma
distribution, the Burr distribution, etc.

We study theoretical properties of the posterior distribution of the right tail index o4 (F) in a
Bayesian framework. In particular, we consider the kernel mixture model:

f(X)=/k(X;0)dG(0), G ~n(G;§), (1.2)

where k(-; @) is a univariate kernel function with parameter @ such that f k(x;0)dx =1 forall g,
G is a mixing measure of @, and 7 is the prior on G with hyperparameters &. This model is quite
general, covering the aforementioned MFM, DPM and NRMI mixture models as special cases.
We will answer two critical questions for understanding how model (1.2) can handle heavy
tailed densities: (i) what choices of kernels and priors for the mixing measure can generate
density functions with tail indices varying in a reasonable range, and (ii) under what types of
conditions can one guarantee that the tail indices from the posterior are close to the tail index of
the true distribution. The first question is related to whether the Bayesian kernel mixture model
is capable of flexibly fitting heavy tailed distributions with different decay rates. The second
question is on the frequentist asymptotic properties of Bayesian models estimating the tail index,
requiring substantial extension of the scope of existing theory for Bayesian density estimation.
There is a rich literature on frequentist estimation of the tail index. Most of the estimators
are constructed from tail order statistics, such as the Hill’s estimator (Hill [31], de Haan and
Resnick [9]), the Pickands’ estimator (Pickands [43]) and their variations. The Hill’s estimator
is consistent (Mason [40]) and asymptotically normal with appropriate choices of the tail order
statistics for certain nonparametric classes of distributions (Hall [28], Haeusler and Teugels [27]).
Minimax rates for the tail index have been obtained under different classes of distributions (Hall
and Welsh [29], Drees [13], Drees [14], Novak [42], Carpentier and Kim [6]), and they are
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attainable through adaptive estimators (Hall and Welsh [30], Carpentier and Kim [6], Boucheron
and Thomas [4]).

However, there is a lack of understanding of the properties of likelihood-based approaches.
The limited Bayesian literature has focused on a peak-over-threshold (POT) strategy, with the
tail of the density over a high threshold ¢ assumed to follow a generalized Pareto distribution.
If F belongs to FDMA with right tail index a4 (F), then as the threshold 7 becomes large, the
right excess distribution F(x) = F(t + x)/F(¢) for x > 0 converges in law to a generalized
Pareto distribution with tail index o4 (F'). Posterior sampling schemes have been discussed in,
for example, Frigessi, Haug and Rue [18], Bottolo et al. [3], Stephenson and Tawn [49], Diebolt et
al. [10], do Nascimento, Gamerman and Lopes [11], Wang, Rodriguez and Kottas [52], Fiquene
Patifio [21]. The POT strategy can be viewed as artificial in choosing different models below and
above the threshold, with the restriction of a parametric tail. The kernel mixture model allows
one to choose a single flexible model for all of the data including the tails. Tressou [51] argues
in favor of such an approach in using DPMs of Pareto kernels.

The rest of the paper is organized as follows. In Section 2, we formally introduce the definition
of tail index and the posterior consistency of tail index. In Section 3, we show that in general,
location-scale kernel mixture models cannot generate densities with varying tail indices, even
if the kernel is heavy tailed. In particular, our results reveal that in many cases, the posterior
distribution under the mixture model can only generate distributions with a singleton index. In
Section 4, we provide general sufficient conditions for Bayesian posterior consistency of tail
index. These conditions are then verified for the example of Pareto kernel mixtures in Section 4.3.
Section 5 concludes with discussions. Technical proofs are included in the appendix and the
supplementary material.

2. Preliminaries for tail index in a Bayesian framework

2.1. Definition of tail index

We first describe a notion of tail index for any distribution F with density f defined on R. For
x € R, we define its right and left tail indices as

—log F —log Pr(X
oy (F) = liminf 0250 _ jjp g 108 PPOX> 1)
x—>+oco  logx X400 log x o
—log F —log Pr(X < :
o (F) = liminf 28X _ g 108 PPX =)
X—>—00 log(—x) X—>—00 log(_x)

where Pr(-) denotes the probability evaluated under the distribution F. In the following, we will
mainly discuss properties related to 4 (F) and all the results can be generalized similarly to
o_(F). Both oy (F) and a—_ (F) take values in [0, +-00]. For the right tail, o4 (F) = 400 repre-
sents a thin tailed cdf such as the exponential distribution, and a4 (F') = 0 typically represents a
super heavy tailed cdf such as the log-Pareto distribution (Cormann and Reiss [8]).

The liminf used in the definition (2.1) is to pick up the heaviest part in the tail of F.
The slowest possible decaying rate in the right tail of F is roughly of order O(x~%+)) as
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x — +o00. Furthermore, if F belongs to FMDA (i.e. it satisfies (1.1)), then the limit of the ratio
—log F(x)/log x exists as x — 400, and one can replace the liminf in (2.1) by lim.

The definition of (2.1) can be viewed as a generalization of the usual tail index for distributions
in FMDA. Frequentist estimators such as the Hill’s estimator (Hill [31], de Haan and Resnick
[9]), the Pickands’ estimator (Pickands [43]) and their variations, are known to be asymptoti-
cally consistent for the tail index defined in (2.1) for certain restricted classes of distributions,
such as FMDA. In general, it is unknown whether o (F) and o (F') defined by (2.1) can be con-
sistently estimated from the data. However, this generalized notion of tail index in (2.1) is useful
in describing the tail behavior of potentially complicated distributions drawn from Bayesian non-
parametric priors.

2.2. Bayesian estimation and posterior consistency

Let F be the set of all distributions that are absolutely continuous with respect to the Lebesgue
measure on R. Let ¥ be the set of all density functions with respect to the Lebesgue measure
on R. Suppose that we observe a sample of i.i.d. data X" = {X1,..., X, } from the true dis-
tribution Fy with the density fo on R. Then in the Bayesian paradigm, we can impose a prior
distribution on the probability density function f € ¥ . For generality, here we will denote such
a prior as IT,(d f), which explicitly allows the prior to depend on the sample size n. Equiva-
lently, IT, is also a prior distribution over the set F. Then the posterior distribution of I, (-|X")
evaluated at some measurable set A C F is

_ LIl FXD L)
Jo Tl FXDT @A)

To study properties related to the tail index, we define the following notion of tail index neigh-
borhood.

I, (AIX")

2.2)

Definition 2.1. For any distribution F and ¢ > 0, the e-(right) tail index neighborhood of F
with oy (F) € [0, +00) is

Byt (F,e)= {H eF: |oz+(H) —O{+(F)| <s},

where o4 (+) is defined in (2.1). If o (F') = +00, then the ¢-(right) tail index neighborhood of F
is defined as

Byt (F,e)= {H eF a4 (H) =+oo}.

The difference between the tail indices of two distributions used in Definition 2.1 is only a
pseudometric, since different distributions can have the same tail index. In general, the topology
induced by this pseudometric can be different from the weak topology generated by the weak
convergence of probability measures. However, in the next proposition, we show that By (F, ¢)
is a Borel set on the space of all absolutely continuous distributions with respect to the Lebesgue
measure on R associated to the weak topology. The proof is given in Appendix A.
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Proposition 2.1. By (F, ¢) is a Borel set on F under the weak topology, for any distribution F
and any ¢ > 0.

Because the true tail index oo+ = o4 (Fp) is unknown a priori, we hope that a distribution F
drawn from the posterior IT, (-|X") in (2.2) has a tail index a4 (F) sufficiently close to the truth
o0+, as the sample size n increases to infinity. This notion of asymptotics is usually stated as
consistency.

Definition 2.2. The posterior distribution IT, (-|X") is consistent for the (right) tail index if for
any ¢ > 0, as n — 00,

M, (BS, (Fo.€)IX") -0, in Py probability.

Definition 2.2 is similar to the usual definition of posterior consistency for density estimation,
but uses the tail index neighborhood in Definition 2.1. It requires that the posterior probability
assigns almost zero mass to distributions outside e-balls of Fy as the sample size goes to infinity.
On the other hand, although the weak consistency of density estimation is already well known
for kernel mixture models (3.1) below (see, for example, Ghosal, Ghosh and Ramamoorthi [22],
Tokdar [50], Wu and Ghosal [54]), posterior consistency of tail index does not follow directly
from these results and requires further study, due to the non-equivalence between their topologies
and neighborhoods.

3. Tail index of location-scale mixture models

In this section, we focus on a special case of Model (1.2), the location-scale mixture model

f(x)=/lk(’“_“)da<u,a>, G ~(G: §), 3.1
o o

where k(-) is a kernel density function and the parameter § = (, o) consists of the location
parameter 1 and the scale parameter o. We assume that the kernel k(-) has full support on R.
Frequentist asymptotic properties of this model have been extensively studied in the Bayesian
nonparametrics literature. Both weak and strong posterior consistency of Model (3.1) have been
discussed in Ghosal, Ghosh and Ramamoorthi [22], Tokdar [50], Wu and Ghosal [54], etc. Theo-
rem 3.3 of Tokdar [50] established weak consistency of Model (3.1) when the true density fj has
a very thick polynomially decaying tail, with the tail index in (0, 1). However, in the following,
we will show that weak consistency, and even strong consistency based on L or Hellinger dis-
tance, is insufficient for meaningful Bayesian inference of the tail index. Surprisingly, for many
commonly used priors 7 (G; &), the tail index of F generated from Model (3.1) can only take
one single value, implying that there is no possibility of identifying the correct tail index unless
we know the true o4 a priori.

For the MFM model (Richardson and Green [45], Green and Richardson [26]), f(x) in Model
(3.1) is specified as a finite mixture of N components (N € ZT), and a further prior distribution
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is imposed on N. In more details, the model is given as,

N
f(x)=Z“’—_"k(x _’“"'),

. (¢F] o;
i=1
iid
(i o) IN = Go(u, o), (3.2)
(w1, ..., wy)|N ~ Dirichlet(a, ..., a), for some a > 0,

N~na(N)forN=1,2,...,

The following theorem characterizes the tail index of a distribution F' generated by Model (3.2).

Theorem 3.1. Suppose that G is a continuous distribution for (i, o). Then for any distribution
F with density f drawn from Model (3.2), the range of a4 (F) is almost surely a singleton. In
other words, almost surely all F’s drawn from the MFM model have the same tail index.

In the finite mixture model given in (3.2), the tail indices of different F’s are all the same, since
all of them are finite mixtures and their tail indices are solely determined by the tail heaviness
of the kernel k(-). A heavy tailed kernel will only make the tails of F heavy, but not be able to
generate varying tail heaviness. This limitation immediately indicates that we cannot obtain any
meaningful posterior consistency in terms of tail index.

We now investigate the more complicated example where G (i1, o) has a nonparametric NRMI
prior. In the theorems to follow, we adopt similar NRMI notations as those in Lijoi, Mena and
Priinster [36], James, Lijoi and Priinster [32], and Barrios et al. [1]. We consider a completely
random measure H, with H x) =" Z(SXI. (x) for x € R such that {X;};>1 and nonnegative
{j; }i>1 are independent sequences of random variables, ignoring jumps at nonrandom positions.
The joint distribution of {J~i},-2 1 and {X;};>1 is characterized by the Lévy intensity v(dv, dx)
through the Laplace transformation of H (for s > 0):

E[e™H®)] :exp{—/R

We consider the homogenous NRMI where the Lévy intensity can be factorized as v(dv, dx) =
p(dv) Hy(dx). p(dv) is the Lévy intensity for the nonnegative masses {J~i }i=1, and {X;};> are
independent draws from the nonatomic probability measure Hy, also called the “base measure”.
Then a NRMI H is defined as H(x) =) ;. Jidx; (x) with J; = ‘};/Zpl J; for any x € R. For
all the theorems in this section, we assume that p(dv) satisfies fooo po(dv) = +o00 and fooo(l —
e"")p(dv) < 400 which guarantees that 0 < )", J~, < 400 almost surely and the NRMI H is
well defined; see equation (2.3) of Favaro and Teh [16].

The following theorem will be used as a fundamental tool in studying the tail behavior of a
NRMI.

(1 - e_‘w)v(dv, dx)}, for any A C R.

+txA
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Theorem 3.2. Suppose H is a homogeneous NRMI with the Lévy intensity measure p(dv) Hy(dx)
for v e RY, x € R where Hy is a continuous probability measure on R. Let W(s) = 0+°°(1 —
e V) p(dv) and let W~ be the inverse function of V. Then

(i) If there exists a function h,, defined as

log|log x|

hy(x) = —————r,
14 \y—l(%)

(3.3)

with y > 1 for x € (0, 1/e), such that liminf,_, ; —loghy(ﬁo(x))/logx =0, then
ar(H)=0a.s.
(ii) If there exists a function h such that
(@) h(x) is locally convex in x € [0, ) for some small ¢ > 0;
(b) [y plh(x), +00)dx < 400;
(¢) liminfy_, (o —logh(Ho(x))/logx = 400;
then ay (H) = 400 a.s.

The theorem follows from Fristedt [19] and Fristedt and Pruitt [20]; see Proposition A.1 and
the subsequent proof of Theorem 3.2 in Appendix A. Proper choices of the functions 4, in (i)
and £ in (ii) will lead to sharp lower and upper bounds for the tail index of a NRMI H.

The next theorem describes how these bounds for a NRMI can be used to characterize the tail
behavior of a mixture density drawn from Model (3.1).

Theorem 3.3. Suppose in Model (3.1), G(-, -) is a homogeneous NRMI with Lévy intensity mea-
sure p(dv)Go(du, do) for ve RY and (u, o) € R x R, where Go(u, o) is a continuous cdf on
R x R*. Let Gy, and Gy, be the marginal distributions of Go(i, o) for w and o, respectively.
Assume that G, is symmetric about zero. If both G, and G, satisfy either (i) or (ii) in The-
orem 3.2, that is, we can replace Hy in either (i) or (ii) of Theorem 3.2 by G, and G, then
for any distribution F with density f drawn from Model (3.1), the range of a4+ (F) as defined in
(2.1) is almost surely a singleton.

Theorem 3.3 indicates that the tail indices of all distributions F drawn from Model (3.1) are
almost surely the same, if each of the two marginals G, and G, satisfies either (i) or (ii)
in Theorem 3.2. Again this indicates that there is no meaningful posterior consistency for tail
index, by similar arguments after Theorem 3.1. Theorem 3.3 and its proof also lead to two other
interesting implications. First, if the conditions for the two marginals of the base measure hold,
then the tail index of F' only depends on the tail indices of the two marginals, but not on the full
joint distribution Go(u, o). Second, whether o4 (F) is the same for all F ~ IT,(-|X") does not
depend on the tail behavior of the kernel k(-), even if k(-) is a heavy tailed kernel.

Remark 3.1. The assumption of symmetric Gy, is only used as a sufficient condition for the
case where G, satisfies (ii) of Theorem 3.2 and G satisfies (i) of Theorem 3.2, in other
words, the case where G, has thin left and right tails and G, has a super heavy right tail. The
assumption of symmetric Gy, is not necessary for the conclusions of Theorem 3.3 to hold when
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both G, and G, are thin tailed, and when G has a super heavy right tail. Details of the proof
can be found in Appendix A.

Remark 3.2. The proof of Theorem 3.3 also relies on the moment techniques in Lemmas A.1-
A3 in Appendix A, which relate the tail index of F to the moments of F, and subse-
quently the moments of the kernel k(-) and the mixing distribution G. As a side product of
this proof, we recovered the famous Breiman lemma in Breiman [5] about scale mixtures
with heavy tailed mixing measures. Suppose in Model (3.1) we only have the scale mixture
fx)= fo_lk(x/(r) dG (o) and G has tail index a4 (G) € (0, +00). The Breiman lemma says
that if the kernel k(-) has a tail index larger than o (G), that is, it has a thinner tail than G, then
the mixture f(x) is also heavy tailed with tail index o4 (G). This is an immediate result of our
Lemma A.3.

‘We make the tail conditions on Gy, and Go , more concrete for the special cases of Dirichlet
process (DP) and normalized generalized Gamma process (NGGP, Lijoi, Mena and Priinster [36],
James, Lijoi and Priinster [32], Lijoi and Priinster [37], Barrios et al. [1]) mixture models. It turns
out that there is a large class of measures that satisfy the condition (i) or (ii) in Theorem 3.3,
including both thin tailed distributions and heavy tailed distributions.

Theorem 3.4. Suppose in Model (3.1), G(-,-) ~ DP(a, Go(u, o)) with a > 0 and Go(u,0) a
continuous cdf on R x RY. Assume that Gy, is symmetric about zero. Consider the following
two conditions for a generic distribution Hy on R:

(i) limsup, Ho(x) - (logx/loglogx) = +o0,
(i) limsup,_, ;o Ho(x) - [(logx) - (loglogx)®] =0 for some § > 1.

If both G, and Go o satisfy either one of the conditions (i) and (ii), that is, we can replace
Hy in either (i) or (ii) by Go,, and Go,o, then for any distribution F with density f drawn from
Model (3.1), the range of a4 (F) as defined in (2.1) is almost surely a singleton.

The proof of Theorem 3.4 involves the tail behavior of a DP, which has been studied in Doss
and Sellke [12]. Conditions (i) and (ii) correspond to conditions (i) and (ii) in Theorem 3.3. As a
result of the theorem, most distributions Gy, and G with either heavier or thinner tails than
1/logx will lead to a single value of tail index for all F’s in the DP mixture model, and therefore
the posterior cannot estimate the truth «g+ consistently. For example, in the popular DP mixture
of normals (Escobar and West [15]), the marginal distributions of the base measure for p and
o2 are the Student’s ¢ distribution and the inverse gamma distribution, both of which have much
thinner tails than 1/1log x. Therefore, the Bayesian posterior with the normal-inverse gamma prior
for DP mixture of normals cannot consistently estimate the tail index. In contrast, Theorem 3.3 of
Tokdar [50] has shown that such a normal-inverse gamma base measure is sufficient for posterior
weak consistency, even if the true density is heavy tailed with a tail index in (0, 1). This implies
that the conditions required for consistent estimation of the tail index are more stringent than
those for usual weak and strong posterior consistency. We emphasize again that the kernel here
plays an inconsequential role due to Theorem 3.3, regardless of its tail thickness.
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An important implication of Theorem 3.4 is that the bounds in (i) and (ii) are not far from each
other. As a result, not many distributions have been left out by (i) and (ii). Basically, only those
base measures that decay at a similar rate to 1/logx are not covered by the conditions (i) and
(ii). As a result, the only combination that is not covered by Theorem 3.4 is the case where both
Go,, and Go, decay at rates similar to 1/logx. When this happens, the tail index of F drawn
from Model (3.1) can possibly vary in [0, 4-oc]. In this case, whether the posterior consistency
of tail index holds or not remains unknown.

The next theorem shows a similar posterior behavior for the general NGGP mixture model,
denoted by NGGP(a, k, t, Go(i, 0)). Its Lévy intensity measure is given by p(dv) dGo(u,0) =
ﬁv_"_le”” dvdGo(u, o), where a > 0, k € [0,1) and T > 0. The NGGP class includes
most of the discrete random probability measures in the Bayesian nonparametric literature. For
example, the class includes DP as NGGP(q, 0, 1, Gy), the normalized-inverse Gaussian process
as NGGP(1, 1/2, t, Gy), and the N-stable process as NGGP(1, x, 0, Go) as special cases. See
Lijoi, Mena and Priinster [36] and Barrios et al. [1] for discussions. The cases of ¥« = 0 (DP) and
k > 0 are different in nature, so the conclusion of Theorem 3.5 is also different from Theorem 3.4.

Theorem 3.5. Suppose in Model (3.1), G(-,-) ~ NGGP(a, «, 7, Go(t,0)) with a > 0, k €
0,1), T =0 and Go(u, o) is a continuous cdf on R x RY. Assume that Gy, is symmetric
about zero. Consider the following two conditions for a generic distribution Hy on R:

() limsup,_, Ho(x)-x% = 400 forall § > 0,
(i) limsup,_, ;o Ho(x) - x°=0forall § > 0.

If both G, and G, satisfy either one of the conditions (i) and (ii), that is, we can replace Hy
in either (i) or (ii) by Go,, and Go o, then for any distribution F with density f sampled from
Model (3.1), the range of a4 (F) as defined in (2.1) is almost surely a singleton.

Similar to Theorem 3.4, here we also provide two conditions for the tail decaying rates of Go
and Gy, where (i) gives heavier than polynomial tails and (ii) gives thinner than polynomial
tails. The gap between the base measures that satisfy (i) or (ii) in the current theorem is now larger
than that in the DP case, but the theorem still has ruled out many possibilities for consistent
estimation of tail index. For example, when both G , and G, have exponentially decaying
tails, the tail index generated from the posterior of a NGGP is always the same as the tail index
of the kernel k(-) (see the proof of Theorem 3.3 in Appendix A). It remains unknown how the
tail indices of F from a NGGP mixture model behave in the posterior when at least one of Gg
and Gy, have a polynomially decaying tail.

4. Sufficient conditions for tail index consistency

4.1. Schwartz’s theorem for posterior consistency

In this section, we provide a series of conditions that guarantee the posterior consistency of tail
index for the most general model f ~ IT,. These conditions are built on the classic Schwartz’s
argument in Schwartz [46] for posterior consistency, and therefore they are simple and intuitive.
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We will then demonstrate the application of these sufficient conditions on Model (1.2) using the
Pareto kernel in Section 4.3.

The definition of tail index in (2.1) applies to any distribution but may be too general so that
no consistent frequentist estimator exists. Therefore, we will limit our scope to those priors that
only generate candidate distributions from the class of FMDA, that is, distributions that satisfy
(1.1). These distributions have a well defined tail index, that is, we can replace all the liminf in
(2.1) by lim. Throughout the entire Section 4, we assume that the true distribution has a tail index
o+ € (0, +00), and the prior I, satisfies Condition (PT).

(PT) For almost surely all F ~ I1,, F satisfies the relation (1.1) with a4 (F) € (0, +00) and
a slowly varying function L, and its right tail index is given by (2.1) with all liminf
replaced by lim.

The Schwartz consistency theorem relies on two key conditions: the Kullback—Leibler (KL)
support of the prior, and the existence of a uniformly consistent test. For two distributions F
and F» (with densities f1 and f3), let the KL divergence between F) and F> be KL(Fy, F>) =
EF, log(f1/f>). Define the e-KL neighborhood of the true distribution Fy as K(Fp, &) ={F €
F : KL(Fy, F) < ¢}. The condition on the KL support of the prior is stated as follows:

(KL) The true distribution Fp is in the KL support of II,, if for any ¢ > O,
liminf, _, o IT,, (IC(Fp, €)) > 0.

We allow the prior I1, to depend on the sample size n, since this can be conveniently incor-
porated into the standard posterior consistency argument (see Section 5 of Ghosal, Ghosh and
Ramamoorthi [22]). It is well known that the condition (KL) implies weak consistency, and is
therefore a very basic requirement for useful Bayesian models.

The other condition required in the Schwartz consistency theorem is the existence of uniformly
consistent tests. For our purpose, we need a test for tail index that is able to separate F from all
the distributions outside a tail index neighborhood of Fy. A set JF, with large prior probability
(called “sieve”) helps when IT,, has a non-compact support and the uniform test can be found on
a sufficiently large set.

(UT) Uniform testing condition: There exists a test ®, = ®,(X1,..., X,) and a sieve F,
such that
1) I, (F)) < e~ for some constant b > 0;
(i1) For any ¢ > 0, as n — oo,

Ep,®, — 0, sup Er(1—®,)— 0. @.1)
FeBg, (Fo,e)NFy

Based on Schwartz’s consistency theorem, one can show posterior consistency of tail index
under the conditions (KL) and (UT).

Theorem 4.1. If both (KL) and (UT) hold true, then the posterior distribution I1,, (-|X") is con-
sistent for the (right) tail index.

The proof follows the same thread as the usual weak consistency (see for example Ghosal,
Ghosh and Ramamoorthi [22], Ghosh and Ramamoorthi [25]) and is therefore omitted. Note that



On posterior consistency of tail index for Bayesian kernel mixture models 2009

the uniform test in (UT) can be made exponentially fast by an argument using the Hoeffding’s
inequality (Theorem 2 of Ghosal, Ghosh and Ramamoorthi [22], Proposition 4.4.1 of Ghosh and
Ramamoorthi [25]). However, a key unanswered question is whether such a uniformly consistent
test @, for tail index exists. One cannot directly apply the Le Cam theory because ®, will
depend on the new tail index neighborhood of B, (Fp, ¢) and the pseudometric about tail index
difference. We instead proceed in a constructive way and pursue sufficient conditions for (UT)
to hold.

4.2. Existence of tests

In the representation (1.1) for a generic distribution F ~ IT,, let hr(x) = xL':(x)/LF(x) and
hence Lr(x) = LF(xo)exp( f X); @ dr) for some fixed x¢. Alternatively, /2 r(x) can be written
as

xf(x)

F(x)

hp(x) = (F) —

For any given F from FMDA, the von-Mises theorem (see, for example, Proposition 2.1 of
Beirlant et al. [2]) says that

i.e. limy_, 1 o A F(x) = 0. Bounding the magnitude of /4 r (x) is crucial in showing the existence of
uniform tests for o4 (F). In the Bayesian framework, iy (x) with F ~ IT, needs to be controlled
in a uniform way on a sieve with large prior probability. In light of this, we have the following
theorem on the existence of tests. Throughout the rest of the paper, for two positive sequences
{x,} and {y,} that depend on the sample size n, x, < y, means x, = o(y,), X, > y, means
Yp = 0(xy), Xn < ¥, means x, = O(y,), and x,, > y, means y, = O (x;).

Theorem 4.2. Suppose that ap+ € (0, +00), and (PT) holds. In addition, suppose the following
conditions hold:

(1) There exist finite constants xg > e and cp € (0, 1), such that for all sufficiently large n,
L (x0) > n~°L uniformly for all F € Fi,, where F1,, is a sieve satisfying T1,(F},) <
e~ 1" for some constant c1 > 0;

(ii) There exists an envelope function ha(x) = By (log x)~d+m) for some positive n-
dependent sequences B, and t,, such that for all sufficiently large n, |hp (x)| < hy(x) for
all F € Fp, and all x > xo, where JF, is a sieve satisfying T1,(F3,) < e~ " for some
constant ¢y > 0;

(iii) The prior 11, satisfies 11, (.7-"3Cn) < e~ " for some constant c3 > 0 for F3, = {F € F :
oy (F) <u,} and some sequence 1 < a, < logn, for all sufficiently large n;

@iv) By, T, and oy, satisfy 1 < B, < min(&;1 logn, t,logn) and t, < 1;

then (UT) holds.
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The proof of Theorem 4.2 uses a recently proposed tail index estimator in Carpentier and Kim
[6] defined as

&s, =1og(ps,) — log(Ps,+1), (4.2)

where p;, = n~! Z?:l I(X; > e*) and s, is taken as a positive sequence that satisfies B, <
Sp < E;l logn (see the proof of Theorem 4.2 in Appendix A). Such a sequence s, exists given
Condition (iv) in Theorem 4.2. Carpentier and Kim [6] has shown that when «p+ € (0, +00),
s, is a consistent estimator of a4 (F) for F from various classes of distributions, such as the
first order and the second order approximately Pareto distributions. Carpentier and Kim [6] has
also given the explicit choice of s, (as well as a data-dependent version) such that &;, converges
at a minimax rate to o4 (F) for a certain class of distributions (adaptively). Therefore, a test for
Hy : a4 (F) = agt can be &, = I (|&;, — o+ | > €) given some & > 0. For our purposes, it is
easier to work with &, than the Hill’s estimator.

Conditions (i)—(iv) are sufficient for the existence of such tests. Among them, (i) and (ii) are
mainly intended to control the slowly varying function Ly, where we allow exceptions on sets
with exponentially small prior probabilities. The choice of xo > e is mainly for convenience since
logx > 1 for all x > xp. Alternatively, one can replace it with any finite xo € R and modify the
definition of logarithm function with a shift accordingly. In (ii) we specify the envelope function
h,(x) to be decaying in the logarithm of x. In the frequentist tail index literature, such control
over the exponent in a slowly varying function has appeared in Drees [13] and Drees [14] for
showing minimax rates in certain classes of distributions. The logarithmically decaying &, (x) is
not restrictive because we allow B, — oo and t, — 0 as n — o0. As an envelop function, it also
includes all 2 (x) that decays polynomially in x.

Condition (iii) restricts the largest possible tail index on a large sieve, but the sieve will even-
tually cover the true Fj as the sample size n increases. Condition (iv) determines the choice of
B,, 1, in (ii) and o, in (iii). For posterior consistency, we only require the existence of such
sequences B,,, t,, @,. Conditions (i)—(iv) will be verified for Pareto mixtures in Section 4.3.

Remark 4.1. We would like to emphasize that in our Bayesian setup, the class of distributions
for which &, in (4.2) gives a uniform test depends on the conditions on the prior, for example
Conditions (i)—(iv) in Theorem 4.2. These conditions impose restrictions on the class of distri-
butions and densities that can be consistently fitted by our posterior (2.2) in the sense of weak
consistency. In fact, they can result in a relatively smaller KL support of the prior, which may
only include a subclass of FDMA. This is partly due to the basic requirement that our Baysian
posterior should achieve consistency for both fitting the density and fitting the tail index at the
same time. Although in general it is difficult to describe exactly which distributions are included
in the prior KL support given those conditions in Theorem 4.2, we will shed light on this for the
example of Pareto mixtures in Theorem 4.4 in Section 4.3.

The following theorem is a consequence of Theorem 4.1 and Theorem 4.2.

Theorem 4.3 (Posterior Consistency of Tail Index). Under all assumptions of Theorem 4.2
and (KL), the posterior distribution T1,,(-|X") is consistent for the (right) tail index.
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4.3. Example of consistency: Mixtures of Paretos

The failure of tail index consistency in Section 3 is partly due to the structure of the location-
scale mixture model (3.1), in which we have no control over how the mixing measure G(u, o)
affects the tail index of the mixture distribution. A possible remedy is to introduce an explicit
mixture on the tail index parameter. An example of this type is the DPM of Paretos used in
Tressou [51]. In this section, we study the mixture of simple Pareto distributions with kernel
density k(x; o) = ax @D whose support is [1, +-00). We will take the mixing measure from a
homogenous NRMI prior, such as DP and NGGP. Because a general discrete mixture distribution
takes the form F(x) = Z?il wix % the right tail index is a4 (F) = inf{o, ap, . ..}. To make
this tail index more explicit, in the following Bayesian model, we are going to first pick o1 as
the tail index of F together with its weight w1, and then draw the other «; and their weights w;
(i =2,3,...) from a mixture model conditional on «¢; and wj. In this way, we can guarantee that
a; > o for all i > 2 such that we can conveniently control the behavior of oy (F) through «;.
The model is specified as follows.

Flar, wi, H=wik(x; o) + (1 - w1)/k(X;0t)dH(04),

a1~ Gg - 10,3, supp(Gy) = [0, +00), G4 has no point mass at zero,
wy ~ Gy - Ly, 115 supp(Gy,) =[O0, 1],
H, ~TI(H; &, Hy), supp(Hp) = [0, +00), Hy has no point mass at zero,

H(x) = Hi(a — ay), for any o > .
“4.3)

The notation “supp” stands for the support of a distribution. For a generic distribution G and
aset A, G - 14 denotes the renormalized probability distribution of G truncated to the set A.
The density f has two mixing components. The first component w1k (x; 1) explicitly controls
the tail index of F, and the second component is a general mixture of Paretos. «r; in the first
component determines o4 (F), and is drawn from G, truncated to [0, o, ]. Here the deterministic
positive sequences w,, and o, satisfy that w,, — 0 and @, — +00 as n — 00, so asymptotically
the supports of w; and o covers any number in (0, 1] and R*. The second component in the
mixture involves a mixing probability measure H, which is drawn from a prior I1. £ contains all
the hyperparameters of I1, such as the parameter a in a DP and the parameters a, k, T in a NGGP.
Given the value of o1, H is a right-shifted version of the distribution H; drawn from the prior IT.
For the ease of presentation, we assume that G4, G, and I1 do not depend on #.

The deterministic sequences w, and @, introduced here are mainly designed to separate the
leading component w1k (x; «1) from the other mixing components, such that the sufficient con-
ditions in Theorem 4.2 are satisfied. In particular, condition (PT) can be conveniently verified for
Model (4.3) with the help from the leading component. &, is used such that «; has an increas-
ingly large support and meanwhile Condition (iii) of Theorem 4.2 is satisfied. In fact, the way of
isolating the leading Pareto component in Model (4.3) is similar to some well studied nonpara-
metric classes of distributions in the frequentist tail index literature, such as the Hall and Welsh
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class (Hall and Welsh [30], Carpentier and Kim [6], Boucheron and Thomas [4]) that satisfies
[F(x) — Cx~%| < C'x~*U+P) for o, B, C, C' > 0.

A function g on the interval / is called completely monotone if the mth derivative of g satisfies
(—=1)"g (x)>0forallm e ZT. Let

CM, = {F :supp(F) =[1,+00), F(e') is completely monotone on 1 € [0, +00)},
Py ={F :supp(F) =[1,+00), F(x) = Cx~* 4+ O (x~1F)),

for some constant@ > 0, 8 > 0, C > 0},

where P; is the class of second-order Pareto distributions. We can characterize the class of dis-
tributions described by Model (4.3).

Theorem 4.4. Suppose in Model (4.3), w, — 0 and &, - +0co asn — co. If F € CM, NP
and the prior T1(H; &, Hy) is a homogeneous NRMI, then F is in the KL support of Model (4.3).

The KL support of Model (4.3) is related to the class of completely monotone functions. This is
not surprising because the mixtures of Paretos are related to the mixtures of exponential distribu-
tions by the transformation x = ¢’ in the Pareto kernel k(x; ). The KL support of the mixtures
of exponentials includes the class of completely monotone functions (Theorem 16 in Wu and
Ghosal [54]), by the Hausdorff—Bernstein—Widder theorem. In fact, it is proved in Lemma S.1 in
the supplementary material that any distribution F from C.M, N P, has a density with a similar
form to that in Model (4.3).

The following theorem imposes further conditions on w,,, @, and the prior G4, Gy, I1, such
that Model (4.3) achieves posterior consistency of tail index.

Theorem 4.5. Suppose the following conditions hold for Model (4.3):
(i) FoeCM,.NPy;

(ii) The prior I1 on the mixing measure H satisfies one of the following conditions:

(a) T1 is DP(a, Hy) where a > 0 and Hy is a probability distribution on R, and
there exist positive constants 0 < ¢y < 1,D1 > 0,d1 > 0, such that Hy(x) <
Di[log(1/x)1~1*) for all x € (0, ¢1);

(b) IT is NGGP(a, k, t, Hy) where a > 0, k € (0, 1), T > 0 and Hy is a probability dis-
tribution on R™, and there exist positive constants 0 < ¢y < 1, Dy > 0,dp > 0, such
that Hy(x) < Dax'*% for all x € (0, c);

(iii) 1 <o, <logn, @,/logn <w, <1;

then the posterior distribution T, (-|X") of Model (4.3) is consistent for the tail index.

Condition (ii) in Theorem 4.5 requires sufficient decay for the base measure Hy near zero,
though the decaying rate could be different for a DP prior and a NGGP prior. For a NGGP prior,
the decaying rate of Hy(x) near x = 0 needs to be in polynomials of x, while the rate for a DP
prior can be slower, in polynomials of log(1/x) for x close to zero. This is due to the difference
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in the tail behavior of DP and NGGP. Condition (iii) describes the orders of w, and @,. They
can be taken as, for example, w, = (log n)~ Y3 anda, = (logn)l/z.

Remark 4.2. The densities in CM, N P, always have nonnegative mixing coefficients, since
w; > 0 and H is a probability measure. As a result, the KL support of Model (4.3) includes
mixtures such as F(x) = % + ﬁ, but also has excluded some other mixtures of Paretos, such
2 _ 1

as F(x) = T2 in which some components may have negative coefficients. To enlarge the

KL support of Model (4.3) and allow negative mixing coefficients, the mixing measure can be
characterized as a bounded signed measure w18y, + (1 — w1)H = Hy — H_, where §, denotes
the Dirac measure at a. Similar priors to those in Model (4.3) can be imposed on both H; and
H_ and they need further restrictions to guarantee that the density f is nonnegative. For example,

if F(x) = % — xlz, then Hy =261 and H_ = §;. According to Theorem 4.3 of Watanabe [53],
the Pareto kernel mixture representation by using bounded signed mixing measure includes all

distributions F that satisfy 3%, [F"” (e")|¢! /i1 < +o0.

5. Discussion

We have explored the theory behind the posterior consistency/inconsistency of tail index for
Bayesian kernel mixture models, extending the scope of the vast literature on Bayesian consis-
tency with respect to the weak and strong topology. We have shown that examples of inconsis-
tency are extremely common, among the location-scale mixture models with MFM, DPM and
NRMI mixture priors. There are special cases in which posterior consistency remains unknown
in the DPM and NRMI mixture examples when the marginal base measures of the location and
scale parameters meet certain restrictions.

We have also proposed a set of sufficient conditions that lead to posterior tail index consistency,
and verified them in a Pareto mixture example. The simple Pareto mixture model is mainly
used for illustration, as other heavy tailed kernels with an explicit tail index parameter can also
be implemented in a similar manner, such as the inverse gamma kernel, the half Student’s ¢
kernel, and the F kernel, although their consistency theory involves extra technical complexity
in verifying all those sufficient conditions. It is less obvious to see how models like (4.3) can be
generalized to mixing models with two-sided kernels, since ideally one wants to estimate both the
left tail index and the right tail index of a distribution, which can be possibly different. It will be
an interesting topic to further study the posterior convergence rates for Model (4.3) when the true
Fy(x) comes from certain nonparametric classes such as the Hall and Welsh class, and compare
them with the frequentist adaptive estimators such as Carpentier and Kim [6] and Boucheron and
Thomas [4], which achieve the minimax rates.

Appendix A: Technical proofs

Proof of Proposition 2.1. Lange [34] Theorem 3.5 has proved that F, the set of all distributions
that are absolutely continuous with respect to the Lebesgue measure on R, is a Borel set. Below,
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we show that the following sets

Ai(a) = {F € F:ay(F) §a},

(A.1)
Ax(a)={F € F:ay(F) <a},

are Borel sets for any a € [0, +00]. Firstlet a € [0, +00). Then for a generic continuous function
g on R, we have the following relation

{g:liminfg(x)ga}:[g: sup inf g(k—i—r/)fa}
x—>-+00 kez+ k=27 €QF ‘

:ﬁ{g: 1nf g(k—i—r]) <a}
k=2

+00 ¢
:(U : 1nf g(k+rj)>a})

k=

+00 C
J U {e: nf 8(k+Vj)>d+qz}>

k=2gq,€Q*

[
(U U N {s g(k+r,,-)za+qz}>c, and  (A2)
{

k=2 qeQt r;jeQ*

sup inf g(k+rj)<a}

¢ liminfg(x) < a}
{ *¥—>+400 keZ+ k>27j€Qt

I
3

{g: 1né+g(k+rj) <a}

rj€

~
||

2

c

+
3

( {g : rjiEnéJrg(k +rj) > a})

Y

where QT is the set of all positive rational numbers.

For any F € F, we have that — logf is a continuous function on R (in case F(x) = 0 for
all x € [x1, +00) with some finite number x|, we can extend the concept of continuity by defin-
ing —logf(x) = +oo for all x > x1). Since 1/logx is continuous for x € (1, +00), we have
that the product —logf(x)/logx is also continuous on (1, +00). For given x > 1,b > 0, we

;v
||
S}

||C

N g:g(k+rj)za}> :

r;eQt
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define
—log F —
D(x, b) = {Fe]—": —log F(x) zb} —{FeF:Fx)<x™)
log x (A.3)
={FeF:F)21-x?)={FeF:Fx)<1-x""}"
Then (A.1), (A.2) and (A.3) together imply that for any a € [0, +00),
+o00 ¢
Ai(a) = (U U N D(k+rj,a+q1)> :
k=2q,eQ* r;eQ*
(A4

+o0 ¢
.Az(a):(U N ’D(k+rj,a)> :

k=2 rj€Q+

For any fixed x > 1 and fixed p € (0, 1], the set {F : F(x) < p} is the pre-image of the
Borel set [0, p) under the mapping T4 : F + F(A) for the given Borel set A = (—o0, x].
On the other hand, we know that the Borel sigma-algebra on the space of all distribu-
tions F is defined as the smallest sigma-algebra that makes the mapping F +— F(A) mea-
surable for any Borel set A € R. Using this definition, we know that {F : F(x) < p}
for fixed x > 1 and p € (0, 1] is a Borel set. Therefore, D(x, b) in (A.3) is a Borel set,
which further implies that in (A.4), both A;(a) and A(a) are Borel sets for any a €
[0, +00).

If a = +00, then A (400) = F is trivially Borel, and A (+00) = U,‘:’; As(1) is also Borel
since every A3 (() is Borel for [/ =2, 3, .... Therefore, both A;(a) and A, (a) are Borel sets for
any a € [0, 4-00].

Finally, we can write B4 (F, &) = Ao (a4 (F) + &) N (A1 (o (F) — )€ (incase oy (F) —e <
0, then A (x4 (F) — ¢) is understood as the empty set). Thus, By (F, €) is a Borel set. [l

In the following, Pr and Ef represent the probability and the expectation under the prob-
ability distribution F. A random variable X has the decomposition X = X — X_, where
X+ =max(X,0) and X_ =max(—X, 0).

Lemma A.1 (Shorack and Wellner [48], Theorem 1, Section 7 in Chapter 4). Let F be an
univariate distribution on R with right tail index a (F) as defined in (2.1). If a random variable
X has the cdf F(x), then

<400 if0<m<ay(F),

EpX" = i
= +00 ifm> oy (F).

Lemma A.2. Letm > 0.

(i) Forany x,y € R, there exists a constant Cy, that only depends on m, such that

[+ 9)4]" = G +57).
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(1) Forany x >0,y > 0, there exists a constant c,, that only depends on m, such that
(x +y)n1 Z Cm(xm +ym).

Proof of Lemma A.2.

(i) Form>1,C,=2""'.Forme (0,1), Cp, = 1.

(i) Let f(t) =t"+ (1 —1t)"andt € [0, 1]. If m > 1, then max,;c[o,1] f(t) =1 and set ¢, = 1.
If m € (0, 1), then max,¢(o,17 f () = 21=m and set ¢, = 2"~ Now let t = x /(x + y) and
the conclusion follows. O

Lemma A.3. Suppose f is a density drawn from Model (3.1) with cdf F. Let K (-) be the cdf of
k(). Then

EpX} > cn(Eg,n2 - K(©) + Ex X" - Eg, [0 (1= 0)]), (A.5)
EpX? >C,'ExX" - Eg, 0™ — Eg, 1", (A.6)
EpX < Cu(Eg,n} + Ex X" - Eg,0™), (A7)

where K (0) = Pg (X > 0) (the probability of X > 0 if X has the density k(x)), G, and G are
the marginal distributions of G, o, and ¢y, Cy, are defined in Lemma A.2.

Proof of Lemma A.3. Let /() be the indicator function. We have
1 _
EpX" = // (x> 0)—k<u) dG (, o) dx
o o

_ / / (409" I (1 + oy = k() dG (1, o) dy.

(A.8)

Then we give lower and upper bounds for (A.8). Notice that o > 0 always holds and I (u 4oy >
0) > I(u>0)I(y >0). Based on (A.8) and part (ii) of Lemma A.2, we have:

EFX$Z/ (n+oy)"I(w=0)1(y = 0)k(y)dG (1, o) dy

> // en(i + 6™y (= OV (y = 0)k() dG (s, o) dy
=cm(Eg, 1} - K(O) + Ex X - Eg,, ,[0" (1= 0)]),

which is (A.5).
On the other hand, since (—u)4 = pu—_, part (i) of Lemma A.2 implies

(@} <Cu[(n+o)T + (=) ]

m

= (utoy)l> C,;]omy_"ﬁ —u™.
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This together with (A.8) gives
EpXY =/ (1 +0oy)Pk(y)dG(p, 0)dy

/ / [Chlo™yT — " Tk(y)dG (i, o) dy
> Cn: E](Xﬁ . EGUO'm - EGM,U,T,

which is (A.6).
By part (i) of Lemma A.2

EFX’"=f [(+0y)4]"dG(u, o) dy

< [[ Calut +0™ )G . ) dy = Co (B, 1 + ER X - Eg ™).
which is (A.7). 0

Proof of Theorem 3.1. For Model (3.2), the marginal distributions G, and G, are both finite
mixtures at the points u _; and a -, respectively. Because Go(u, o) is a continuous distribution,
we have 0 < Eg, 1 < +00,0 5 Eg,n" <+ooand 0 < Eg,0™ < +oo for all m > 0. We can
use Lemma A.1 to determine the relation between .y (F) and a (K). According to Lemma A.3,
whether Er X! is finite or not for a given m is solely determined by whether Ex X" is finite or
not. The analysis goes as follows:

(i) If oy (K) = 400, then by Lemma A.1 Ex X' < +oo for all m > 0. The upper bound

(A.7) implies that Er X" < +o0 for all m > 0. Hence, oy (F') = 400 by Lemma A.1.

(ii) If o4 (K) =0, then by Lemma A.1, Eg X"} = 400 for all m > 0. The lower bound (A.6)
implies that Er X' = +o0 for all m > 0. Then by setting m = 0 in (ii) of Lemma A.1 we
can see that o4 (F) =0

(iii) If ey (K) € (0, +00), then Eg X" < +o0 for m < a4 (K) and Eg X" = +o0 for m >
oy (K). Then by (A.7), EF X'} < +oo for m < ay (K), and by (A.6), Ex X" =400 for
m > a4 (K). Apply Lemma A.1 and we can see that o (F) = a4 (K).

In sum, o4 (F) = a4 (K) in all three cases and thus o (F') is almost surely a singleton. ([l

The homogenous NRMI with Lévy intensity p(dv) and base measure Hy defined in Sect. 3
can be expressed as H (x) = Zt>l Jidx, (x) where J; = J / Zl>1 J Equivalently, the cdf H (x)
also has the representation H(x) = S(Hp(x))/S(1), where {S(¢),t > 0} is a subordinator with
Lévy intensity measure p(dv) (see for example Regazzini, Lijoi and Priinster [44]). As a result,
the function W defined in Theorem (3.2) is the Laplace exponent of the subordinator S(¢). The
conditions fooo,o(dv) = 400 and fooo(l — e Y)p(dv) < 400 guarantees that 0 < S(1) < 400
almost surely.

The following proposition is a combination of Theorem 1 in Fristedt [19] and Lemmas 4 and
5 in Fristedt and Pruitt [20].
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Proposition A.1 (Fristedt [19], Fristedt and Pruitt [20]). Suppose {S(t),t > 0} is a sub-
ordinator with Lévy intensity measure p(dv) for v € RT. Define the functionals Ry (h) =
liminf, o4 S(z)/ h(t) and Ry (h) =limsup, o, S@)/h(1).

(1) Fory >0, let hy (x) be the same as defined in (3.3). Then

Rp(hy) <y  as.ify <],
Rp(hy) >y —1 as.ify > 1.

(1) If h(x) is locally convex in x € [0, €) for some small ¢ > 0, then
&€
Ry(h) =0 a.s. zf/ plh(x), +00)dx < 400,
0
&€
Ry (h) =+o00 a.s. zf/ plh(x), +00)dx = 4o0.
0

Proof of Theorem 3.2. The proof is a direct application of Proposition A.1.

(1) By the stationary increment property of subordinators, S(1 —¢) has the same distribution as
S(1) — 8(@) fort € (0, 1). Therefore for y > 1 and h,, defined in (3.3), part (i) of Proposition A.1
implies

S(1) — St
liminfM >y —1 a.s
t—~1— hy,(1—1)
Let t = Hy(x) and we have
H 1
fiminf 25 4 (A.9)

x=+00 hy, (Ho(x))

since H (x) = S(Hy(x))/S(1). Our assumptions [~ p(dv) = +00 and [;(1 — e V) p(dv) <
+o00 guarantee that 0 < S(1) < 400 almost surely. Therefore, we conclude from (A.9) that al-
most surely for all such NRMI H,

H
liminf— 2% o as
x=>+00 h,, (Ho(x))

As x — +00, the function H (x) /hy (Ho(x)) is almost surely lower bounded by a positive con-
stant, which implies that the function log[ﬁ(x) /hy (Ho(x))] is almost surely lower bounded by
a finite constant. Hence, it follows that

liminf log[H (x)/ hy (Ho(x))] -0

. A.l
x—+00 log x s (A.10)
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For the right tail index of H, we can use (A.10) and the condition on £, (-) to obtain that
—logH
o (H) = liminf 1281
x—>+o0  logx

—loghy (Ho(x)) N log[hy (Ho(x))/H (x)] }
log x log x

= liminf {

xX—>+00

—logh, (Ho(x)) liming log[H (x)/ hy (Ho(x))]

< liminf
x—+00 logx x—+00 logx
—logh, (H
< liminf M =0.
x—>+400 log x

Therefore, a4 (H) =0.
(ii) For such h(x) that satisfies (a)(b)(c), by similar argument as above, we apply part (ii) of
Proposition A.1 and obtain that
. H(x)S(1)
limsup— =0
x—+o00 h(Hp(x))

which implies that almost surely for all such NRMI H,
: H(x)
limsup ———— =
x—+4o00 h(Hp(x))
Therefore, we have

h(H
liminflog w =400 a.s.
x—400 H(x)

and hence

liminf 128 Ho())/H (x)] .

0 a.s.
x—+00 log x

We finally combine this with the condition (c) and conclude that

—logH
o, (H) = liminf 021
x—>+oo  logx

.. [ —logh(Ho(x)) loglh(Ho(x))/H(x)]
= liminf +
x—+00 log x log x
—logh(H log[h(H H
> liminf 128 ( O(X))Jrliminf og[h(Ho(x))/H (x)]
x—>+00 log x x—>+00 log x
—logh(H
> liminf 08P _ |
x—+00 log x

which means a (H) = +00. [l
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Proof of Theorem 3.3. First we note that because Go(t, o) is a continuous probability measure,
if G(-,-) is a homogenous NRMI with Lévy intensity p(dv)Go(du, do), then using the stick-
breaking representation, we have that the two marginal distributions G, and G, are also ho-
mogenous NRMIs with Lévy intensities p(dv)Go,,(du) and p(dv)Go s (o) respectively. Given
the conclusion of Theorem 3.2, we have that if Gg , or Go, satisfies (i) of Theorem 3.2, then
a4 (Gy) =0oray(Gy) =0;if Go,, or Go satisfies (ii) of Theorem 3.2, then a (G ) = 400
or ay (Gy) = +00.

Since k(-) has part of the support in R*, E kX% > 0 for any m > 0. We will examine the
existence of moments E FXT_ with F from Model 3.1 for any m > 0, and use Lemma A.1 to
determine oy (F). Similar to the proof of Theorem 3.1, we can analysis Er X'} using the lower
bounds and the upper bound from Lemma A.3.

() If a4 (Gp) =0, then Eg, '} = +o0 for all m > 0. Also note that K(0) > 0and EgX% >0
since k(-) has full support in R. Therefore, by the lower bound (A.5), Er X" = 400 for all
m > 0 since K(0) > 0, Ex XY >0, and Eg, ,[0™1 (1 > 0)] > 0. This implies o4 (F) =0 by
Lemma A.1.

(i) If o4 (G ) = +00 and a4 (G,) = 0, then for all m > 0, Eg,p < 00 and Eg,0™ =
+00. Because we have assumed that Gy, is symmetric about zero, this implies that Eg, u” <
+oo forall m > 0. Also Ex X'} > 0 for all m > 0. Therefore by the lower bound (A.6), EF X} =
+o00. This again implies o4 (F) = 0 by Lemma A.1.

(i) If @4 (G ) = +o0 and o (G ) = +00, then forall m > 0, Eg,, i <4ooand Eg, 0™ <
+o00. This can be further separated into three scenarios: (a) a4 (K) € (0, +00), then if m €
(0,4+00) and m < a1 (K), Ex X! <400 and Er X'} < 400 by the upper bound (A.7); if m €
(0, +00) and m > a4 (K), Eg X"! = 400 and Ep X"' = 400 by the lower bound (A.6). Hence,
a4 (F) = a4 (K) by Lemma A.l. (b) a4 (K) =0, then Ex X"! = +oo for all m € (0, +00)
and EfpX"! = 4oo0 for all m € (0, +00) by the lower bound in (A.6). (c) a4+ (K) = +o0, then
Eg X" < +oo forall m € (0, +00) and Er X"} < +oo for all m € (0, +00) by the upper bound
in (A.7). We conclude that in all three scenarios o4 (F) = a4 (K).

The results from different scenarios can be summarized as

oy (F) = min{as (G, a4 (Go), a4 (K) |,

which is always a fixed number. Therefore, o (F) is almost surely a singleton, if both G, (1)
and Gy (o) satisfy either (i) or (ii) in Theorem 3.2. (|

Proof of Theorem 3.4. We will show that for a measure Hy on R

(a) If limsup,_, , Ho(x) - (logx/loglogx) = +o0, then part (i) of Theorem 3.2 holds;
(b) If limsup,_, | Ho(x) - [(logx) - (loglog x)°] = 0 for some & > 1, then part (ii) of Theo-
rem 3.2 holds.

If both Eo, n and 50,(, satisfy either (a) or (b), that is, we can replace Hy with 50, n and Eo,g,
then the right tail indices of G, and G, are either 0 or 400, and the conclusion of Theorem 3.4
follows directly from Theorem 3.3.

To show (a) and (b), we use the similar arguments as in Doss and Sellke [12]. We note that a
cdf H(x) on R drawn from DP(a, Hy) can be written as a normalized Gamma process with Lévy
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intensity p (dv) Hp(dx) = av— eV dvHy(dx). The Laplace exponent for p is W (s) = alog(1+s)
and its inversion is W1 (x) = ¢*/% — 1. Thus for any given y > 1, the function (3.3) in Proposi-
tion A.1 is given by

log |log x|
eXp(legal):ngl) 1 ’

hy(x) =

We have limy_, o4 2y, (x) =0, and i, (x) € (0, 1/2) for x € [0, &) for small enough & > 0.

Now by the condition limsup,_, | Ho(x)/(loglog x/logx) = +00, there exists a positive
sequence x; that increases to +00 as j — +o00, such that for any C > 2, 1/16 > ﬁo(xj) >
Cloglogx;/logx; and x; > exp(C?) as long as j > J(C) for some large integer J(C). There-
fore, for all j > J(C),

—loghy (Ho(x;))
log x;

loglexp(XRELE Moy _ 1y joglog [log Ho(x;)|

aHo(x)) - y log|log Ho(x )|

IOng - aﬁo(xj)long

- ylog|loglogx; —log C —logloglog x| - y logloglog x

aCloglogx; ~ aCloglogx;

As j — o0, this upper bound converges to 0. Together with the fact that 4, (x) € (0, 1/2) for
x €0, &), we obtain that liminf,_, ; o —logh,, (Ho(x))/logx = 0. This is exactly the condition
in part (i) of Theorem 3.2. Thus (a) is proved.

For (b), we set h(x) = exp[—(x]| 10gx|5/)_1] for some 1 < 8’ < 8. This function is convex in
[0, &) for small enough ¢ > 0. It also satisfies lim,_, o+ 2(x) =0, and A(x) € (0, 1/2) for x €
[0, &) for small enough ¢ > 0. Due to the lower and upper bounds ae! logl/u < plu, +00) <
alog(l/u) + ae~! (see Doss and Sellke [12]) and 8’ > 1, we have f(f plh(x), +00)dx < +o0.
Furthermore, if limsup, _, | Ho(x)-[(logx) - (loglogx)?] =0, then for any C > 2 and all suffi-
ciently large x, Ho(x) < min(1/[C(logx) - (loglog x)%1, 1/2). Therefore for sufficiently large x,

—logh(Ho(x)) 1 - C(logx) - (loglog x)?
logx  Ho(x)|logHo(x)|" logx ~ {log[Clogx - (loglogx)?]}? log x

ca loglogx)® C ,
= (log.x)(log ,ng) = —,(loglogx)‘s_‘S — 400,
(2loglogx)¥logx 28

which implies that liminf,_, 4~ —logh(Hq(x))/logx = +o0. This is exactly the condition in
part (ii) of Theorem 3.2. Thus, (b) is proved. [l
Proof of Theorem 3.5. We will show that for a measure Hy on R

(a) If limsup, , | o, Ho(x) - x% = 400 for all § > 0, then part (i) of Theorem 3.2 holds;
(b) If limsup,_, | Ho(x)-x%=0forall § > 0, then part (ii) of Theorem 3.2 holds.
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If both Gy, and Gy, satisfy either (a) or (b), that is, we can replace Hy with Gy, and G s,
then the right tail indices of G, and G, are either 0 or 400, and the conclusion of Theorem 3.5
follows directly from Theorem 3.3.

To show (a), we note that for the Lévy process with intensity p(dv) = ﬁv”‘ —le=tv gy, its
Laplace exponent is W(s) = ¢[(s + 7)* — ], and its inverse is U ) = [kuja + o€1V/C — 1.
Thus for any given y > 1, the function (3.3) is given by

log|log x|

hy, (x) = :
Y [%4_1/«]1//{_1

We have limy_.o4 2y, (x) =0, and £, (x) € (0, 1/2) for x € [0, &) for small enough ¢ > 0.

Now by the condition limsup, _, Ho(x) - x% = 400 for all § > 0, we have the follow-
ing conclusion: for any given § > 0, there exists a positive sequence x; that increases to
+00 as j — 400, such that x; > 16 and min(x loglog 16/(at”), 1/16) > Ho(xj) > )cj_‘S as
long as j > J for some large integer J. Such choice of x; guarantees that loglog(dlogx;) >

loglog |log Ho(x)| > logloglog 16 > 0, and

«log|log Ho(x;)|  «loglog16
- > >

— — T,
aHo(xj) aHo(xj)
Therefore for all j > J,
_ -1 2 log |log Ho(x))l; =
—logh, (Ho(x)) 3 K log[iaﬁo(xﬁ 1 —loglog|log Ho(x;)|
log x; - log x;

—«kMog Ho(x;) + (k~' — 1) loglog |log Ho(x )| + k' log(2x /a)
log x;

loglog(élogx;) n log(2k /a)

<k 18+ (k-1 .
=% (K ) log x; Kk logx;

In the last display, the second and the third terms converge to zero as j — +oo. The
first term can be made arbitrarily small if § is made small. Therefore, we have shown that

liminf,_, o0 —loghy, (Ho(x))/logx = 0. Thus (a) is proved.
For (b), we have the following bound for p[u, +00):

[ +OO) a flt_K_l —Tt dr + a /oot—/(—l —rtdt
u, =— e _— e
p rd—x J, rd-xJ,
1 00
5*/ t"“ldt+L/ e~ Tdr
ra—-«)J, ra-«h

_ a ( 1 1> ae™ *
Tkl =) \ur + T —x)
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Therefore if [ ﬁdx < +oo, then [ p[h(x), +00)dx < +o0. Let h(x) = (x|logx|")/*
for some 1 > 1. For « € (0, 1), this h(x) is convex and increasing in [0, ¢) and satisfies
limy_, o4 h(x) =0, and h(x) € (0, 1/2) for x € [0, &) if ¢ is sufficiently small.

On the other hand, if limsup,_, , o, Ho(x) - x* = 0 for all § > 0, then Ho(x) < x~? for any
given § for all sufficiently large x, which implies that

—logh(Ho(x)) N —logh(x~%)
log x - log x K Kk logx

8 nlog(dlogx)

On the right-hand side of the last display, the second term converges to zero as x — +00.
The first term can be made arbitrarily large if § is made large. Therefore, we have shown that
liminf,_, ;oo —logh(Hp(x))/logx = +o00. Thus, (b) is proved. [l

Proof of Theorem 4.2. Let s, be a positive sequence such that B, < s, < En_l logn, whose
existence is guaranteed by Condition (iv). For ¢ > 0, we define the test &, = I (|&;, — oo+ | >
€/2) with &, given by (4.2). Let p;, = Pr(X > ¢*) be the population mean of p,, and let
oy, = log(ps,) — log(ps,+1). Note that ps, and «, implicitly depend on F. We complete the
proof in two steps.

Step 1: Show Ef,®, — 0 as n — oo.

We have

N &
Eng)n = PFo(|asn - 050+| = E)
(A.11)

~ & &
= PF0(|aS,, _asn| = Z) +PF0<|05S,, —ap| > Z)

The first term in (A.11) can be bounded by Lemma 2 and equation (4.2) of Carpentier and Kim
[6]:

2
Pr, (|&s,, A 2) < 2exp<—%>, (A.12)
where p;, 11 = P, (X > 1) = em@0+ 6t D Lo (e5F1) Since Ly is slowly varying, as n — oo,
eventually Lo(e* 1) > ¢=9G»+D for arbitrarily small § > 0. By Condition (iv) of Theorem 4.2,
s, < logn/apy and hence np;, 11 > exp(logn — (oo + 8) (s, + 1)) = 400, which implies that
the righthand side of (A.12) goes to zero as n — 0.
The second term in (A.11) is not stochastic. We have

|asn - a0+| = }log(psn) - log(pSn+1) - (X()+’

Lo(e™
_ [1og EO€™ |
Lo(esnt1)

because Ly is slowly varying and s,, — co. Therefore both terms on the righthand side of (A.11)
converge to zero as n — 00.
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Step 2: Show SUP Fe BS, (Fy.e)NF, Er(1—®,)— 0asn— oo, where we let F,, = Fi, N For, N
F3,. By Conditions (i)—(iii), it is clear that IT,, (Fy;) < I, (F},) + 1, (F5,) + 1, (F5,) <e 1"+
e 47N < e~ where ¢ = min(cy, 2, ¢c3)/2.

For every F € By (Fy, &) N Fy,, we have |y (F) — aoy| > &. Therefore,

. e

Er(1—-9,) = PF<|Oan — oo+ < E)
~ E . &
= PF |Olsn —(X()+| < 5, }as,, —(X+(F)| < E

R &
+ PF<|053,, —opy| < 3

&y, — 04 (F)] > %)
(A.13)
< Pp(|ag(F) — a0y | <€) + PF(|&sn —ar(F)| > %)

= Pp(m —ay(F)] > g)

~ & &
E PF<|OlSn _aSn| 2 Z) +PF<’aSn _a+(F)’ 2 Z>'

We only need to show that both terms on the right-hand side of (A.13) converge to zero uniformly
overall F € By, (Fp, &)NJF, asn — oo.Forafixed F, the first term can be bounded by Lemma 2
and equation (4.2) of Carpentier and Kim [6] again as

2
R e nps,+1€
Pp(|asn — o, | > Z) < 2exp<—p;+6).

To obtain uniform convergence for the right-hand side, we only need the quantity npy,41 to be
uniformly bounded below for all ' € By | (Fy, &) N F,. Using Conditions (i)—(iii), we can obtain
the following uniform lower bound:

exn-H h
t
npgy 41 = e IOV L (@301) = e+ D () exp(/ Ft( ) dt>
x0

esn+l B
> exp(logn —Up(sp +1) —cplogn — / t(logt’;“”” dt)
X0

— Bn Bn
=exp| (1 —cr)logn —a,(s, +1) — 7 (0g.10)™ + o (or + 1)
n n\»n

_ B,
> exp((l —cp)logn —o, (s, +1) — —),

Tn

where we use xg > e and hence logxg > 1 in the last inequality. Condition (i) says 1 — ¢y > 0.
By our choice of s,, we have logn > @, (s, + 1), and Condition (iv) implies logn > B, /t,.
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Therefore, we have obtained that uniformly over all F € B (Fp, &) N Fy, Pr(lay, — ag,| > %)
converges to zero as n — 0o.
For the second term in (A.13), we have

as, — a+(F)| = |10gpsn —log ps,+1 — ot+(F)|
= |loge*°‘+(F)S"LF(ex”) - logeiM(F)(S”H)LF(es"H) — o (F)|

sn+1

" hp(x
/ F(x) dr }
esn X
esn +1 esn +1 B”

h,
< / ) g = f B 4
esn X en  x(logx)ltm

B, S n B, 1+s,
=—=1- =——=|1—exp| —7,log
TnSn I+, TnSn Sn

B, 1 By,
< ‘Tplog| 1+ — ) < ,
- TnS;n n g( Sp ) - Srll+fn

= |log LF(e’™) — log Lp(es"H)} =

where we have used 1 — e~ <t for t > 0 and log(1 +1) <t for t > 0. Since 1 < B, < s, we
have B, /s,l”" — 0 as n — oo. Therefore, the probability Pr(Jets, — 4 (F)| > %) is zero for all
large n uniformly over all F' € B;, (Fp, &) N Fy. (]
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