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We consider the problem of estimating the slope function in a functional regression with a scalar response
and a functional covariate. This central problem of functional data analysis is well known to be ill-posed,
thus requiring a regularised estimation procedure. The two most commonly used approaches are based on
spectral truncation or Tikhonov regularisation of the empirical covariance operator. In principle, Tikhonov
regularisation is the more canonical choice. Compared to spectral truncation, it is robust to eigenvalue ties,
while it attains the optimal minimax rate of convergence in the mean squared sense, and not just in a con-
centration probability sense. In this paper, we show that, surprisingly, one can strictly improve upon the
performance of the Tikhonov estimator in finite samples by means of a linear estimator, while retaining
its stability and asymptotic properties by combining it with a form of spectral truncation. Specifically, we
construct an estimator that additively decomposes the functional covariate by projecting it onto two orthog-
onal subspaces defined via functional PCA; it then applies Tikhonov regularisation to the one component,
while leaving the other component unregularised. We prove that when the covariate is Gaussian, this hy-
brid estimator uniformly improves upon the MSE of the Tikhonov estimator in a non-asymptotic sense,
effectively rendering it inadmissible. This domination is shown to also persist under discrete observation
of the covariate function. The hybrid estimator is linear, straightforward to construct in practice, and with
no computational overhead relative to the standard regularisation methods. By means of simulation, it is
shown to furnish sizeable gains even for modest sample sizes.

Keywords: admissibility; condition index; functional data analysis; ill-posed problem; mean integrated
squared error; principal component analysis; rate of convergence; ridge regression; spectral truncation;
Tikhonov regularisation

1. Introduction

1.1. Functional linear models and their regularisation

For a real-valued response y, and a random functional covariate X taking values in a separa-
ble Hilbert space H with inner product 〈·, ·〉, the functional linear regression model with scalar
response is given by

y = α + 〈X,β〉 + ε, (1.1)

where ε is a scalar random measurement error term that is assumed to be zero mean and indepen-
dent of the covariate X ([22,23,31]). The so-called slope parameter β ∈ H is typically the object
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of primary importance. The statistical task is then to estimate β on the basis of an i.i.d. sample of
pairs {(yi,Xi)}ni=1 generated according to the model (1.1). The classical least squares approach
of estimating β results in the normal equation

K̂β = Ĉ, (1.2)

where K̂ is the empirical covariance operator of the {Xi} and Ĉ is the empirical cross-covariance
of the {yi} and the {Xi}. Since the population operator K is a trace-class operator, its empirical
version K̂ is so too, for all n. Its failure to be boundedly invertible gives rise to an ill-posed
inverse problem, which is usually solved by regularising the inverse of K̂ . The regularisation
strategies employed in the functional data analysis literature can be broadly categorised into two
classes:1 sieve methods and penalised methods.

In the method of sieves ([17]), one selects an orthonormal basis {ϕk} of H, and projects the
covariates {Xi} and the slope function β onto the subspace spanned by the first r basis elements.
If the basis {ϕk} and truncation level r are selected judiciously, one obtains a stable multivariate
regression problem, with a small amount of bias. In terms of asymptotics, one must let K → ∞
but regulate its growth as a function of n, in order to guarantee that the regression problem
remain stable for each n. The challenge here is to determine a “good” basis {ϕk} whose first r

elements provide a parsimonious representation simultaneously for X and β – but of course β

is unknown, and worse still, does not have any intrinsic relationship to X that might prove the
existence of such a basis. The typical choice is to rely on the Karhunen–Loève expansion of X

and to choose {ϕk} to be the basis of eigenfunctions of K , and has evolved in the most popular
choice in practice. This approach, known as spectral truncation or PCA regression, uses a sieve
that is optimally adapted to X, but makes no reference to β , thus potentially not providing a good
approximation of β . The thought is, however, that those characteristics of β that do not correlate
well with X (and thus are not well expressed in the Karhunen–Loève basis) are worth sacrificing,
as they cannot be well-recovered through the model (1.1) anyway. In practice, the Karhunen–
Loève basis is estimated from the data, using a functional principal component analysis ([31],
Chapter 10, [9,15,16,37]).

Penalised methods, on the other hand, regularise the problem by placing restrictions directly
on β , most often by penalising the degree of roughness of β by means of a suitable norm. They
lead to constrained least squares problems, instead of the unconstrained problem (1.2), that are
well posed. Estimation procedures following this paradigm have been studied, for instance, by
[6,25,28,30] and [14] to name only a few (see also [31]). Depending on the nature of the penalty,
the estimator can be represented in a finite a basis {ϕk}, typically a spline basis corresponding
to a curvature penalty, and the functional regression translates to a multivariate ridge regression
problem. The approach can be elegantly formulated within a reproducing kernel Hilbert space
framework, which directly translates the infinite dimensional and ill-posed problem into a fi-
nite dimensional and well-posed one ([38]). A general description of penalised methods can be
viewed as instances of Tikhonov regularisation ([34]), where the sum of squares objective func-
tion SS(β) =∑n

i=1(yi − y − 〈Xi − X,β〉)2 is penalised by the addition of a multiple of some
norm of β .

1Though there exist even more general descriptions that include the two categories as special cases, see [8].
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1.2. Tikhonov vs spectral regularisation and our contributions

For a regularisation parameter ρ > 0, the Tikhonov regularised estimator is defined as

β̂TR = K̂−1
ρ Ĉ,

where K̂ρ = K̂ + ρI with I the identity operator on H. This estimator is the direct analogue
of the ridge estimator ([21]) in classical multivariate linear regression with correlated regressors
and is the minimiser of the penalized least squares problem

min
β∈H

{
1

n

n∑
i=1

(
yi − y − 〈Xi − X,β〉)2 + ρ‖β‖2

}
. (1.3)

On the other hand, given r ∈ N, the spectral truncation estimator is defined as

β̂ST =
(

r∑
j=1

λ̂−1
j φ̂j ⊗ φ̂j

)
Ĉ,

where {λ̂j , φ̂j } is the spectrum of the empirical covariance K̂ . In one of the landmark papers
on functional regression, [18] established general error properties of both spectral truncation
and of Tikhonov regularisation. Their results indicate the latter approach to be a more canonical
avenue mainly due to two reasons, namely its minimaxity and its stability. More specifically,
[18] established minimax optimal rates of convergence for the Tikhonov estimator in the mean
squared error (MSE) sense, but only obtained minimax rates for spectral truncation estimator in
the weaker concentration probability sense2 (see also Remark 4). Secondly, [18] demonstrated
that the spectral truncation approach can suffer from instabilities when the eigenvalues of K
are not well-spaced, while Tikhonov regularisation is immune to such effects (see also [38] for
similar arguments). In the well-spaced regime, neither approach is seen to dominate the other,
except in the rather special circumstance where:

(i) the leading eigenvalues of K are well-conditioned,
and

(ii) β mostly contained in the span of the leading eigenfunctions of K .

When (i) and (ii) occur simultaneously, spectral truncation prevails, as the problem essentially
reduces to a well-conditioned multivariate regression, in no need of regularisation.

The question this paper considers is the following: is it possible to leverage this last observation
in order to improve upon the more canonical Tikhonov approach, by combining it in part with the

2In an earlier paper, [19] proved that a modified, non-linear (thresholded) version of the spectral truncation estimator
can attain the minimax MSE rate. The modification is done to ensure that the resulting estimator does not take very
large values (see Theorem 5 in Appendix A.2 in [19], pp. 116–117 in that paper, and the discussion after Theorem 1
in [18]). Unfortunately, this modified estimator depends on arbitrary constants whose choices are subjective and so the
estimator is not practically feasible. In fact, it remains unknown whether the original spectral truncation estimator attains
the minimax rate of convergence in the mean squared sense at all. The non-linear modification appears to be necessary
for the proof techniques of [18] to work.
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projection rationale of spectral truncation? The answer is an unequivocal yes, and surprisingly the
improvement is realised by a linear estimator: a simple combination of the two approaches yields
a hybrid estimator that remains linear, straightforward to compute, and provably strictly improves
upon the Tikhonov estimator in a non-asymptotic sense (i.e., not a rate but an exact MSE sense).
We note in passing that while adaptive estimators of the slope function have been considered (see,
e.g., [7,12]), they typically introduce a thresholding of the spectral estimator, thus becoming non-
linear (and, there has not been any theoretical comparison of the non-asymptotic MSEs of these
estimators to those of the Tikhonov or spectral truncation estimator).

We are not aware of any other work in the functional data analysis literature where a regular-
ized estimator has been shown to be inadmissible by virtue of the existence of another regular-
ized estimator (indeed, strict inadmissibility results are quite rare even in the broader statistical
literature). In the high dimensional multivariate setting, one may draw a parallel with the inad-
missibility of the James–Stein regularized positive part estimator by the regularized estimator
proposed by [32]. The domination of the Tikhonov estimator by the linear hybrid estimator is
also surprising since in the multivariate setup, it is well known that the classical Tikhonov (ridge
regression) estimator is in fact a generalized Bayes estimator under squared error loss with Gaus-
sian errors and an appropriate Gaussian prior for the slope vector; it would therefore seem that
the result is an intrinsically functional effect.

The hybrid estimator we introduce (defined rigorously in Section 3) projects onto a finite
dimensional subspace Hr (as would a sieve estimator), but rather than discard the residual com-
ponent (i.e. the projection onto the orthogonal complement H⊥

r ), it retains it, and applies a ridge
regularisation to that and only that. The dimension r < ∞ of Hr does not grow with respect
to n, and only the ridge parameter ρ is sample-size dependent. We demonstrate in Section 3
that choosing Hr to be any eigenspace of K of dimension r < n yields an estimator that at-
tains the minimax MSE rate but in fact strictly improves upon the Tikhonov approach for large
enough samples, uniformly over β (Theorem 1 and Corollary 1). Section 4.1 exploits this ob-
servation in order to construct a practically feasible hybrid estimator, by empirical construction
of Hr . Section 4.2 establishes that the empirically constructed estimator also yields the same
strict improvement and rates. The practicalities of constructing the estimator are discussed in
detail Section 4.3, where recommendations are given on how to best choose the dimension r of
Hr as well as the ridge parameter ρ. The key message is that one ought to select r so that the
first r eigenvalues yield a mild condition index (λ1/λr ). Section 5 then treats the case where
the covariates are functions observed discretely on a grid, and shows that even in this case, the
hybrid estimator still enjoys the same properties and improvement in mean squared error over
the Tikhonov estimator in this setup. In Section 6, we conduct a simulation study that illustrates
that one can make considerable performance gains in practice, even for moderate sample sizes.
The proofs of our formal results are collected in Section 7. First, though, Section 2 introduces
some notation that will be employed throughout of the paper.

2. Preliminaries

As mentioned in the Introduction, H will be a real separable Hilbert space, assumed infinite
dimensional, with inner product 〈·, ·〉 : H × H → R, and induced norm ‖ · ‖ : H → [0,∞).
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Given a linear operator A : H → H, we will denote its adjoint operator by A∗, its Moore–
Penrose generalised inverse by A−, and its inverse by A−1, provided the latter is well defined.
The operator, Hilbert–Schmidt, and nuclear norms will respectively be

�A�∞ = sup
‖h‖=1

‖Ah‖, �A� =
√

trace
(
A∗A
)
, �A�1 = trace

(√
A∗A
)
.

It is well known that

�A�∞ ≤ �A� ≤ �A�1

for any bounded linear operator satisfying �A�1 < ∞. The identity operator on H will be de-
noted by I. For a pair of elements f,g ∈ H, the tensor product f ⊗ g : H → H will be defined
as the linear operator

(f ⊗ g)u = 〈g,u〉f, u ∈H.

The same notation will be used to denote the tensor product between two operators, so that for
operators A, B, and G, one has

(A ⊗ B)G = trace
(
B∗G
)
A.

Given an estimator δ of the slope parameter β ∈ H, we define the Mean Square Error (MSE) in
order to probe the performance of δ,

MSE(δ) = E‖δ − β‖2 = �
�E
{
(δ − β) ⊗ (δ − β)

}�
�

1.

In the usual setting of H = L2[0,1], this risk function reduces to the so-called Mean Integrated
Squared Error,

E

{∫ 1

0

(
δ(x) − β(x)

)2
dx

}
,

but of course our results will be valid for any separable Hilbert space H. We also note that all our
results hold verbatim if instead of the MSE, we consider the (weaker) Hilbert–Schmidt norm of
E{(δ − β) ⊗ (δ − β)} as the risk function.

3. Motivation: Multivariate plus functional regressors

To motivate our hybrid estimator, let X = Y + Z, where:

1. The covariance operator K1 of Y is of finite rank r .
2. The random elements Y and Z are uncorrelated.
3. The eigenspaces of K1 are orthogonal to those of the covariance K2 of Z.

Observe that such a decomposition always exists by the Karhunen–Loève theorem. The heuris-
tic now is that if Y and Z were observable, we would have a model with two orthogonal and
uncorrelated regressors, one multivariate, and one functional,

y = 〈X,β〉 + ε = 〈Y,β1〉 + 〈Z,β2〉 + ε,
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with β1 and β2 being the projections of β on the (orthogonal) ranges of K1 and K2. So, if
Y has a well-conditioned covariance K1, then instead of regularising the entire spectrum of
the covariance operator K of X, one should carry out two separate regressions: a multivariate
one, without regularisation, corresponding to the well-conditioned K1; and a functional one,
with Tikhonov regularisation, corresponding to the ill-conditioned K2. The point here is that
functional regression is not ill-conditioned as a result of poor design (as in the multivariate
case when covariates may be correlated); it is ill-conditioned by the mere fact that it is infi-
nite dimensional. But, in general, we should be able to extract a subspace on which it is well-
conditioned.

We now turn to transforming our heuristic to a concrete result. Write the spectra of the two
covariance operators K1 and K2 as

K1 =
r∑

j=1

λj1φj1 ⊗ φj1 & K2 =
∑
j≥1

λj2φj2 ⊗ φj2.

Define

β1 =
(

r∑
j=1

φj1 ⊗ φj1

)
β = P1β & β2 =

(∑
j≥1

φj2 ⊗ φj2

)
β = P2β

to be the projections of β into the eigenspaces of K1 and K2. Note that we must have β =
β1 + β2 for identifiablity so we henceforth assume that range(K) = H. Thus, P1 + P2 = I,
where I is the identity operator on H, and indeed 〈X,β〉 = 〈Y,β1〉 + 〈Z,β2〉. Now consider
the following modification of the population version of the Tikhonov penalised least squares
problem

min
β1,β2∈H

{
E
[
y −E[y] − 〈Y −E[Y ], β1

〉− 〈Z −E[Z], β2
〉]2 + ρ‖β2‖2}, (3.1)

where we only penalize the part of the norm of β that corresponds to β2. Direct calculation in
the above minimisation problem yields the unique minimiser

βmin = K−
1 C1 + K−

ρ,2C2,

where

C1 = E[yY ] −E[y]E[Y ], C2 = E[yZ] −E[y]E[Z], Kρ,2 = K2 + ρP2.

The form of the minimiser βmin motivates the following definition of a hybrid regularised
estimator of β in the oracle case. Assume that a sample (yi,Xi) is available, and the oracle
reveals the decompositions Xi = Yi + Zi into uncorrelated orthogonal components, as well as
their respective covariances (K1,K2). Define a hybrid estimator as

β̃HR = K−
1 C̃1 + K−

ρ,2C̃2, (3.2)
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where

C̃1 = n−1
n∑

i=1

(yi − y)(Yi − Y) with Y = n−1
n∑

i=1

Yi,

C̃2 = n−1
n∑

i=1

(yi − y)(Zi − Z) with Z = n−1
n∑

i=1

Zi.

On the other hand, the oracle version of the Tikhonov estimator is

β̃TR = K−1
ρ Ĉ, (3.3)

where Kρ = K + ρI and Ĉ = n−1∑n
i=1(yi − y)(Xi − X). Our first theorem shows that, since

the hybrid estimator makes explicit use of the additional information (the decomposition (Zi, Yi)

instead of just Xi ), it improves upon the Tikhonov estimator.

Theorem 1. Let X = Y +Z, where Y and Z are uncorrelated random elements with E(‖Y‖4) <

∞ and E(‖Z‖4) < ∞. Assume that the eigenspaces of the respective covariances K1 and K2 of
Y and Z are orthogonal. Further, assume that the 〈X,φj 〉’s are independent, where φj ’s are the
eigenfunctions of K . Then,

(a) For any fixed ρ > 0, MSE(β̃TR) > MSE(β̃HR) for all sufficiently large n.
(b) If we choose ρ = ρ(n) ∼ cn−γ for some γ ∈ (0,1/2] and a constant c > 0, we have

n2γ
{
MSE(β̃TR) − MSE(β̃HR)

}
> B(n) + o(1).

Here, B(n) converges to a positive constant if at least one of 〈β,φj1〉, j = 1,2, . . . , r is
non-zero, else it converges to zero as n → ∞.

The independence assumption in the above theorem obviously holds for Gaussian processes,
and for any process whose Karhunen–Lòeve expansion has independent coefficients. It can be
relaxed to requiring that E(

∏4
u=1〈X,φju〉lu ) =∏4

u=1 E(〈X,φju〉lu ) for lu’s satisfying 1 ≤ lu ≤ 4
and
∑4

u=1 lu ≤ 4. This can be viewed as a “pseudo-independence” condition, and similar as-
sumptions have been considered for analysis of high-dimensional data (see, e.g., Section 3 in
[11], Section 4 in [3]). As a direct consequence of part (b) of the above theorem, we have the
corollary.

Corollary 1. Under the conditions of Theorem 1 and in the setup of part (b) of that theorem, if
at least one of 〈β,φj1〉, j = 1,2, . . . , r is nonzero, there exists a constant c0 > 0 such that

MSE(β̃TR) − MSE(β̃HR) > c0n
−2γ

for all sufficiently large n. If 〈β,φj1〉 is uniformly zero for 1 ≤ j ≤ r , the two MSE norms are
asymptotically equal.
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Thus, in the oracle case, as long as β is at least partially expressed by the principal components
of Y , then the hybrid regularisation estimator will improve on the Tikhonov estimator – whether
ρ is held fixed, or allowed to decay polynomially in n, as one usually does. The next section
deals with carrying over this improvement to an empirically feasible estimator.

4. The hybrid estimator

In practice, the components Y and Z are unobservable, and their covariance operators K1 and
K2 are unknown. Still, we can replace them by their empirical versions, and consider whether
we can still improve upon the Tikhonov estimator by the hybrid approach when doing so. We will
focus on the case where Y is the projection of X onto its first r principal components, and Z =
X − Y , since this case admits straightforward empirical versions of all the quantities involved.
We first define the empirical version of the hybrid estimator (Section 4.1); next we establish its
superiority to Tikhonov regularisation (Section 4.2); and then, we discuss its (straightforward)
practical implementation (Section 4.3).

4.1. Definition

Given an i.i.d. sample X1, . . . ,Xn distributed as X, denote their empirical covariance and its
spectrum as

K̂ = 1

n

n∑
i=1

Xi ⊗ Xi =
n∑

i=1

λ̂j φ̂j ⊗ φ̂j .

Now define

Ŷi =
r∑

j=1

〈Xi, φ̂j 〉φ̂j = P̂1Xi and Ẑi = Xi − Ŷi = P̂2Xi, i = 1, . . . , n,

with P̂1 =∑r
i=1 φ̂i ⊗ φ̂i the projection onto span{φ̂1, . . . , φ̂r} and P̂2 = I − P̂1. Let us denote

the sample covariance operators of the Ŷi ’s and the Ẑi ’s as

K̂1 = 1

n

n∑
i=1

Ŷi ⊗ Ŷi & K̂2 = 1

n

n∑
i=1

Ẑi ⊗ Ẑi ,

respectively. Finally, let Ĉ1 and Ĉ2 be the empirical covariances between the proxy regressors
and the responses,

Ĉ1 = 1

n

n∑
i=1

(yi − y)

(
Yi − 1

n

n∑
i=1

Ŷi

)
, Ĉ2 = 1

n

n∑
i=1

(yi − y)

(
Zi − 1

n

n∑
i=1

Ẑi

)
.

From (3.2), it is clear that a natural definition of the hybrid regularisation estimator of β is:
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Definition 1 (Hybrid regularisation estimator). The hybrid regularisation estimator β̂HR is
defined as the solution to the penalised least squares problem

min
β1,β2∈H

n−1
n∑

i=1

(
yi − y − 〈Ŷi − Y ,β1〉 − 〈Ẑi − Z,β2〉

)2 + ρ‖β2‖2,

where β = β1 + β2 with β1 = P̂1β , β2 = P̂2β , Y = n−1∑n
i=1 Ŷi and Z = n−1∑n

i=1 Ẑi . It is
explicitly given by

β̂HR = K̂−
1 Ĉ1 + K̂−

ρ,2Ĉ2, (4.1)

where K̂ρ,2 = K̂2 + ρP̂2.

Remark 1. A priori, there is no reason why one should choose Ŷ to be the projection of X onto
the first r eigenfunctions: any collection of r eigenfunctions could be considered. In principle, we
choose r eigenfunctions of K̂ that: (1) yield a component Ŷ with a well-conditioned covariance
operator K̂1; (2) and capture a large part of the norm of β . Since β is unknown in practice,
(2) is impossible to control. Still, the whole point of fitting a functional linear model is the
understanding that β correlates well with the signal rather than the noise in X, and thus this
correlation is expected to be carried by the leading principal components of X, explaining our
choice of selecting the first r components, subject to a well-conditioning restriction.

4.2. Theoretical properties

We now turn to prove that both the gain in efficiency and the minimaxity observed in the ora-
cle setup also carry over to the practically feasible hybrid estimator. We will make use of the
following assumptions.

(A1) X is a centered Gaussian process.
(A2) The eigenvalues λ1 > λ2 > · · · of K are all positive. Also, for constants α > 1,

0 < c < C and j0 ≥ 1, we have cj−α ≤ λj ≤ Cj−α for all j ≥ j0.
(A3) For constants d > 0, η > 1/2 and j0 ≥ 1, we have |〈β,φj 〉| ≤ dj−η for all j ≥ j0.

The distributional assumption in Condition (A1) is only for simplicity of presentation and
can be relaxed to accommodate other distributions. In that case, we would need to assume
that E(‖X‖16) < ∞, that E(〈X,φj 〉4) ≤ Cλ2

j for all j ≥ 1 and a constant C > 0, and the

pseudo-independence condition similar to that mentioned earlier, i.e. that E(
∏4

u=1〈X,φju〉lu ) =∏4
u=1 E(〈X,φju〉lu ) for lu’s satisfying 1 ≤ lu ≤ 4 and

∑4
u=1 lu ≤ 16. These in particular hold

if X has the representation X =∑∞
j=1 λ

1/2
j Vjφj , where the Vj ’s are i.i.d. zero mean random

variables with finite moments (cf. the discussion before Corollary 1).
Conditions (A2) and (A3) have been used by [18] to obtain the rate of convergence of the

Tikhonov regularisation estimator in terms of its integrated mean squared error. The eigenvalue
decay regime considered in Condition (A2) corresponds to the so-called mildly ill-posed case.
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In the inverse problems and FDA literature, typically two different eigenvalue regimes are con-
sidered – (a) the mildly ill-posed case, when the eigenvalues decay at a polynomial rate, and (b)
the severely ill-posed case, when the eigenvalues decay exponentially (also known as the super-
smooth case). It is well known that the asymptotic properties of statistical procedures in inverse
problems (e.g., deconvolution, estimation of a slope parameter, etc.) depend very heavily on the
particular eigenvalue regime under consideration (see, e.g., [29], Chapter 1 in [1] etc. for the
general inverse problem and deconvolution literature). In functional data analysis, in particular,
while prediction is easier if the eigenvalues have faster decay, the converse is true for estimation
(see, e.g., [4,8,18]). The mildly ill-posed regime considered here is the standard setting in the
inverse problem literature – indeed this is also the regime that has exclusively been considered
for estimation in functional regression.

The interplay between α and η determines the degree of difficulty of estimating β . Clearly, the
larger the value of η, the easier is the estimation problem. If α is large, then the distribution of
X becomes almost finite dimensional. In that case, if η is small, then the estimation problem is
difficult if there are important components of β , namely, 〈β,φj 〉 corresponding to small values
of λj . This is because there is very little information on X in those directions, and thus those
components of β will be difficult to estimate. We will later see exactly how α and η determine the
precision in estimating β . Condition (A2) is sufficient to ensure that E(‖X‖2) =∑∞

j=1 λj < ∞,
which in turn implies that X is a (tight) random element in H. Condition (A3) ensures that
‖β‖2 < ∞.

Our first result compares the efficiency of the oracle version of the hybrid and Tikhonov esti-
mator to that of their empirical version.

Theorem 2. Suppose that conditions (A1)–(A3) hold, and α < 2η. Then,∣∣MSE(β̂HR) − MSE(β̃HR)
∣∣

= O(1)

[{
1

nρ1+ 1
α

+ ρm

}1/2( 1

nρ1+ 1
α

)1/2

+ 1

nρ1+ 1
α

] (4.2)

for any sequence ρ → 0 satisfying nρ2 → ∞ as n → ∞. Further,

MSE(β̂HR) = O(1)

{
1

nρ1+ 1
α

+ ρm

}
as n → ∞. Here m = (2η − 1)/α or m = 2 according as α > η − 1/2 or α < η − 1/2. Moreover,
analogous rates of convergence also hold for |MSE(β̂TR) − MSE(β̃TR)| and MSE(β̂TR).

The terms n−1ρ−1−1/α and ρm in the expression of MSE(β̂HR) given in the above theorem
clearly show the effects of the variance and the bias terms, respectively, in the estimation of β .
It also reveals that only the bias is affected by the rate of decay of the 〈β,φj 〉’s but not the
variance. This is expected because the variability in the estimation of β should purely depend on
the fluctuations in X, which depends on the rate of decay of the eigenvalues of the covariance
operator K of X.
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As a corollary, we can obtain rates of convergence when the ridge parameter ρ decays with n

in specific manners:

Corollary 2. Consider the setup of Theorem 2. Let c > 0 be a fixed constant. Then,

MSE(β̂HR)

=
{

O
(
n−(2η−1)/(α+2η)

)
if η − 1/2 < α < 2η and ρ ∼ cn

− α
α+2η ,

O
(
n−2α/(3α+1)

)
if α < η − 1/2 and ρ ∼ cn− α

3α+1

(4.3)

as n → ∞. Further, the same rates of convergence also hold for MSE(β̂TR).

The above corollary gives the rates of convergences of the hybrid regularisation estimator in
terms of its mean squared error under different regimes determined by α and η. These regimes
correspond to the different degrees of difficulty of the estimation problem in the functional linear
regression setting. The rates of decay of ρ to zero are chosen so as to optimize the rates of
convergence of the MSEs.

Remark 2. Note that the asymptotic rate of convergence of MSE(β̂TR) was proved in Theorem 2
in [18] under the restriction that α < η + 1/2 and ρ ∼ cn−α/(α+2η). The above corollary reveals
that this upper bound on the values of the decay rate of the eigenvalues of X can be relaxed.
Further, the same rate of convergence is in fact true for a wider class of values of α and η so long
as η − 1/2 < α < 2η. Note that [18] did not require α > η − 1/2.

Remark 3. [18] showed that the rate of convergence of MSE(β̂TR) is optimal in a minimax
sense under the conditions of Theorem 2 when 1 < α < η + 1/2 and ρ ∼ cn−α/(α+2η). From
Corollary 2, Remark 2 and the proof of equation (3.11) in [18], it follows that the hybrid regular-
isation estimator also enjoys the same minimax optimal rate of convergence for the same choice
of regularisation parameter in the regime max(1, η − 1/2) < α < 2η.

Remark 4. The spectral truncation estimator β̂ST studied by [18] is known to satisfy
MSE(β̂ST) > δn−(2η−1)/(α+2η) for some δ > 0 and sufficiently large n and that ISE(β̂ST) :=
‖β̂ST − β‖2 = Op(n−(2η−1)/(α+2η)) under appropriate conditions including 1 < α < 2η − 2
(see Theorem 1 in [18]). This rate is also the minimax rate of convergence in a concentration
probability sense. Now, it follows from Corollary 2 that when η − 1/2 < α < 2η, we have
ISE(β̂HR) := ‖β̂HR − β‖2 = Op(n−(2η−1)/(α+2η)). In particular, when λj ∼ cj−α for all large
j (so that both condition (A2) in our paper and condition (3.2) in [18] are satisfied) and when
max(1, η − 1/2) < α < 2η − 2, it follows that both of these two estimators have the same mini-
max rate of convergence in the concentration probability sense. Note that it is unknown whether
the spectral truncation estimator will attain the minimax rate of convergence in the MSE sense
like the hybrid and the Tikhonov estimators discussed in Remark 3.

Theorem 2 and Corollary 1 set the stage for our main result, showing that the hybrid estimator
can improve upon the Tikhonov estimator in a non-asymptotic sense, even in the empirical case:



1950 A. Chakraborty and V.M. Panaretos

Theorem 3. Suppose that the conditions of Theorem 2 hold. Let c > 0 be a fixed constant and
ρ ∼ cn−ε for some ε > 0. Also assume that at least one of 〈β,φj 〉, j = 1,2, . . . , r , is non-zero.
Then, there exists a constant κ0 > 0 such that

MSE(β̂TR) − MSE(β̂HR) > κ0n
−2ε

for all sufficiently large n if ε < α/(5α − 2η + 2) in case η − 1/2 < α < 2η or if ε < α/(3α + 1)

in case α < η − 1/2.

Although the hybrid estimator and the Tikhonov estimator enjoy the same rate of convergence
by Theorem 2, the latter is effectively rendered inadmissible by the hybrid estimator for a broad
range of choices of ρ, including choices arbitrarily close to the optimal one (as in Corollary 2) –
and this is true for all sample sizes above a threshold. It is illustrated in the simulations study in
Section 6, that this improvement can be sizeable, even for modest sample sizes. Moreover, it is
interesting to note that we can attain this improvement regardless of the choice of r may be, even
for r = 1 (provided, of course, that 〈β,φ1〉 �= 0 as the theorem requires). The domination result
in Theorem 3 can be viewed in the same light as the result on the domination of the ordinary
least squares estimator by the ridge regression estimator in the multivariate setting, which holds
for a whole range (depending on unknown population parameters) of values of the regularization
parameter (see Thm. 2 in [33]).

The proof of the Theorem reveals that the determining factor in the inadmissibility of the
Tikhonov estimator is the larger bias component compared to the hybrid estimator (see also
equation (1.4) in the proof of the oracle case provided in the Supplementary Material [10]). An
important requirement is that the choice of Y to be such that β is at least partially expressed by
the eigenfunctions of Y . Of course, how large the sample size has to be will depend on r and
also depend on the condition number of the covariance operator of Y . The latter is determined
by the relative magnitudes of the eigenvalues of Y , equivalently, the relative importance of the
associated eigenfunctions in explaining the variation in X.

Remark 5. Since in practice the regularization parameters are typically chosen in a data-
dependent manner (e.g. using either generalized cross-validation (GCV) or other methods, cf.
Section 4.3), it may be asked whether the hybrid estimator strictly dominates the Tikhonov es-
timator (i.e., in a non-asymptotic sense as in Theorem 3) with a data-dependent choice of the
tuning parameter. However, any result related to tuning parameters would most likely need to be
asymptotic (it would rely on establishing the asymptotic rate of the empirically chosen tuning pa-
rameter), and therefore in the very best case it seems that all that one could establish is that both
Tikhonov and hybrid regularisation achieve the same rate asymptotically under cross-validation.
Such results (including convergence rate results as in Corollary 2 with estimated regularisation
parameters) seem to require substantially novel analysis and beyond the scope of this paper.
A potentially more accessible result would be to show that the GCV choice of the tuning pa-
rameter yields the minimax rate for our estimator. Still, such questions appear to remain open
even for classical multivariate Tikhonov regularisation. Results involving asymptotics for a GCV
choice of regularization parameter ρ (see, e.g., [26,27,35,36]) involve inverse problems with re-
gression function Lif = Kf (xi), where the design points xi ’s are fixed (i.e., deterministic), f is
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a smooth function, and K is an appropriate compact operator or the identity operator in case of
spline smoothing. Even then, the tuning considered is with respect to the expected GCV statistic
rather than the GCV statistic itself, yielding a deterministic choice that depends on unknown
population parameters. In our case, a closed form of this expected value appears out of reach
due to the complicated involvement of estimators of eigenvalues and eigenfunctions in the ex-
pression, unlike the fixed design case (indeed cross-validation asymptotics for the random design
case do not appear to exist even in the classical multivariate regression setting). In the functional
case, there do not appear to be any such results as of yet, whatever the regularization method
may be. Convergence rates are typically obtained for some range of tuning parameters, and then
the practical implementation uses some form of data-driven choice.

4.3. Computational aspects

Algorithm 1 provides a the step-by-step construction of the hybrid estimator. In summary, our
recommendation is to fix an r by the condition index approach discussed in in Remark 1, and
to then choose ρ by generalized cross-validation (as in standard Tikhonov regularisation, see,
e.g., [38]). Going through the steps in Algorithm 1, one case see that there is no computational
overhead or added complexity relative to the construction of a spectral truncation or Tikhonov
estimator. An alternate, slightly more complex albeit fully automated procedure would be to use
a double generalized cross-validation for choosing both r and ρ.

It is worth remarking that one of the widely-used methods for choosing finitely many principal
components of X is to select the number required to capture the bulk of the trace of the empirical
covariance operator – a typical choice of threshold is that of 85% of the total variation in X (see

Algorithm 1 Construction of the hybrid estimator

(Step 0) Determine the eigenvalues λ̂j and eigenfunctions φ̂j of K̂ .
(Step 1) Fix a condition number L and choose r using the eigenvalues of K̂ as

r = sup
{
j ≥ 1 : (λ̂1/λ̂j )

1/2 ≤ L
}
.

(Step 2) Set Ŷi =∑r
j=1〈Xi, φ̂j 〉φ̂j and Ẑi = X − Ŷi , and compute

Ĉ1 = 1

n

n∑
i=1

(yi − y)

(
Yi − 1

n

n∑
i=1

Ŷi

)
& Ĉ2 = 1

n

n∑
i=1

(yi − y)

(
Zi − 1

n

n∑
i=1

Ẑi

)
.

(Step 3) For the chosen r , choose ρ by generalized cross-validation.
(Step 4) Use this value of ρ and the value of r obtained in Step 1 to compute β̂HR using (4.1),

β̂HR =
∑
j≤r

λ̂−1
j 〈Ĉ1, φ̂j 〉φ̂j +

∑
j>r

(λ̂j + ρ)−1〈Ĉ2, φ̂j 〉φ̂j .
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[24] and [31]). We shall later see in the simulation studies in Section 6 that this choice is far from
optimal, as it makes no reference to the condition number of the resulting multivariate regression.

Our counterproposal on choosing r guarantees that the covariance operator of Ŷ is well-
conditioned – the whole point of the hybrid estimator is to extract a component of the regression
that does not need regularisation, after all, and such components are in no way connected with
the cumulative variance explained. Condition indices and their maximum, which is called the
condition number, are well-known in the classical multivariate regression setup as indicators of
the degree of collinearity among the covariates, and more generally in numerical analysis as a
measure of the instability of a linear problem. A rule-of-thumb is that a condition number ≤ 30
indicates well-posedness (see, e.g., [20]). An alternative way to choose L could be to consider a
plot of the empirical condition indices and look for the “elbow”. With a pre-fixed L, it is obvious
why the choice of r should be large when the eigenvalues decay slowly, and why it should be
more conservative when they decay fast. Furthermore, since supj≥1 |λ̂j −λj | → 0 in probability

as n → ∞, it follows that sup{j ≥ 1 : [λ̂1/λ̂j ]1/2 ≤ L} → sup{j ≥ 1 : [λ1/λj ]1/2 ≤ L} in prob-
ability as n → ∞, that is, r is chosen consistently by this procedure. We shall see later in the
simulations that in some cases, this choice yields a better estimator in the MSE sense.

5. The case of discretely observed functions

For data in a function space, say, L2[0,1], it may happen that instead of observing the entire
curve X, one can only observe it on a grid, say,

0 ≤ t1 < t2 < · · · < tm ≤ 1.

Thus, the regressor at hand is an m-dimensional vector

X(m) = (X(t1),X(t2), . . . ,X(tm)
)′
.

In this setup, an approximation of the functional linear model considered in (1.1) is

y = α + m−1
m∑

p=1

X(tp)β(tp) + ε. (5.1)

We define β(m) = (β(t1), β(t2), . . . , β(tm))′. This setup of discretely observed data is closely re-
lated to the time-sampling model considered by [2] or the common design model considered by
[5] with the difference that we do not consider measurement errors in the discrete observations of
the Xi . We do not consider the case of irregular grids since this would require pre-smoothing of
the individual observations, and consequently, the asymptotic convergence rate results would de-
pend on the particular smoothing procedure used. The common grid approach allows us to study
the performance of the two regularisation procedures without relying on a specific smoothing
method, and hence independently of any external arbitrary choice.

In the discretely sampled setup considered above, the oracle and the empirical hybrid regulari-
sation estimators of β(m) are defined analogously and are denoted by β̃

(m)
HR and β̂

(m)
HR , respectively.



Hybrid regularisation 1953

Similarly, the oracle and the empirical Tikhonov estimators are denoted by β̃
(m)
TR and β̂

(m)
TR , re-

spectively.
In order to state results analogous to Theorems 2 and 3, we need to assume the following

modifications of assumptions (A2) and (A3). We denote the eigenvalue-eigenvector pairs of the
covariance matrix of X(m)/

√
m by (λ

(m)
j , φ

(m)
j ) for j = 1,2, . . . ,m.

(A2′) Suppose that λ
(m)
1 > · · · > λ

(m)
m > 0. Also, for constants α > 1, 0 < c′ < C′ and j ′

0 ≥ 1,

we have c′j−α ≤ λ
(m)
j ≤ C′j−α for all j ′

0 ≤ j ≤ m when m is sufficiently large.

(A3′) For constants d ′ > 0, η′ > 1/2 and j ′
0 ≥ 1, we have m−1/2|〈β(m),φ

(m)
j 〉| ≤

d ′{j−η′ + m−1} for all j ′
0 ≤ j ≤ m when m is sufficiently large.

In assumption (A3′), the parameter η′ is some function of the parameters α and η that appear in
assumptions (A2) and (A3) earlier. The two components in the inequality in assumption (A3′)
may be respectively interpreted as the contribution at the functional level and the error due to
discretization. For instance, when X is a standard Brownian motion, and if β lies in its RKHS
and satisfies assumption (A3), then η′ = α for α ≤ η and η′ = η for η < α < 2η − 1 (see the
Supplementary Material [10] for a proof of this fact). Note that the condition α < 2η − 1 is
needed to ensure that β lies in the RKHS of the standard Brownian motion. Also, using the
arguments in [2], it can be shown that condition (A2′) holds in this case (see Appendix A in the
Supplementary Material of [2]).

Theorem 4 now shows that, even when we have discretely observed data, the hybrid
and the Tikhonov estimators enjoy the same properties as their fully functional counter-
parts provided that the grid size grows to infinity sufficiently fast. We focus on the m-
dimensional version of the slope parameter since in the discrete observation setting, it is this
m-dimensional estimator that is typically used in practice. One could of course smooth it using
any smoothing technique, but we prefer to give a result that is independent of external arbitrary
choices.

Theorem 4. Suppose that conditions (A1), (A2′) and (A3′) hold, and α < 2η′. Also assume that
m > ρ−2. Then,

m−1
∣∣MSE
(
β̂

(m)
HR

)− MSE
(
β̃

(m)
HR

)∣∣
= O(1)

[{
1

nρ1+ 1
α

+ ρM

}1/2( 1

nρ1+ 1
α

)1/2

+ 1

nρ1+ 1
α

] (5.2)

for any sequence ρ → 0 satisfying nρ2 → ∞ as n → ∞. Further,

m−1MSE
(
β̂

(m)
HR

)= O(1)

{
1

nρ1+ 1
α

+ ρM

}
as n → ∞. Here M = (2η′ − 1)/α or M = 2 according as α > η′ − 1/2 or α < η′ − 1/2.
Moreover, analogous rates of convergence also hold for m−1|MSE(β̂

(m)
TR ) − MSE(β̃

(m)
TR )| and
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m−1MSE(β̂
(m)
TR ). Thus,

m−1MSE
(
β̂

(m)
HR

)
=
{

O
(
n−(2η′−1)/(α+2η′)) if η′ − 1/2 < α < 2η′ and ρ ∼ cn

− α
α+2η′ ,

O
(
n−2α/(3α+1)

)
if α < η′ − 1/2 and ρ ∼ cn− α

3α+1

as n → ∞. Further, the same rates of convergence also hold for m−1MSE(β̂
(m)
TR ).

Note that in the above theorem, the condition m > ρ−2 implicitly specifies a rate of growth of
m with the sample size n. Indeed, since ρ depends on n, the previous condition puts a restriction
on the sampling rate m/n, which has to be greater than n−1ρ−2. This rate of course depends on
the rate of decay of ρ, the amount of regularisation involved.

Finally, our last result shows that, similar to the case of perfect functional observations, the
hybrid estimator outperforms the Tikhonov estimator for sufficiently large sample sizes and suit-
ably chosen regularisation even when observations are discrete.

Theorem 5. Suppose that the conditions of Theorem 4 hold. Let c > 0 be a fixed constant and
ρ ∼ cn−ε for some ε > 0. Also assume that at least one of 〈β,φj 〉, j = 1,2, . . . , r , is nonzero.
Then, there exists a constant θ0 > 0 such that

m−1{MSE
(
β̂

(m)
TR

)− MSE
(
β̂

(m)
HR

)}
> θ0n

−2ε

for all sufficiently large n if ε < α/(5α−2η′ +2) in case η′ −1/2 < α < 2η′ or if ε < α/(3α+1)

in case α < η′ − 1/2.

The proof of Theorem 5 can be developed in the same way as that of the proof of Theorem 3
and is thus omitted.

6. Simulation study

We now turn to the assessment of the practical performance of the hybrid regularisation estimator
relative to the Tikhonov estimator by means of a simulation study. To this aim, we shall consider
the same simulation framework considered in [18] and [38]. Take H = L2[0,1], the space of
square-integrable real functions on the interval [0,1], with the usual inner product. Let X be
defined via its Karhunen–Loève expansion as

X =
50∑

j=1

γjZjφj ,

with the Zj ’s being i.i.d. uniform random variables on [−31/2,31/2], φ1(t) = 1 and φj (t) =
21/2 cos(jπt) for t ∈ [0,1]. Further, γj = (−1)j+1j−α/2 for j ≥ 1, and we choose α to either be
equal to 1.1 or 2. These two values of α correspond to slow and fast decays of the eigenvalues
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of X. Let b1 = 1 and bj = 4(−1)j+1j−2 for j = 2,3, . . . ,50. We have chosen three different
kinds of slope function: (a) β = β1 =∑50

j=1 bjφj , (b) β = β2 =∑5
j=1 bjφj , and (c) β = β3 =∑50

j=6 bjφj . Note that in cases (b) and (c) above, β is expressed by two mutually orthogonal
subcollections of eigenfunctions of X. We have considered these two choices of β to study how
the parsimony of β in fewer or more eigenfunctions of X influences the performance of the hybrid
estimator. The sample size is n = 100. The distribution of the error variable ε in the functional
regression model is standard Gaussian. The X’s are evaluated at 50 equispaced grid points in
[0,1]. All the estimated mean squared errors are averaged over 1000 Monte-Carlo replications.

6.1. Comparison of MSEs of hybrid and Tikhonov estimator over various
choices of tuning parameters

Figure 1 gives the plots of the MSEs of the hybrid and the Tikhonov estimators for different
choices of ρ. In each plot, we have considered the mean squared errors of the hybrid estimator
for every r = 1,2, . . . ,5. For the Tikhonov estimator, the smallest value of the mean squared is
designated by a triangle. For the hybrid estimator, the smallest value of the mean squared error
for each choice of r is marked by a circle. We also point out the smallest mean squared error
across the different choices of r by a star. In all of the above cases, the optimal values of ρ and r

can be read from the plot and we do not mark them to avoid clutter.
The top four plots in Figure 1 show that the optimal value of the mean squared error is

markedly smaller for the hybrid estimator than for the Tikhonov estimator with the ratio be-
tween the two mean squared errors being about 2 and 1.4 for α = 1.1 and 2, respectively for both
β = β1 and β2 (see Table 1). It can also be remarked that the optimal mean squared error cor-
responding to the hybrid estimator can also improve upon the optimal Tikhonov mean squared
error even for some values of r that are suboptimal. In fact, the difference in each case is sta-
tistically significant in the following sense – the two mean squared errors, which are averages
of independent Monte Carlo iterations, are significantly different, when a large sample test of
difference of two means is applied. These observations lend support to Theorem 3. In the plots in
the last row in Figure 1, where β = β3, the minimum mean squared errors of the two estimators
are not significantly different. This does not contradict Theorem 3 since β3 does not satisfy the
assumption in that theorem for any r = 1,2, . . . ,5.

The first two choices of β are at least partially expressed by the eigenfunctions associated with
the five largest eigenvalues of X. Note that these eigenvalues explain only about 56% of the total
variation of X if α = 1.1, while this percentage is about 90% if α = 2. Thus, the performance of
the hybrid estimator does not seem to depend much on whether or not the eigenvalues associated
with the eigenfunctions expressing β explain a large amount of the total variation of X. It is
also observed that if we had chosen r by the “85%-rule”, then one would end up choosing more
principal components compared to the optimal value of r found in the simulation studies for each
value of α and β = β1 or β2. Further, the optimal number of principal components is 1 for both
values of α when β = β3. These findings indicate that one should generally not use the “85%-
rule” for choosing r in the construction of the hybrid estimator. Further, the simulation studies
also confirm that when the eigenvalues of X decay slowly (well-conditioned regime), it is better
to choose a higher value of r . By doing so, we make substantial gains if β is at least partially



1956 A. Chakraborty and V.M. Panaretos

Figure 1. Plots of the MSEs of the Tikhonov estimator (solid curves) and the hybrid regularisation estima-
tor for r = 1 (dashed curves), r = 2 (dotted curves), r = 3 (dot-dashed curves), r = 4 (long-dashed curves)
and r = 5 (two-dashed curves). The plots in the left and the right columns correspond to α = 1.1 and 2,
respectively. The plots in the top, middle and bottom rows correspond to β1, β2 and β3, respectively.
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Table 1. MSEs of the hybrid regularisation, the Tikhonov regularisation and the spectral truncation estima-
tors when n = 100

β α MSEGCV
ST MSEtrue

ST MSEGCV
TR MSEtrue

TR MSEGCV
HR MSEtrue

HR

Well-spaced
β1 1.1 0.285 0.272 0.773 0.516 0.346 0.26

2 0.296 0.286 0.608 0.445 0.311 0.274

β2 1.1 0.271 0.247 0.763 0.494 0.357 0.24
2 0.252 0.241 0.689 0.409 0.284 0.234

β3 1.1 0.052 0.05 0.057 0.055 0.066 0.063
2 0.05 0.049 0.046 0.045 0.052 0.051

Closely-spaced
β1 1.1 1.09 0.857 1.054 0.888 0.935 0.851

2 0.949 0.854 0.821 0.694 0.725 0.697

β2 1.1 1.055 0.822 1.015 0.835 0.887 0.808
2 0.896 0.813 0.763 0.647 0.681 0.647

β3 1.1 0.051 0.05 0.045 0.043 0.058 0.051
2 0.049 0.048 0.046 0.043 0.051 0.05

expressed by those r eigenfunctions, and we will only perhaps lose out slightly otherwise. On the
other hand, if the eigenvalues of X decay fast (ill-conditioned regime), then a more conservative
choice should be used (see Figure 1). This is consistent with the choice of r using condition
numbers that was recommended in Section 4.3.

We also observe that the mean squared error of the hybrid estimator for appropriately chosen
r is significantly smaller than that of the Tikhonov estimator for all values of ρ greater than the
optimal one for the latter estimator, which is small except when β = β3. In that case, for all
ρ > 0.2, the mean squared errors of the two estimators are almost coincident for an appropriately
chosen r . From the simulation studies, it seems that the hybrid estimator acts as a safeguard
against over-estimation. This is in contrast to the Tikhonov estimator which is found to be much
more sensitive to choice of large values of ρ when β = β1 or β2 (see Figure 1).

6.2. Comparison of MSEs of hybrid, Tikhonov and spectral truncation
estimator using specific choices of tuning parameters

We next compare the MSEs of the hybrid regularisation estimator with that of the Tikhonov
regularisation estimator as well as the spectral truncation estimator when the regularization pa-
rameters r and ρ in the hybrid estimator are chosen using the fully automated double cross-
validation technique discussed in Section 4.3 and the regularisation parameter involved in each
of the other two estimators is also chosen using cross-validation. Later in this subsection, we will
also provide a similar comparison when the parameter r in the hybrid estimator is chosen using
a user-specified condition number L as outlined in Algorithm 1 in Section 4.3.
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The sample sizes used for the above studies are n = 50,100 and 300. Also, we have in-
cluded another choice of γj ’s in addition to that used in the previous subsection: γ1 = 1,
γj = 0.2(−1)j+1(1 − 0.0001j) if 2 ≤ j ≤ 4 and γ5j+k = 0.2(−1)5j+k+1{(5j)−α/2 − 0.0001k}
for j ≥ 1 and 0 ≤ k ≤ 4. As in Section 6, we have chosen α = 1.1 or 2. This new set of γj ’s
generate “closely-spaced” eigenvalues and was also considered by [18] and [38]. The choice of
the γj ’s considered towards the beginning of this section leads to“well-spaced” eigenvalues. It
is known that the spectral truncation estimator has better (worse) performance compared to the
Tikhonov regularisation estimator in the “well-spaced” (“closely-spaced”) scenario (see [18]).

Table 1 gives the MSEs of the three estimators (averaged over 1000 Monte-Carlo iterations,
namely, (1000)−1∑1000

i=1 ‖β̂i − β‖2 with β̂i being the estimator in the ith iteration computed
using the entire sample) for the simulated models considered earlier when n = 100. In Table 1,
the “true MSE” refers to the minimum MSE obtained under each model when the minimization
is done over a range of tuning parameter values (i.e., the estimator and thus the MSE is com-
puted for all choices of tuning parameters in that range). The “GCV” MSE is computed with the
GCV choice of the tuning parameters. The results for n = 50 and n = 300 are reported in the
Supplementary Material [10]. The Monte-Carlo standard deviations of the MSEs are mostly of
the order of 10−3 with some exceptions, but even these do not exceed 0.019. All the significance
statements made later take these standard deviations into account.

It is observed from Table 1 that under the well-spaced scenario, the MSEs (true as well as
cross-validated) of the hybrid estimator are significantly smaller than those of the Tikhonov es-
timator for β = β1 and β2. Somewhat surprisingly, the true MSEs of the hybrid estimator and
the spectral estimator are not dissimilar. Although the cross-validation MSE of the spectral esti-
mator for β1 as well as β2 is significantly smaller than that of the hybrid estimator for α = 1.1,
these MSEs are quite close when α = 2. In the closely-spaced case, the cross-validation MSEs
of the hybrid estimator are significantly smaller than those of the spectral and the Tikhonov
estimators for all choices of α under β1 and β2. For these β’s, the true MSEs of the spectral
estimator and hybrid estimator are comparable for α = 1.1, but the former become significantly
larger when α = 2. For β = β3, it is found that the MSEs (true as well as cross-validated) of the
three estimators are not significantly different from one another when α = 2. In case α = 1.1, the
cross-validated MSE of the hybrid estimator is marginally larger than those of other two estima-
tors. Further, the true MSE of the hybrid estimator is marginally larger than that of the spectral
estimator in the well-spaced scenario. As mentioned in the earlier simulation study, these find-
ings do not contradict the domination result in Theorem 3. It seems that in both the well-spaced
and the closely spaced situations, the cross-validation method for ρ is slightly unstable when the
eigenvalues decay slowly. This may be attributed to the fact that the cross-validation estimate
is based on prediction error, whose difficulty reduces as the eigenvalues decay faster (see the
discussion in p. 3428 in [38]).

We next compare the MSEs of the hybrid estimator under the above models when the es-
timator is computed using the algorithm given in Section 4.3 for two choices of L, namely,
L = 5 and L = 10. These choices are made by keeping in mind the eigenvalue sequence used
in the simulations. The MSEs are reported in Table 2 for both the well-spaced and the closely-
spaced regimes when n = 100. It is observed that for the closely-spaced regime, the MSEs for
both choices of L do not differ significantly from the MSEs obtained using the automated dou-



Hybrid regularisation 1959

Table 2. MSEs of the hybrid regularisation estimator when n = 100

Well-spaced Closely-spaced

β α L = 5 L = 10 L = 5 L = 10

β1 1.1 0.267 0.349 0.948 0.936
2 0.321 0.347 0.706 0.701

β2 1.1 0.248 0.388 0.854 0.863
2 0.296 0.315 0.679 0.658

β3 1.1 0.156 0.179 0.051 0.052
2 0.089 0.147 0.05 0.052

ble cross-validation method earlier. The situation is very different in the well-spaced regime.
Here, the MSEs for specified values of L are worse than the MSEs using the double cross-
validation method when β = β3, and the increase is even more when L = 10 compared to
L = 5. This is in line with our findings in the plots in the third row of Figure 1, where higher
values of r resulted in increased MSEs of the hybrid estimator. When β = β3, a very con-
servative choice of r is needed than those obtained using L = 5 or L = 10. Indeed, as seen
from Figure 1, r = 1 is optimal in this case. For the other choices of β , the MSEs for both
L = 5 and L = 10 are slightly larger than the MSEs obtained earlier when α = 2, although be-
tween these two choices of L, the MSEs are quite similar. This is because a faster decay of
the eigenvalues implies that the covariance is more ill-conditioned so that there is a delicate
estimation bias-variance trade-off between choosing a higher condition number (increased vari-
ance but reduced bias) and a lower condition number (increased bias but reduced variance).
However, when α = 1.1 and L = 5, the MSEs are very close to the true MSEs. The results
for n = 50 and n = 300 are very similar and we report them in the Supplementary Material
[10].

The investigation done so far in this section indicates that when β is spanned by all eigenfunc-
tions or at least has significant contribution from the leading eigenfunctions, then the condition
number choice of r is in general better. On the other hand, the double cross-validation method
for choosing both r and ρ may be preferred if one has no such prior knowledge about β and
wants to safeguard against estimation bias. Also, the choice of L should be done by looking at
the scree-plot of the empirical eigenvalues, which will give information about whether the spec-
trum is well-spaced or closely-spaced. This is useful in deciding how large L should be in order
to balance the bias and the variance in estimation.

Sometimes in practice, the functional covariate may be observed with error, that is, instead
of observing Xi(t), we observe Wi(t) = Xi(t) + ξi,t , where {ξi,t ; t ∈ [0,1]} is a collection of
i.i.d. standard Gaussian errors independent of the Xi ’s. The above equality in only formal (see
Section 2 of the Supplementary Material [10] for more details). We have also compared the per-
formance of the estimators under this setting, and the results are reported in the Supplementary
Material [10].
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7. Proofs of formal statements

In order to prove Theorem 2, we first prove a lemma that will allow us to connect the Fourier
coefficient decay of β , the eigenvalue decay of K , and the ridge parameter ρ.

Lemma 1. Suppose that λ1 > λ2 > · · · > 0 is a sequence of reals and ρ > 0. Assume that the
λj ’s satisfy Assumption (A2) in Section 4.2 for some α > 1 and for all sufficiently large j ≥ 1. Let
{bj }j≥1 be another sequence of reals such that |bj | ≤ j−η for some η > 0 and for all sufficiently
large j . Then, for any b ≥ a ≥ 0 and any c ≥ 0 with 2cη + aα > 1, we have

∞∑
j=1

b2c
j λa

j /(λj + ρ)b ≤ const.ρ
2cη
α

−b+a− 1
α

if 2cη < α(b − a) + 1. Further, if 2cη > α(b − a) + 1, then supρ>0
∑∞

j=1 b2c
j λa

j /(λj + ρ)b =∑∞
j=1 b2c

j λa
j /λ

b
j < ∞.

Proof. Consider the case when 2cη < α(b − a) + 1, and fix J = ρ−1/α . Note that

∑
j>J

b2c
j λa

j

(λj + ρ)b
≤ const.ρ−b

∑
j>J

b2c
j λa

j ≤ const.ρ−b
∑
j>J

j−2cη−aα

≤ const.ρ−b

∫ ∞

J

x−2cη−aα dx ≤ const.ρ
2cη
α

−b+a− 1
α .

Also,

∑
j≤J

b2c
j λa

j

(λj + ρ)b
≤ const.

∑
j≤J

b2c
j λ−b+a

j ≤ const.
∑
j≤J

j−2cη+α(b−a)

≤ const.
∫ J

0
x−2cη+α(b−a) dx ≤ const.ρ

2cη
α

−b+a− 1
α .

This completes the proof of the first part of the lemma.
Next consider the case when 2cη > α(b − a) + 1. Note that

∑∞
j=1 b2c

j λa
j /(λj + ρ)b ≤∑∞

j=1 b2c
j λ−b+a

j for all ρ > 0. Further,

∞∑
j=1

b2c
j λ−b+a

j ≤ const.
∞∑

j=1

j−2cη+α(b−a) < ∞.

This proves the second part of the lemma. �

Proof of Theorem 2. As in the oracle case, define Yi =∑r
j=1〈Xi,φj 〉φj and Zi = Xi − Yi

for all i = 1,2, . . . , n (these random variables are not observed in practice). By choice of the
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Yi ’s and the Zi ’s, their population covariance operators are K1 =∑r
j=1 λjφj ⊗ φj and K2 =∑r

j=r+1 λjφj ⊗φj , respectively. So, the corresponding eigenspaces are orthogonal. Also, define
Kρ,2 = K2 + ρP2.

Now, observe that

K̂−
ρ,2 − K−

ρ,2 = K̂−1
ρ − K−1

ρ +
r∑

j=1

(λj + ρ)−1φj ⊗ φj −
r∑

j=1

(λ̂j + ρ)−1φ̂j ⊗ φ̂j .

Define F̂a =∑r
j=1(λj +a)−1φj ⊗φj −∑r

j=1(λ̂j +a)−1φ̂j ⊗ φ̂j for any a ≥ 0. In this notation,

K̂−
1 − K−

1 = −F̂0. Also, Ĉ1 − C̃1 = (P̂1 − P1)Ĉ and Ĉ2 − C̃2 = (P̂2 − P2)Ĉ = (P1 − P̂1)Ĉ.
Note that

β̂HR = β̃HR +
8∑

l=1

Ul,

where

U1 = (K̂−
1 − K−

1

)
(Ĉ1 − C̃1) = −F̂0(P̂1 − P1)Ĉ,

U2 = (K̂−
ρ,2 − K−

ρ,2

)
(Ĉ2 − C̃2) = (K̂−1

ρ − K−1
ρ

)
(P1 − P̂1)Ĉ + F̂ρ(P1 − P̂1)Ĉ,

U3 = K−
1 (Ĉ1 − C̃1) = K−

1 (P̂1 − P1)Ĉ,

U4 = K−
ρ,2(Ĉ2 − C̃2) = K−

ρ,2(P1 − P̂1)Ĉ,

U5 = (K̂−
1 − K−

1

)
(C̃1 − C1) = −F̂0(C̃1 − C1),

U6 = (K̂−
ρ,2 − K−

ρ,2

)
(C̃2 − C2) = (K̂−1

ρ − K−1
ρ

)
(C̃2 − C2) + F̂ρ(C̃2 − C2),

U7 = (K̂−
1 − K−

1

)
C1 = −F̂0C1,

U8 = (K̂−
ρ,2 − K−

ρ,2

)
C2 = (K̂−1

ρ − K−1
ρ

)
C2 + F̂ρC2.

Putting the pieces together, we get

E
{
(β̂HR − β) ⊗ (β̂HR − β)

}
= E
{
(β̃HR − β) ⊗ (β̃HR − β)

}+E

{(
8∑

l=1

Ul

)
⊗
(

8∑
l=1

Ul

)}

+E

{
(β̃HR − β) ⊗

(
8∑

l=1

Ul

)}
+E

{(
8∑

l=1

Ul

)
⊗ (β̃HR − β)

}
.
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So,

MSE(β̂HR) = MSE(β̃HR) +E

(∥∥∥∥∥
8∑

l=1

Ul

∥∥∥∥∥
2)

+ 2E

(〈
8∑

l=1

Ul, β̃HR − β

〉)
.

Using the Cauchy–Schwarz inequality, one has∣∣MSE(β̂HR) − MSE(β̃HR)
∣∣

≤ O(1)

[
8∑

l=1

E
(‖Ul‖2)+E

1/2{‖β̃HR − β‖2}{ 8∑
l=1

E
(‖Ul‖2)}1/2]

.
(7.1)

Note that E{‖β̃HR − β‖2} = MSE(β̃HR) so that it can be obtained from the general expression
in equation (1.3) in the Supplementary Material [10]. The second term in the right-hand side
of equation (1.3) in the Supplementary Material [10] equals (by the definition of Z1 and the
assumptions in the theorem)

n−1
∞∑

j=r+1

(λj + ρ)−2[〈β,φj 〉2λ2
j + λj

{〈Kβ,β〉 + σ 2}]

= O
(
n−1)[1 +

∞∑
j=r+1

λj

λj + ρ2

]

= O(1)

nρ1+ 1
α

.

(7.2)

Here, the last equality follows from Lemma 1 by taking a = 1, b = 2 and c = 0 in the statement
of that lemma. It also follows from Lemma 1 by taking a = 0, b = 2 and c = 1 that

∞∑
j=r+1

(λj + ρ)−2〈β,φj 〉2 = O
(
ρL
)
, (7.3)

where L = (2η − 1)/α − 2 or L = 0 according as 2η < 2α + 1 or 2η > 2α + 1. Put m = L + 2.
So, the third term in the right hand side of equation (1.3) in the Supplementary Material [10] is
O(ρm), where m = (2η − 1)/α or m = 2 according as α > η − 1/2 or α < η − 1/2. Combining
this bound with (7.2) and the fact that first term in the right-hand side of equation (1.3) in the
Supplementary Material [10] is O(n−1), we obtain

E
{‖β̃HR − β‖2}= O(1)

{
1

nρ1+ 1
α

+ ρm

}
, (7.4)

where m = (2η − 1)/α or m = 2 depending on whether α > η − 1/2 or α < η − 1/2.



Hybrid regularisation 1963

We will now consider bounds for E(‖Ul‖2) for l = 1,2, . . . ,8. First note that for any a ≥ 0,
we have

F̂a = −
r∑

j=1

{
(λ̂j + a)−1 − (λj + a)−1}(φ̂j ⊗ φ̂j )

−
r∑

j=1

(λj + a)−1{φ̂j ⊗ (φ̂j − φj ) + (φ̂j − φj ) ⊗ φj

}

⇒ �F̂a� ≤
r∑

j=1

∣∣(λ̂j + a)−1 − (λj + a)−1
∣∣+ 2

r∑
j=1

(λj + a)−1‖φ̂j − φj‖.

Some straightforward but tedious moment calculations yield E{�K̂ − K�8} = O(n−4) so that
E{�K̂ − K�4} = O(n−2). Thus, using Lemma 2.2 and 2.3 in [22], we have that for any a ≥ 0

E
{�F̂a�4}= O

(
n−2) (7.5)

as n → ∞. We will use this fact often in the proof. We will also use the fact that

E
{�P̂1 − P1�8}
≤ E

{
�
�
�
�

r∑
j=1

{
φ̂j ⊗ (φ̂j − φj ) + (φ̂j − φj ) ⊗ φj

}��
�
�

8
}

≤ O(1)

r∑
j=1

E
{‖φ̂j − φj‖8}≤ O(1)E

{�K̂ − K�8}= O
(
n−4)

(7.6)

as n → ∞. The third inequality follows from Lemma 2.3 in [22].
Note that E(‖U1‖2) ≤ O(1)E1/2{�F̂0�4∞}E1/4{�P̂1 −P1�8∞}E1/4{‖Ĉ‖8}. It directly follows

that E{‖C̃‖8} = O(1) as n → ∞. Thus using (7.5) and (7.6) along with the fact that the operator
norm is bounded above by the Hilbert–Schmidt norm, we have

E
(‖U1‖2)= O

(
n−2) (7.7)

as n → ∞.
Next note that E(‖U3‖2) ≤ �K−

1 �2∞E1/2{�P̂1 − P1�4}E1/2{‖Ĉ‖4}. Using the fact that
�K−

1 �∞ = λ−1
r , we get that

E
(‖U3‖2)= O

(
n−1) (7.8)

as n → ∞.
Next, note that E(‖U5‖2) ≤ E1/2{�F̂0�4}E1/2{‖C̃1 − C1‖4}. It is easy to show that E{‖C̃1 −

C1‖4} = O(n−2) as n → ∞. So, it follows from (7.5) that

E
(‖U5‖2)= O

(
n−2). (7.9)
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Similar calculations also show that

E
(‖U7‖2)= O

(
n−1) (7.10)

as n → ∞. Next, observe that

E
(‖U6‖2)≤ 2E1/2{�F̂ρ�4}E1/2{‖C̃2 − C2‖4}

+ 2E
{∥∥(K̂−1

ρ − K−1
ρ

)
(C̃2 − C2)

∥∥2}. (7.11)

From the fact that E{‖C̃2 − C2‖4} = O(n−2) as n → ∞ and using (7.5), it follows that the first
term on the right-hand side of (7.11) is O(n−2) as n → ∞. Further,

E
{∥∥(K̂−1

ρ − K−1
ρ

)
(C̃2 − C2)

∥∥2}
≤ E
{�K−1

ρ �∞
∥∥(K̂ − K)K−1

ρ (C̃2 − C2)
∥∥2}

≤ ρ−2E1/2{�K̂ − K�4}E1/2{∥∥K−1
ρ (C̃2 − C2)

∥∥4}
≤ O
(
n−1ρ−2)[E1/2{∥∥K−

ρ,1(C̃2 − C2
∥∥4}+ E1/2{∥∥K−

ρ,2(C̃2 − C2)
∥∥4}],

(7.12)

where K−
ρ,1 = ∑r

j=1(λj + ρ)−1(φj ⊗ φj ). The last inequality also uses the bound for

E{�K̂ − K�4∞} obtained for deriving (7.19).
Now, using the fact that for any j = r + 1, r + 2, . . . , we have E{〈C̃2 − C2, φj 〉4} =

O(n−2)E2{〈y1Z1 − K2β,φj 〉2} = O(n−2){〈β,φj 〉2λ2
j + λj (σ

2 + 〈Kβ,β〉)}2, we get that

E
{∥∥K−

ρ,2(C̃2 − C2)
∥∥4}

= E

[{ ∞∑
j=r+1

(λj + ρ)−2〈C̃2 − C2, φj 〉2

}2]

= E

{ ∞∑
j1,j2=r+1

(λj1 + ρ)−2(λj2 + ρ)−2〈C̃2 − C2, φj1〉2〈C̃2 − C2, φj2〉2

}

≤
∞∑

j1,j2=r+1

(λj1 + ρ)−2(λj2 + ρ)−2E1/2{〈C̃2 − C2, φj1〉4}E1/2{〈C̃2 − C2, φj2〉4}

≤ O
(
n−2)[ ∞∑

j=r+1

(λj + ρ)−2{〈β,φj 〉2λ2
j + λj

(
σ 2 + 〈Kβ,β〉)}]2

≤ O
(
n−2)[1 +

{ ∞∑
j=r+1

(λj + ρ)−2λj

}2]
= O
(
n−2ρ−2−2/α

)
,
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by an application of Lemma 1. Now, using (7.11) and (7.12), we get that

E
(‖U6‖2)= o

(
n−1ρ−1−1/α

)
(7.13)

as n → ∞.
Next note that E(‖U8‖2) ≤ E{‖(K̂−1

ρ −K−1
ρ )C2‖2}+E{‖F̂ρC2‖2}. From earlier calculations

and using (7.5), it follows that E{‖F̂ρC2‖2} = O(n−1) as n → ∞. Next, note that

E
{∥∥(K̂−1

ρ − K−1
ρ

)
C2
∥∥2}= E

{∥∥K̂−1
ρ

(
K̂ − K

)
K−1

ρ C2
∥∥2}

≤ E1/2{�K̂−1
ρ Kρ�4∞

}
E1/2{∥∥K−1

ρ

(
K̂ − K

)
K−1

ρ C2
∥∥4}.

Observe that �K̂−1
ρ Kρ�∞ = �K̂−1

ρ (Kρ − K̂ρ) + I�∞ ≤ ρ−1�K − K̂�∞ + 1 ≤
ρ−1�K̂ −K�+1. So, we have E{�K̂−1

ρ Kρ�4∞} ≤ 1+ρ−4
E{�K̂ −K�4} = 1+O(n−2ρ−4) =

O(1) since nρ2 → ∞. We have

E
{∥∥K−1

ρ (K̂ − K)K−1
ρ C2
∥∥4} = E

[ ∞∑
j=1

〈
K−1

ρ (K̂ − K)K−1
ρ C2, φj

〉2]2

= E

[ ∞∑
j=1

〈
(K̂ − K)K−1

ρ C2,K
−1
ρ φj

〉2]2

= E

[ ∞∑
j=1

〈
(K̂ − K)K−1

ρ K2β, (λj + ρ)−1φj

〉2]2

.

We denote the above expectation by T . Now,

T =
∞∑

j1,j2=1

∞∑
l1,l2,l3,l4=r+1

[ ∏4
u=1(〈β,φlu〉λlu)

(λj1 + ρ)2(λj2 + ρ)2
∏4

u=1(λlu + ρ)

×E

{
2∏

i=1

〈
(K̂ − K)φj1 , φlu

〉 4∏
i=3

〈
(K̂ − K)φj2 , φlu

〉}]
.

(7.14)

Direct calculation yields that if j1 = j2 in the expression of T above, then

E

{
2∏

i=1

〈
(K̂ − K)φj1 , φlu

〉 4∏
i=3

〈
(K̂ − K)φj2 , φlu

〉}

≤ O
(
n−2){[λ2

j1
1{j1 = l1 = l2} + λj1λl11{j1 �= l1 = l2}

]
× [λ2

j1
1{j1 = l3 = l4} + λj1λl31{j1 �= l3 = l4}

]}
.
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On the other hand if j1 �= j2, then

E

{
2∏

i=1

〈
(K̂ − K)φj1 , φlu

〉 4∏
i=3

〈
(K̂ − K)φj2 , φlu

〉}

≤ O
(
n−2){[λ2

j1
1{j1 = l1 = l2} + λj1λl11{j1 �= l1 = l2}

]
× [λ2

j2
1{j2 = l3 = l4} + λj2λl31{j2 �= l3 = l4}

]
+ λ2

j1
λ2

j2
1{j1 = l3 = l4}1{j2 = l1 = l2}

}
.

So, we have

T = O
(
n−2)[( r∑

j1=1

λj1

(λj1 + ρ)2

)2

×
( ∞∑

l1,l2=r+1

〈β,φl1〉2〈β,φl2〉2λ3
l1
λ2

l3

(λl1 + ρ)2(λl2 + ρ)2

)

+ 2
r∑

j1=1

∞∑
j2=r+1

∞∑
l1=r+1

〈β,φl1〉2〈β,φj2〉2λ3
l1
λ4

j2
λj1

(λl1 + ρ)2(λj1 + ρ)2(λj2 + ρ)4

+ 4
r∑

j1=1

∞∑
j2=r+1

∞∑
l1,l2=r+1

l2 �=j2

〈β,φl1〉2〈β,φl2〉2λ3
l1
λ3

l2
λj1λj2

(λl1 + ρ)2(λj1 + ρ)2(λl2 + ρ)2(λj2 + ρ)2

+
∞∑

j1=r+1

〈β,φj1〉4λ4
j1

(λj1 + ρ)8
+ 2

∞∑
j1,l1=r+1

j1 �=l1

〈β,φj1〉2〈β,φl1〉2λ5
j1

λ3
l1

(λj1 + ρ)6(λl1 + ρ)2

+
∞∑

j1,l1,l2=r+1
j1 �=l1,j1 �=l2

〈β,φl1〉2〈β,φl2〉2λ2
j1

λ3
l1
λ3

l2

(λj1 + ρ)4(λl1 + ρ)2(λl2 + ρ)2

+ 2
∞∑

j1,j2=r+1
j1 �=j2

〈β,φj1〉2〈β,φj2〉2λ4
j1

λ4
j2

(λj1 + ρ)4(λj2 + ρ)4

+ 2
∞∑

j1,j2,l1=r+1
j1 �=j2,j2 �=l1

〈β,φj1〉2〈β,φl2〉2λ4
j1

λj2λ
3
l2

(λj1 + ρ)4(λj2 + ρ)2(λl2 + ρ)2

+ 2
∞∑

j1,j2,l1,l2=r+1
j1 �=j2,j1 �=l1,j2 �=l2

〈β,φl1〉2〈β,φl2〉2λj1λj2λ
3
l1
λ3

l2

(λj1 + ρ)2(λj2 + ρ)2(λl1 + ρ)2(λl2 + ρ)2

]
.
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Using the simple bound that 〈β,φl〉2 ≤ ‖β‖2 and applying Lemma 1 to the above expression with
c = 0 and appropriately chosen a and b for each infinite sum, we get that T = O(n−2ρ−2−2/α)

as n → ∞. This together with the fact that E{�K̂−1
ρ Kρ�4∞} = O(1) as n → ∞ implies that

E{‖(K̂−1
ρ − K−1

ρ )C2‖2} = O(n−1ρ−1−1/α) as n → ∞. So, we have

E
(‖U8‖2)= O

(
n−1ρ−1−1/α

)
(7.15)

as n → ∞.
We now turn to controlling E(‖U4‖2). First, we decompose U4 as

U4 = K−
ρ,2(P1 − P̂1)(Ĉ − C) + K−

ρ,2(P1 − P̂1)C,

and denote the first and the second terms by U41 and U42, respectively. Calculations similar to
those carried out earlier yield E(‖U41‖2) = O(n−2ρ−2) as n → ∞.

To bound E(‖U42‖2), set M2
n = An−1ρ−2 for some A > 0, and define the set

Gn =
{

max
j=1,2,...,r

|λ̂j − λj | ≤ Mn

}
.

Since maxj=1,2,...,r E{(λ̂j − λj )
2} = O(n−1) as n → ∞, Markov’s inequality yields P(Gc

n) <

ρ2 as n → ∞ for an appropriate choice of A. Thus, E{‖U42‖21(Gc
n)} ≤ ρ−2E1/2{�P̂1 −

P1�4}√P(Gc
n) ≤ ρ−1E1/2{�K̂ − K�4} = O(n−1ρ−1) = o(n−1ρ−1−1/α) as n → ∞. Conse-

quently, it suffices to bound E{‖U42‖21(Gn)}.
Using the resolvent formalism, we represent P1 as

P1 = 1

2πi

∫
�

(K − zI)−1 dz,

where i2 = −1 and � is the boundary of a closed disk containing {λj : j = 1, . . . , r} and exclud-
ing {λj : j > r} (see [23]). Similarly,

P̂1 = 1

2πi

∫
�̂

(K̂ − zI)−1 dz,

where �̂ is the boundary of a closed disk containing {λ̂j : j = 1, . . . , r} and excluding {λ̂j :
j > r}. Since Mn → 0 as n → ∞, so for all sufficiently large n, Mn < (λr − λr+1)/4. Thus, for
all sufficiently large n, �̂ can be chosen to be � for all sample points in the set Gn. Thus, for all
sufficiently large n, we have

E
{‖U42‖21(Gn)

}
= E

{∥∥∥∥ 1

2πi

∫
�

K−
ρ,2

[
(K̂ − zI)−1 − (K − zI)−1]C dz

∥∥∥∥21(Gn)

}

≤ E

{∥∥∥∥ 1

2πi

∫
�

K−
ρ,2(K̂ − zI)−1(K̂ − K)(K − zI)−1C dz

∥∥∥∥21(Gn)

}
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≤ 2E

{∥∥∥∥ 1

2πi

∫
�

K−
ρ,2

[
(K̂ − zI)−1 − (K − zI)−1](K̂ − K)(K − zI)−1C dz

∥∥∥∥2} (7.16)

+ 2E

{∥∥∥∥ 1

2πi

∫
�

K−
ρ,2(K − zI)−1(K̂ − K)(K − zI)−1C dz

∥∥∥∥2}

= 2E

{∥∥∥∥ 1

2πi

∫
�

K−
ρ,2(K̂ − zI)−1(K̂ − K)(K − zI)−1(K̂ − K)(K − zI)−1C dz

∥∥∥∥2}

+ 2E

{∥∥∥∥ 1

2πi

∫
�

K−
ρ,2(K − zI)−1(K̂ − K)(K − zI)−1C dz

∥∥∥∥2}.
Now note that∥∥∥∥ 1

2πi

∫
�

K−
ρ,2(K̂ − zI)−1(K̂ − K)(K − zI)−1(K̂ − K)(K − zI)−1C dz

∥∥∥∥2
≤ �K−

ρ,2�2∞
∥∥∥∥ 1

2πi

∫
�

(K̂ − zI)−1(K̂ − K)(K − zI)−1(K̂ − K)(K − zI)−1C dz

∥∥∥∥2
≤ ρ−2 L2

4π2
sup
�

∣∣(K̂ − zI)−1(K̂ − K)(K − zI)−1(K̂ − K)(K − zI)−1C
∣∣2,

where L denotes the arc length of the contour �. This last inequality follows from properties of
complex contour integrals (see [13]). Now let us note that

sup
�

∣∣(K̂ − zI)−1(K̂ − K)(K − zI)−1(K̂ − K)(K − zI)−1C
∣∣2

≤ �K̂ − K�4 sup
�

�
�(K̂ − zI)−1�

�∞
�
�(K − zI)−1�

�2
∞

= �K̂ − K�4 sup
�

|z|−3 ≤ const.�K̂ − K�4,

where the last inequality follows because � only encompasses λ1, λ2, . . . , λr and all of them are
bounded away from zero. Thus, from the above facts, it follows that the first expectation in the
right-hand side of (7.16) is bounded above by O(1)ρ−2

E{�K̂ −K�4} = O(n−2ρ−2) as n → ∞.
We continue by noting that

E

∣∣∣∣ 1

2πi

∫
�

〈
(K − zI)−1(K̂ − K)(K − zI)−1C,φj

〉
dz

∣∣∣∣2
= 1

(2πi)2

∫
�

∫
�

E
{〈

(K − z1I)−1(K̂ − K)(K − z1I)−1Kβ,φj

〉
× 〈(K − z2I)−1(K̂ − K)(K − z2I)−1Kβ,φj

〉
dz1 dz2

}
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= 1

(2πi)2

∫
�

∫
�

(λj − z1)
−1(λj − z2)

−1
∞∑

l1,l2=1

〈β,φl1〉〈β,φl2〉λl1λl2

(λl1 − z1)(λl2 − z2)

×E
{〈

(K̂ − K)φl1 , φj

〉〈
(K̂ − K)φl2 , φj

〉}
dz1 dz2

= 1

(2πi)2

∫
�

∫
�

(λj − z1)
−1(λj − z2)

−1
∞∑

l1,l2=1

〈β,φl1〉〈β,φl2〉λl1λl2

(λl1 − z1)(λl2 − z2)

× n−1{λ2
j 1{j = l1 = l2} + λjλl1{j �= l1 = l2}

}
dz1 dz2

= n−1

(2πi)2

∫
�

∫
�

(λj − z1)
−1(λj − z2)

−1

{
r∑

l=1

〈β,φl〉2λ3
l λj

(λl − z1)(λl − z2)

+
∞∑

l=r+1

〈β,φl〉2λ2
l [λ2

j 1{j = l1 = l2} + λjλl1{j �= l1 = l2}]
(λl − z1)(λl − z2)

}
dz1 dz2.

Since � does not contain λr+1, λr+2, . . . , it follows by the Cauchy integral theorem (see [13])
that when l and j varies over r + 1, r + 2, . . . , we have∫

�

(λl − z)−1(λj − z)−1 dz = 0.

Furthermore, for any l = 1,2, . . . , r , we have

1

2πi

∫
�

dz

(λj − z)(λl − z)

= 1

2πi

∫
�

(
1

λj − z
− 1

λl − z

)
dz × 1

λl − λj

= − 1

λl − λj

× 1

2πi

∫
�

dz

λl − z
= − 1

λl − λj

.

The third inequality follows from Cauchy integral theorem along with the fact that � does not
contain λr+1, λr+2, . . . and the fact that j varies over r + 1, r + 2, . . . . The last equality follows
from Cauchy formula (see [13]), stating that the integral is the winding number of � around λl ,
which equals one.

Combining all of the above facts, we finally deduce

E
{‖U42‖21(Gn)

} ≤ ∞∑
j=r+1

(λj + ρ)−2
r∑

l=1

〈β,φl〉2λ3
l λj

n(λl − λj )2

≤ n−1
∞∑

j=r+1

λj

(λj + ρ)2

[
r∑

l=1

〈β,φl〉2λ3
l

n(λl − λr+1)2

]
= O
(
n−1ρ−1−1/α

)
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as n → ∞ by using (7.5). Thus, we have

E
(‖U4‖2)= O

(
n−1ρ−1−1/α

)
(7.17)

as n → ∞.
Finally, we provide a bound for E(‖U2‖2). Note that E(‖U2‖2) ≤ 2E{‖(K̂−1

ρ − K−1
ρ ) ×

(P1 − P̂1)Ĉ‖2} + 2E{‖F̂ρ(P̂1 − P1)Ĉ‖2}.
Similar arguments as above show that E{‖F̂ρ(P̂1 − P1)Ĉ‖2} is O(n−2) as n → ∞.

Further, E{‖(K̂−1
ρ − K−1

ρ )(P1 − P̂1)Ĉ‖2} ≤ 2E{‖(K̂−1
ρ − K−1

ρ )(P1 − P̂1)(Ĉ − C)‖2} +
E{‖(K̂−1

ρ − K−1
ρ )(P1 − P̂1)C‖2}. Now,

E
{∥∥(K̂−1

ρ − K−1
ρ

)
(P1 − P̂1)(Ĉ − C)

∥∥2}
≤ E1/2{�K̂−1

ρ − K−1
ρ �4∞
}
E1/4{�P̂1 − P1�8∞

}
E1/4{‖Ĉ − C‖8}

≤ O
(
n−3ρ−4)= o

(
n−1ρ−1−1/α

)
as n → ∞ by using (7.6), the fact that E{‖Ĉ −C‖8} = O(n−4) as n → ∞ and arguments similar
to those used earlier. Next,

E
{∥∥(K̂−1

ρ − K−1
ρ

)
(P1 − P̂1)C

∥∥2}
≤ E
{∥∥K̂−1

ρ (K̂ − K)K−1
ρ (P1 − P̂1)C

∥∥2}
≤ ρ−2

E
1/2{�K − K�4}

E
1/2{∥∥K−1

ρ (P1 − P̂1)C
∥∥4}

≤ O
(
n−1ρ−2)

E
1/2{∥∥K−1

ρ (P1 − P̂1)C
∥∥4}.

(7.18)

Now,

E
1/2{∥∥K−1

ρ (P1 − P̂1)C
∥∥4}

≤ O(1)
[
E

1/2{∥∥K−
ρ,1(P1 − P̂1)C

∥∥4}+E
1/2{∥∥K−

ρ,2(P1 − P̂1)C
∥∥4}].

The first term on the right-hand side of the above inequality is O(n−1) as n → ∞ and we need
to bound the term E{‖K−

ρ,2(P1 − P̂1)C‖4}. To do this, we will follows the same arguments as

those used to bound E(‖U42‖2) earlier.
Proceeding as in the case of bounding E(‖U42‖2), it is easy to see that to obtain a bound for

E{‖K−
ρ,2(P1 − P̂1)C‖4}, it is enough to obtain a bound for E{(2πi)−1

∫
�

K−
ρ,2(K − zI)−1 ×

(K̂ − K)(K − zI)−1C dz‖4}, where � is the same contour as considered in the case of
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E(‖U42‖2). Now, expanding the latter term, we get that

E

{∥∥∥∥(2πi)−1
∫

�

K−
ρ,2(K − zI)−1(K̂ − K)(K − zI)−1C dz

∥∥∥∥4}

= 1

(2πi)4

∞∑
j1,j2=r+1

∞∑
l1,l2,l3,l4=1

{
(λj1 + ρ)−2(λj2 + ρ)−2

×
∫

�

∫
�

∫
�

∫
�

2∏
u=1

〈β,φlu〉λlu

(λlu − zu)(λj1 − zu)

4∏
u=3

〈β,φlu〉λlu

(λlu − zu)(λj2 − zu)
S

4∏
u=1

dzlu

}
,

where

S = E

{
2∏

u=1

〈 ˆ(K − K)φlu , φj1

〉 4∏
u=3

〈 ˆ(K − K)φlu , φj2

〉}
.

We obtained the expression of S after (7.14) while bounding E(‖U8‖2) earlier. Plugging-in those
expressions and using the Cauchy integral theorem arguments used while bounding E(‖U42‖2)

earlier, we get that

E

{∥∥∥∥(2πi)−1
∫

�

K−
ρ,2(K − zI)−1(K̂ − K)(K − zI)−1C dz

∥∥∥∥4}

≤ O
(
n−2) ∞∑

j1,j2=r+1

r∑
l1,l2=1

〈β,φl1〉2〈β,φl2〉2λ3
l1
λ3

l2
{λ2

j1
I (j1 = j2) + λj1λj2I (j1 �= j2)}

(λj1 + ρ)2(λj2 + ρ)2
∏2

u=1(λlu − λj1)
∏4

u=3(λlu − λj2)

≤ O
(
n−2)[ ∞∑

j=r+1

λj

(λj + ρ)2

]2

= O
(
n−2ρ−2−2/α

)
as n → ∞ by Lemma 1. Thus, it follows from (7.18) that E{‖(K̂−1

ρ − K−1
ρ )(P1 − P̂1)C‖2} =

o(n−1ρ−1−1/α) and hence

E
(‖U2‖2)= o

(
n−1ρ−1−1/α

)
(7.19)

as n → ∞.
The bound for |MSE(β̂HR) − MSE(β̃HR)| given in the statement of Theorem 2 now follows

from (7.1) and using the bounds (7.4), (7.7), (7.8), (7.9), (7.10), (7.13), (7.15), (7.17) and (7.19).
The bound for MSE(β̂HR) is obtained by combining the above bound for |MSE(β̂HR) −

MSE(β̃HR)| with the bound obtained for MSE(β̃HR) in (7.4).
The proofs of the results for β̂TR are directly analogous to those for β̂HR and are therefore

omitted. �

Proof of Theorem 3. It was obtained in the proof of part (b) of Theorem 1 that MSE(β̃TR) −
MSE(β̃HR) = O(1)ρ2 as n → ∞, where the O(1) term is bounded below by a positive number
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for all sufficiently large n. Let κ1 be a positive number which is less than this O(1) term for all
sufficiently large n. Then,

MSE(β̃TR) − MSE(β̃HR) > κ1ρ
2 (7.20)

as n → ∞. Note that this bound is irrespective of whether α > η − 1/2 or α < η − 1/2.
Now, if ρ ∼ cn−ε for any ε < α/(5α − 2η + 2) when α > η − 1/2 or for any ε < α/(3α + 1)

when α < η − 1/2, it can be checked from (4.2) that |MSE(β̂HR) − MSE(β̃HR)| = o(ρ2) as

n → ∞. So, by Theorem 2, it follows that |MSE(β̂TR) − MSE(β̃TR)| = o(ρ2) as n → ∞. Fix κ0

to be any positive number less than κ1. Thus, using the inequality

MSE(β̂TR) − MSE(β̂HR) >
{
MSE(β̃TR) − MSE(β̃HR)

}− ∣∣MSE(β̂TR) − MSE(β̃TR)
∣∣

− ∣∣MSE(β̂HR) − MSE(β̃HR)
∣∣

along with (7.20) and the rates of convergences of |M|SE(β̂TR)−M|SE(β̃TR)| and |MSE(β̂HR)−
MSE(β̃HR)| obtained above, it follows that

MSE(β̂TR) − MSE(β̂HR) > κ0n
−2ε

for all sufficiently large n and for the above choices of ε. �

Proof of Theorem 4. Note that m−1MSE(β̂
(m)
HR ) is equal to the MSE of β̂

(m)
HR as an estimator of

�m(β) when we compute it based on

�m(X1),�m(X2), . . . ,�m(Xn),

where �m(X) = X(m)/
√

m and �m(β) = β(m)/
√

m. Since Theorem 2 applies to any separable
Hilbert space, we will follow the proof of this theorem for the above-mentioned random variables
and parameter.

First, observe that when deriving bounds for E(‖Ul‖2) in the proof of Theorem 2, we required
bounds for

∑
j≥1 λa

j /(λj + ρ)b for b ≥ a > 0. So, in the discrete case, we need bounds for∑m
j=1(λ

(m)
j )a/(λ

(m)
j + ρ)b for b ≥ a > 0. But by assumption (A2′) and using the arguments in

the proof of Lemma 1, it follows that

m∑
j=1

(λ
(m)
j )a

(λ
(m)
j + ρ)b

≤ O(1)ρ−b+a− 1
α

as m → ∞, where the O(1) term is uniform over m.
Next, we bound

∑m
j=1〈β(m),φ

(m)
j 〉2/(λ

(m)
j +ρ)2, which is the discrete version of (7.3) used in

the proof of Theorem 2. First, consider the case when α > η′ − 1/2. Observe that since m > ρ−2

and α > 1, in this case, we have ρ−1/α < m1/η′
. So, defining J = [ρ−1/α] as in the proof of
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Lemma 1 and by using assumption (A3′), we have

J∑
j=1

〈β(m),φ
(m)
j 〉2

(λ
(m)
j + ρ)2

≤ O(1)ρ
2η′
α

−2− 1
α ,

where the O(1) term is uniform over m. Further,

[m1/η′ ]∑
j=J+1

〈β(m),φ
(m)
j 〉2

(λ
(m)
j + ρ)2

≤ O(1)ρ−2
∑
j>J

j−2η′ ≤ O(1)ρ
2η′
α

−2− 1
α ,

m∑
j>[m1/η′ ]

〈β(m),φ
(m)
j 〉2

(λ
(m)
j + ρ)2

≤ O(1)ρ−2
∑

j>[m1/η′ ]
m−2 ≤ O(1)ρ−2/m,

where all the O(1) terms above are uniform in m. Combining all the above inequalities, and
using the facts that m > ρ−2 and (2η′ − 1)/α < 2, we have

m∑
j=1

〈β(m),φ
(m)
j 〉2

(λ
(m)
j + ρ)2

≤ O(1)ρ
2η′−1

α
−2,

where the O(1) term is uniform over m. We then consider the case α < η′ − 1/2. In this case,
we may either have m > ρ−η′/α or m ≤ ρ−η′/α . In the first scenario, as in the proof of Lemma 1,
we have

sup
ρ>0

[m1/η′ ]∑
j=1

〈β(m),φ
(m)
j 〉2

(λ
(m)
j + ρ)2

≤ O(1)

[m1/η′ ]∑
j=1

j−2η′+2α ≤ O(1),

m∑
j>[m1/η′ ]

〈β(m),φ
(m)
j 〉2

(λ
(m)
j + ρ)2

≤ O(1)ρ−2
∑

j>[m1/η′ ]
m−2 ≤ O(1)ρ−2/m,

where all the O(1) terms are uniform in m. Since m > ρ−2, we have

m∑
j=1

〈β(m),φ
(m)
j 〉2

(λ
(m)
j + ρ)2

≤ O(1),

with the O(1) term being uniform in m. In the other scenario, when m ≤ ρ−η′/α , we have

sup
ρ>0

[m1/η′ ]∑
j=1

〈β(m),φ
(m)
j 〉2

(λ
(m)
j + ρ)2

≤ O(1)

[m1/η′ ]∑
j=1

j−2η′+2α ≤ O(1),
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[ρ−1/α]∑
j>[m1/η′ ]

〈β(m),φ
(m)
j 〉2

(λ
(m)
j + ρ)2

≤ O(1)
∑

j≤[ρ−1/α ]
m−2j2α ≤ O(1)ρ−2−1/α/m2,

m∑
j>[ρ−1/α]

〈β(m),φ
(m)
j 〉2

(λ
(m)
j + ρ)2

≤ O(1)ρ−2
m∑

j>[ρ−1/α ]
m−2 ≤ O(1)ρ−2/m,

where all the O(1) terms are uniform in m. Since α > 1 and m > ρ−2, we again have

m∑
j=1

〈β(m),φ
(m)
j 〉2

(λ
(m)
j + ρ)2

≤ O(1),

with the O(1) term being uniform in m. Thus, analogous to the bound in (7.3) in the proof of
Theorem 2, we have

ρ2
m∑

j=1

〈β(m),φ
(m)
j 〉2

(λ
(m)
j + ρ)2

≤ O
(
ρM
)
,

where M = (2η′ − 1)/α or M = 2 according as α > η′ − 1/2 or α < η′ − 1/2.
The proof of the present theorem is now complete by using arguments similar to those used in

the proof of Theorem 3, using the above bounds and noting that the other O(1) terms in the proof
of Theorem 2, namely, those involved with the E(‖Ul‖2)’s and that of m−1E{‖β̃(m)

HR − β(m)‖2}
are uniform over m. �
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Supplement to “Hybrid regularisation and the (in)admissibility of ridge regression in infi-
nite dimensional Hilbert spaces” (DOI: 10.3150/18-BEJ1041SUPP; .pdf). A companion sup-
plement contains the proof of Theorem 1, the verification of Assumption (A3′) for the case of
standard Brownian motion, the results of a simulation study for sample sizes n = 50 and n = 300
as well as the case when the functional covariate is observed with error, and comparative results
when all three regularisation methods are applied to real data set.
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