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Suppose that X, = (xjx) is N x n whose elements are independent complex variables with mean zero,

variance 1. The separable sample covariance matrix is defined as B, = %T%ZX"T 1 X T%z where T},

. . . 1/2 . o . . o .
is a Hermitian matrix and T21/1 is a Hermitian square root of the nonnegative definite Hermitian matrix

T»,,. Its linear spectral statistics (LSS) are shown to have Gaussian limits when n/N approaches a positive
constant under some conditions.
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1. Introduction

Random matrix theory has found many applications in physics, statistics and engineering since
its inception. Although early developments were motivated by practical experimental problems,
random matrices are now used in fields as diverse as stochastic differential equations, condensed
matter physics, chaotic systems, numerical linear algebra, neural networks, multivariate statistics,
information theory, signal processing and so on.

In the last few years, a considerable body of work has emerged in the communications and
information theory literature on the fundamental limits of communication channels that makes
substantial use of results in random matrix theory (see Li et al. [10], Nadakuditi and Edelman
[11], Tulino and Verdu [17]). Most of the information theoretic literature that studies the effect
of those features on channel capacity deals with linear vector memoryless channels of the form

y=Hx+n, (1.1)

where x is the K-dimensional input vector, y is the N-dimensional output vector, and the N-
dimensional vector n models the additive circularly symmetric Gaussian noise. All these quanti-
ties are, in general, complex-valued. In addition to input constraints, and the degree of knowledge
of the channel at receiver and transmitter, (1.1) is characterized by the distribution of the N x K
random channel matrix H whose entries are also complex-valued. Especially, define H = CSA
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where S is an N x K matrix whose entries are independent complex random variables satisfying
the Lindeberg condition, that is, for any § > 0,

1
§ SR (1 29) 0
Js

with identical means and variance % Let C and A be, respectively, N x N and K x K random
matrices such that the asymptotic spectra of D = CC* and T = AA* converge almost surely to
compactly supported measures. If C, A and S are independent, as K, N — oo with K/N —
B. Then, the most concerned problem is the asymptotic properties of HH* in communication
channels. For details, please refer to Tulino and Verdu [17]. HH* can be treated as the extension
of the common sample covariance matrix.

The sample covariance matrix is one of the most commonly studied random matrices in Ran-
dom Matrix Theory, which can be traced back to Wishart (see Wishart [18]). It plays an important
role in multivariate analysis because many statistics in traditional multivariate statistical analysis
(e.g., principle component analysis, factor analysis and multivariate regression analysis) can be
written as functionals of the eigenvalues of sample covariance matrices.

Large dimensional data now appear in various fields such as finance and genetic experiments
due to different reasons. To deal with such large-dimensional data, a new area in asymptotic
statistics has been developed where the data dimension p is no more fixed but tends to infinity
together with the sample size n. The random matrices proves to be a powerful tool for such large
dimensional statistical problems. One may refer to the latest book in this area by Yao, Zheng and
Bai [19], the recent work by Ledoit and Wolf [9], Jiang and Yang [7].

So far, most work focus on the sample covariance matrices of the form

S, = %T},/ZXanT,l/z,
where X, is a N x n matrix with independent entries and T, is a nonnegative definite Hermitian
matrix. As we know S, can be viewed as a sample covariance matrix formed from n samples

of the random vector T,ll/ 2xl(where x| denotes the first column of X,,, which has population
covariance matrix T,,. Much work has been done on the central limit theorem (CLT) for linear
eigenvalues statistics of S, under different assumptions. Among others, we mention Bai and
Silverstein [2], Jonsson [8], Najim and Yao [12], Pan and Zhou [14], Shcherbina [16]. One of the
key features of the above sample covariance matrices S, is that the sample are independent. As
far as we know there is no CLT available for the sample covariance matrices generated from the
dependent sample.
In view of the above, we consider a kind of general sample covariance matrices

1
B, = NT%ZX,,T],,X:TI/Z (1.2)

2n >
where T, is N x N nonnegative definite Hermitian matrix and Ty, is n x n Hermitian. This
model finds applications in the diverse fields including spatio-temporal statistics, wireless com-
munications and econometrics. For example, the data matrix can be represented as

Y, = T)X,T,/? (13)
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if Ty, is nonnegative definite Hermitian. Denote by vec(Y,,) the vector operator that stacks the
columns of Y,, into a column vector. This model is referred to as a separable covariance model
because the covariance of vec(Y,) is the Kronecker product of Ty, and Ty,. The rows of the
data matrix Y,, correspond to indices of spatial locations and the column indices correspond to
points in time in the field of spatio-temporal statistics. This covariance structure implies that the
entries of Y, are correlated in time (column), but the pattern of temporal correlation does not
change with location (row). One may see Paul and Silverstein [15] and the references therein.
In econometrics, when determining the number of factors in the approximate factor models
Onatski [13] assumes that the idiosyncratic components of the data is of the form Y,. This
allows the idiosyncratic terms to be non-trivially correlated both cross-sectionally and over time.
The cross-sectional correlation is caused by matrix T;{lz linearly combining different rows of X,,

whereas the correlation over time is caused by matrix Ti ,/12 linearly combining different columns
of X,,.

For any Hermitian matrix A of size n x n its empirical spectral distribution (ESD) is defined
by

1 n
A _ ,
F2(x) = " jE_ll(/\j <x),

where {A ;} are eigenvalues of A. For B,, defined in (1.2), a number of papers (Boutet de Mondvel
et al. [4] and Zhang [21]) investigated its empirical spectral distribution Fg, and the weakest
assumption is given in Zhang [21], which is specified below. To characterize its limit define the
Stieltjes transform of any distribution function FA (x) to be

1 1
mFA(z)zf—dFA(x)z—tr(A—zI)_], zeCT.
xX—z n
Throughout the paper, we make the following assumption.

Condition 1.1. (i) X,, = (xj;) is N x n consisting of independent complex random variables
with Ex;; =0, E|)cj1|2 = 1, satisfying for each § > 0, as n — oo

ﬁ 2E(|xﬂ|21(|xﬂ| > 8/n)) — 0.
Js

(1) Ty, is n x n Hermitian matrix (without loss of generality, we assume that T, is not semi-
negative definite) and T, is N x N nonnegative definite Hermitian matrix.

(iii) With probability 1, as n — oo, the empirical spectral distributions of Ty, and Ty,, de-
noted by Hj, and Hjy, respectively, converge weakly to two probability functions H; and Ha,
respectively.

@iv) N =N(n) withn/N — ¢ > 0.

v) X, T1p, To,, are independent.

Zhang [21] establishes the following conclusion under Condition 1.1. For B,, defined in (1.2),
with probability 1, as n — oo, the ESD of B, converges weakly to a non-random probability
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distribution function F for which if Hy = 1{9,00) or H2 = 1[0,00), then F' = 1[9,); otherwise the
Stieltjes transform m(z) of F is determined by the following system of equations (1.4), where
for each z € CT,

1
S TR |
sz2)=—z " (1—-¢c)—z Cfl—l—q(z)del(x)’

L I | (1.4)
s(2) b4 /1+p(z)y Hy(y),

s(2) =—z"" = p(2)q(2).

Then, the Stieltjes transfrom m(z) of F, together with the two other functions, denoted by g;(z)
and g2(z), (m(z), g1(z), g2(z)) is the unique solution to (1.4) in the set

U={(s(2), p(2),q(2)) : I5(2) > 0,3I(zp(2)) > 0,Ig(z) > 0},

where Jh(z) stands for the imaginary part of 4(z). Denote B, = %TlnXZTZHX,,. Then we have
the following relationship between the empirical distributions of B, and B,

FBr(x) = ¢, FBr (x) 4+ (1 = ) Ij0.00) (%),
and hence
M (2) = cam,y (2) + 27 ew — 1), (1.5)

where ¢, =n/N,m,(z) =mps, (z) and m, (z) = m s, (z). Denote by F the limiting distribution
of FB:. Then F and F must satisfy

F(x)=cF(x)+ (1 -0c)ljp,c0)(x),
and
m(z) =cm(z) —z (1 —c¢), (1.6)

where m(z) = mp(z). If we let F&1-H2 denote F, then FérHin-Hon j5 obtained from F¢-H1-H2
with ¢, Hy, H; replaced by ¢,, H1,, Ha,, respectively. Let mg(z) = M pen.Hy,.Hy, (2) for simplic-
ity. Moreover g(l)n (z) and ggn (z) are similarly obtained from g1(z) and g»(z) respectively. Then
(mg(z), g(l)n (2), g(z)n (z)) satisfies the equations (1.4). In other words

1
0 =_z! ——dHj, , 1.7
m(2) = —z f T (17)
m(z) = —z! f — L i (1.8)
" 1489 (2)y

mi(z)=—z""—g) (28, (2). (1.9)
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Furthermore,
0
z81,(2) = —c /‘7(1['11 (x), (1.10)
1n n 1 + ggn(z)x n
Zg(Z)n(Z) = _/ +dH2n(y)~ (1.11)
1+ 1n(z)-y

Couillet and Hachem [5] further investigated the limiting spectral measure of B,, and Paul and
Silverstein [15] proved that no eigenvalues exist outside the support of limiting empirical spectral
distribution of B,,. But Paul and Silverstein [15] required T5, in B,, to be diagonal (with positive
diagonal entries). It is well known that many important statistics in multivariate analysis can be
written as functionals of the ESD of some random matrices. In view of this, the aim of this paper
is to establish the central limit theorem for linear spectral statistics (LSS) of B,,. LSS of general
sample covariance matrices are quantities of the form

1 N
N )= / FedFP (x),
j=1

where f is some continuous and bounded real function on (—o0, 00).

This paper is organized as follows. Section 2 establishes the main result about the CLT for LSS
of B,,. By the Stieltjes transform method, we complete the proof of theorem when the entries of
matrix are Gaussian variables in Section 3. Section 4 extends the result from the Gaussian case
to the general case through comparing their characteristic functions.

The crucial step in proving the main result in this paper is Lemma 2.5, whose proof is divided
into the random part and the nonrandom part. Since the latter is lengthy, we postpone it to the
Supplementary material [1]. Throughout the paper, Lemma 0.1-0.16 are also in the Supplemen-
tary material [1].

2. Main result

Define
Gn(x) = N(FBr(x) — FomHin-Hon (y)),

The main result is stated in the following theorem.

Theorem 2.1. Denote by s; > --- > s, (s1 > 0) the eigenvalues of Ty,. Let f1, ..., fi be func-
tions on R analytic on an open interval containing

[1iginfsn (hnz 0,1y (©) (1 = /&)1 (55 = 0) + ARz (1 + v/©)* 1 (55 < 0)),

Tim sups; (A% (1 + ﬁ)z)]. @2.1)
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In addition to Condition 1.1, we further suppose that for each § > 0, as n — o0
1
i3 O Bl 1 (1l = 83/m)) — 0.
J.l

Also suppose that Ty, and T», are nonrandom matrices, and their spectral norms are both
bounded in n. Then

) If X, = (xjx), Tin, T2y are realandE|xjk|4:3,j =1,....,N,k=1,...,n, then

</ fl(x)dGn(x)’"-7/fk(x)dGn(x)> 2.2

converges weakly to a Gaussian vector (X, ..., X ) with mean

X

. Y Rl R S—7 A
By =g frof e —aefi- | [ Gt ame |

x2 t -1
X/ (1 +x22(2))2 dHl(x)/ 1+ g1)1)? dHZ(”} }dz

and covariance function

(2.3)

1 92 d(z1,z2)
Cov(X s, Xg) = —=— dzdzidz, (2.4
ov(Xy, Xe)=—73 72 yng(m)g(zz)azzamfo [, d2dudn, 24

where f, g €{f1,..., fc}- Here

2 2
_ .3 X t
h(z) = —ez / (1+Xg2(z))2dHl(x)/ @@t 1) RO
2 2 —1
x [1 —cz_zfxidHl(x)/lide(t)}
(1 +x22(2)? (812 +1)?2
—cz—“/LdH (x)f;dH (t)/LdH )
(+xg22)? @@+ D2 | @@+ 2t
L x2 l2 —1
. [1 - / (1 +x82(2))2 dHl(x)/ (81(2)1 + 1)2 de(t)} ’
2 2
dz(z)z—cz%/x—dHl(x)/tidez(t)
(14 xg2(2))3 (g1t +1)
x[/;dH( )]_I/Lw( )/;dH(t)
(Itxg@2 Itxg@)2 "] g2 7

2 2 —1
D N =
X[l « / (1+X82(Z))2dH1(x)/ (gl(z)r+1)2dH2(’)} ’
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and

I z181(z1) — 2281(22) 2182(21) — 2282(22)

d s =
(z1,22) 2122 82z — @) gi1(z1) — g1(z2)

The contours in (2.3) and (2.4) (two contours in (2.4), which we may assume to be nonoverlap-
ping) are closed and are taken in the positive direction in the complex plane, each enclosing the
support of F&H-H

1) IfX, = (xjk) = (ujk +ivjp), ujk, v]k € R, is a complex matrix with E(u jr) =E(vjx) =
E(u?k) = E(vjz.k) = 2, E(ujk) = E(U,k) = 4, and u ji and vy are independent, then (2.2) also
holds, except the means are zero and the covariance function is 1/2 the function given in (2.4).

Remark 2.2. Notice that the sample covariance matrix can be written as ﬁn = % Y et SKYKY),
(see (3.1)) in the Gaussian case which is analogous to the common matrix % ZZ:] yky;: (see Bai
and Silverstein [2]). Hence the overall strategy of handling B, in the Gaussian case is similar
to that used in Bai and Silverstein [2]. Since the limit of m FBy (z) satisfies three equations (see
(1.4)) other than only one this brings us additional difficulty.

Remark 2.3. We only assume that xj;, j=1,...,N, k=1,...,n are independent instead of
independent and identically distributed as in Bai and Silverstein [2] and the identically distributed
assumption on x j; can replaced by the moment assumptions that Ex;; =0, Ex? = =1, Ex? = =3,
and the Lindeberg assumption for the real case.

Remark 2.4. It is worth mentioning that our result is consistent with that in Bai and Silverstein
[2]. We distinguish two cases to show the consistency according to whether T, or Ty, reduces
to the identity matrix.

When Ty, =T and Ty, is a nonnegative definite Hermitian matrix, B,, = %X,,TlnX,’;. Then
(1.4) is transformed into

1
_ 1
m(z) =—z ]/ 41+m(z)x dH(x),
g1(2) =—

mz)
82(z) =m(z2).

It follows that
_ cm(z)3 2 cm(z)2 2 -2
BXp=- %f()fu m@)? l(x){l_/(w m)? H‘(x)} 4

m(z1)m(z2)(z1 — 22)
m(z2) —m(z1)

and

d(z1,22) =1+

These are the same as those in Bai and Silverstein [2].
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If Ty, = I then B, = 4 TY/*X, X:T)/”. Let B, = 1T)/*X, X:T)/? and B, = 1X*T5,X,. We

use m, (z) and m, (z) to denote the Stleltjes transforms of FBr and FBr B, respectlvely Denote

by F¢~'H2 the limiting distribution of 1. Moreover Fé Mo is obtained from F¢ 72 with
c, Hy replaced by cn, Hon respectively. Let 71(z) = limy,— o0 71, (2), 11 (z) = lim,,_, oo 11,,(z) and
0(Z) 1 1, (z). Due to (2.8) below we only need to consider the limiting distribution of

M () = N[mn (2) — ﬁg(z)]. First, (1.4) becomes

1
-
m(z) =—z / T om(x g dH>(x),
81(z) =cm(2),

1
() = @

By Lemma 2.5 below and the above equations, we have
em(2)3x? { / cm(2)% x> }2
EM dH 1— dH 2.5
(z) = / 1+ cxm@)? 2(x) 1+ cxm(@)? 2(x) 2.5)
and

m(z1)m(z2)(z1 — 22)
m(z2) —m(z1)

d(zi1,z2) =1+

Note that B,, = cnl~3n. It can be verified that

@n (z/cu) = cnm,, (2)

and
My(2) = ¢ My (z/cn).
These imply that
m(z/c) =cm(z) (2.6)
and
M) =c""M(z/c), (2.7)

where M (z) is a two-dimensional Gaussian process, the limit of weak convergence of 1\7,, (2).
Plugging (2.6) and (2.7) into (2.5), one has

fi(z/c)x?
(1 +x7i(z/c))?

ni(z/c)3x?

~ _ -1 B/ A
EM(z/c)=c (1 +xmi(z/c))?

-2
de(x){l —c! ng(x)}
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and

m(z1/c)m(z2/c)(z1/c — z2/c)

d :1
(z1,z2) =1+ m(z2/c) — m(z1/c)

Hence, the expectation and covariance are the same as those in Bai and Siverstein [2].

By Cauchy’s formula

1
/f(X)dG(X) =75 f f(@me(2)dz, (2.8)

where G is a cumulative distribution function (c.d.f.) and f is analytic on an open set containing
the support of G. The complex integral on the right-hand side is over any positively oriented
contour enclosing the support of G and on which f is analytic. Hence, the proof of Theorem 2.1
relies on establishing limiting results on

My (2) = N[ma(2) — m(2)].

The contour C is defined as follows.

By the assumption of Theorem 2.1, we may suppose max{||Ty,|, [|T2, I} < . Let vy be any
positive number. Let x, be any positive number if the right end point of interval (2.1) is zero.
Otherwise choose

X, € <limsups1k£2a’;((l + )2, oo).

n

Let x; be any negative number if the left end point of interval (2.1) is zero. Otherwise choose

(0, liminfs,A12 7o 1) (c) (1 — JE)Z), if Timinfs, 22 [0 1) (c) > 0,

XI c n n
(—oo. timinfs, Atz (1 + vo)?), if liminf s, A12 70 1) (c) < 0.

n n

Let
C, = {x +ivg:x € [xl,x,]}.
Define the contour C
C={x+iv:vel[0,vl}UCU{x +iv:vel0,vl}.

To avoid dealing with the small Iz, we truncate M, (z) on a contour C of the complex plane.
We define now the subsets C,, of C on which M, (-) agrees with M, (-). Choose sequence {g,}
decreasing to zero satisfying for some « € (0, 1)

g, >n"%.
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Let
C={xu+iv:ive [n_lsn, vw|} and C ={x,+iv:ive [n_lsn, v}

Then C, =C; UC, UC,. For z =x + iv, the process A?,, (+) can now be defined as

M, (2), forz € C,,
My ()= My(x; +in"'e,),  forx=ux,ve[0,n e, (2.9)
M,,(x,—i—in_ls,,), forx =x,,ve [O,n_lsn].

The central limit theorem of Mn (z) is specified below.

Lemma 2.5. Under the conditions of Theorem 2.1, Mn(z) converges weakly to a two-
dimensional Gaussian process M (-) satisfying for z € C under the assumptions in (i)

-1
EM(2) = (di(2) —dz(z)){l —z_l[/ (H_xxmdm (x)] (2.10)

x2 t -1

and for 71,20 € CUC withC = {7 :z € C},

52 dzi,z2)
Cov(M(z1), M(zp)) =2 / dz,
(M(z1), M(22)) 222921 Jo -

while under the assumptions in (ii) EM (z) = 0 and the covariance function analogous to (2.10)
is 1/2 the right-hand side of (2.10).

Proof of Theorem 2.1. From Yin, Bai and Krishnaiah [20] and Bai and Yin [3], we conclude
that

1
Amax<ﬁX,’§Xn> — (14++c)?  as. (2.12)
and
1, 5
Amin NX,,Xn - (1 - «/E) a.s.

The upper and lower bounds of the extreme eigenvalues of B, depends largely on the signs of s
and s,,. Since s1 > 0, we have

1
Amax (Bn) < Sl)\iza';kmax <NXZX,!> < S])fol”x(l + \/E)z a.s.
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If 5, > 0, then we have

1
Ton Tan
Amin(Bp) > Snkmzml(o,l)(C))»min(NXZXn> > suh 2 I0. 1y (@ (1 — V)2 as.

Otherwise, we get
T, |- T, 2
Amin(Brz) = sn)&mar;()”max NXan > sn)\mar;((l + \/E) a.s.

Combining the definitions of x;, x,-, we find with probability 1

liminfmin(xr — Amax(B1), Amin(B) — x;) > 0.

n—oo

Since FB» — F¢Hi-H2 with probability 1 the support of F¢Hin-Han js contained in interval (2.1)
with probability 1. Thus, by (2.8), for f € {f1, ..., fi} and large n, with probability 1,

1
ff(X)dGn(x) =5 f f(@My(z)dz,

where the complex integral is over C U C. For v € [0,n1e,], note that
. - -1
|Mn(xr +iv) — M, (xr +in 1511)| = 4n|max()¥max(Bn)7 er) - xr|
and

|Mn(x1 +iv) — M,,(xl + inilsn)| < 4n|min(kmin(Bn), el) —xl}il.

It follows that for large n, with probability 1,
’ y§ F(@)(Ma(2) — My (2)) dz

< 8K e, [|max(Amax(By). e,) — xr|71 + |min(Amin(By), €;) —xl|7l] -0,

where ¢; (e,) is the left endpoint (right endpoint) of interval (2.1) and K is the bound on f
over C.
Note that the mapping

. 1 - 1 ~
M, () — (——2 - ff] @My ()dz, ..., —=— ygfx(z)Mn(z)dz>
Tl 2mi

is continuous. Using Lemma 2.5, we complete the proof of Theorem 2.1. (]
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3. The Gaussian case

This section is to prove Lemma 2.5 under the Gaussian case, that is, {xjt},j=1,...,N, k=
1,...,n are standard complex normal random variables. Since T, is Hermitian there exists an
unitary matrix U such that

Ty, = Udiag(sy, ..., s,)U".

Note that X, has the same distribution as X, U. It then suffices to consider
1/2 T2
Z‘szﬁ XX T, 2 — ZSkykyk, 3.1)

where x; is the kth column of X,,. In what follows, we omit the symbol ~ from the notation of ]~3n
in order to simplify notation. Rewrite for z € C,

My (2) = N[ma(2) — Emp(2)] + N[Emu(2) — m(2)] 2 M1 (2) + Mu2(2).

We below consider the random part M, (z). The nonrandom part M,,»(z) are in the Supplemen-
tary material [1].

In the sequel, we assume xji, j =1,...,N,k=1,...,n are truncated at 8u/n, centralized
and re-normalized. The details are omitted which is similar to Bai and Silverstein [2]. Further-
more, Ex?k =o(N~h, E|xjk|4 =2 4+ o(1) under the complex case and Ex;!k =3+ o(1) under
the real case.

We start with two probability inequalities for extreme eigenvalues of B,,. It is well known
(see Bai and Silverstein [2], Yin, Bai and Krishnaiah [20]) that for any I, n; > (1 + ﬁ)z and

m < (1-e)?
P(Amax<%xzxn) = 771) = 0(’1_1)

1
P<)¥min<ﬁxzxn> < 772) = 0(}’1_1).

O, x,), c>1,
r € (hmsupsl T (14 /02, x,), otherwise,

and

Thus, letting

we have for any / > 0

P(hmaxBy) > 1) =o(n™"). (3.2)
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Likewise, we have

P(Amin(By) <m) =o(n™"), (3.3)
where
(x1,0), c>1,
m e | (s timinfs, T2 10,1 @1 = VO?), i liminfs, il 0,1y () > 0,
(0, timin 5,202 (1 + V0)?), if Timinfs, A2 T.1(c) < 0.

Here #n;, n,, x7, x, can be chosen such that
X —n,>2t% and g — x> 277, (G4

where t are the upper bound of the spectral norms of Ty, and Ty, defined before.

3.1. The limiting distribution of M,1(z)

The aim of this part is to find the limiting distribution of M,1(z). That is to say, we show for any
positive integer r, the sum

.
ZajMnl(Zj)» Sz; #0
j=1

converges in distribution to a Gaussian random variable. Since

2
lim limsupE/ f@Mn(z)dz| — 0,
V040 n—o0 CUC,

it suffices to consider z = u + ivg € C,. This result can proceed in two steps.
The first step is to use the central limit theorem for martingale difference sequences, so we can
accomplish the goal by finding the in probability limit of (3.14). Introduce

1
D(z) =B, —zly, Dy (z2) =D(z) — —SkYa¥i

N

3.5)

Bui = By — — sy —lt(D—1 )T24)

nk = Dp Nskkakv g (2) = N r (2)T2,),

and
e =YD @y —tr(D @D T), w2 =yiD 2 (@yk — (D2 (2)Tan),
1 ~ 1

Br(z) = Br(z) = (3.6)

1+ N~-seyiDp ' @yre 1+ N-Lse tr(D; ' (2)T2n)
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1 1
b k(Z) = 5. =, <
AN B 0T’ Y T TH sE@

bi(z) = (3.7

Note that

A

1 1
ma () = - tr(By — )l 4 5 D~ (2).

Let Eo(-) denote mathematical expectation and Ej (-) denote conditional expectation with respect

to the o-field given by xi, ..., X¢. By the formula
_ z—l *Z_l
(Z+qapr) ' =x 1 o122 2 op —, (3.8)
1+¢f*X 'a
we have
n n
M) =) t{ED™'@) —E D' ()} =) (B —E)u[D@) ' =D (2)]
k=1 k=1
1 n
=~ 2_ Bk — B DsiBr@yiD* )y
k=1
3.9)
1 n 1 n )
=~ 2B~ B )siBe@nc@ — 5 Bk = B)siBe(2) (D (2) Tan)
k=1 k=1
£ T+
From the identity
~ 1 ~
Br(2) = Pr(2) = = kB0 Br(@e (2), (3.10)

we have

1< ~ 1 < ~
Li=-v ;Ekskﬂk @W@ + 55 ;azk — B )82 B (2) B (e (2) vk (2).

By Lemma 0.1 and Lemma 0.9

R~ ~
1 2 El B~ Bt B Ae@er )|
k=1

C < ~
<31 L E BB B [a@n@]
k=1

C C
<31 L E @BV n@ < - —o.
k=1
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This implies

1 & ~
Li=-v ;Ekskﬁk(z)yk(Z)"i‘Op(l)' @11

Using the same argument and

~ 1 1
Br() = Bie@) = = sk BL er () + 5 5t B B () (@), (3.12)
one gets
1 n
T =3 2 BB @a@ u(D* @Tan) +0p (D). (3.13)

k=1

From (3.9), (3.11), and (3.13), we conclude that
R > L g o —
My (2) = N ZEkSk,Bk(Z)Vk(Z) + = ZEksk:Bk (2)er(2) tr(D; “(2)T2n) + 0p(1).
k=1 N k=1

Define
1 ~ 1
h(2) = = BB @@ + mEksﬁZ(z)sk () tr(D*(2)T2n)

d ~
=_N! d—ZEkSklgk(Z)gk(Z)~

Thus we only need to prove that >’ a; > iy hi(z;) = 3 k_y 2y @ jhi(z;) converges in
distribution to a Gaussian random variable. By Lemma 0.10, it suffices to verify condition (i)
and (ii). It follows from Lemma 0.1 and Lemma 0.9 that

n
ZE
k=1

4
C n r N
< i 2 2 [EPIBIE e[
k=1 j=1

> ejhi(z))
j=1

- 37 C
+EY21B B2 |er (2 )]°] = <=0

which implies that conditions (ii) of Lemma 0.10. The goal turns into finding a limit in probability
of

(21,20 ZEkfl [7x(z1)hi(z2)] (3.14)
k=1

for z1, zo with nonzero fixed imaginary parts.
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The second step is to achieve the above goal through (1.7)—(1.11). It is obvious that

L

Z Ei—1[Ex (Sk,gk (z1)k(z1))Ek (Skgk (22)€x(22))].
k=1

072071 —

®(z1,22) =N"?
Due to the analysis on page 571 in Bai and Silverstein [2], it is enough to prove that

N2 Z sitBr_1[Ex (Ek(Zl)Ek(Zl))Ek (Ek(Zz)Sk(Z2))]

k=1

converges in probability to a constant. Similar to (0.27) in the Supplementary material [1], it can
be verified that |8, (z)| and |by(z)| has the same bound as B (z). From Lemma 0.2, we get

E(N72> " stEi1 [Ex (Bi(z0)er (21))Ex (Bi (22)€x (22)) — Ex (i (z1)ex (21)) Ex (b (z2)ek (22))]
k=1

<CN™2 Zn:[E|Ek((,§k (z1) — br(z1))ex(z1)) Bk (Br (z2)ex (22))|
k=1
+ E[Ex (br(z)er (20 ) Er ((Br (22) — br(22))ex (22)) ]
<CN™? an[E”2|(Ek(m) — be(zn) i) B2 Bezoen (z) |
k=1
+EY2| bz er @D "BV ((Br(z2) — bez2))ex20) ]
<CcN™! i[EW!Ek(m) — bz +EV2|(Bi(z2) — bi(22) )] = 0,
k=1
which yields
N2 isngk—l [Ex (Ek(Zl)gk(Zl))Ek (Ek(Z2)8k(Z2))
k=1
— Ex(be@er (20)Ee (br(z)ex (22))] =2 0.
Therefore, our goal is to find the limit in probability of
N7? Z stbr(21)bk (22)Ex—1 [Ex (1 (21)) B (1 (22)) ]
k=1

Using the moments of the complex random variables, we have

Ex—1[Ex(ex(z1))Ex (ex(z2)) ] = tr(T2nEka_l(Zl)TZnEka_l(ZZ)) +o(D)Ay,
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where
_ —1,- _ —1,- 1/2
| Ayl <[tr(T2,ED; ' (2) T2n B Dy ' (21)) tr(T2,BaD; ! (22) T2, BaD; ' ) ]* = 0 ().
For the real case, it follows that
Ex—1[Ex(ex (21))Ex (ex (22)) ] = 2tr(T2, ExD; ' (21) T2nExD; ' (22)) + o(N).
Consequently, it suffices to study
n
N7 sibi(z1)bi (z2) tr(To, By D (2) T Bk D (22)). (3.15)
k=1
Let Rp(2) =2l — 3 32 44 8% (@) T2,

1 1
1 sa—1 and bjk(Z)= 1 1 .
1+ N~'s;y;D (2)y; 1+ N=ls;Etr(D} (2)T2n)

Bjk(2) =

Write
Di(z Ry (z ——12 12 21) T2y,
(z1) + Re(z1) —j ksj}’jy]'—ﬁj ksjiﬁj( 1)

which implies that

_ _ 1 _ _ 1 _ _
Ri' @) +D; @) =+ 3 iRy @Y,y @) =+ 35 @R @)D @),
J#k J#k

Using the formula

-1
—1 Y o
(E + quﬂ*) o= Hqﬁ—*z_la, 3.16)

we have

1
Ri' @) + D @) = D5 DR @) (3% — Tan) D (21)
J#k
1
+ 7 25 (Bie@) = v @R @)y ¥Dj )

J#k
(3.17)

1
+ 7 28V @R @) Tan (D7 (21) = D (21)
J#k
£ A1(z1) + Az(z1) + A3(z1).
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By a direct calculation, we have for any positive number ¢ > 0

2

1 53t )
A9<Z - = ZS/W/(Z)I> =v— — Z “_i_sEJW«SEgzn(Z)
NiH Jmesn
= Etr(D~'(z)D~1(@)T )zv
°< N22|1+S]Egzn(z)|2 (D7 @D (O Tan) ) 2 w0
which yields

1
R ') <—.
IR¢' @ <
Let M be a N x N matrix with a nonrandom bound on the spectral norm of M for all pa-
rameters governing M and under all realizations of M. By the Cauchy—Schwarz inequality, one

gets

E|tr(A1(z)M)| < CE'2|yiD7! DR (21)y; — (R @) 2D @) [

(3.18)
=0(N'?).
3 _ 1
Let Bjx(z) = TN tr(D;kl TR From Lemma 0.2,
E|Bjx(2) — bjx(x)| = O(N 7).
Applying the above inequality, Lemma 0.9 and Lemma 0.11, we obtain
E|Bjk(2) = ¥;@|" < C[E|Bi(@) — B @|* + [bjx @) — ;@[] + O(N7)
C
= mEl/ 2yiD3 @)y; — (D3 (@) T2)[*
(3.19)
C _ _ _
+ 3 Elr(D ) Ta) — (D7 @) T20) [+ O(N )
c,.c 1y _ o(N-!
=yt tow )=o)
which implies that
c 12 2
Blur(A2@)M)| = = > EY2[Bjuz) — v )|
j £k
7 (3.20)

x E'|yD7] @OMR; ' @)y [P = 0(N'/?).
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Lemma 0.11 implies that
Cc _ _ _
E|tr(A3(z1)M))| =y Ztr[(Djkl (z1) =D '(z1)) x R '(z) Ty ] < C. (3.21)
J#k
Using (3.17), (3.20), and (3.21), one gets

tr(Ey (Dk(Zl))T2nD]:1(Z2)T2n) = —tr(E; (Rgl(m))Tan,:l(zz)Tzn)

(3.22)
+ tr(Ex (A1 (21)) T2 D} ' (22)T2n) +a(z1, 22),

where E|a(z1, 22)| < O (NY/%). Furthermore, write

tr(Ex (A1 (D)) T2u D ' (22)Ton)

1 _ _
= =7 25V @B @) [Y]ED @) T2 22}y,
j<k

- tr(EkD;kl (z1)T2n D;kl (Z2)T2n)]
x [yiD7, @) T2 R @)y — (D} 22 T2uR; ' 21)T2n)]
1 _ _
=57 251V @B (Vi EDjE @) T2 (22)y
j<k
- tr(EkD;kl (z1)T2n D;kl (ZZ)TZn))
x (D7 (z22)T2u Ry ' (21)Tan )
1 _ _
— 53 257V @Bk 2) w(EkDT ) TonD (22)Tn)
j<k
X [)ﬁD;kl (22) T2 R, (21)y; — tr(D]Tk1 (22) T2 R (21)T20) ]
1 _ _ _ _
— 7 257V @DBj() w(EDT (20T (22)Tan) (D7 (22) T2u Ry (21) )
Jj<k
1 _ _ _
+ N Zsj vj(z) Ry 1(Z1)(yjyjf - Tzn)Eijkl (Zl)Tanjk1 (22)T2n]
j<k
1 _ _ _ _
- stj ¥ ()[R @) T2, EaD (2 T2 (D ' (22) — D3 (22)) T ]
i<

£ a1(z1,22) + a2(z1, 22) +az(z1, 22) +aa(z1, 22) +as(z1, 22) + as(z21, 22)-
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It follows from Lemma 0.1 and Lemma 0.9 that
E|ai(z1,22) + a2(z1, 22) +a3(z1, 22) + as(z1, 22)| < CN'2.
In addition, Lemma 0.11 yields that
Elas(z1,22)| = C

and that

Elas(z1, z2)

1
+ 53 z;sfw,- @)V (z2) tr(ExDy ' 21 T2aDy ! (22)T2a) tr(Dy ' (z2) T2 R} (21)T2n)
A

<CN7!,

where the last inequality uses (3.19). (3.22), together with the above three inequalities, ensures
that

1
tr(BxD ! (21)T2nD; ' (22)T2n) [1 + 7 287V @Y @) (D (@) TRy ! (Zl)Tzn)]
j<k

= —tr(Ry ' (2 T2uD} ' (22)T2n) + a7(21, 22),
where E|a7(z1, z2)| < CN'/2. Combining (3.18), (3.20) with (3.21), one has
-1 -1
tr(ExD; " (z1)T2,D; (22)T2,)

1
x [1 N2 Zsjz-wj(m)wj (Zz)tr(R,jl(Zl)Tangl(Q)Tzn)} (3.23)
j<k

= (R, (1) T2 R (22)T2n) + as (21, 22),
where E|ag(z1, 22)| < CN'/2_ From Zhang [21]
821(2) = 82(2) a.s. as n — oo.

It follows that

1
V() — T < C(|Egan(2) — £2(2)| + 89, (2) — £2(2))
(3.24)
=o(1),
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where g2, (z) is defined at (3.5). Note that by (1.10)

1 &, 1
Ly
N ; T (14583, +5;85,(22)

1 1 & 5 1 < 5
S S [ S B N S (3.25)
g5, (z1) — 89, (22) [N ; 145,89 (z2) N ; 145,89 (z1)

gy, @) — 2289, (22)
89, (z1) — 83,(22)

and by (1.11)

2

d
(1+g% @D+ g% (z)1)

2189, (z1) — 2289, (22)

Hy, (¢
2O="0 =g ()

(3.26)
Using the fact from (1.10) and (3.24) that
1 0
v Zsj-lﬂj(z) + 281, (@) =o(1),
j#k
we deduce that

(R @) TR, (22)Tan)

N t

2
T ao f 1+ g0, @D + 8% (22)1)

d Hop (1)

N 28),(z1) — 2289, (z2)
a2 gy (z1) — ), (22)

We now deal with ﬁ Zj<k S]2-1/fj (z1)¥j(z2) in (3.23). For any ¢ € (0, 1/100), we now distin-
guish the following two cases.

Case 1: When k <n'~¢, one gets

LZ [ 57 _071215’(1)”(&) —zzg?n(zz)]
N2 (145580, +5j85, ) " 83,0 — 85, (22)

x tr(R; ' (z1)T2uR; 1 (22)T2n) | < CNTF = 0(1).
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Case 2: When k > n'~¢, one gets by (3.25)

1
N2

Z[ 55 _C_lzlg?n(m) —zzg?n(zz)}
(145789 (L +5;80 () " &5, (z1) — g% (z2)

Jj<k

x tr(R; " (20)T2a Ry ' (22) T2n )

1 Z[ 57 _C_121g?n(Z1) —zzg?n(zz)”
N imkd +5780, @ +sj8) ) " ). (z1) —gd (z2)
=o(1).

It follows that

tr(ExD; ' (21) T2, D ' (22)T2n)

5 [1 k=1 z1g), @) — 2280, (22) 2189, @1) — zzggn(zz)}
nziz2 g9, (z1) — g%, &), (1) —gl,(z2)

N Zlggn(m)—zzggn(zz)
z21z2 g (z1) — gY,(22)

+a9(z1,22),

where E|ag(z1, z2)| = o(N). Applying (3.24) and Lemma 0.11, one gets

bi(z) — #gg@ < %Ehr(n,:l(z) — D 1(2))Tan| + 0(1) = o(1).
Set
derzy— L mgzn(m) - zzg?,,(zz) mggn(m) - z%ggn(zz)
2122 gy,(z1) — 85,(22) 81, (21) — &1, (z2)
and
St

rak(21,22) = a +Skg§,,(21))(l + skggn(zz)).

By (3.25) and (3.26), we obtain

) 2 1/2
d,(z1, <|lch | ———dH, d Hy,
jdn a1, 22)] = |:c /|1+g§n(z1)x|2 ! (X)./ 211 + g9, zDN) 2 ? (t)]

x? 2 1/2
n —dHn dHn
" |:C / 1+ g3, (z2)x]? : (X)/ 22(1 + &7, z2)) 2 : (t)]

n

1859

(3.27)
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~,0 _ t
_ [S(Zlg?n(m)) Se@) —vf 21 (1+£7, GNP de"(t)]l/z
389, (Z1) S(zigd, z1)

< 1.

~ 60 _ t
[?Y(Zzg?,, (z2)) “822(22) =V J 21487, 1) 2 d Hn (1) } 172
389 (22) 3(228) (22))

Using (3.27), (3.15) can be rewritten as for large n

| 0 _ 0 n k—1 B
2182, (21) — 2285, (22) Zrnk(m, Zz)(l - Tdn(m,zz)) +op(D).

Nzuiza g0,(z1) — 80, (z2) =

Applying (3.25) and Lemma 0.12, we have

1 < k—1 -1
- Zrnk(m,zz)<1 - —dn(m,zz)>
N P n
=(1—dn(z1,22))" Zrnk(zl 22) — —ern/(m 22)

k=1 j=1

1 1
X —
|:1—"1kdn(Z1,Z2) l_nl(k_l)dn(ZhZ2)i|

0 0 n k .

—1218;1,(1) — 2287,(22) 1 Y im1mnj(z1, 22)

= (1 —du(z1,22)) g)" 0 L —dn(zuzz)—ZL
82,(21) — 85, (22) N =1 k

y n~lk
(1 —n=Ykdy (21, 22))(1 —n=V(k — Ddy (21, 22))

We next develop the above limit by Abel’s lemma. To this end, consider the following two
cases, for any ¢ € (0, 1/100) and large n.

Case 1: When k <n'~¢, one gets

>

k<n1 €

[ L 1rn](z1 22) _lag?,,(m)—zzg?,,(zz)]
"gd (z1) - gd (z2)

y nkfu(z1,22) '
(1 —=n~Ykd,(z1,22))(1 —n~V(k — 1)d, (21, 22))

<CN~¢ =o(1).
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Case 2: When k > n'~¢, one gets by (3.25)

Y

anl—a

k
[Zj_l mnj(z1,22) - 218) (z1) — zzg(l),,(zz)]
k " g9, — 83,(22)

5 n~kd,(z1, 22) ’
(1 —n=Ykdy(z1,22))(1 —n=l(k — Ddy (21, 22))

k
¢ Z ijlrnj(m,zz)_ 2180 (21) — 228Y (22) o)
< —_— =, .
et k 83,(21) — 83,(22)
Hence, (3.15) can be transformed into
-1
dn(z1.22)(1 = dn(z1.22)) " —da(21.22)
1 & n~lk
X = +0,(1).
”;; (0= Tkdy 1, 24 =1k — Ddter, 22n 7Y
Thus,
ip.  d(z1,22) 2 ! t /4(11’12) 1
3.15) — ———— —d“(z1,z2 ——dt = dz.
e T R S TRV Te=S 1= S

‘We conclude that

o ) ip. 52 /d(m,zz) 1 J
71,322) — Z.
=2 022021 Jo -z

3.2. Tightness of M,1(z)

This section is to prove tightness of the sequence of random functions My (z) for z € C defined
in (2.9). Similar to Section 3 of Bai and Silverstein (see Bai and Silverstein [2]), it suffices to
show that

wp  EMmG) - My1(z2)I?
P lz1 — z2|?
n;z21,220€Cy

is finite.
We claim that the moments of |[D~!(z)], ||D]Tl(z)||, and ||D]Tkl (2)]| are bounded in n and

z € C,. Without loss of generality, we only give the proof for E||Dl_1 (2)|I1? and the others are
similar. In fact, it is obvious for z =u 4+ iv € C,. For z € C; or z € C,, using (3.2) and (3.3), we
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have for any positive p and suitably large [

E[DT @ |" =EDT @1 (m <22 <)

+E|D7 @71 (pi? < 11 or ABLD > )

1 1
|, —nrlf” [ — x1P

} +o PP < or AL S )

< maX{
<Ci+ Cznpsyjpn_l <Cp.
Write
1 —1 —1 1 —1 —1
mu(z1) — my(z2) = Ntr(D (z1) =D (z2)) = § @ — @)D @D ().

We then have

M, (21) — M, 1 & . _
% =7 25 B —Ej-0B;(@)B;(@) (v;D} ' )D; 2)yj)
j=1

N
1 _ _
= 28 —Ej DB 2)y; D7 @)D} 2)y;
j=1

N
1 _ _
N Zsj(Ej —E;-1Bj(z2)y;D; 1(11)Dj 2(22)y;
Jj=1
2P+ P+ P

Thus, it suffices to show that E|P; + P, + P3|? is bounded. Denote pj(@) = ny;l(z)yj —
Etr(T2, D]TI (2)). Note that

1
Bj(z)=0bj(z) — stﬂj(z)bj(z),oj(z) (3.28)
— b () — s, DDy () + 3528, DBHDPA) (3.29)
=0bj N]J P;jZ NZ‘/]Z JZ,OJZc .
Applying (3.28), Lemma 0.4, and Lemma 0.9, we deduce for all large n
1
b @] < [B8; @] + 1558 E(8; 00, 2)]

C
(QINTV< L
<Ci+Clbj(x)|N? < T oNR
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Hence, |b;(z)| is bounded for all n. Using (3.28), write

1 N
Pr=75 Y s7bj(z1)bj(z2)(E; —E;_1)(y;D;' (zl)D;l(zz)y/')2
j=1
1 X
-V Zs;?bj(m)bj(zz)(Ej — Ejfl),Bj(ZZ)pj(Zz)(yijjfl(Zl)Djf](Zz)yj)
j=1

1 N
= 7 2_8ibi @€ —Ej 0B 0B (22)pj (21 (y;D} znD} ! (22)y;)*

j=1

£Pi+ P2+ Pus.

By Lemma 0.9, we deduce that

N
1 _ _
E[Pn)? = Nk $2b(21)bj(22) (E; — E;_D[(¥;D}' @D} ' (22)y;)’
j=1
2
— (D} 2D (22) )]

E|ly/D; ' (z)D; ! @2)y; — D} e)D; ! (22) T

IA
2|q
Mz

Using Lemma 0.4 and Lemma 0.9, one finds

1 N
EIPilP = —E|> 53 (@b (22)(Ej — Ej1)Bj (22)p; @) (y’D7 ' @)D (20)y;)°

j=1
C l -1 -1 -1 -1 212
N—Z |Bj(22)0j(z2) (¥;D} ' 2D} (z2)y; — D (z0)D; ' (22)T2a) |

C N 2
N—Z 1B(22)pj(z2)]

1863
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C N
= N6 z_: 20 pj(z2)(y 71(Z1)Df](12))’j _trD;](Zl)D;](ZZ)TZ”)Zrt

N
C
< B[ @)+ 17 2B 85 )| B oy o)
j=1

C
<—+C<C.

By the same argument, we get E|P3 |2 < C. Hence, we obtain
E[P1|* <C.

For P, and P3, we only need to analyze one of them due to their similarity. From (3.28), it is
obvious that

N
1 _ _
=—N Zsjbj(ZI)(Ej - Ejfl)y.ijj 2(Z1)Dj 1(Zz)yj
Jj=1

1 N
+m2s§bj(z1><E,- E;_1)Bj(z1)pj(z1)y;D;* @)D} z2)y;.

This yields that
1| ’
EIPf = <5E| D sibj @) (E; —Ej)y;D;@nD; ! @)y,
j=1
1 |& ?
+ B2 570 @D E; —Ej-0Bj0p; YD} @)D} (2)y;
j=1
C & ) ) -1 2
N—Z ¥iD7?(z0)D; ! (22)y; — D (21D} (22) Ty |
C N
N—Z 1B 21)pj ()Y D 20D} @y, |
<cC ZE|ﬂ]<zl)p,<zl>(y*D @)D} @)y; — D@D} @) Ta) [

c 2
+ 3 2 ElBinpi] <.

j=1
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where the first inequality is from Lemma 0.9 and the last inequality is from Lemma 0.4. There-
fore, we conclude that

E|M,(z1) — M1 (z2)|*
sup [My1(z1) n1(22)| < sup EBPI+Pr+ Pyl <C.

2
1;21,22€Cy |21 — 22 1;21,22€Cy

This implies that M, (z) is tight.

4. Non-Gaussian case

It has been verified that Lemma 2.5 is true when the entries of the matrix are independent Gaus-
sian variables. This section is to show this conclusion still holds in the general case. The strategy
is to compare the characteristic functions of the linear spectral statistics under the normal case
and the general case.

It is worth mentioning that for the complex case, u j, the real part of x j; and v i, the imaginary
part of x j; are independent. Thus, it is enough to consider the real case only.

We below assume that xj, j=1,...,N,k=1,...,n are truncated at §, J/n, centralized and
renormalized as in the last section. That is to say,

il <8u/n,  Exjy=0,  Exj=1  Exj=3+o().

Denote A, = %TngnTlnY;Té’/lz where the entries of Y,, = (y«) are independent real Gaus-
sian random variables such that

Eyjr =0, Eyh =1, forj=1---N,k=1,...,n.

Moreover, suppose that X, and Y, be independent random matrices. As in Gotze et al. [6] for
any 0 € [0, /2], we introduce the following matrices

W, (0) =X, sinf + Y, cos0 and G,(0) = %TZZW,,TMWLLT;?, (4.1)
where
(Wa(©) ;= wjk = xjisin@ + yji cos .
Furthermore, let
H,(t,0) =¢"¢ @, S©) =tr (G (®)), 4.2)

%)= S®) — N/f(x)chn,Hl,,,Hz,, (x). Z,(x.0) = EeixSO(G)'

For simplicity, we omit the argument 6 from the notations of W,,(0), G, (), H,, (¢, 9) and denote
them by W,,, G,,, H, (¢), respectively.
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Note that

7/237,(x,0)

Zn(x,7/2) — Zp(x,0) =/ e 7 ae. (4.3)
0 30

The aim is to prove that M
which ensures Lemma 2.5.
To this end, let f(A) be a smooth function with the Fourier transform given by

converges to zero uniformly in 6 over the interval [0, /2],

Yy 1 * —ith
Fy=— / Feit da.
27 J_so

From Lemma 0.7, we have

9Z,(x,0) 2 j
n(x,0) XZZZE“’M 1/2f(Gn)T1/2WnT1n]jke”SO(9)1

06
j=1k=1
where
w'; —w—x- cos@ — yirsinf
and
~ m -~
FGn =i / u F ) H, () dut. (“4)
—00

Let Wi (w, 8) denote the corresponding matrix W,, with w jx replaced by w. And let
1 G
Gujic(w.6) = Ty "Wy, )T 1y W (. )Ty", Hyje(w, 1,0) = &Gk,
Sw,0) =tr f(Gujx(w,0))  S°(w,0) =S(w,0) —N/f(x)dFC"'H””H2"(x)
and

f(Gnmw,e)):i/ u f () Hyj(w, u, 0) du,

~ -0
@k W) = [T, F(Gojic(w, 0)) Ty Wiyji(w, )Ty, ] 5 0.

By Taylor’s formula, one finds

3
1 ; 1 4
piewje) =Y e O) + guwhep ewip. o€ 1)

=0
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which implies that

3Z,(x,0)  2xi o~ 1 &
9 l)

=0 j=1k=1 j=1k=1
It is easy to obtain
Ew/,w?, =0 Ew/jwl, =0
Tk jk ’ jkWjk )
Ew}kwfk = Ew?k sin® 0 cos 6, Ew}kw?k = o(1) sin® 6 cos 6.

It follows that

IZu(x.0)  xi en ) XA, 4w
29 NZ Ew /ksm 9C0$9Eg0]k (0)+mZZijkwjk¢jk (owjx)
j=1k=1 j=1k=1

éII + 1.

We here only consider Z;. The analysis of 7 is in the Supplementary material [1]. A direct
calculation yields that

32 f (G, .
(ﬂ(‘i)(wjk)z[ . f(2 )TI/ZW T, } ¢1x5"®)
J Bwjk Jjk

1/2 8f(Gn) ]/2] ixS°(6)
+2|:T [T, lrre
2n awjk 2n i

N @[Tl/z 9 (Gn) 1/2

| T2 WnTln} (T3 PG Ty W, Ty, | oS ®
Wk

jk
6xi G0

+ 2 [ TG T W T ]y [T F Gy e
4x 1/2
N2[

A 3 4 5
:*7jk+‘7jk+‘7jk+‘-7jk+‘—7jk~

3 ixs0
7(G, )Tl/zwnTln]jkems ®

Using Lemma 0.7, one finds

J}k——— / u FEOIT 1 b [T, T3 o [T H TP WL T, 0@ du

.
- / P [TYPH, T2 [T T W, T,

[T1nW/ Tl/zH T1/2WnT1n]kk(u)€ixSO(9) du
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2i

1/2 1/2 1/2 1/2
_W/ u F@) [Ty Wy Ty W T, ok [Ty BTy W, T ]

A~
* [T%anTé{lzwnT]n]jk(u)e’xs © qu.

It is straightforward to check that the moments of ||Té,/12H Tl/ 2 I/ 2H Tl/ 2W,ZT 1n|l and

I T,
—||T1nw/T‘/2H T, W, T, | (4.5)

are bounded. Applying Lemma 0.8, we obtain

ZZE Jjk

jlkl

—N1/4/ (|I,t| + |u| )|f(u)|du<CN 1/4

By the same argument, we get

<CN~ V4,

uMz

3, 74 4 g5
T+ T+ T+ T7)

Hence,

|Zi| — 0 as n — oo.

Acknowledgements

Z. D. Bai was partially supported by NSFC 11571067 and 11471140; H.Q. Li was partially sup-
ported by NSFC 11701234, Ph.D. Teacher’s Research Support Project Foundation of Jiangsu
Normal University 17XLR009 and the Priority Academic Program Development of Jiangsu
Higher Education Institutions; Guangming Pan was supported in part by by a MOE Tier 2 grant
2014-T2-2-060 and by a MOE Tier 1 Grant RG25/14 at the Nanyang Technological University,
Singapore.

Supplementary Material

Supplement to “Central limit theorem for linear spectral statistics of large dimensional
separable sample covariance matrices” (DOI: 10.3150/18-BEJ1038SUPP; .pdf). In this sup-
plement, we give four parts. Part A is the convergence of M,»(z). Part B shows the analysis of
the remainder term for general case in Section 4. Some useful lemmas are listed in Part C and
Part D.
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