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This paper introduces two new families of non-parametric tests of goodness-of-fit on the compact classical
groups. One of them is a family of tests for the eigenvalue distribution induced by the uniform distribution,
which is consistent against all fixed alternatives. The other is a family of tests for the uniform distribution
on the entire group, which is again consistent against all fixed alternatives. The construction of these tests
heavily employs facts and techniques from the representation theory of compact groups. In particular, new
Cauchy identities are derived and proved for the characters of compact classical groups, in order to accom-
modate the computation of the test statistic. We find the asymptotic distribution under the null and general
alternatives. The tests are proved to be asymptotically admissible. Local power is derived and the global
properties of the power function against local alternatives are explored.

The new tests are validated on two random walks for which the mixing-time is studied in the literature.
The new tests, and several others, are applied to the Markov chain sampler proposed by Jones, Osipov and
Rokhlin [Proc. Natl. Acad. Sci. 108 (2011) 15679–15686], providing strong evidence supporting the claim
that the sampler mixes quickly.
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1. Introduction

Recent work of Jones, Osipov and Rokhlin [22] suggested a Markov chain on the orthogonal
group that is supposedly used to sample from the uniform distribution. They prescribe a particular
number of steps after which the chain is mixed, resulting in a fast random rotation generator
which is at the core of several successful randomized data analysis algorithms. Examples include
approximate algorithms for highly over-determined linear regression (Rokhlin and Tygert [37]),
low-rank matrix approximation (Liberty et al. [28]), and very high dimensional nearest neighbor
analysis (Jones, Osipov and Rokhlin [22]). The new sampler could offer a significant reduction
in computational cost compared to the best exact algorithm in the literature (see Section 1.1). In
applications where multiplication of a random orthogonal matrix with many vectors is needed,
the new sampler is much faster than conventional random rotation generators.

It is desirable to have outputs that are approximately uniformly distributed. This is not just a
mere theoretical preference; it is a matter of practical importance. In fact, as discussed in Ob-
servation 5.1 in the supplementary material Sepehri [41], the performance of the approximate
nearest neighbor algorithm was improved by using a uniform sampler compared to non-uniform
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samplers (the approximate nearest neighbor algorithm is sketched in Section 3 of the supplemen-
tary material Sepehri [41]). Therefore, one needs to investigate the mixing properties of the new
sampler. Unfortunately, due to complex construction of the new sampler, analytical study of the
mixing-time seems to be impractical. This paper suggests to numerically study the mixing-time
of the new sampler using statistical tests of goodness-of-fit.

There is a sizable literature on goodness-of-fit testing on non-Euclidean spaces. Major work
has been devoted to the development of goodness-of-fit tests on the circle and sphere (see
Rayleigh [36], Ajne [2], Beran [7], Watson [45–47], Wellner [48]). The literature on goodness-
of-fit testing for the orthogonal group has been limited to three dimensions; two commonly used
tests for three dimensional rotations are Downs’ generalization of the Rayleigh test (Downs [15])
and Prentice’s generalization of Giné’s Gn test (Prentice [35], Giné [16]). For a more detailed
review of the literature see Mardia and Jupp [29]. In an important development in high dimen-
sional setting, Coram and Diaconis [10] proposed a family of statistical tests for the eigenvalue
distribution induced from the Haar measure on the unitary group, U(n). Their tests are relatively
easy to compute and consistent against all fixed alternatives. One of the new tests in this paper
was inspired by the tests of Coram and Diaconis [10].

This paper settles the question about the mixing-time of the new sampler using statistical tests.
Various known tests are applied (see Sections 1.1 and 2), confirming that the new sampler mixes
quickly. New tests are introduced (see Sections 3 and 4) and validated using the benchmark ex-
amples of Section 1.2. The new tests are applied to the new sampler and the results are compared
to other tests in Section 5. The results are in agreement with the claim that the new sampler mixes
quickly, that is, after a given number of steps. Local properties, including local power, of the new
tests are studied in Section 6. Similar tests are stated for the other compact groups in Section 7.
A further test based on the properties of trace is presented in Section 6 of the supplementary
material Sepehri [41].

1.1. Pseudorandom orthogonal transformations

In their recent work, Jones, Osipov and Rokhlin [22] proposed a pseudorandom orthogonal ma-
trix generator which consecutively applies two dimensional rotations in coordinate planes, pre-
conditioned using a Fourier type matrix. This is formally described below. Suppose n, M1, M2
are positive integers. Define a pseudorandom n-dimensional orthogonal transformation � as a
composition of M1 + M2 + 1 orthogonal operators

� =
(

M1∏
i=1

Qi · Pi

)
· Fn ·

(
M2∏
j=1

QjPj

)
. (1)

Each Pi and Pj is a uniformly distributed n × n permutation matrix, independent of others. That
is, each Pi corresponds to a permutation pi of {1, . . . , n} and Pi acts on vectors as follows

(Piv)j = vpi(j).

Each Qj is defined as

Qj = Qn−1,j · Qn−2,j · · ·Q1,j ,
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where Ql,j is a uniform two dimensional rotation in the plane generated by the lth and l + 1th
coordinates. That is, (Ql,j v)i = vi for i �= l, l + 1 and

(Ql,j v)l = cos θl,j vl + sin θl,j vl+1,

(Ql,j v)l+1 = − sin θl,j vl + cos θl,j vl+1,

where θl,j is a uniform number in [0,2π ]. All Qi and Qj are independent of each other. Lastly,
the linear operator Fn is defined as follows. Let d = �n

2 � and T be the following d × d matrix:

Tk,l = 1√
d

exp

[
−2πi(k − 1)(l − 1)

d

]
.

Define Z : R2d →C
d as [

Z(x)
]
l
= x2l−1 + ix2l .

For n even, define Fn as

Fn = Z−1 · T · Z. (2)

If n is odd, Fn fixes the last coordinate of x, and Fn−1 defined in (2) is applied to the first n − 1
coordinates. The cost of applying � to vector x ∈ R

n is of order O(n(logn + M1 + M2)), be-
cause the cost of applying the operator Fn is O(n logn) and each operator Qj · Pj costs O(n).
It is claimed in Jones, Osipov and Rokhlin [22] that if M1 + M2 = O(logn), then the distribu-
tion of � is close to the uniform distribution on the set of all n × n orthogonal matrices. This
makes the new sampler much faster than the state of the art Subgroup Algorithm of Diaconis and
Shahshahani [14], which is an O(n3) algorithm for generating uniform n × n rotation matrices.
However, it remain to be investigated whether the distribution of the output is close to the uni-
form distribution. Throughout the paper, the ‘mixing time’ or the number of steps required for
the Jones–Osipov–Rokhlin sampler to mix refers to the quantity M1 + M2.

1.2. Benchmark examples

Two benchmark examples of random walks on SO(n) and their mixing properties are used as
sanity check for the tests considered in this paper.

1. Kac’s random walk. The standard Kac’s random walk {Ok} on SO(n) is the defined as
follows:

Ok+1 = R
(k)
i,j (θ)Ok,

where R
(k)
i,j (θ) is an elementary rotation with angle θ in the plane generated by the ith

and j th coordinate axes, where {i, j} is uniformly chosen among all pairs from {1, . . . , n}
and θ uniformly random in [0,2π). This walk was introduced as part of Kac’s effort to
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simplify Boltzmann’s proof of the H-theorem (Kac [25]) and Hastings’s simulations of
random rotations (Hastings [19]). Convergence of the Kac’s random walk has been studied
by various authors in different senses. In the current discussion, the focus is on convergence
in Wasserstein distance which metrizes the weak convergence; for a review of the literature
see Pak and Sidenko [32], Oliveira [31], Pillai and Smith [33]. The best known bound on
the mixing-time in Wasserstein distance is obtained by Oliveira [31], providing an upper
bound of order n2 logn on the mixing-time which is at most a factor logn away from
optimal. For n = 51, which is the case studied numerically in this paper, n2 logn ≈ 10 000,
but the constants are not known and the actual mixing time could be much smaller of larger
than this value.

2. Product of random reflections. As described in Diaconis [11], the following random walk
on O(n) arose in a telephone encryption problem. At each step, the current orthogonal
matrix is multiplied by a random reflection, a matrix of the form I − 2uT u for a uniform
unit vector u ∈ S

n−1.
The mixing-time for this chain has been studied carefully in Diaconis and Shahshahani

[13], Porod [34], Rosenthal [39], proving that 1
2n logn + cn steps are necessary and suf-

ficient for convergence of the reflection walk to the uniform distribution in total variation
distance. In fact, Porod [34] gives explicit lower- and upper-bounds for the total variation
distance between this Markov chain and the Haar measure as a function of c, but the bounds
are not tight. For n = 51, 1

2n logn ≈ 100.

2. Some already known tests

Two important tests for uniformity on SO(3), the Rayleigh’s test and the Gine’s test, are reviewed
in this section. The application to the examples of the previous section is demonstrated.

2.1. Rayleigh’s test

Perhaps the first test of uniformity on SO(3) was introduced by Rayleigh [36]. Given data
g1, . . . , gN ∈ SO(3) define

TR = 3N tr
(
ḡT ḡ

)
,

where

ḡ = 1

N

N∑
i=1

gi.

The Rayleigh’s test for uniformity rejects for large values of TR . This can be directly generalized
to the higher dimensional case. For any n ∈ N and g1, . . . , gN ∈ SO(n) define

TR = nN tr
(
ḡT ḡ

)
,
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Figure 1. Histograms of Rayleigh’s statistic under Setup 2.1. The alternatives are (left to right) the Kac’s
walk after 100 steps, after 150 steps, the product of 90 random reflections, and 140 random reflections.

where

ḡ = 1

N

N∑
i=1

gi.

The Rayleigh’s test was applied to the benchmark examples of the previous section under the
following setup.

Setup 2.1. The sample size is N = 200 and the dimension is n = 51. Each test statistic is com-
puted on 1000 independent repetitions. This setup will be used throughout the paper. All the
histograms in this paper are illustrated in blue under the null and in red under the alternatives.

Figure 1 illustrates the histograms of the Rayleigh’s statistics computed on the product of
random reflections and Kac’s walk, with that corresponding to the uniform distribution overlaid.
Throughout the paper, in all similar figures the color blue corresponds to the Haar distributed
samples and the color red corresponds to the alternative.

The Rayleigh’s test does not seem to have remarkable powerful on either examples. In par-
ticular, the Rayleigh’s test fails to reject the null hypothesis even after 150 steps of the Kac’s
walk. The Anderson–Darling p-value for the 1000 values of the Rayleigh’s statistic after differ-
ent number of steps are given in Tables 1 and 2 for the product of random reflections and the
Kac’s walk.

Applying Rayleigh’s test to samples generated by the new sampler of Jones, Osipov and
Rokhlin [22] provides no evidence for departure from uniformity, after only one iteration. The
p-value of the Anderson–Darling test under Setup 2.1 is 0.35.

Table 1. p-values corresponding to Rayleigh’s test on iterated random reflections

# of steps 50 75 90 100 110 125 140 150 175 200

A–D test 
1e−32 
1e−32 
1e−32 
1e−32 
1e−32 4.1e−16 0.03 0.37 0.84 0.39
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Table 2. p-values corresponding to Rayleigh’s test on Kac’s walk

# of steps 100 150 200 250 300 350 400 450 500

A–D test 
1e−32 0.08 0.58 0.23 0.23 0.86 0.70 0.82 0.89

2.2. Gine’s test

Another important test of uniformity on SO(3) was introduced by Giné [16]. Given data
g1, . . . , gN ∈ SO(3), define

TG = 1

N

N∑
i=1

N∑
j=1

√
tr
(
I − gT

i gj

)
.

Gine’s test rejects for large values of TG. It is consistent against all fixed alternatives on SO(3),
but not in any higher dimensions. The corresponding test was carried out on the benchmark
examples and the new sampler. Gine’s tests seems to be more powerful than the Rayleigh’s
test on these examples. Histograms of the values of the Gine’s statistic are illustrated in Fig-
ure 2.

Applying the Gine’s test to the new sampler provides no evidence for departure from the null.
The Anderson–Darling p-values after one and two iterations of the sampler are 0.58 and 0.45,
respectively.

3. Tests based on eigenvalues

The new sampler has passed all the tests considered in the previous sections. In this section,
various new tests based on the eigenvalues are introduced and applied to the benchmark examples
as well as the new sampler.

Figure 2. Histogram of Gine’s statistic under Setup 2.1. The alternatives are (left to right) product of 110
random reflections, 125 random reflections, the Kac’s walk after 100 steps, and 150 steps.
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3.1. A test based on exponential families

The joint density of the eigenvalues of a uniformly random g ∈ SO(2n + 1) is given by Weyl
[49], page 224, as

f
(
e±iθ1, . . . , e±iθn

)∝
∏
i

sin2
(

θi

2

)∏
i<j

| cos θi − cos θj |2, (3)

where (1, e±iθ1 , . . . , e±iθn) are eigenvalues of g. By a change of variables xi = cos θi , the density,
in terms of (x1, . . . , xn) ∈ [−1,1]n, becomes

f (x1, . . . , xn) ∝
∏
i<j

|xi − xj |2
∏
i

√
1 − xi√
1 + xi

. (4)

The density f can be embedded in the following exponential family:

fγ,α,β(x1, . . . , xn) ∝
∏
i<j

|xi − xj |2γ
∏
i

(1 − xi)
α−1(1 + xi)

β−1. (5)

The normalizing constant is given by Selberg’s integral (Mehta [30], pg. 320, eqn. (17.5.9)), as∫
[−1,1]n

∏
i<j

|xi − xj |2γ
∏
i

(1 − xi)
α−1(1 + xi)

β−1 dx1 . . . dxn

= 2γ n(n−1)+n(α+β−1)
n−1∏
j=0

�(1 + γ + jγ )�(α + jγ )�(β + jγ )

�(1 + γ )�(α + β + γ (n + j − 1))
.

The density (4) is the special case of (5) for γ0 = 1, α0 = 3/2, and β0 = 1/2. We abuse the
notation to denote by f1, 3

2 , 1
2

both densities (3) and (4). Recall that the eigenvalues of a uniform
orthogonal matrix g are placed quite regularly on the unit circle. For example, the trace of g is
approximately normal with mean zero and variance one (Diaconis and Mallows [12]); whereas,
for uniformly distributed points on the unit circle, say in conjugate pairs, because of the Law of
Large Number and the central limit theorem, the sum has mean zero and variance of order O(n).
In particular, the magnitude of the sum is of order O(

√
n). The family of densities fγ,α,β models

the regularity of the configuration of the points on the circle. The case of γ = 0, α = β = 1/2 of
(5) corresponds to θi being independent uniform on [0,π]. As γ tends to infinity the points eiθj

become evenly placed on the semicircle. This is illustrated in Figure 3.
Testing for the Haar measure in this parametric family translates to

H0 : (γ,α,β) = (γ0, α0, β0) vs H1 : (γ,α,β) �= (γ0, α0, β0). (6)

Unfortunately, there is no uniformly most powerful test available in this setting. However, the
problem fits into the framework of Asymptotically Normal Experiments of Le Cam. This al-
lows for construction of an asymptotically maximin optimal test as follows. Define T1(x) =
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Figure 3. Left: 25 uniform points on the circle and their conjugates, middle: eigenvalues of a uniform
51 × 51 orthogonal matrix, right: 51 evenly placed points on the circle. The sum of all complex numbers is
approximately: 7.8 on the left, 0.78 in the middle, and 0 on the right.

2
∑

i<j log |xi − xj |, T2(x) =∑
i log(1 − xi), and T3(x) =∑

i log(1 + xi). Then (T1, T2, T3) is
a sufficient statistic for the exponential family fγ,α,β . That is,

fγ,α,β(x) = exp
(
γ T1(x) + (α − 1)T2(x) + (β − 1)T3(x) −A(γ,α,β)

)
,

where A(γ,α,β) = log(2γ n(n−1)+n(α+β−1)
∏n−1

j=0
�(1+γ+jγ )�(α+jγ )�(β+jγ )
�(1+γ )�(α+β+γ (n+j−1))

). Then, given data

x(1), . . . , x(N) the likelihood is∏
m

fγ,α,β

(
x(m)

)= exp
(
γ T

(N)
1 + (α − 1)T

(N)
2 + (β − 1)T

(N)
3 − NA(γ,α,β)

)
,

where T
(N)
i = ∑

m Ti(x
(m)). By standard asymptotic theory, under the null, T (N) = 1

N
(T

(N)
1 ,

T
(N)
2 , T

(N)
3 ) is approximately normal with mean μ = ∇A(γ0, α0, β0) and covariance matrix 	 =

∇2A(γ0, α0, β0)/N . The test that rejects for large values of

T = (
T (N) − μ

)T
	−1(T (N) − μ

)
is asymptotically maximin optimal (Lehmann and Romano [27], Theorem 13.5.5). Moreover, μ

and 	 can be computed using the recurrence relations and series expansions for digamma and
trigamma functions (Abramowitz and Stegun [1], pp. 258–259). For 51×51 orthogonal matrices,
n = 25, and (γ0, α0, β0) = (1,3/2,1/2) they are

μ ≈ (−329.70,−14.73,−19.92),

	 ≈
⎡⎣ 5.67712 × 10−2 −1.40363 × 10−2 −3.61067 × 10−4

−1.40363 × 10−2 1.52093 × 10−2 −3.46523 × 10−3

−3.61067 × 10−4 −3.46523 × 10−3 3.96834 × 10−2

⎤⎦ .

We applied this test on two samples of size N = 200 and 1000; data was generated using only
one step of the pseudorandom sampler (1) of Section 1.1. The test statistic T evaluated to 3.84
and 1.34, respectively. Under the null, T is approximately χ2

3 distributed. The corresponding
p-values are 0.72 and 0.28, respectively; there is no evidence for departure from uniformity.
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Table 3. p-values corresponding to product of random reflections

k = 100 125 130 135 140 150

N = 200 0 0.0002 0.001 0.055 0.09 0.20
N = 1000 0 0 0 0.0001 0.03 0.42

To further explore the performance of T , it was applied to the benchmark examples. Tables 3
and 4 show the p-values corresponding to T applied to the benchmark examples, suggesting that
T detects the cut-off to some extent. In particular, it seems to be more powerful than both Gine’s
and Rayleigh’s tests.

3.2. A family of consistent tests for f1, 3
2 , 1

2

Given data x(1), . . . , x(N) in [−1,1]n, this section introduces a family of tests T
(N)
z (x(1), . . . ,

x(N)), for a parameter 0 < z < 1, that are invariant under the natural symmetries of f1, 3
2 , 1

2
and

are consistent against all alternatives. The asymptotic distributions under null and alternative are
also available. The construction is given for a general hypothesis testing problem in the following
section; It is then carried out for f1, 3

2 , 1
2
.

3.2.1. Spectral tests on general spaces

Let X be a Polish space and μ a probability measure on X . Consider the standard non-
parametric goodness-of-fit testing problem: given independent and identically distributed ob-
servations x1, . . . , xN ∈X from a probability measure ν on X , test if ν = μ. A general test based
on spectral techniques can be constructed as follows.

Let L2(X ,μ) be the space of square μ-integrable functions on X . Assume that L2(X ,μ) is
separable with a countable orthonormal basis {fi | i ≥ 0}, with f0 = 1. For example, it suffices
to assume that X is compact. Theorem 13.8 in Thomson, Bruckner and Bruckner [43] gives a
condition for L2 to be separable in the general setting. Define the empirical measure of {xi} as
νN = 1

N

∑N
i=1 δxi

, and the Fourier coefficients of νN as

ν̂N (i) =
∫
X

fi(x)νN(dx) = 1

N

N∑
n=1

fi(xn).

Table 4. p-values corresponding to Kac’s walk

k = 150 200 225 240 250 300

N = 200 0 0 0.001 0.004 0.19 0.40
N = 1000 0 0 0 0 0.00001 0.65
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Then, under the null, ν̂N (i) → 0 as n grows to infinity, for i > 0. This property characterizes μ;
that is, if x1, x2, . . . ∈ X are i.i.d. draws from ν and ν̂N (i) → 0 for all i > 0 then, μ = ν. This
property can be used to construct tests of fit for μ. By the central limit theorem

√
Nν̂N(i) →N (0,1).

Thus, N |̂νN(i)|2 is asymptotically χ2
1 distributed. For a sequence of weights c = (c1, c2, . . .),

define

Tc = N
∑

i

ci

∣∣̂νN(i)
∣∣2.

Assuming that Tc converges to a finite value, a test that rejects for large values of Tc can be
used for testing H0 : ν = μ. Many well-known classical tests can be constructed in this manner.
The most important example is the celebrated Neyman’s smooth test for uniformity on the unit
interval. Neyman’s test uses Legendre polynomials as the orthonormal basis. Under mild condi-
tions and the assumption ci > 0 the test based on Tc is consistent against all alternatives, and has
various desired statistical properties. There is a vast literature on properties of tests of this form;
we do not attempt to review the literature since it is considered classical nowadays.

There are two main challenges in using the above machinery in a general problem: (1) finding
an orthonormal basis for L2, (2) computing Tc. In his celebrated paper, Giné [16] gave a solution
for the first challenge for the testing problem with μ being the invariant measure on a compact
Riemannian manifold M ; this is sketched below.

Let  be the Laplace–Beltrami operator (Laplacian) of M acting on the space of Schwartz
functions by duality. Denote by Ek the kth invariant eigenspace of  with eigenvalue σk . Let
{f k

i }dimEk

i=0 be an orthonormal basis for Ek . Then, {f k
i | k ≥ 0,1 ≤ i ≤ dimEk} is an orthonormal

basis for L2(M,μ). Note that the hypothesis testing problem

H0 : ν = μ vs H1 : ν �= μ

is invariant under natural symmetries of M . Therefore, by the Hunt–Stein theorem (Lehmann
and Romano [27], page 331), one only needs to consider invariant tests. Giné [16] suggested the
test, called Sobolev test, based on

T α
N (x) = N

∞∑
k=1

αk

∑
fi∈Ek

[∫
M

fi dνN(x)

]2

,

for a sequence of weights α = (α1, α2, . . .) such that sup |αkσ
s
k | < ∞ for some s > 1

2 dimM .
Note that the weights depend only on the eigenspaces; this ensures that the test is invariant.
Giné [16] studied statistical properties of the Sobolev tests; he derived the null and alternative
distribution and investigated local optimality properties following Beran [7].

Although these tests have been successful in practice, usually substantial non-trivial work is
required to carry out the details for any particular example of interest. Giné [16] carried out the
program for the circle, sphere, and the projective plane, recovering many known examples in
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the literature and introducing new tests of uniformity. Several authors have studied and derived
Sobolev tests for different examples including circular and directional data, tests of symmetry,
and unitary eigenvalues; see Prentice [35], Wellner [48], Jupp and Spurr [23,24], Hermans and
Rasson [20], Baringhaus [5], Sengupta and Pal [40], Coram and Diaconis [10].

Regarding the second challenge, note that

Tc = N
∑

k

ck

∣∣̂νN(k)
∣∣2

= 1

N

N∑
i,j=1

∑
k

ckfk(xi)fk(xj ).

Therefore, it suffices to have a way of computing

K(x,y) =
∑

k

ckfk(x)fk(y). (7)

To compute K(·, ·), Giné [16,17] suggested partial answers for the Sobolev tests, based on
Zonal functions; there still remains the challenge to find a closed form for T α

N , or to compute
it effectively for a general Reimannian manifold M . The paper resolves this issue for compact
classical groups and a class of weight sequences {ck}.

3.2.2. Spectral tests for f1,3/2,1/2

The following facts and notation will be used throughout this paper. For each partition λ, with
at most n parts, of an arbitrary non-negative integer, there exists an integer dλ and a map πλ

from SO(2n + 1) to the set of all dλ × dλ matrices with the following properties. For g,h ∈
SO(2n + 1), one has π(g · h) = π(g)π(h); the set of all matrix coordinates {πi,j

λ | λ,1 ≤ i, j ≤
dλ} is an orthonormal basis for L2(SO(2n + 1)). Moreover, if χλ(g) = tr(πλ(g)), then {χλ} is an
orthonormal basis for L2(f1,3/2,1/2). These are standard facts from representation theory of Lie
groups. A brief introduction is given in Section 1 of the supplementary material Sepehri [41].
For a textbook treatment see Bump [9], Goodman and Wallach [18].

Given independent observations g1, . . . , gN ∈ SO(2n + 1), define the Fourier coefficient cor-
responding to λ as

χ̂N (λ) = 1

N

N∑
i=1

χλ(gi).

For 0 < z < 1 define the test statistics T
(N)
z as

T (N)
z = N

∑
λ�=0

z|λ|∣∣χ̂N (λ)
∣∣2, (8)

where |λ| = λ1 + · · · + λn is the sum of the parts of the partition λ and sum is over all partitions
of all positive integers with at most n parts.
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To use T
(N)
z in practice, a closed form expression for the kernel given in (7),

Kz(gi, gj ) =
∑
λ�=0

z|λ|χλ(gi)χλ(gj ),

would yield a closed form expression for T
(N)
z .

Coram and Diaconis [10] used the closed form expression for Kz(g,h), given by the Cauchy
identity for the Schur functions, to build a test for the eigenvalue distribution induced by the Haar
measure on the unitary group. The test statistic T

(N)
z is an analogue for the orthogonal group of

their test.
In the case of the orthogonal group there was no closed form for Kz available in the literature.

Motivated by the testing problem under study in the present paper, the author derived Cauchy
identities for all of the compact classical groups.

Proposition 3.1 (Cauchy identity for SO(2n + 1), Theorem 2.1 in Sepehri [41]). Let g,h ∈
SO(2n + 1) have eigenvalues equal to (1, e±iθ1, . . . , e±iθn) and (1, e±iφ1, . . . , e±iφn), respec-
tively. Then,

Kz(g,h) =
(1 − z)n det[ (1+z)2+2z(cos θk+cosφl)

(1+z2)2−4(z+z3) cos θk cosφl+2z2(cos 2θk+cos 2φl)
]k,l

(4z)(
n
2)
∏

i<j (cos θi − cos θj )
∏

i<j (cosφi − cosφj )
− 1. (9)

Despite the complicated appearance of the formula (9), it is relatively easy to compute if the
dimension is not too large, offering a way to compute T

(N)
z .

The test based on T
(N)
z was applied to the benchmark examples and the new sampler. It is

indeed more powerful than all tests considered in the previous sections on both examples. Fig-
ure 4 illustrates the histogram of the values of T

(N)
z under Setup 2.1. The 5%-level test based on

T
(200)
1/2 has power equal to 0.64 against the product of 140 random reflections; the power drops to

0.30 after 150 steps. Similarly, it has power equal to 0.93 against the Kac’s walk after 250 steps,
which drops to 0.25 after 300 steps.

Remark 3.2. The test statistic T
(N)
z has, by construction, a decomposition to approximately

independent parts. When the test rejects the null hypothesis, it would be illuminating regarding

Figure 4. Histogram of T
(N)
z under Setup 2.1 and z = 0.5. The alternatives are (left to right) the product

of 140 random reflections, 150 random reflections, the Kac’s random walk after 250 steps, and 300 steps.
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Figure 5. Values of the Anderson–Darling statistic for comparison of the uniform sample and the product
of random reflections for different tests.

the nature of the departure from uniformity to see which of the components is larger than its
typical values. This was investigated using lower order terms of the form

C
(N)
k = 1

N

N∑
i=1

tr
(
gk

i

)
,

under Setup 2.1 and result is shown in Figures 5 and 6 for k = 1, . . . ,5. As it can be seen, the
component corresponding to tr(g) is the most significant against the product of random reflec-
tions. For the Kac’s walk, tr(g2) is the most significant and captures the cutoff more clearly
compared to T

(N)
z . The nature of deviation differs for these examples.

The test based on T
(200)
1/2 applied to the new sampler, after a single iteration, provides no evi-

dence for departure from the null; the Anderson–Darling p-value based on 1000 values of T
(200)

1/2
is equal to 0.35.

3.2.3. Asymptotic distribution under the null hypothesis

The representation (8) allows for derivation of the distribution under the null hypothesis of uni-
formity. This is the content of the following proposition.

Figure 6. Values of the Anderson–Darling statistic for comparison of the uniform sample and the Kac’s
walk for different tests.
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Proposition 3.3. Assume g1, . . . , gN are independent draws from the uniform distribution on
SO(2n + 1), and T

(N)
z is defined as in (8). Then, for any z ∈ (0,1) one has

T (N)
z → Tz =

∞∑
k=1

zkχ2
p(n,k) (as N → ∞).

On the right hand side, p(n, k) is the number of partitions of k with at most n parts and random
variables χ2

p(n,k) are chi-square with p(n, k) degrees of freedom which are mutually independent.

Proof. The CLT along with the orthogonality relations between the irreducible characters assert
that

√
Nχ̂N(λ) converges to standard Gaussian variables for λ �= 0, and the limiting variables are

mutually independent. Let D= {x = (xλ)λ�=0 |∑λ�=0 z|λ|x2
λ < ∞}. D is a Hilbert space equipped

with the inner-product

〈x,y〉z =
∑
λ�=0

z|λ|xλyλ.

Define the map φ :D �→ R as φ(x) = 〈x,x〉z =∑
i∈I z|λ|x2

λ; it is second order Hadamard direc-
tionally differentiable with derivative φ′

x(h) = 2〈x,h〉z and the second derivative φ′′
x(h) = 2φ(h).

Let χ̂N = (χ̂N (λ))λ. Then,

T (N)
z = Nφ(χ̂N).

Van Der Vaart and Wellner [44], Theorem 1.4.8, asserts that weak convergence in a countable
product space, to separable limiting variables, is determined by weak convergence of all finite-
dimensional marginals. That means that

√
Nχ̂N converges weakly to a random element of D,

denoted by Z = (Zλ)λ where Zλ are independent normal variables. Since,
√

N(χ̂N − 0) → Z,
the second order Delta method (Römisch [38]) yields

Nφ(χ̂N) → φ(Z) =
∑
λ�=0

z|λ|Z2
λ.

Collecting powers of z proves the proposition. �

Remark 3.4. As a consequence of Proposition 3.3, asymptotic expectation and variance of T
(N)
z

are given as

E(Tz) =
∞∑

k=1

zkp(n, k) and Var(Tz) = 2
∞∑

k=1

z2kp(n, k).

The right hand sides can be simplified using the identity (Andrews [3], Theorems 1.1 & 1.4),

∞∑
k=0

zkp(n, k) =
n∏

i=1

1

1 − zi
.
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Table 5. Mean and variance of Tz for n = 25

z = 0.5 0.8 0.9 0.99

Mean 2.46 291.45 402 914.7 2.844628 × 1025

Variance 0.9047073 18.86372 870.2173 8.097291 × 1018

We get

E(Tz) =
n∏

i=1

1

1 − zi
− 1 and Var(Tz) = 2

(
n∏

i=1

1

1 − z2i
− 1

)
.

Table 5 shows the asymptotic mean and variance for 51×51 rotations, i.e. n = 25, and different
values of z. Finite sample expectation and variance under Setup 2.1 and z = 0.5 are 2.48 and 1.26
respectively. Empirical quantiles are given in Table 6.

3.2.4. Distribution under fixed alternative hypotheses

The alternative distribution is given below.

Proposition 3.5. Let F be a probability measure on [0,π]n which is different from f1, 3
2 , 1

2
. Let

θ(1), . . . , θ (N) be independent draws from F . Then, T
(N)
z is asymptotically normal. In fact,

√
N
(
T (N)

z /N − μ
)→ N

(
0, σ 2) as N → ∞,

with μ = ∫
r2(θ)F (dθ)−1 and σ 2 = 4[∫ (

∫
r(θ)g(θ,φ)f1, 3

2 , 1
2
(dθ))2F(dφ)−μ2], where g and

r are defined as r(θ) = ∫
g(θ,φ)F (dφ) and

g(θ,φ) =
(1 − √

z)n det[ (1+√
z)2+2

√
z(cos θk+cosφl)

(1+z)2−4
√

z(1+z) cos θk cosφl+2z(cos 2θk+cos 2φl)
]k,l

(16z)(
n
2)/2∏

i<j (cos θi − cos θj )
∏

i<j (cosφi − cosφj )
.

Proof. Proof follows from Proposition (4.6) of Giné [16] and is given in detail in Section 4 of
the supplementary material Sepehri [41]. �

Table 6. P(T
(N)
z ≤ wp) = p based on 1000 Monte Carlo runs with N = 200, n = 25, z = 0.5

p 0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

wp 0.93 1.16 1.30 1.66 2.20 2.94 3.94 4.65 7.38
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Remark 3.6. A direct consequence is that T
(N)
z is consistent against all fixed alternatives; not

only the limiting distribution differs, so does the scaling. In particular, Pν(T
(N)
z > cz,1−α) → 1

as N tends to infinity, for all alternatives ν.

4. Beyond the eigenvalues

Although the test based on T
(N)
z proved successful in different examples, it failed to reject the

null hypothesis against the alternative given by the new sampler of Jones, Osipov and Rokhlin
[22], even after only one step of the sampler. To overcome this deficiency, it is needed, and
natural, to resort to the properties beyond the eigenvalues. This section presents a test for the full
Haar measure on SO(2n + 1) based on the machinery of Section 3.2.1.

Let G = SO(2n + 1). Given data g1, . . . , gN ∈ G independently drawn from a measure ν on
G, consider testing the null hypothesis H0 : ν = μ, where μ is the uniform (Haar) measure. To
construct a spectral test, use the orthonormal basis for L2(G) given by the matrix coordinates
of the irreducible representations; see Section 1 in Sepehri [41]. Define the Fourier component
corresponding to λ as

π̂N (λ) = 1

N

N∑
i=1

πλ(gi).

Note that π̂N (λ) is a dλ × dλ matrix. A test that rejects for large values of

U(N)
c = N

∑
λ�=0

cλ

∥∥π̂N (λ)
∥∥2

F
(10)

can be used, for an arbitrary sequence of positive weights c = {cλ}. To find a closed form for Uc,
note that ∥∥π̂N (λ)

∥∥2
F

= tr
(
π̂N (λ)π̂N (λ)∗

)
= tr

(
1

N2

∑
i,j

πλ(gi)πλ(gj )
∗
)

= tr

(
1

N2

∑
i,j

πλ(gi)πλ

(
g−1

j

))

= tr

(
1

N2

∑
i,j

πλ

(
gig

−1
j

))

= 1

N2

∑
i,j

tr
(
πλ

(
gig

−1
j

))
= 1

N2

∑
i,j

χλ

(
gig

−1
j

)
,
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where the third equality follows from the fact that πλ is a unitary matrix. Therefore, one can
write

U(N)
c = 1

N

∑
i,j

∑
λ�=0

cλχλ

(
gig

−1
j

)
.

Using tools from representation theory of SO(2n + 1), a closed from expression for
∑

λ cλχλ(h)

can be found for c of a particular form as follows; see Section 3 in the supplementary material
Sepehri [41]. For arbitrary parameters z, q ∈ (0,1), there exists a set of positive weights cλ(z, q),
given explicitly by equation (24) in the supplementary material Sepehri [41], such that

∑
λ�=0

cλ(z, q)χλ(g) =
∏

k<j (1 − z2qk+j−2)
∏

k(1 + zqk−1)∏
k,j (1 − zqk−1eiθj )(1 − zqk−1e−iθj )

− 1, (11)

where 1, e±iθ1, . . . , e±iθn are eigenvalues of g. This motivates the following definition.

Definition 4.1. Let z, q ∈ (0,1) be arbitrary parameters. Define the test statistic as

U(N)
z,q = 1

N

N∑
k,l=1

( ∏
i<j (1 − z2qi+j−2)

∏
i (1 + zqi−1)∏

i,j (1 − zqi−1e
iθ

k,l
j )(1 − zqi−1e

−iθ
k,l
j )

− 1

)
, (12)

where 1, e±iθ
k,l
1 , . . . , e±iθ

k,l
n are the eigenvalues of gkg

T
l .

Remark 4.2. The test based on U
(N)
z,q fits into the framework proposed by Giné [16]. In fact, the

eigenfunction of the Laplace–Beltrami operator on G are exactly the matrix coordinates of the
irreducible representations of G, for all compact classical groups.

The test based on U
(N)
z,q was applied to the new sampler of Jones, Osipov and Rokhlin [22] and

exhibited non-trivial power against the alternative distribution generated by a single iteration of
the sampler. For z = 0.2, q = 0.4, n = 25, and N = 200 the histogram of 1000 values of U

(N)
z,q is

illustrated in Figure 7. The power of the 5%-level test is 0.17 which is non-trivial although not
particularly high. However, this might well be a result of the small sample size. Note that the
testing problem is a non-parametric test of goodness-of-fit in

(51
2

)= 1275 dimensions with only
200 observations. Note that recent work of Arias-Castro, Pelletier and Saligrama [4] suggest that
in the non-parametric goodness-of-testing problem in d dimensions, the sample size N has to be
exponential in d in order to have a test that discriminates against the alternatives of fixed distance
from the null; that is, log(N)/d should be bounded below. In the case of SO(51), d = 1275; even
N = 200 000 results in logN/d ≈ 0.0095. For a brief description of their results see Section 8 in
the supplementary material Sepehri [41].

Under the same setup as above the 1000 values under the null and alternative were compared
using Anderson–Darling test, where alternative was taken to be the output of the new sampler
after different number of iterations. The result is shown in Figure 8 and Table 7. It appears that
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Figure 7. Histogram of U
(N)
z,q under Setup 2.1, z = 0.2, and q = 0.4. The alternative is the distribution of

the orthogonal matrices generated by a single iteration of the new sampler.

the distribution of the output is not close to uniform after only one iteration. The null hypothesis
is rejected at 5% level, suggesting some departure from uniformity, for the distribution of the
output after two iterations, but not beyond two steps. This is in agreement with the prescribed
number of steps given in Jones, Osipov and Rokhlin [22] for the chain to mix.

Remark 4.3. Power of the test based on U
(N)
z,q indeed depends on the choice of (z, q). Given

the form of cλ(z, q), the test with a larger value of z has more power against the alternatives
which deviate from the uniform distributions in high frequencies. On the other hand. when the
alternative differs from the uniform distribution on lower frequencies the test with smaller z is
more powerful. Our preliminary numerical investigations suggest that the alternatives considered
in the present paper fall into latter category.

Dependence on q is less clear, because the coefficient cλ(z, q)’s relation to q is more compli-
cated. Figure 9 illustrates log(cλ(1, q)) for different values of q and several partitions λ. cλ is

Figure 8. Values of the Anderson–Darling statistic versus the number of iterations of the new sampler.
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Table 7. p-values corresponding to different iterations of the new sampler

# of iterations 1 2 3 4 5 6 7 8

A–D test 5.94e−43 3.92e−02 8.02e−01 9.25e−01 7.29e−01 9.90e−01 3.26e−01 3.52e−01

increasing in q but order of the coefficients for a fixed q depends on q which makes it hard to
draw general conclusions.

4.1. Distribution under the null and alternative

The asymptotic distribution of U
(N)
z,q under the null and fixed alternatives can be derived in a

similar fashion to those of T
(N)
z .

Proposition 4.4 (Asymptotic null distribution). Assume g1, . . . , gN are independent draws
from the uniform distribution on SO(2n + 1), and z, q ∈ (0,1). Then,

U(N)
z,q → Uz,q =

∑
λ�=0

cλ(z, q)

dλ

χ2
d2
λ

,

where dλ = χλ(I ) is the dimension of the irreducible representation corresponding to λ, cλ(z, q)

is as in (11), and the chi-square variables are mutually independent.

Figure 9. Logarithmic graph of cλ(1, q) against q for several λ. The left plot shows the graphs for various
frequencies. The plot on the right shows the graphs for all |λ| = 5.
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Proof. The statement follows from the orthogonality relations between the matrix-coordinates
of the irreducible representations, the central limit theorem, and the fact that

E
[(

πλ
ij

)2]= 1/dλ. �

The asymptotic distribution under the alternative is given as follows.

Proposition 4.5 (Asymptotic alternative distribution). Let F be a distribution on SO(2n + 1)

different from the uniform measure. Given data g1, . . . , gN independently drawn from F , U
(N)
z,q

is asymptotically normally distributed. In fact,
√

N
(
U(N)

z,q /N − υ
)→ N

(
0, σ 2) as N → ∞,

with υ = ∫
r2(g)F (dg)−1 and σ 2 = 4[∫ (

∫
r(g)u(g,h)μ(dg))2F(dh)−υ2], where u is defined

below in (14) and r is defined as r(g) = ∫
u(g,h)F (dh).

Proof. Proof follows from Proposition (4.6) of Giné [16] and the following lemma. The lemma
is proved in Section 4 of the supplementary material Sepehri [41].

Lemma 4.6. For g1, . . . , gN ∈ SO(2n + 1) one has

U(N)
z,q = 1

N

∫ ∣∣∣∣∣
N∑

i=1

u(gi, g)

∣∣∣∣∣
2

μ(dg), (13)

where u is defined through

u(g,h) =
∑
λ�=0

√
dλcλ(z, q)χλ

(
gT h

)
. (14)

�

Remark 4.7. A direct consequence is that U
(N)
z,q is consistent against all fixed alternatives; not

only the limiting distribution differs, so does the scaling.

Remark 4.8. The associate editor brought to our attention a recent work of Kerkyacharian,
Nickl and Picard [26] that provides concentration inequalities and confidence band for a class
of needlet density estimators on compact homogeneous manifolds, in particular on compact
classical groups. Without getting into details, the following is a high level description of their
approach. They introduce a needlet projection kernel Aj(x, y) of order j for any non-negative
integer j . Then, given observations x1, . . . , xn from a density f , they define a needlet density
estimator through

fn(j, y) = 1

n

n∑
i=1

Aj(xi, y).

Provided that f is bounded they prove the following concentration inequality.
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Proposition 4.9 (Proposition 4 in Kerkyacharian, Nickl and Picard [26]). Let M be a com-
pact homogeneous manifold and suppose f : M → [0,∞) is bounded. We have for every n ∈ N,
every j ∈N, every � ⊂ M, and every x ∈ M that

P

(
sup
y∈�

∣∣fn(j, y) −Efn(j, y)
∣∣≥ σR(�,n, j, x)

)
≤ e−x,

where σR(�,n, j, x) depends on M, n, j , � and x, and is defined explicitly in their paper.

In the case of f being the uniform distribution, Efn(j, y) = f = constant. Therefore, the
concentration inequality above gives a confidence band for the density estimator fn(j, y). In
particular, this confidence band can be used to construct non-asymptotic tests of goodness-of-
fit for the uniform distribution on compact classical groups. The constants in the definition of
σR(�,n, j, x) are computed explicitly for SO(3) in the Supplementary material.

5. Numerical comparison of different tests

This section compares different tests discussed in this paper on the benchmark examples, with a
particular focus on detection of the cutoff, as well as the new sampler. Setup 2.1 is considered
(n = 51). Focus on the following four test: Rayleigh’s test, Gine’s test, T

(N)
z , and U

(N)
z,q . The

numerical observations are summarized below.

The benchmark examples

Each test was computed 1000 times on the samples generated by the benchmark examples for
different number of steps. Each of the 1000 simulations were based on N = 200 observations;
T

(N)
z was computed with z = 0.5 and U

(N)
z,q with z = 0.2 and q = 0.4. The samples were gener-

ated using k steps for

k ∈ {100,150,200,250,300,350,400,450,500}
for the Kac’s walk and

k ∈ {50,75,90,100,110,125,140,150,175,200}
for product of random reflections. For each fixed number of steps the 1000 values were compared
to those corresponding to the uniform distribution using the Anderson–Darling test. Figure 10
illustrates the values are plotted against the number of steps of the chain.

Figure 10 suggests that the Gine’s test has the least power against the alternative generated
be the Kac’s walk among the four tests considered here. The Rayleigh’s test and U

(N)
z,q seem

to perform similarly, indicating some evidence for a cutoff but, perhaps, earlier than it should
possibly occur. The test based on T

(N)
z outperforms the other three tests and provides evidence

that a cutoff does not occur with less than 350 step, if it occurs at all.
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Figure 10. Values of the Anderson–Darling statistic for comparison of the uniform sample and the product
of random reflections (left) and the Kac’s walk (right).

A similar but slightly different result holds for product of random reflection; the Rayleigh’s test
has the least power, the Gine’s test and U

(N)
z,q are qualitatively identical. Again, T

(N)
z is superior

to the other three tests; it picks up the occurrence of the cutoff and suggests that it might happen
in around 175 steps.

The new sampler

The same procedure was repeated for 1 ≤ k ≤ 8 iterations of the new sampler of Jones, Osipov
and Rokhlin [22]. The result is shown in Figure 11.

The Rayleigh’s test, the Gine’s test, and the test based on T
(N)
z exhibit no power against this

alternative. Only U
(N)
z,q has power against the alternative generated by a single iteration of the

sampler. It also rejects the null hypothesis at 5%-level for the sample generated by two iterations
of the sampler. It, too, has no power beyond two iterations. This is in agreement with the recom-
mendation of Jones, Osipov and Rokhlin [22] on the number of iterations needed for mixing of
the sampler.

Figure 11. Values of the Anderson–Darling statistic for comparison of the uniform sample and the new
sampler.
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6. Asymptotic properties under local alternatives

This section studies properties of T
(N)
z against local alternatives, that is, alternatives that ap-

proach the null as the sample size grows. The case of U
(N)
z,q is similar. Section 7 in the supple-

mentary material Sepehri [41] presents a brief introduction to Le Cam’s theory of asymptotically
normal experiments, which is the framework used here to study the local properties, as well as a
detailed analysis of the local properties of the tests of this paper.

6.1. Power calculations under local alternatives

The following standard local hypothesis testing setting is considered here. Let {f (· | θ) | θ ∈ �}
be a Q.M.D. family of density functions with respect to the eigenvalue distribution induced by
the Haar measure, where � ⊂R

k for a fixed k. Assume that f (· | θ0) = 1, that is, θ0 corresponds
to f1, 3

2 , 1
2
. Given data x1, . . . , xN ∼ f (· | θ), consider testing H0 : θ = θ0 against H1 : θ = θ0 +

h/
√

N for a fixed h ∈ �. Let �(x | θ) = logf (x | θ) be the log-likelihood function, η(x | θ) =
∇θ �(x | θ) the score function, and I(θ) = −Eθ∇2

θ �(x | θ) the Fisher information matrix at θ . Let
LN denote the logarithm of the likelihood ratio of the data; Le Cam’s first lemma (Lehmann and
Romano [27], Theorem 12.2.3) asserts

LN =
N∑

i=1

�(xi | θ0 + h/
√

N) − �(xi | θ0)

=
(∑N

i=1 η(xi | θ0)√
N

)T

h + 1

2
hT

(∑N
i=1 ∇2

θ �(xi | θ0)

N

)
h + op(1).

(15)

Since the score function of QMD families is square-integrable, one has

η(· | θ0) =
∑
λ

η̂(λ)χλ(·), (16)

where η̂(λ) is the Fourier coefficient
∫

η(x | θ0)χλ(x) dx and the equality is interpreted in
L2(f1, 3

2 , 1
2
). Therefore,

LN =
∑
λ

η̂(λ)T h

(
1√
N

N∑
i=1

χλ(xi)

)
+ 1

2
hT

(
1

N

N∑
i=1

∇2
θ �(xi | θ0)

)
h + op(1).

As N → ∞, using Law of Large Numbers and central limit theorem, one has

1

N

N∑
i=1

∇2
θ �(xi | θ0) → −I(θ0) and

1√
N

N∑
i=1

χλ(xi) → Zλ,



New tests of uniformity on the compact classical groups 1559

where Zλ are independent standard normal variables. The joint limiting distribution of
(T

(N)
z ,LN) is (

T (N)
z ,LN

)→ (Tz,L),

where

Tz =
∑
λ�=0

z|λ|Z2
λ and L =

∑
λ

(̂
η(λ)T h

)
Zλ − 1

2
hT I(θ0)h. (17)

Since f (· | θ) is Q.M.D., Le Cam’s third lemma (Lehmann and Romano [27], Theorem 12.3.3)
implies that the limiting distribution of T

(N)
z under f (· | θ0 + h/

√
N) is given by the following

characteristic function

Ehe
itTz = E0

[
eitTzeL

]
.

Using (17) and the fact that {Zλ} are independent standard normal variables, one has

Ehe
itTz = e− 1

2 hT I(θ0)h
∏
λ

E0e
itz|λ|Z2

λ+(̂η(λ)T h)Zλ

= e
1
2 [−hT I(θ0)h+∑λ(̂η(λ)T h)2]∏

λ

E0e
itz|λ|Z2

λ+(̂η(λ)T h)Zλ− 1
2 (̂η(λ)T h)2

= e
1
2 [−hT I(θ0)h+∑λ(̂η(λ)T h)2]∏

λ

∫
R

eitz|λ|Z2
λ+(̂η(λ)T h)Zλ− 1

2 (̂η(λ)T h)2 e
−1
2 Z2

λ√
2π

dZλ

= e
1
2 [−hT I(θ0)h+∑λ(̂η(λ)T h)2]∏

λ

∫
R

eitz|λ|Z2
λ
e

−1
2 (Z2

λ−2(̂η(λ)T h)Zλ+(̂η(λ)T h)2)

√
2π

dZλ

= e
1
2 [−hT I(θ0)h+∑λ(̂η(λ)T h)2]∏

λ

∫
R

eitz|λ|Z2
λ
e

−1
2 (Zλ−(̂η(λ)T h))2

√
2π

dZλ

= e
1
2 [−hT I(θ0)h+∑λ(̂η(λ)T h)2]∏

λ

Eeitz|λ|Uλ

= e
1
2 [−hT I(θ0)h+∑λ(̂η(λ)T h)2]

Eeit
∑

λ z|λ|Uλ

= Eeit
∑

λ z|λ|Uλ,

where Uλ = (Zλ + η̂(λ)T h)2 ∼ χ2
1 ((̂η(λ)T h)2) is a non-central chi-square variable on one degree

of freedom with non-centrality parameter equal to (̂η(λ)T h)2/2. The last step holds because
hT I(θ0)h =∑

λ(̂η(λ)T h)2.
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Thus, the limiting distribution of T
(N)
z under the alternative θ0 + h/

√
N is

Tz ∼
∑
λ�=0

z|λ|Uλ, (18)

where Uλ are as above.
The following proposition is an immediate consequence of the argument above.

Proposition 6.1. Let cz,1−α be the asymptotic rejection threshold for T
(N)
z . That is, using Propo-

sition 3.3,

P

( ∞∑
k=1

zkχ2
p(n,k) > cz,1−α

)
= α,

where p(n, k) is the number of partitions of k into at most n parts and the chi-square variables
are independent. The asymptotic power under the local alternative θ0 + h/

√
N is

β(h) = P

(∑
λ�=0

z|λ|Uλ > cz,1−α

)
,

for Uλ as in (18).

Example 6.2. For θ ∈ R let f (x | θ) ∝ exp(θ tr(x)). Then, η(x | 0) = tr(x) and η̂(λ) = 0 for
λ �= (1). The local power under θ/

√
N is

β(θ) = P

(
zχ2

1

(
θ2)+

∞∑
k=2

zkχ2
p(n,k) > cz,1−α

)
.

The results of this section can be extended to families with infinite-dimensional parameter
space, under mild regularity conditions. See Example 7.13 in the supplementary material Sepehri
[41] for an example.

6.2. Global asymptotic power function against local alternatives

It is well known that any test of goodness-of-fit exhibits poor power against local (contiguous)
alternatives, except possibly in a finite number of directions. This section presents some results
of this nature for T

(N)
z . For more details and statements in full generality, see Janssen [21].

6.2.1. Spectral decomposition of the power function

Consider the standard local hypothesis setup. For an arbitrary non-parametric unbiased test φ in
the limiting Gaussian shift experiment, Janssen [21] has shown that the curvature of the power
function admits a principal component decomposition.
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Focus on T
(N)
z . Using the notation of Section 6.1, the asymptotic power against the local

alternative H1 : θ = θ0 + h/
√

N is given by Proposition 6.1 as

β(h) = P

(∑
λ�=0

z|λ|Uλ > cz,1−α

)
.

The rejection cutoff cz,1−α is such that β(0) = α. Using Theorem 1 in Beran [6] one has the
following second order Taylor expansion of β(th) around t = 0

β(t · h) = α + t2

2

∑
λ

(
η̂(λ)T h

)2[
Gλ(cz,1−α) − α

]+ o
(
t2),

where Gλ(x) = P(
∑

μ z|μ|Vμ > x), and Vμ is a χ2
1 for μ �= λ, and Vλ is a χ2

3 random variable.
Therefore, the curvature of the power function around t = 0 is

a(h) = 〈
T (h),h

〉
,

for the positive-definite bi-linear operator

T =
∑
λ

[
Gλ(cz,1−α) − α

]̂
η(λ)̂η(λ)T .

This readily gives a principal decomposition of the curvature, with principal components
{̂η(λ)̂η(λ)T } and eigenvalues Gλ(cz,1−α) − α ≥ 0. For a fixed z and α, Gλ(cz,1−α) − α is a
decreasing function of |λ|. Thus, the highest gain in power is against those alternatives that put
most of the load on principal components for smaller |λ|. Theorem 2.1 in Janssen [21] implies
that T is a Hilbert–Schmidt operator and ‖T ‖2 < 2α(1 − α). This implies that any test performs
poor against all alternatives except for a finite dimensional space. More details and various other
statements are given in Section 7 of the supplementary material Sepehri [41]. Local asymptotic
relative efficiency and explicit bounds on the dimension of the subspace against which T

(N)
z has

power are also considered in Section 7.3.3 of the supplementary material Sepehri [41].

6.3. Asymptotic admissibility

This section argues that the new tests of this paper are asymptotically admissible in the following
sense. As discussed in Section 6.1, there is a limiting hypothesis testing problem that captures
the asymptotic properties of T

(N)
z in the local hypothesis testing problem. That is, the limiting

Gaussian process {Zλ}, where under the limiting distribution corresponding to h ∈ �, Zλ ∼
N (̂η(λ)T h,1). The problem is to test H0 : h = 0. The limiting test statistic is Tz =∑

λ�=0 z|λ|Z2
λ.

The main result is based on the following definition and is presented below.

Definition 6.3 (Asymptotic admissibility). The sequence of test statistics T
(N)
z is called asymp-

totically admissible if the limiting test Tz is admissible for the limiting hypothesis testing prob-
lem.
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Corollary 6.4. The limiting tests based on Tz is admissible. Therefore, the tests based on {T (N)
z }

is asymptotically admissible.

Proof. The proof is based on the following result of Birnbaum [8].

Lemma 6.5 (Strasser [42], Theorem 30.4). Let C ⊂H be a closed convex subset. Then,

φ(x) =
{

1 if x /∈ C,

0 if x ∈ C,

is admissible for the testing problem h = 0 against h �= 0 and is uniquely determined by its power
function.

Note that the test based on Tz rejects for {Z ∈R
∞ |∑λ z|λ|Z2

λ > cz,1−α}. The set

Cz =
{
Z ∈ R

∞
∣∣∣∑

λ

z|λ|Z2
λ ≤ cz,1−α

}
is clearly convex and closed. Thus the assertion follows from Lemma 6.5. �

A similar statement is true for {U(N)
z,q } and is omitted here.

7. Other compact groups

The compact classical groups fall into four general classes:

1. Type A: U(n) and SL(n).
2. Type B: SO(2n + 1).
3. Type C: Sp(2n).
4. Type D: SO(2n).

For each type the analogous tests to T
(N)
z and U

(N)
z,q are introduced in this section; only the

definitions and explicit formulas are provided. Derivation of the asymptotic null and alternative
distributions, and local power are identical to those for SO(2n + 1), hence omitted here. Note
that each case requires particular facts and considerations from representation theory; details,
derivations, and proofs are provided in Section 2 of the supplementary material Sepehri [41].

7.1. The test based on the eigenvalues

For the groups of type A, Coram and Diaconis [10] introduced a test which inspired the test
based on T

(N)
z of the present paper. The case of type B groups (SO(2n + 1)) was discussed in

Section 3.2.2. Type C and D are discussed below.
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7.1.1. Type C

For 0 < z < 1 define the test statistics T
(N)
C,z as

T
(N)
C,z = 1

N

N∑
i=1

N∑
j=1

KC
z (gi, gj ),

where KC
z is as in (7). A closed from for KC

z (g,h) can be found using the Cauchy identity for
the symplectic group (Sepehri [41], Theorem 2.7) as follows:

KC
z (g,h) =

(1 − z2)m det( 1
(1−zxiyj )(1−zx−1

i yj )(1−zxiy
−1
j )(1−zx−1

i y−1
j )

)

z(
m
2)
∏

i<j (yi + y−1
i − (yj + y−1

j ))
∏

i<j (xi + x−1
i − (xj + x−1

j ))
− 1,

where {x±
i } and {y±

i } are eigenvalues of g and h respectively.

7.1.2. Type D

For 0 < z < 1 define the test statistics T
(N)
D,z as

T
(N)
D,z = 1

N

N∑
i=1

N∑
j=1

KD
z (gi, gj ),

where KD
z is as in (7). A closed from for KD

z (g,h) is given by the Cauchy identity for SO(2n)

(Sepehri [41], Theorem 2.9) as follows:

KD
z (g,h) =

det( 1
1−zxiyj

+ 1
1−zx−1

i yj

+ 1
1−zxiy

−1
j

+ 1
1−zx−1

i y−1
j

)

z(
m
2)
∏

i<j (yi + y−1
i − (yj + y−1

j ))
∏

i<j (xi + x−1
i − (xj + x−1

j ))
− 1,

where {x±
i } and {y±

i } are eigenvalues of g and h respectively.

7.2. The test beyond the eigenvalues

A test similar to U
(N)
z,q can be constructed for all compact groups. With abuse of notation, these

tests all are denoted by U
(N)
z,q . The case of SO(2n + 1) is already discussed in Section 4. The

other cases are considered in this section. Only the definitions and explicit formulas are presented
here. A detailed derivation and required facts from representation theory, as well as the proofs,
are provided in Section 2 of the supplementary material Sepehri [41].
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7.2.1. Type A

For U(n), the test analogous to U
(N)
z,q is defined as

U(N)
z,q = 1

N

N∑
i,j=1

(
n∏

l,k=1

1

1 − zql−1y
i,j
k

− 1

)
,

where y
i,j

1 , . . . , y
i,j
n are the eigenvalues of g∗

i gj .

7.2.2. Type C

Definition for groups of type C is as follows

U(N)
z,q = 1

N

N∑
k,l=1

( ∏
i<j (1 − z2qi+j−2)∏

i,j (1 − zqi−1y
k,l
j )(1 − zqi−1(y

k,l
j )−1)

− 1

)
,

where {yk,l
j , (y

k,l
j )−1 | j = 1, . . . , n} are the eigenvalues of gkg

T
l .

7.2.3. Type D

Definition for groups of type D is as follows

U(N)
z,q = 1

N

N∑
k,l=1

( ∏
i≤j (1 − z2qi+j−2)∏

i,j (1 − zqi−1y
k,l
j )(1 − zqi−1(y

k,l
j )−1)

− 1

)
,

where {yk,l
j , (y

k,l
j )−1 | j = 1, . . . , n} are the eigenvalues of gkg

T
l .

8. Discussion

The current paper introduces and analyzes two new families of tests of uniformity on the compact
classical groups. These tests are validated on two benchmark examples: the random walk of
Kac and the products of random reflections. They exhibit satisfying agreement with the existing
theory about the mixing-time of both random walks. The new tests, and several others, are applied
to the new sampler of Jones, Osipov and Rokhlin [22]; all but one of the new tests failed to reject
the null hypothesis of uniformity after any number of iterations of the new sampler. One of the
new tests confirmed the prescribed number of steps to be used with the sampler in order to get
approximately uniform outputs.
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Supplement to “New tests of uniformity on the compact classical groups as diagnostics for
weak-∗ mixing of Markov chains” (DOI: 10.3150/18-BEJ1029SUPP; .zip). We provide addi-
tional supporting material including background and proofs from representation theory, proofs
of some of the results, introduction to Le Cam’s theory, further derivation and analysis of local
properties, as well as a test based on the trace. The motivating example is also reviewed.
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