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There has been an increasing interest in testing the equality of large Pearson’s correlation matrices. How-
ever, in many applications it is more important to test the equality of large rank-based correlation matrices
since they are more robust to outliers and nonlinearity. Unlike the Pearson’s case, testing the equality of
large rank-based statistics has not been well explored and requires us to develop new methods and theory.
In this paper, we provide a framework for testing the equality of two large U-statistic based correlation ma-
trices, which include the rank-based correlation matrices as special cases. Our approach exploits extreme
value statistics and the Jackknife estimator for uncertainty assessment and is valid under a fully nonpara-
metric model. Theoretically, we develop a theory for testing the equality of U-statistic based correlation
matrices. We then apply this theory to study the problem of testing large Kendall’s tau correlation ma-
trices and demonstrate its optimality. For proving this optimality, a novel construction of least favorable
distributions is developed for the correlation matrix comparison.

Keywords: extreme value type I distribution; hypothesis testing; Jackknife variance estimator; Kendall’s
tau; U-statistics

1. Introduction

Let X = (X1, . . . ,Xd)T and Y = (Y1, . . . , Yd)T be two d-dimensional random vectors. We
denote X1, . . . ,Xn1 with Xk = (Xk1, . . . ,Xkd)T to be n1 independent samples of X and
Y 1, . . . ,Y n2 with Y k = (Yk1, . . . , Ykd)T to be n2 independent samples of Y . Letting n :=
max{n1, n2}, we aim to test the equality of U-statistic based correlation matrices (e.g., Kendall’s
tau or Spearman’s rho) of X and Y . We consider the high dimensional regime that d,n → ∞
and d/n does not necessarily go to zero as n → ∞. This problem has important applications, in-
cluding portfolio selection (Markowitz [32]), high dimensional discriminant analysis (Han, Zhao
and Liu [18], Mai and Zou [31]) and gene selection (Ho et al. [19], Hu et al. [22], Hu, Qiu and
Glazko [21]).

When d/n → 0, Anderson [1] and Muirhead [33] study the problem of testing the equality of
two Pearson’s correlation matrices. Major test criteria include the likelihood ratio (Anderson [1]),
spectral norm of difference (Roy [37]) and Frobenius norm of difference (Nagao [34]). When
d/n � 0, the likelihood ratio test and the tests in Roy [37] and Nagao [34] perform poorly, as
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Pearson’s sample correlation matrices no longer converge to their population counterparts under
the spectral norm (Bai and Yin [5]). A line of research aims to correct the aforementioned tests
or proposing new methods. For the likelihood ratio test, Bai et al. [3] introduce a corrected LRT
test which works when d/n → c ∈ (0,1), and Jiang, Jiang and Yang [23] generalize it to the case
when d < n and c = 1. Based on the spectral norm of difference, Han, Xu and Zhou [17] use
the bootstrap method to generalize Roy’s test in high dimension. As a generalization of Nagao’s
proposal, Schott [38] and Li and Chen [27] propose new test statistics based on an unbiased
estimator of the Frobenius norm of the matrix difference, and Srivastava and Yanagihara [42]
propose another test statistic based on the difference of two Frobenius norms. Recently, Cai, Liu
and Xia [10] propose a method based on the sup-norm of the matrix difference and prove its rate
optimality under a sparse alternative.

In many applications, it is more meaningful to test the equality of two rank-based correlation
matrices but instead of the Pearson’s correlation matrices. In particular, Embrechts, Lindskog and
McNeil [13] point out that the Pearson’s correlation coefficient “might prove very misleading”
in measuring the dependence and advocate the usage of rank correlation coefficients, such as
Kendall’s tau (Kendall [24]) or Spearman’s rho (Spearman [40]). Though testing the equality of
high dimensional rank-based correlation matrices is of fundamental importance, there has been
very little work in this area. To bridge this gap, this paper proposes a unified framework for
testing the equality of two large U-statistic based correlation matrices U1 and U2, which include
rank-based correlation matrices as special examples. More specifically, let U1 = (u1,ij ) be a type
of correlation matrix of X and all the elements of U1 can be estimated by U-statistics.1 Similarly
to U1, we define U2 = (u2,ij ) to be the same kind of U-statistic based correlation matrix of Y . In
this paper, we aim to test the hypothesis

H0 : U1 = U2 v.s. H1 : U1 �= U2. (1.1)

Testing (1.1) plays an important role in many fields. For example, testing the equality of two
Kendall’s tau correlation matrices Uτ

1 and Uτ
2 ,

Hτ
0 : Uτ

1 = Uτ
2 v.s. Hτ

1 : Uτ
1 �= Uτ

2, (1.2)

can be used to test the model of copula discriminant analysis (Han, Zhao and Liu [18], Mai and
Zou [31]).

There are 4 major contributions of this paper. First, for the first time in the literature, we
develop a unified framework for testing the equality of two large U-statistic based correlation
matrices. This framework builds upon a fully nonparametric model and enables us to conduct
homogeneity tests using a wide range of correlation measures. Secondly, as a special example,
we examine the problem of testing the equality of two large Kendall’s tau matrices and prove the
minimax optimality of the proposed method. Thirdly, we further propose alternative approaches
for testing Uτ

1 = Uτ
2 , which attain better empirical performance than the Jackknife based one. Fi-

nally, to develop a theory of testing the equality of general U-statistic based correlation matrices,

1Such U-statistic based correlation measures are quite general. For example, u1,ij can represent the Kendall’s tau corre-
lation coefficient between Xi and Xj .
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we develop an upper bound of Jackknife variance estimation error, which enables us to obtain
the explicit rate of convergence. For Kendall’s tau matrices, we prove an upper bound of the tra-
ditional plug-in variance estimation error and an upper bound of the variance difference between
two Kendall’s tau correlation coefficients. These upper bounds allow us to exploit the extreme
value theory under the dependent setting to prove theorems in this paper. Their constructions
are nontrivial and are of independent technical interest. To prove the optimality of the proposed
testing methods for Kendall’s tau matrices, we construct a collection of least favorable distri-
butions with regard to the test hypothesis. This construction technique is novel and tailored for
testing the equality of correlation matrices. In contrast, the construction in Cai, Liu and Xia [10]
only perturbs the diagonal elements of covariance matrices, which does not affect the resulting
correlation matrices.

1.1. More related works

Apart from the Pearson’s correlation coefficient and general U-statistic based correlation mea-
surements studied in this paper, existing literature also considers other measures of dependence.
These include the distance correlation (Székely, Rizzo and Bakirov [43]) and randomized depen-
dence coefficient (Lopez-Paz, Hennig and Schölkopf [29]). To the best of our knowledge, there
is no work discussing testing the equality of dependence structure with regard to these dependent
measures.

Our work is closely related to the random matrix theory on rank correlation matrices. Bai and
Zhou [4], Zhou [47], Bao et al. [6], and Han, Chen and Liu [16] study the theoretical properties of
large rank-based correlation matrices. Specifically, for these random matrices, Bai and Zhou [4]
prove the Marchenko–Pastur law for the limiting spectral distribution, Zhou [47] and Han, Chen
and Liu [16] prove the extreme value type I distribution for the entry-wise maximum, and Bao
et al. [6] derive the limiting distributions of traces of all higher moments. Most of these results
hold only under the independence setting, that is, the entries of X are independent of each other.
In contrast, our work focuses on the dependent setting.

Our work is also related to the robust testing, where the test statistics are robust estimators
of the Pearson’s covariance/correlation coefficients. These include S-estimators and some robust
dispersion estimators. We refer to O’Brien [35], Aslam and Rocke [2] and the references therein
for details. Our work is also related to the adaptive estimation of a large correlation/covariance
matrix (Cai and Liu [9]) or a large Gaussian (copula) graphical model. See, for example, Bickel
and Levina [8], Zhao, Roeder and Liu [45], Ravikumar et al. [36] and Liu et al. [28].

1.2. Notation

We denote ‖v‖2 = (
∑d

j=1 v2
j )

1/2 as the Euclidean norm of a vector v = (v1, . . . , vd)T ∈ R
d . For

a matrix A = (aij ) ∈ R
d×q , we define its spectral norm ‖A‖2 := sup‖x‖2≤1 ‖Ax‖2 and Frobenius

norm ‖A‖F :=
√∑

i,j a2
ij . We define the matrix entrywise sup-norm as ‖A‖max := max{|aij |}.

We use Rank(A) to denote the rank of A. If A is a square matrix, we define Diag(A) to be a
diagonal matrix with the same main diagonal as A. We use Id to denote an identity matrix of
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size d . For two sequences of real numbers {an} and {bn}, we write an = O(bn) if there exists a
constant C such that |an| ≤ C|bn| holds for all sufficiently large n, write an = o(bn) if an/bn →
0, and write an � bn if there exist constants C ≥ c > 0 such that c|bn| ≤ |an| ≤ C|bn| for all
sufficiently large n. For a square matrix � ∈ R

d×d , we use λmin(�) and λmax(�) to denote the
minimal and maximal eigenvalues of �. For a set B , we use |B| to denote its cardinality.

1.3. Paper organization

The rest of this paper is organized as follows. Section 2 formalizes the problem, describes a
general testing procedure and analyzes the theoretical properties (e.g., size and power) of the
proposed test. In Section 3, we focus on testing large Kendall’s tau matrices, for which we con-
sider two models: a fully nonparametric model and a semiparametric Gaussian copula model.
Under certain modelling assumptions, for Kendall’s tau matrices we propose additional tests
which have better empirical performance compared to the general testing procedure. Section 4
provides thorough numerical results on both simulated and real data. In Section 5, we discuss
potential future work. Appendix A contains the proof of the main theorem. We put the proofs of
all other results in Supplementary Material (Zhou et al. [46]) of this paper.

2. A general procedure for testing U-statistic based matrices

This section presents a generic testing method for U-statistic based matrix comparison. In Sec-
tion 2.1, we describe the proposed testing procedure. In Section 2.2, we analyze its asymptotic
size and power. In Section 2.3, we consider comparing a row or column of U-statistic based
matrices.

Before presenting the testing procedure, we introduce some notations for U-statistics. For
i, j = 1, . . . , q , let �ij be a U-statistic’s kernel function defined as

�ij : Rd × · · · ×R
d︸ ︷︷ ︸

m

→ R with the symmetric property: �ij = �ji, (2.1)

where m is the kernel order. Thus, we have a family of functions {�ij ,1 ≤ i, j ≤ q}. Furthermore,
each �ij is a symmetric Borel measurable function with the kernel order m fixed.2 We assume
that �ij is uniformly bounded. Many useful U-statistics satisfy these conditions. We set

û1,ij :=
(

n1

m

)−1 ∑
1≤�1<···<�m≤n1

�ij (X�1, . . . ,X�m),

û2,ij :=
(

n2

m

)−1 ∑
1≤�1<···<�m≤n2

�ij (Y �1 , . . . ,Y �m).

2We assume each �ij has the same fixed kernel order m for presentation clearness. It is straightforward to extend to the
setting that m’s are uniformly bounded.
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We then define the following U-statistic based matrices Ûa ∈R
q×q for a = 1,2:

Û1 := (̂u1,ij )1≤i,j≤q and Û2 := (̂u2,ij )1≤i,j≤q . (2.2)

Correspondingly, we use Ua := (ua,ij )1≤i,j≤q to denote the expectation of Ûa , i.e., ua,ij =
E[̂ua,ij ]. We can view U1 and U2 as a type of correlation matrices of X and Y . We are in-
terested in testing the equality of U1 and U2, which includes testing the equality of two large
Kendall’s tau or Spearman’s rho correlation matrices.

We note that q is the row and column number of Ua and Ûa , while d is the dimension of X

and Y . q and d can be different. Therefore, the framework considered in this paper is quite
general. For example, it allows Ua to represent the dependence structure on a dimension re-
duced data, where the dimension reduction step is incorporated in the kernel function {�ij ,1 ≤ i,

j ≤ q}.

Remark 2.1. We can relax �ij to be an asymmetric kernel function without loss of generality.
Specifically, an asymmetric kernel �(·) gives a U-statistic

û = 1

m!
(

n1

m

)−1 ∑
�(X�1, . . . ,X�m),

where the summation is taken over all combinations of distinct elements {�1, . . . , �m} from
{1, . . . , n1}. Using the Hoeffding’s method (Hoeffding [20]), û is also a U-statistic of the sym-
metric kernel �0(·):

�0(x1,x2, . . . ,xm) = 1

m!
∑

�(xα1 , . . . ,xαm),

where the summation is taken over all permutations of {1, . . . ,m}. For example, to construct an
unbiased3 estimator for Spearman’s rho, El Maache and Lepage [12] recommends to use the
U-statistic with the kernel

�ij (X1,X2,X3) = 2−1
∑∑∑
1≤α �=β �=γ≤3

sign(Xαi − Xβi) sign(Xαj − Xγj ).

The Kendall’s tau matrix is an example of the U-statistic based matrix defined in (2.2). More
specifically, we set

�ij (Xk,X�) = sign(Xki − X�i) sign(Xkj − X�j ),

�ij (Y k,Y �) = sign(Yki − Y�i) sign(Ykj − Y�j ),

3The Spearman rank-order correlation, i.e., the sample correlation between the rank values of two variables, is a biased
estimator of the population Spearman’s rho.
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and q = d . The Kendall’s tau sample correlation coefficients τ̂1,ij and τ̂2,ij are then defined as

τ̂1,ij := 2

n1(n1 − 1)

∑
1≤k<�≤n1

sign(Xki − X�i) sign(Xkj − X�j ),

τ̂2,ij := 2

n2(n2 − 1)

∑
1≤k<�≤n2

sign(Yki − Y�i) sign(Ykj − Y�j ).

Their population counterparts are τa,ij := E[̂τa,ij ] for a = 1,2. We then write sample and popu-
lation Kendall’s tau matrices as

Ûτ
a = (̂τa,ij ) and Uτ

a = (τa,ij ), (2.3)

where a = 1,2. In Section 3, we consider testing the large Kendall’s tau matrices.

2.1. A general testing procedure

For testing (1.1) in high dimensions, we use the sup-norm criterion. Such a choice is motivated
by the fact that the sup-norm is very sensitive to perturbations on a small number of entries
compared to the null hypothesis. We then propose the test statistic:

Mn := max
1≤i,j≤q

Mij with Mij := (̂u1,ij − û2,ij )
2

σ̂ 2(̂u1,ij ) + σ̂ 2(̂u2,ij )
for 1 ≤ i, j ≤ q. (2.4)

In (2.4), σ̂ 2(̂u1,ij ) is a Jackknife estimator of û1,ij ’s variance and is defined as

σ̂ 2(̂u1,ij ) := m2(n1 − 1)

n1(n1 − m)2

n1∑
α=1

(q1α,ij − û1,ij )
2, (2.5)

with

q1α,ij :=
(

n1 − 1

m − 1

)−1 ∑
1≤�1<···<�m−1≤n1
�j �=α,j=1,...,m−1

�ij (Xα,X�1, . . . ,X�m−1).

The definition of σ̂ 2(̂u2,ij ) is similar for Y .
For a given significance level 0 < α < 1, we construct the test to be

Tα := 1
{
Mn ≥ G−(α) + 4 logq − log(logq)

}
, (2.6)

where G−(α) := − log(8π) − 2 log(− log(1 − α)). We reject H0 in (1.1) if and only if Tα = 1.
In some applications, our interest is to compare a particular row or column of matrices, that is,

we aim at testing the hypothesis:

H0,i : u1,i� = u2,i� v.s. H1,i : u1,i� �= u2,i�, (2.7)
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where u1,i� and u2,i� are the ith rows of U1 and U2. To test this hypothesis, we construct a similar
test statistic Mn,i = max1≤j≤q Mi,j , and the according test is

Tα,i = 1
{
Mn,i > G′−(α) + 2 logq − log logq

}
, (2.8)

where G′−(α) := − log(π) − 2 log(− log(1 − α)). We reject H0,i if and only if Tα,i = 1.

2.2. Theoretical properties

Our main theoretical result is to characterize the limiting null distribution of Mn. We further
analyze the power of the proposed test under a sparse alternative.

We introduce three assumptions that will be used later. Assumption (A1) specifies the sparsity
of U = U1 = U2. Assumption (A2) specifies the scaling of q,n. Assumption (A3) is a techni-
cal condition that we impose for obtaining the limiting distribution of Mn. In Section 3.2, we
will show that Assumption (A3) can be further relaxed under a semiparametric Gaussian copula
model.

In detail, for a fixed constant α0 > 0, we define

suppj (α0) := {
1 ≤ i ≤ q : |u1,ij | ≥ (logq)−1−α0 or |u2,ij | ≥ (logq)−1−α0

}
.

suppj (α0) is the set of indices i such that either the ith variable of X is highly correlated
(|ua,ij | > (logq)−1−α0 ) with the j th variable of X, or the ith variable of Y is highly correlated
with the j th variable of Y . We then introduce Assumption (A1) as follows.

(A1) We assume that there exits a subset � ⊂ {1,2, . . . , q} with |�| = o(q) and a constant
α0 > 0 such that for all γ > 0, we have

max
1≤j≤q,j /∈�

∣∣suppj (α0)
∣∣ = o

(
qγ

)
.

Before stating Assumption (A2), we need some additional notations. Set

ij (X�1, . . . ,X�m) := �ij (X�1, . . . ,X�m) − u1,ij .

For � = 1, . . . , n1, we also denote gij (X�) and hij (X�) as

gij (X�) := E
[
�ij (X�1, . . . ,X�m)|X�

]
,

hij (X�) := E
[
ij (X�1, . . . ,X�m)|X�

]
,

(2.9)

where {�1, . . . , �m} is an arbitrary subset of {1, . . . , n1} with distinct elements and con-
tains �. gij (Y �) and hij (Y �) are similarly defined for � = 1, . . . , n2. We then denote ζ1,ij

to be the variance of gij (X�), that is,

ζ1,ij := E
[
E

[
ij (X�1, . . . ,X�m)|X�

]2] = Var
(
gij (X�)

)
. (2.10)

Similarly, we define ζ2,ij := Var(gij (Y �)).
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With these introduced notations, we are now ready to state Assumption (A2).

(A2) We assume n1 � n2 � n and logq = O(n1/3−ε) for an arbitrary 0 < ε < 1/3. We also
assume ζa,ij > ra > 0 for a = 1,2, where r1 and r2 are constants which are irrelevant to
i and j .

The condition that ζa,ij > ra > 0 is mild. It is used to exclude the degenerate cases of U-
statistics and has been widely used for analyzing U-statistics.

To describe Assumption (A3), we write

S = {
(i, j) : 1 ≤ i, j ≤ q

}
and S0 = {

(i, j) : 1 ≤ i ≤ q, i ∈ suppj (α0)
}
. (2.11)

By the definition of S0, for any (i, j) ∈ S \ S0, we have |ua,ij | ≤ (logq)−1−α0 . Moreover, we use
u1,ijk� and u2,ijk� to denote E[gij (X�)gk�(X�)] and E[gij (Y �)gk�(Y �)].

(A3) Assume ua,ijk� = O((logq)−1−α0) for any (i, j) �= (k, �) ∈ S \ S0 and a = 1,2.

Under fully nonparametric models, we note that ua,ijk� is estimable (Klüppelberg and Kuhn
[25]). Thus it is possible to verify Assumption (A3) in applications. When we test the equality
of two Kendall’s tau correlation matrices Uτ

1 and Uτ
2 , under a semiparametric Gaussian copula

model Assumption (A3) can be replaced by a simplified condition which is easier to be verified.
More details are provided in Section 3.2.

Under the above assumptions, our main theoretical result quantifies the limiting distribution
of the extreme value statistic Mn.

Theorem 2.2. Assuming (A1), (A2), (A3) hold, under H0 of (1.1), we have

P
(
Mn − 4 logq + log(logq) ≤ x

) → exp

(
− 1√

8π
exp

(
−x

2

))
, (2.12)

for any x ∈ R, as n,q → ∞. Furthermore, (2.12) holds uniformly for all random vectors X and
Y satisfying Assumptions (A1), (A2) and (A3).

Proof. We list a sketch of this proof. The detailed proof is in Appendix A. The proof proceeds
in three steps.

Step (i) (Sketch). We set σ̂ 2(̂ua,ij ) as the Jackknife variance estimator of ûa,ij and σ 2(̂ua,ij ) as
the true variance of ûa,ij . We then analyze the estimation error of Jackknife variance estimator
by providing an upper bound of |naσ̂

2(̂ua,ij ) − m2ζa,ij |, where ζa,ij is defined in (2.10). The
central limit theorem for U-statistics (Lemma D.3 in Supplement D of Supplementary Material
(Zhou et al. [46])) implies that m2ζa,ij is the limit of naσ

2(̂ua,ij ) as na goes to infinity. This
motivates us to define

Mij := (̂u1,ij − û2,ij )
2

σ̂ 2(̂u1,ij ) + σ̂ 2(̂u2,ij )
and M̃ij := (̂u1,ij − û2,ij )

2

m2ζ1,ij /n1 + m2ζ2,ij /n2
. (2.13)

In M̃ij , we use m2ζa,ij /n1 to replace σ̂ 2(̂ua,ij ) of Mij .
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By using the obtained upper bound of |naσ̂
2(̂ua,ij ) − m2ζa,ij |, we prove max1≤i,j≤q Mij and

max1≤i,j≤q M̃ij have the same limiting distribution, that is, it suffices to prove that

lim
n,q→∞P

(
M̃n − 4 logq + log(logq) ≤ x

) = exp
(− exp(−x/2)/

√
8π

)
, (2.14)

where M̃n := max1≤i,j≤q M̃ij .
Step (ii) (Sketch). We use the Hoeffding decomposition (Lemma D.4 in Supplement D of

Supplementary Material (Zhou et al. [46])) to decompose the U-statistic ũa,ij := ûa,ij − ua,ij .
By the definition of ũa,ij , we have E[̃ua,ij ] = 0. By the Hoeffding decomposition, we decompose
ũa,ij into two pieces. One is the sum of independent and identically distributed (i.i.d.) random
variables and the other is the residual term. In detail, decompose ũa,ij as

ũ1,ij = m

n1

n1∑
α=1

hij (Xα) +
(

n1

m

)−1

�n1,ij ,

ũ2,ij = m

n2

n2∑
α=1

hij (Y α) +
(

n2

m

)−1

�n2,ij ,

(2.15)

where we set

�n1,ij =
∑

1≤�1<�2<···<�m≤n1

(
�ij (X�1, . . . ,X�m) − u1,ij −

m∑
k=1

hij (X�k
)

)
,

�n2,ij =
∑

1≤�1<�2<···<�m≤n2

(
�ij (Y �1, . . . ,Y �m) − u2,ij −

m∑
k=1

hij (Y �k
)

)
.

Apparently, m
∑n1

α=1 hij (Xα)/n1 and m
∑n2

α=1 hij (Y α)/n2 are terms for the sum of i.i.d. ran-

dom variables and
(
na

m

)−1
�na,ij is the residual term. We then use m

∑n1
α=1 hij (Xα)/n1 and

m
∑n2

α=1 hij (Y α)/n2 as the approximations of ũ1,ij and ũ2,ij and define

Tij :=
∑n1

α=1 hij (Xα)/n1 − ∑n2
α=1 hij (Y α)/n2√

ζ1,ij /n1 + ζ2,ij /n2
and Tn := max

1≤i,j≤q
(Tij )

2. (2.16)

We then prove that the small residual term
(
na

m

)−1
�na,ij is negligible for our theorem, that is, to

obtain Theorem 2.2, it suffices to prove that as n, q → ∞, we have

P
(
Tn − 4 logq + log(logq) ≤ x

) → exp
(− exp(−x/2)/

√
8π

)
. (2.17)

Step (iii) (Sketch). In the last step, we derive the limiting distribution of Tn to prove (2.17). Tn

is the maximum of (Tij )
2 over {1 ≤ i, j ≤ q} and Tij is not independent of each other. Therefore,

we cannot straightforwardly exploit the extreme value theorem under the independent setting to
obtain the limiting distribution of Tn. To solve this problem, we exploit the normal approximation
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to get the extreme value distribution of {(Tij )
2}1≤i,j≤q under the setting that Tij can be dependent

of each other. The detailed proof of this theorem is in Appendix A. �

Theorem 2.2 justifies the size of the proposed test Tα in (2.6). It shows that under H0 of (1.1),
Mn − 4 logq + log(logq) converges weakly to an extreme value Type I distribution with the
distribution function F(t) = exp(− exp(t/2)/

√
8π).

Remark 2.3. Theorem 2.2 provides a unified framework for testing the equality of two large
U-statistic based matrices, which include ranked-based correlation matrices as special examples.
Our test method exploits the Jackknife strategy and extreme value statistics, and it works under
a fully nonparametric model. Technically, for proving Theorem 2.2, we develop a set of tools for
analyzing the Jackknife variance estimator defined in (2.5), which is technically nontrivial and is
of independent interest for analyzing U-statistics in more general settings.

Next, we analyze the power of Tα . To this end, we first introduce an alternative hypothesis
characterized by the following set of matrix pairs

A(C) =
{
(U1,U2) : max

1≤i,j≤q

|u1,ij − u2,ij |√
m2ζ1,ij /n1 + m2ζ2,ij /n2

≥ C
√

logq

}
,

where C > 0 is a constant. The setting that only one entry of U1 and U2 differentiates large
enough will make (U1,U2) ∈ A(C) for some constant C. The next theorem shows that the null
hypothesis is asymptotically distinguishable from A(4) by Tα , that is, we can use Tα to reject
H0 in (1.1) with an overwhelming probability if (U1,U2) ∈A(4).

Theorem 2.4 (Power of the Test Tα). If (A2) is satisfied, as n,q → ∞ we have

inf
(U1,U2)∈A(4)

P(Tα = 1) → 1. (2.18)

Remark 2.5. From the above theorem, for big enough C > 0, only one entry of U1 − U2 has
a magnitude more than C

√
logq/n is enough for the test Tα to correctly reject H0 of (1.1). We

don’t impose Assumptions (A1) and (A3) to obtain such results.

2.3. Testing rows or columns of two U-statistic based matrices

In some applications, instead of testing the equality of two full matrices, we are interested in
testing the equality of a particular row or column of the given matrix pair. This requires us to test
the hypothesis in (2.7). For simplicity, we only present the result for row comparison here. The
application to the column comparison is straightforward.

To test the hypothesis in (2.7), we define the test statistic as

Mn,i = max
1≤j≤q

Mij .

The following theorem derives the limiting distribution of Mn,i under the null hypothesis.
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Theorem 2.6. If the null hypothesis H0,i in (2.7) and conditions in Theorem 2.2 hold, we have

P(Mn,i − 2 logq + log logq ≤ x) → exp

(
− 1√

π
exp

(
−x

2

))
, (2.19)

for any given x ∈R, as n,q → ∞.

The above theorem can be proved in a similar way to Theorem 2.2.

Remark 2.7. For analyzing the power of Tα,i , we define the following set of vector pairs,

Ai�(C) =
{
(u1,i�,u2,i�) : max

1≤j≤q

|u1,ij − u2,ij |√
m2ζ1,ij /n1 + m2ζ2,ij /n2

≥ C
√

logq

}
.

This allows us to yield a similar result to Theorem 2.4.

3. Applications to testing large Kendall’s tau correlation matrix

In this section, we focus on testing the equality of two Kendall’s tau matrices Uτ
1 and Uτ

2 . This
section contains two parts. In the first part, we assume the samples are from a fully nonparamet-
ric model. Under this model, in addition to the general Jackknife-based approach outlined in the
previous section, we introduce two additional methods for testing (1.2) and analyze their theo-
retical properties (e.g., size and power). In the second part, we assume the samples are generated
from a Gaussian copula model, under which we can relax Assumption (A3) to a much simplified
form.

Kendall’s tau provides a way to describe the nonlinear relationship between two random vari-
ables. As it is rank-based, it is especially suitable to analyze data from heavy-tailed or corrupted
distributions. In this section, we aim to test the equality of two Kendall’s tau matrices. More
specifically, we set

�ij (Xk,X�) := sign(Xki − X�i) sign(Xkj − X�j ),

�ij (Y k,Y �) := sign(Yki − Y�i) sign(Ykj − Y�j ),

and q = d . We aim to test whether Uτ
1 = Uτ

2 .

3.1. Methods and theory under fully nonparametric models

Section 3.1 contains two parts. The first part introduces two additional test procedures tailored for
testing the equality of Kendall’s tau matrices Uτ

1 and Uτ
2 . The second part presents the theoretical

properties of all the three tests. In addition, we further prove the rate-optimality of the proposed
tests. Our technical contributions include providing an upper bound of the traditional plug-in
variance estimation error, which enables us to establish the explicit rate of convergence of the
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plug-in variance estimator. We also prove an upper bound of the variance difference between two
Kendall’s tau correlation coefficients. These bounds allow us to derive the limiting distribution
of the additional test statistic. The construction of these bounds requires the nontrivial usage of
special structures of variance estimators and is of independent interest themselves. Moreover,
for proving our test methods’ optimality for the Kendall’s tau matrix comparison, we construct a
collection of least favourable multivariate normal distributions with regard to the test hypothesis.
This novel construction technique is developed for correlation matrix comparison and is one of
our technical contributions.

Recall that Uτ
a and Ûτ

a , defined in (2.3), are symmetric and we have Diag(Uτ
a) = Diag(Ûτ

a) =
Id . Therefore, we don’t need to compare the main diagonals of Uτ

a . Hence, we reset S = {(i, j) :
1 ≤ i < j ≤ d} for testing the equality of large Kendall’s tau correlation matrices. The Jackknife-
based statistic Mn in Section 2.1 then becomes

M
τ,jack
n := max

(i,j)∈S

(̂τ1,ij − τ̂2,ij )
2

σ̂ 2(̂τ1,ij ) + σ̂ 2(̂τ2,ij )
. (3.1)

Here, we still use σ̂ 2(·) to denote the Jackknife variance estimator. Accordingly, we obtain
Tτ,jack

α :

Tτ,jack
α := 1

{
M

τ,jack
n ≥ G−(α) + 4 logd − log(logd)

}
.

3.1.1. Three procedures to compare Kendall’s tau matrices

In this section, we present two additional methods for comparing two Kendall’s tau matrices.
We start with the introduction of a plug-in method, which directly estimates the variances of
{̂τa,ij }a=1,2 and plugs them into the test statistic. For this, recall that the Kendall’s tau sample
correlation between two random variable U and V is set as

τ̂ = 2

n(n − 1)

∑
1≤i<j≤n

sign(Ui − Uj ) sign(Vi − Vj ),

where U1, . . . ,Un and V1, . . . , Vn are n random samples from U and V . Let �c be the probability
of the event that among two members drawn from the sample without replacement, they are
concordant with each other. In other words, we have

�c = P
(
(U2 − U1)(V2 − V1) > 0

)
. (3.2)

Kruskal [26] prove that the variance of τ̂ can be written as

8

n(n − 1)
�c(1 − �c) + 16

1

n

n − 2

n − 1

(
�cc − �2

c

)
, (3.3)

where �cc is the probability of the event that among three members drawn from the sample
without replacement, the second and third are concordant with the first. In other words, we have

�cc = P
([

(U2 − U1)(V2 − V1) > 0
] ∩ [

(U3 − U1)(V3 − V1) > 0
])

. (3.4)
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As n → ∞, the quantity in (3.3) multiplied by n has the limit 16(�cc − �2
c). Motivated by

this result, we propose the following plug-in variance estimator

σ̂ 2
plug(̂τ ) = 16

n

(
�̂cc − �̂2

c

)
, (3.5)

as an alternative to the Jackknife based one for estimating the variance of τ̂ . Here �̂cc and �̂c

are the corresponding U-statistics to estimate �cc and �c .4 We replace σ̂ 2(·) in M
τ,jack
n with

σ̂ 2
plug(·) to construct M

τ,plug
n :

M
τ,plug
n := max

1≤i<j≤d

(̂τ1,ij − τ̂2,ij )
2

σ̂ 2
plug(̂τ1,ij ) + σ̂ 2

plug(̂τ2,ij )
. (3.6)

Accordingly, we construct the plug-in type test Tτ,plug
α as follows:

Tτ,plug
α := 1

{
M

τ,plug
n ≥ G−(α) + 4 logd − log(logd)

}
.

In Section 3.1.2, we will provide the theoretical justification for this plug-in procedure.
Both the theoretical and numerical results indicate that the variance estimation error is also

a key factor influencing the test statistics’ powers. Up to now, we consider two kinds of vari-
ance estimation procedures (Jackknife based and plug-in based) for testing the equality of two
Kendall’s tau matrices. To exploit the sparsity of Uτ , we next propose to use the exact variance
under the uncorrelated condition (τ = 0). We name this procedure as “pseudo method”. It calcu-
lates the variance of τ̂a,ij by assuming τa,ij = 0. We set σ̃ 2

1,ps and σ̃ 2
2,ps as the variances of

√
n1τ̂1

and
√

n2τ̂2, under τ1 = 0 and τ2 = 0. We also set

σa,ps := lim
na→∞ σ̃a,ps for a = 1,2. (3.7)

The test statistic becomes

M
τ,ps
n := max

1≤i<j≤d

(̂τ1,ij − τ̂2,ij )
2

σ 2
1,ps/n1 + σ 2

2,ps/n2
. (3.8)

Similarly, we construct the test Tτ,ps
α :

Tτ,ps
α := 1

{
M

τ,ps
n ≥ G−(α) + 4 logd − log(logd)

}
. (3.9)

For example, if X and Y are generated from continuous Gaussian copula model, we have

σ̃ 2
1,ps = 2(2n1 + 5)

9(n1 − 1)
, σ̃ 2

2,ps = 2(2n2 + 5)

9(n2 − 1)
and σ 2

1,ps = σ 2
2,ps = 4

9
.

4By the definition of �cc in (3.4), we should build a U-statistic with an asymmetric kernel to estimate it.
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Remark 3.1. As long as |̃σ 2
a,ps − σ 2

a,ps| = o((logd)−1−ε) with an arbitrary ε > 0, we can show

that replacing σ 2
a,ps with σ̃ 2

a,ps still gives a valid test. Details are provided in the proof of Theo-
rem 3.3.

3.1.2. Theoretical properties of three testing procedures

We now present the theoretical properties (size, power, and optimality) of the three tests intro-
duced in the former sections. More specifically, we prove their validity under the null hypothesis
and conduct power analysis similarly to Theorems 2.2 and 2.4. Furthermore, we show that these
tests are rate optimal against the sparse alternative.

In the beginning, the following theorem gives the limiting distribution for plug-in and Jack-
knife based test statistics.

Theorem 3.2. Assuming (A1), (A2) and (A3) hold, under Hτ
0 of (1.2), we have

P
(
M

τ,jack
n − 4 logd + log(logd) ≤ x

) → exp

(
− 1√

8π
exp

(
−x

2

))
, (3.10)

P
(
M

τ,plug
n − 4 logd + log(logd) ≤ x

) → exp

(
− 1√

8π
exp

(
−x

2

))
, (3.11)

for any x ∈ R, as n,d → ∞. Furthermore, the results hold uniformly for all X and Y satisfying
(A1), (A2) and (A3).

The following theorem gives the limiting distribution of the pseudo method. It holds under an
additional meta-elliptical (defined in Supplement E of Supplementary Material(Zhou et al. [46]))
distributional assumption on the data.

Theorem 3.3. We assume that X and Y belong to the meta-elliptical distribution (Fang, Fang
and Kotz [14]).5 If Assumptions (A1), (A2) and (A3) hold, under Hτ

0 in (1.2), we have

P
(
M

τ,ps
n − 4 logd + log(logd) ≤ x

) → exp

(
− 1√

8π
exp

(
−x

2

))
, (3.12)

for any x ∈ R, as n,d → ∞. Furthermore, the result holds uniformly for all X and Y satisfying
(A1), (A2), (A3).

We now analyze the powers of Tτ,jack
α , Tτ,plug

α and Tτ,ps
α . Similarly to Theorem 2.4, we define

U(C) =
{(

Uτ
1,Uτ

2

) : max
1≤i<j≤d

|τ1,ij − τ2,ij |√
4ζ1,ij /n1 + 4ζ2,ij /n2

≥ C
√

logd

}
,

5Detailed introduction of the meta-elliptical distribution family is provided in Supplement E of Supplementary Material
(Zhou et al. [46]).
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V(C) =
{(

Uτ
1,Uτ

2

) : max
1≤i<j≤d

|τ1,ij − τ2,ij |√
σ 2

1,ps/n1 + σ 2
2,ps/n2

≥ C
√

logd

}
.

They are Kendall’s tau versions of A(C) in Theorem 2.4.

Theorem 3.4. (Power Analysis) Assuming (A2) holds, we have

inf
(Uτ

1 ,Uτ
2)∈U(4)

P
(
Tτ,jack

α = 1
) → 1, (3.13)

inf
(Uτ

1 ,Uτ
2)∈U(4)

P
(
Tτ,plug

α = 1
) → 1, (3.14)

as n,d → ∞. If X and Y belong to the meta-elliptical family and (A1), (A2) are satisfied, as
n,d → ∞, we have

inf
(Uτ

1 ,Uτ
2)∈V(4)

P
(
Tτ,ps

α = 1
) → 1. (3.15)

Theorem 3.4 implies that just one entry of Uτ
1 − Uτ

2 has a magnitude no smaller than
C

√
logd/n is enough for the introduced tests to correctly reject Hτ

0 .
Next, we show that all the three proposed methods are rate optimal by matching the obtained

rates of convergence to a lower bound for correlation matrix comparison. We adopt the general
framework used in Baraud [7] to obtain the lower bound for testing the equality of correlation
matrices. The core of the proof is the construction of collections of least favourable multivari-
ate normal distributions with regard to the test hypothesis. Our work is related to Cai, Liu and
Xia [10] which prove the lower bound for testing the equality of covariance matrices. However,
their construction technique is developed for covariance matrices but not the correlation matrices.
Specifically, they only perturb the diagonal elements of the covariance, which does not affect the
resulting correlation matrices. To test correlation matrices, we need to develop a novel construc-
tion by perturbing the off-diagonal elements of the correlation matrices. Details are provided in
the proof of Theorem 3.5.

Theorem 3.5. Let α,β > 0 and α + β < 1. Assuming that logd/n = o(1), there exits a suffi-
ciently small positive number c0, such that for any distribution family that contains Gaussian as
a subfamily, and all large enough n and d , we have

inf
(Uτ

1 ,Uτ
2)∈U(c0)

sup
Tα∈Tα

P(Tα = 1) ≤ 1 − β, (3.16)

where Tα represents all level α tests for testing the equality of two correlation matrices.

Cai, Liu and Xia [10] give a similar result for testing the equality of two covariance matrices.
They show that the rate C

√
logd/n is optimal for comparing covariance matrices under condi-

tions that X and Y have sub-Gaussian-type or polynomial-type tails. In comparison, the lower
bound result in Theorem 3.5 illustrates that our proposed methods are rate optimal under the fully
nonparametric model. In particular, we don’t impose assumptions on the marginal distributions.
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3.2. Methods and theory under semiparametric Gaussian copula models

In this section, we assume that X and Y are d-dimensional random vectors from the Gaussian
copula with latent correlation matrices �a = (σa,ij ), a = 1,2 and Diag(�a) = Id .6 Under the
Gaussian copula model, the technical assumption (A3) in Section 2.2 can be replaced by a much
simplified condition. Specifically, for r ∈ (0,1), we define

�(r) := {
1 ≤ i ≤ d : |τ1,ij | > ror|τ2,ij | > r for some j �= i

}
. (3.17)

We describe the technical assumption (A4) as follows:

(A4) For some r < 1 and a sequence of numbers �d,r = o(d), we have |�(r)| ≤ �d,r .

After introducing Assumption (A4), we then discuss its relationship with Assumptions (A1)
and (A3). For (A1), although it has similar form to (A4), they are essentially different. As-
sumption (A1) is related to the largest eigenvalues of Uτ

γ . In fact, bounded λmax(Uτ
γ ) implies

max1≤j≤d suppj (α0) ≤ C(logd)2+2α0 . On the contrary, Assumption (A4) is related to λmin(Uτ
γ ).

For example, if the correlation between two Gaussian random variables goes to 1, the corre-
sponding correlation matrix will be asymptotically degenerated with the least eigenvalue infinite
small. In proof, we first use Assumption (A4) to select largest sub-matrix of Uτ

γ so that all its
entries’ absolute values are less than r . We then use Assumption (A1) to exclude the influence of
entries with |τγ,ij | ≥ (logd)−1−α0 on the asymptotic results.

Assumptions (A4) and (A3) are highly related. However, Assumption (A3) cannot be straight-
forwardly implied by Assumptions (A1), (A2) and (A4). In fact, the relationship between (A3)
and (A4) is complicated. To see the exact relationship, we need some additional definitions.

First, we have S = {(i, j) : 1 ≤ i < j ≤ d}. We then define

C0 = {
(i, j) : i ∈ �(r) ∪ �

} ∪ {
(i, j) : j ∈ �(r) ∪ �

}
and B0 = S0 ∪ C0,

where � is defined in in Assumption (A1) and S0 is defined in (2.11). Furthermore, we denote
A to be the biggest subset of S \ B0, such that any two pairs (i, j) �= (k, �) ∈ A must satisfy a
condition (�). More detailed description of condition (�) will be provided in the proof of Theo-
rem 3.6. Essentially, it specifies that, for any (i, j) �= (k, �) ∈ S \B0, there exits an i1 ∈ {i, j, k, �}
such that for any j1 ∈ {i, j, k, �} \ i1, we have |τa,i1j1 | = O((logd)−1−α0). We also define τa,ijk�

as the Kendall’s tau version of ua,ijk� in Assumption (A3).
Under Assumptions (A1), (A2) and (A4), we can prove that for any (i, j) �= (k, �) ∈ A, we

have |τa,ijk�| = O((logd)−1−α0), which is essentially Assumption (A3) with ua,ijk� replaced
by τa,ijk�. The only difference is that these conditions hold on A but instead of S \ S0 as in
Assumption (A3). Theorem 3.6 below specifics that Assumptions (A1), (A2) and (A4) can be
used to replace Assumptions (A1), (A2) and (A3) when we test the equality of Kendall’s tau
correlation matrices under the Gaussian copula model.

6Detailed definition of the Gaussian copula is put in Supplement E of Supplementary Material (Zhou et al. [46]).
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Theorem 3.6. Let X and Y be Gaussian copula random vectors with latent correlation matrices
�a , a = 1 or 2 and Diag(�a) = Id . We assume that the smallest eigenvalue of any 4 by 4 prin-
cipal sub-matrix of �a is uniformly bounded away from 0. Assuming (A1), (A2) and (A4) hold,
under Hτ

0 of (1.2), we have

P
(
M

τ,jack
n − 4 logd + log(logd) ≤ x

) → exp

(
− 1√

8π
exp

(
−x

2

))
,

P
(
M

τ,plug
n − 4 logd + log(logd) ≤ x

) → exp

(
− 1√

8π
exp

(
−x

2

))
,

P
(
M

τ,ps
n − 4 logd + log(logd) ≤ x

) → exp

(
− 1√

8π
exp

(
−x

2

))
,

for any x ∈ R, as n,d → ∞. Furthermore, these limiting results hold uniformly for all X and Y

satisfying (A1), (A2) and (A4).

Proof. Recall that M
τ,jack
n , M

τ,plug
n and M

τ,ps
n in (3.1), (3.6) and (3.8) are defined by taking

maximum over S. The main idea is to show that it is sufficient to use a version of these quantities
taking the maximum over the smaller set A as defined before. The proof is technical and left to
Supplement A.6 of Supplementary Material (Zhou et al. [46]). �

Remark 3.7. In Supplement E of Supplementary Material (Zhou et al. [46]), we show that Uτ
a

and �a are related in terms of σa,ij = sin(τa,ij π/2). Hence, testing (1.2) is equivalent to testing

H0 : �1 = �2 v.s. H1 : �1 �= �2,

under the Gaussian copula model.

Remark 3.8. To test the row or column of Kendall’s tau matrices, if any of the conditions of
Theorems 3.2, 3.3 and 3.6 hold, we get the same limiting result as in (2.19).

4. Experiments

In this section, we demonstrate numerical performances of proposed methods on simulated and
real data sets. In particular, we compare proposed methods with the state-of-the-art method in
the literature.

4.1. Numerical simulations

We compare proposed methods with the sample covariance based method (denoted by TCLX
α ) in

Cai, Liu and Xia [10]. To test our methods under various covariance structures, we introduce the
following matrices.
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• (Block matrix �∗) Let R∗ = (r∗
ij ) ∈R

d×d with r∗
ij = 0.6 for 5(k − 1) + 1 ≤ i �= j ≤ 5k and

k = 1, . . . , �d/5�. For other entries in R∗, we set r∗
ii = 1 and r∗

ij = 0 when i �= j . Let D as a
diagonal matrix with each nonzero entry following independent uniform distribution on the
interval (0.5,1.5). We then set �∗ = DR∗D.

• (Tridiagonal matrix �′) Let R′ = (r ′
ij ) ∈ R

d×d be a tridiagonal matrix with 1 on the main
diagonal and 0.5 on the first diagonal. We then set �′ = DR′D.

• (Multidiagonal matrix ��) Let R� = (r�
ij ) ∈R

d×d with rij = 0.8|i−j | and �� = DR�D.

Under the null hypothesis, we sample n1 + n2 data points from the following 3 models with
� = �∗,�′, and ��.

• Model 1 (Normal distribution) In this model, under the null hypothesis we generate n1 +n2

random vectors from N(0,�).
• Model 2 (Multivariate t distribution) We sample from μ + Z/

√
W/ν with W ∼ χ2(ν) and

Z ∼ N(0,�), where W and Z are independent. Under the null hypothesis, we generate
n1 + n2 data points with μ = 0 and ν = 3.

• Model 3 (Marginal Cauchy distribution) Generate n1 + n2 random vectors from N(0,�).
We then use a monotone function to transform each coordinate to follow the Cauchy distri-
bution Cauchy(μ, s) whose density function is s/π(s2 + (x − μ)2). In the simulation, we
set μ = 0 and s = 1.

Under above models, the two populations of X and Y have the same covariance matrices. We use
them to show that our proposed methods can control the size correctly under the null hypothesis.
For the power analysis, we introduce a random symmetric matrix � = (δk�) ∈R

d×d with exactly
8 nonzero entries. Among the 8 entries, 4 entries are randomly selected from the upper triangle
of �, with a magnitude generated from the uniform distribution on (0, ζσ 2

max), where σ 2
max is

the maximal value of �’s main diagonal. Other 4 entries are determined by symmetry. We then
set �̃1 = � + δI and �̃2 = � + � + δI with δ = |min{λmin(� + �), λmin(�)}| + 0.05. In place
of �, we use the matrices �̃1 and �̃2 to generate samples for X and Y under the alternative
hypothesis.

We set n1 = n2 = n with n = 200,500 and d = 50,100,200,300,500,700,1000. The nomi-
nal significance level α is 0.05. Table 1 presents empirical sizes. We see that Tτ,ps

α always attains
the desired size even for extremely large d . When d is significantly larger than n, both Tτ,plug

α

and Tτ,jack
α suffer from the size distortion. When d approximates n, Tτ,jack

α is still valid but Tτ,plug
α

fails. These size distortions decrease as n increases. Although the theoretical limiting results are
similar for all the proposed methods, the simulation results show that the estimation errors of
variance heavily affect the proposed tests’ finite sample performances, and Tτ,ps

α benefits a lot
from avoiding estimating the variance directly. Moreover, for heavy tail distributions such as
multivariate t and Cauchy distributions, we also see that TCLX

α from Cai, Liu and Xia [10] be-
comes too conservative.

By examining the empirical powers in Table 2, for distributions with heavy tails or strong tail
dependence, TCLX

α ’s power decreases dramatically, making TCLX
α inappropriate for such applica-

tions. These finite sample results also suggest that among three proposed methods Tτ,plug
α is most

aggressive and Tτ,ps
α is most conservative.
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These finite sample (with n around several hundreds) results suggest that Tτ,plug
α is useful only

when d is smaller than n. With d approximates n, we recommend to use Tτ,jack
α because it has

averagely higher power. When d is significantly larger than n, Tτ,ps
α is recommended because of

its good size control.

4.2. Real data example

In this section, we use proposed methods to analyze the dependence structure of brain activity. We
use the resting-state functional magnetic resonance imaging (fMRI) data of normal children and
diseased children with the disease attention deficit hyperactivity disorder (ADHD). Functional
neuroimaging studies have revealed abnormalities in various brain regions of ADHD patients
(Lou, Henriksen and Bruhn [30], Giedd et al. [15], Shafritz et al. [39], Yufeng et al. [44], Zou
et al. [48]). As a marker of brain activity, amplitude of low-frequency fluctuation (ALFF) is a
powerful tool to investigate this disorder. ALFF is the total power within the frequency range
between 0.01 and 0.1 Hz of the fMRI time series. Generally speaking, it captures average slow
fluctuations of brain activity. For the detailed definition of ALFF, we refer to Yufeng et al. [44].
Existing literature suggests the existence of significant differences in mean values of ALFF be-
tween the normal and diseased children (Zou et al. [48]). By using our methods, we aim to test
the dependence structure of ALFF between brain regions. Considering the nonlinear relationship
and robustness, we use Kendall’s tau matrix to measure the dependence structure.

We then introduce our data processing procedure. We use the standard methodology of soft-
ware C-PAC7 to correct body motion, brain heterogeneity, and many other kinds of measure
errors. We then calculate voxel-wise ALFF of each person’s fMRI images. As the voxel number
is very large (61 × 73 × 61 for 3 mm brain template), to limit the number of testing parameters,
a common approach is to extract signals from specified regions of interest (ROIs) based on the
anatomical structure of brain. In our experiments, we combine two kinds of brain areas including
Brodmann (BA) and automated anatomical labeling (AAL) on the gray matter to build new 227
brain regions. In each brain region, we average obtained voxel-wise ALFF to get data points with
the dimension d = 227.

After the introduction of data processing, we then describe the data set in detail. The resting-
state fMRI data for ADHD is available on the Internet.8 Considering the dimension (d = 227)
of data points, we use samples from Peking University and Kennedy Krieger Institute of Johns
Hopkins University to build a sample with 119 ADHD patients and 200 control members.

In the application, we test both mean vectors and Kendall’s tau matrices between the diseased
and normal groups and show the results in Table 3. In the context of high-dimensional mean
tests, we use three existing methods: TBai

α in Bai and Yin [5], TSri
α in Srivastava and Du [41], and

TCai
α in Cai, Liu and Xia [11]. Except for the known mean differences, the results for Kendall’s

tau matrices also suggest that the dependence structure of brain activities for ADHD patients are
also very different from normal children, which is worth investigating for related researchers.

7See the website http://fcp-indi.github.io/docs/user/.
8See the website http://fcon_1000.projects.nitrc.org/indi/adhd200/.

http://fcp-indi.github.io/docs/user/
http://fcon_1000.projects.nitrc.org/indi/adhd200/
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Table 1. Empirical sizes of Model 1, 2 and 3 under α = 0.05 based on 2000 repetitions

�∗ �′ ��

n d 50 100 200 300 500 700 1000 50 100 200 300 500 700 1000 50 100 200 300 500 700 1000

Model 1

500 Tτ,plug
α 0.05 0.05 0.07 0.07 0.07 0.08 0.09 0.05 0.06 0.06 0.07 0.07 0.08 0.09 0.05 0.05 0.05 0.06 0.06 0.08 0.07

Tτ,jack
α 0.05 0.05 0.06 0.06 0.06 0.06 0.07 0.05 0.05 0.05 0.05 0.06 0.06 0.08 0.04 0.05 0.05 0.05 0.05 0.06 0.06

Tτ,ps
α 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.04 0.04 0.04 0.05 0.04 0.05 0.05

TCLX
α 0.04 0.04 0.04 0.05 0.04 0.05 0.05 0.05 0.05 0.04 0.05 0.04 0.04 0.05 0.03 0.03 0.05 0.05 0.05 0.06 0.06

Model 2

Tτ,plug
α 0.05 0.06 0.06 0.07 0.07 0.08 0.09 0.05 0.06 0.07 0.07 0.08 0.08 0.09 0.05 0.05 0.05 0.06 0.06 0.08 0.08

Tτ,jack
α 0.05 0.05 0.05 0.06 0.06 0.06 0.07 0.05 0.05 0.06 0.06 0.07 0.07 0.08 0.05 0.05 0.05 0.05 0.06 0.06 0.06

Tτ,ps
α 0.04 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.03 0.04 0.04 0.04 0.05 0.05 0.05

TCLX
α 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Model 3

Tτ,plug
α 0.05 0.06 0.06 0.07 0.07 0.08 0.09 0.05 0.05 0.06 0.07 0.08 0.08 0.09 0.05 0.05 0.05 0.06 0.06 0.08 0.08

Tτ,jack
α 0.05 0.05 0.05 0.06 0.06 0.06 0.07 0.05 0.05 0.05 0.06 0.07 0.07 0.08 0.04 0.04 0.04 0.05 0.05 0.06 0.06

Tτ,ps
α 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.03 0.03 0.04 0.04 0.04 0.05 0.05

TCLX
α 0.00 0.01 0.02 0.05 0.08 0.16 0.22 0.00 0.01 0.02 0.05 0.10 0.16 0.25 0.00 0.01 0.02 0.04 0.08 0.15 0.23



1492
Z

hou,H
an,Z

hang
and

L
iu

Table 1. (Continued)

�∗ �′ ��

n d 50 100 200 300 500 700 1000 50 100 200 300 500 700 1000 50 100 200 300 500 700 1000

Model 1

200 Tτ,plug
α 0.06 0.08 0.09 0.12 0.14 0.16 0.19 0.06 0.08 0.11 0.13 0.15 0.16 0.19 0.05 0.06 0.08 0.09 0.12 0.15 0.14

Tτ,jack
α 0.05 0.05 0.06 0.08 0.10 0.10 0.12 0.05 0.06 0.07 0.09 0.10 0.11 0.12 0.03 0.05 0.05 0.07 0.08 0.10 0.10

Tτ,ps
α 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.04 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.05 0.04

TCLX
α 0.04 0.04 0.04 0.04 0.05 0.05 0.06 0.04 0.04 0.04 0.05 0.05 0.05 0.06 0.04 0.04 0.05 0.05 0.06 0.05 0.06

Model 2

Tτ,plug
α 0.06 0.08 0.09 0.12 0.14 0.16 0.19 0.06 0.08 0.11 0.13 0.15 0.16 0.20 0.05 0.06 0.08 0.09 0.12 0.15 0.15

Tτ,jack
α 0.05 0.05 0.06 0.08 0.10 0.10 0.12 0.05 0.06 0.07 0.09 0.10 0.11 0.12 0.03 0.05 0.05 0.07 0.08 0.10 0.10

Tτ,ps
α 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.04 0.04 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.05 0.05

TCLX
α 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Model 3

Tτ,plug
α 0.06 0.08 0.09 0.12 0.14 0.16 0.19 0.06 0.08 0.11 0.13 0.15 0.16 0.20 0.05 0.06 0.08 0.09 0.12 0.15 0.15

Tτ,jack
α 0.05 0.05 0.06 0.08 0.10 0.10 0.12 0.05 0.06 0.07 0.09 0.10 0.11 0.12 0.03 0.05 0.05 0.07 0.08 0.10 0.10

Tτ,ps
α 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.04 0.04 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.05 0.05

TCLX
α 0.00 0.01 0.02 0.06 0.12 0.23 0.37 0.00 0.00 0.02 0.07 0.14 0.26 0.37 0.00 0.01 0.01 0.08 0.15 0.28 0.39
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Table 2. Empirical powers of Model 1, 2 and 3 under α = 0.05 based on 2000 repetitions. We set ζ = 0.2 for n = 500 and ζ = 0.3 for n = 200

�∗ �′ ��

n d 50 100 200 300 500 700 1000 50 100 200 300 500 700 1000 50 100 200 300 500 700 1000

Model 1

500 Tτ,plug
α 0.85 0.81 0.76 0.76 0.76 0.74 0.71 0.86 0.82 0.78 0.76 0.72 0.72 0.71 0.86 0.81 0.75 0.74 0.71 0.70 0.67

Tτ,jack
α 0.84 0.80 0.75 0.75 0.75 0.73 0.70 0.86 0.81 0.77 0.76 0.72 0.71 0.70 0.87 0.81 0.75 0.73 0.70 0.69 0.64

Tτ,ps
α 0.83 0.79 0.74 0.73 0.73 0.71 0.68 0.85 0.81 0.75 0.74 0.70 0.68 0.67 0.85 0.79 0.72 0.70 0.67 067 0.61

TCLX
α 0.83 0.78 0.74 0.74 0.72 0.72 0.67 0.86 0.80 0.77 0.75 0.71 0.68 0.66 0.80 0.77 0.71 0.70 0.66 0.66 0.60

Model 2

Tτ,plug
α 0.78 0.72 0.70 0.68 0.66 0.65 0.62 0.77 0.72 0.68 0.66 0.63 0.63 0.60 0.79 0.71 0.63 0.62 0.58 0.58 0.55

Tτ,jack
α 0.77 0.72 0.69 0.68 0.67 0.66 0.61 0.76 0.72 0.67 0.66 0.62 0.61 0.59 0.79 0.70 0.64 0.62 0.57 0.57 0.54

Tτ,ps
α 0.76 0.70 0.67 0.66 0.65 0.64 0.61 0.75 0.69 0.66 0.63 0.60 0.60 0.58 0.75 0.67 0.58 0.57 0.53 0.52 0.52

TCLX
α 0.12 0.09 0.07 0.06 0.03 0.02 0.02 0.09 0.06 0.05 0.04 0.02 0.02 0.02 0.07 0.04 0.03 0.02 0.01 0.01 0.01

Model 3

Tτ,plug
α 0.84 0.81 0.78 0.77 0.74 0.72 0.71 0.85 0.81 0.80 0.78 0.72 0.72 0.71 0.87 0.82 0.74 0.75 0.70 0.70 0.68

Tτ,jack
α 0.84 0.80 0.78 0.76 0.73 0.71 0.70 0.85 0.81 0.78 0.77 0.71 0.70 0.68 0.87 0.82 0.77 0.74 0.69 0.69 0.65

Tτ,ps
α 0.82 0.80 0.75 0.75 0.72 0.69 0.68 0.84 0.81 0.77 0.75 0.70 0.69 0.67 0.85 0.79 0.73 0.72 0.66 0.66 0.61

TCLX
α 0.00 0.01 0.02 0.04 0.08 0.16 0.23 0.00 0.00 0.04 0.05 0.10 0.15 0.24 0.01 0.01 0.03 0.04 0.09 0.16 0.25
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Table 2. (Continued)

�∗ �′ ��

n d 50 100 200 300 500 700 1000 50 100 200 300 500 700 1000 50 100 200 300 500 700 1000

Model 1

200 Tτ,plug
α 0.86 0.81 0.79 0.78 0.76 0.74 0.73 0.80 0.76 0.74 0.71 0.70 0.68 0.68 0.81 0.72 0.66 0.64 0.61 0.58 0.56

Tτ,jack
α 0.85 0.80 0.79 0.73 0.73 0.71 0.69 0.79 0.74 0.71 0.67 0.66 0.64 0.63 0.79 0.70 0.62 0.60 0.56 0.50 0.52

Tτ,ps
α 0.82 0.77 0.75 0.68 0.68 0.64 0.60 0.77 0.71 0.66 0.63 0.61 0.57 0.55 0.75 0.64 0.56 0.54 0.47 0.43 0.42

TCLX
α 0.76 0.72 0.68 0.62 0.60 0.53 0.50 0.73 0.68 0.62 0.58 0.51 0.50 0.47 0.63 0.58 0.50 0.46 0.39 0.32 0.31

Model 2

Tτ,plug
α 0.79 0.74 0.72 0.67 0.62 0.60 0.59 0.73 0.66 0.65 0.61 0.58 0.56 0.56 0.70 0.60 0.54 0.48 0.46 0.45 0.45

Tτ,jack
α 0.78 0.71 0.70 0.64 0.59 0.55 0.55 0.72 0.64 0.61 0.58 0.55 0.52 0.51 0.69 0.58 0.50 0.46 0.44 0.40 0.39

Tτ,ps
α 0.73 0.64 0.63 0.58 0.53 0.50 0.50 0.69 0.58 0.57 0.53 0.49 0.46 0.45 0.62 0.51 0.42 0.37 0.35 0.34 0.34

TCLX
α 0.07 0.04 0.02 0.01 0.01 0.01 0.00 0.07 0.04 0.02 0.01 0.00 0.00 0.00 0.03 0.02 0.01 0.00 0.00 0.00 0.00

Model 3

Tτ,plug
α 0.85 0.82 0.80 0.78 0.76 0.74 0.73 0.80 0.76 0.74 0.71 0.70 0.68 0.68 0.81 0.73 0.66 0.64 0.61 0.58 0.56

Tτ,jack
α 0.85 0.80 0.79 0.75 0.73 0.71 0.69 0.79 0.74 0.72 0.68 0.66 0.64 0.63 0.79 0.71 0.62 0.60 0.56 0.51 0.52

Tτ,ps
α 0.82 0.78 0.75 0.70 0.68 0.64 0.61 0.77 0.71 0.66 0.61 0.57 0.57 0.55 0.75 0.65 0.56 0.54 0.47 0.44 0.42

TCLX
α 0.00 0.00 0.03 0.07 0.16 0.22 0.37 0.00 0.01 0.02 0.06 0.15 0.26 0.37 0.00 0.00 0.00 0.06 0.16 0.26 0.37
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Table 3. Region based two-sample tests of ALFF between ADHD patients and control members

Mean vectcor Kendall’s tau matrix

TBai
α TSri

α TCai
α Tplug

α Tjack
α TCLX

α

Test statistics 2.8358 2.5978 22.7085 25.892 24.371 23.572
P-values 0.0023 0.0047 0.0006 0.0105 0.0223 0.0330

5. Summary and discussion

This paper considers the problem of testing the equality of high-dimensional U-statistic based
matrices. We provide a lower bound for testing the equality of correlation matrices and prove the
proposed methods’ optimality. Based on thorough numerical comparisons, Tplug

α performs well
only when d is significantly smaller than n. When d is very large, we recommend to use Tps

α for
correctly controlling the size. In addition, Tps

α performs quite well for distributions with heavy
tails or strong tail dependence. Therefore, Tps

α is potentially more useful for financial applications
in which heavy-tailness is a common phenomenon. There are many possible future directions of
this work. For example, instead of two-sample problems, it is interesting to generalize the idea
to k-sample testing problems (k > 2). This may require a nontrivial extension of theoretical
analysis.

For testing Kendall’s tau matrices, we show that the variance estimation error is a key fac-
tor influencing a test procedure’s power. In fact, the test Tps

α , which exploits the exact value of
variance under the uncorrelated condition (τ = 0), achieves a better finite-sample performance
especially when d is very large. We can generalize such idea to many other applications. We also
provide an upper bound of the Jackknife variance estimation error in the proof of Theorem 2.2.
This result is also useful for other properties of U-statistics.

Next, we discuss the imposed assumptions. We note that the sparsity assumption (A1) plays
a key role for obtaining the limiting extreme value distribution. It is not clear on whether this
assumption is necessary, but it is satisfied in many high-dimensional applications. When (A1)
is not satisfied, it is possible to exploit the bootstrap method to construct a test statistic. This
is left as for future investigation. Regarding (A2), we note that Cai, Liu and Xia [10] assume a
stronger scaling assumption: log(d) = o(n1/5). We strengthen this scaling by assuming log(d) =
O(n1/3−ε) for an arbitrary ε > 0. This is from the fact that U-statistics studied in this paper are
assumed to have bounded kernels.

In the simulation studies, we use TCLX
α as a comparison benchmark. In Supplement F of Sup-

plementary Material (Zhou et al. [46]), we provide another heuristic test (denoted by TR
α ) for

testing the equality of Pearson’s correlation matrices. The performances of TCLX
α and TR

α are
similar for off diagonal disturbances.
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Appendix A: The proof of main theorem

This appendix contains the proof of main theorem, that is, Theorem 2.2. In the sequel, we use C,
C1, C2, . . . , to denote constants that do not depend on n, d , q and they can vary from place to
place.

Proof. As explained in the sketch of proof, our analysis proceeds in three steps.
Step (i). In this step, we prove that it is sufficient to establish (2.14) for proving the theorem.

For this, we need to sharply characterize the estimation error of the Jackknife variance estimator
of U-statistics. For this, we introduce the following lemma.

Lemma A.1. Let σ̂ 2(̂ua,ij ) be the Jackknife estimator of ûa,ij and σ 2(̂ua,ij ) be the variance of
ûa,ij . Recalling the definition of hij and ζa,ij in (2.9) and (2.10), ζ1,ij and ζ2,ij are the variances
of hij (X�) and hij (Y �). We have that m2ζa,ij is the limit of naσ

2(̂ua,ij ) as na goes to infinity.
We also have that m2ζa,ij is the limit of naσ̂

2(̂ua,ij ) as na goes to infinity. Moreover, under
Assumption (A2), as n, q → ∞ we have

P

(
max

1≤i,j≤q

∣∣naσ̂
2(̂ua,ij ) − m2ζa,ij

∣∣ ≥ C
εn

logq

)
= o(1), (A.1)

where εn = o(1) and a = 1, 2.

The detailed proof of Lemma A.1 is in Supplement B.1 of Supplementary Material (Zhou et
al. [46]). This Lemma presents an upper bound of Jackknife variance estimation error, which
enables us to obtain the convergence rate of Jackknife variance estimator. To prove this lemma,
we decompose σ̂ 2(̂ua,ij ) into different pieces and bound each piece separately. The details of
this decomposition are in Supplements B.1 and C.1. Both the result and the proof of Lemma A.1
are nontrivial and are of independent technical interest.

Lemma A.1 implies that both of the following two events

E1 :=
{

max
1≤i,j≤q

∣∣n1σ̂
2(̂u1,ij ) − m2ζ1,ij

∣∣ < C
εn

logq

}
,

E2 :=
{

max
1≤i,j≤q

∣∣n2σ̂
2(̂u2,ij ) − m2ζ2,ij

∣∣ < C
εn

logq

}
,

happen with probability going to one as n,q → ∞. Under E1 and E2, by ζa,ij ≥ ra > 0 (Assump-
tion (A2)), we have∣∣n1σ̂

2(u1,ij )/
(
m2ζ1,ij

) − 1
∣∣ < Cεn/logq and

∣∣n2σ̂
2(u2,ij )/

(
m2ζ2,ij

) − 1
∣∣ < Cεn/logq.

We set Mn := max1≤i,j≤q Mij and M̃n := max1≤i,j≤q M̃ij . By the definition of Mn and M̃n, we
calculate the relative difference of Mij and M̃ij as∣∣∣∣Mij − M̃ij

M̃ij

∣∣∣∣ ≤
∣∣∣∣ σ̂ 2(̂u1,ij ) − m2ζ1,ij /n1

σ̂ 2(̂u1,ij )

∣∣∣∣ +
∣∣∣∣ σ̂ 2(̂u2,ij ) − m2ζ2,ij /n2

σ̂ 2(̂u2,ij )

∣∣∣∣ ≤ C
εn

logq
. (A.2)
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Therefore, we have |Mij − M̃ij | ≤ CεnM̃ij / logq , which implies that

|Mn − M̃n| ≤ max
1≤i,j≤n1

|Mij − M̃ij | ≤ CM̃nεn/logq. (A.3)

Combining M̃n/logq = Op(1) and εn = o(1), to prove Theorem 2.2 it suffices to show that as
n,q → ∞, (2.14) holds for any x ∈ R.

Step (ii). In this step, we use the Hoeffding decomposition (Lemma D.4 in Supplementary Ma-
terial (Zhou et al. [46])) to decompose U-statistics. We then prove the residual term �na,ij /

(
na

m

)
is negligible, i.e., to prove the theorem it is sufficient to prove (2.17) as n, q → ∞.

For notational simplicity, we set

Ñij := (̂u1,ij − û2,ij )/

√
m2ζ1,ij /n1 + m2ζ2,ij /n2. (A.4)

Recall that in (2.13) and (2.16) we define M̃ij and Tij as

M̃ij := (̂u1,ij − û2,ij )
2

m2ζ1,ij /n1 + m2ζ2,ij /n2
,

Tij :=
∑n1

α=1 hij (Xα)/n1 − ∑n2
α=1 hij (Y α)/n2√

ζ1,ij /n1 + ζ2,ij /n2
.

(A.5)

By the definition of M̃ij , we have M̃ij = (Ñij )
2. Combining the definition of Tij and (2.15), we

have

Ñij = Tij +
(
n1
m

)−1
�n1,ij − (

n2
m

)−1
�n2,ij√

m2ζ1,ij /n1 + m2ζ2,ij /n2

. (A.6)

We then introduce the following lemma to analyze the difference of Ñij and Tij .

Lemma A.2. As n, q → ∞, we have∣∣∣ max
1≤i,j≤q

(Ñij )
2 − max

1≤i,j≤q
(Tij )

2
∣∣∣ = op(1). (A.7)

The detailed proof of Lemma A.2 is in Supplement B.2. This lemma illustrates that
max1≤,i,j≤q Ñij and Tn := max1≤i,j≤q Tij have the same limiting distribution. Hence, to prove
Theorem 2.2 it suffices to show (2.17) as n, q → ∞.

Step (iii). In this step, we aim to prove (2.17). In (2.17), Tn is the maximum of Tij over
S := {(i, j) : 1 ≤ i, j ≤ q} and these Tij ’s are not independent of each other. Therefore, we cannot
straightforwardly exploit the extreme value theorem under the independent setting to obtain the
limiting distribution of Tn. To solve this problem, we construct normal approximation to obtain
the extreme value distribution of (Tij )1≤i,j≤q under the setting that Tij can be dependent of each
other. The construction of such normal approximation requires most correlations of different Tij

to be small. Correlations between different Tij ’s are related to the correlations of entries of X
and Y . Assumption (A1) specifies sufficient conditions on the correlations of entries of X and Y .
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To obtain more insight of Assumption (A1), we introduce the following notations. We use S0

to denote pairs of (i, j) such that Xi and Xj are highly correlated (|u1,ij | > (logq)−1−α0 ) or
Yi and Yj are highly correlated (|u2,ij | > (logq)−1−α0 ). Recalling the formal definition of S0 in
(2.11), Assumption (A1) implies that the number of highly correlated (|ua,ij | > (logq)−1−α0 )
entries of X and Y is small. More specifically, Assumption (A1) assumes |S0| = o(q2).

We can prove that correlations between Tij ’s on S \S0 are all small. We then use the Bofferroni
inequality (Lemma 1 of Cai, Liu and Xia [10]) and normal approximation to obtain the limiting
distribution of max(i,j)∈S\S0(Tij )

2 so as to prove (2.17).
We then present the detailed proof of (2.17). First, we prove that it suffices to take the maxi-

mum of Tij over S \S0 but instead of over S as in (2.17). By setting yq = x +4 logq − log(logq),
we have∣∣∣P(

max
(i,j)∈S

(Tij )
2 ≥ yq

)
− P

(
max

(i,j)∈S\S0

(Tij )
2 ≥ yq

)∣∣∣ ≤ P

(
max

(i,j)∈S0

(Tij )
2 ≥ yq

)
. (A.8)

The next lemma implies that, as n, q → ∞, we have P(max(i,j)∈S0(Tij )
2 ≥ yq) → 0.

Lemma A.3. Under Assumptions (A1) and (A2), as n, q → ∞, we have

P

(
max

(i,j)∈S0

(Tij )
2 ≥ yq

)
→ 0.

The detailed proof of Lemma A.3 is in Supplement B.3 of Supplementary Material (Zhou
et al. [46]). By Lemma A.3, we have P(max(i,j)∈S0(Tij )

2 ≥ yq) → 0 as n,q → ∞. Moreover,
by (A.8), we have that P(max(i,j)∈S(Tij )

2 ≥ yq) and P(max(i,j)∈S\S0(Tij )
2 ≥ yq) have the same

limit value as n, q → ∞. Therefore, to obtain (2.17), it suffices to prove

P

(
max

(i,j)∈S\S0

(Tij )
2 − 4 logq + log(logq) ≤ x

)
→ exp

(
− 1√

8π
exp

(
−x

2

))
, (A.9)

as n, q → ∞. The problem is then reduced to prove (A.9).
For simplicity, by rearranging the two-dimensional indices {(i, j) : (i, j) ∈ S \S0} in any order,

we set them as {(ik, jk) : 1 ≤ k ≤ h} with h = |S \ S0|. If we denote Tk := Tikjk
, (A.9) becomes

P

(
max

1≤k≤h
(Tk)

2 − 4 logq + log(logq) ≤ x
)

→ exp

(
− 1√

8π
exp

(
−x

2

))
. (A.10)

Secondly, we exploit normal approximation to obtain the limiting distribution of
max1≤k≤h(Tk)

2. This normal approximation is useful for getting the extreme value distribu-
tion of weakly dependent data. By excluding all the pairs in S0, correlations between Tk’s are
all small. Therefore, we can use this normal approximation to get the limiting distribution of
max1≤k≤h(Tk)

2. In detail, we first use the Boferroni inequality to obtain both lower and upper
bounds of P(max1≤k≤h(Tk)

2 ≥ yq). The obtained lower and upper bounds can then be shown to
have the same limiting distribution, which is the extreme value distribution with the cumulative
distribution function of exp(−(8π)−1/2 exp(−x/2)).



An extreme-value approach for testing large correlation matrices 1499

To describe the procedure of normal approximation, we need some additional notations. We
introduce {

Ẑβ,ij = n2hij (Xβ)/n1 for 1 ≤ β ≤ n1,

Ẑβ,ij = −hij (Y β−n1) for n1 + 1 ≤ β ≤ n1 + n2,
(A.11)

where hij is defined in (2.9). Moreover, by the definition of Tij in (2.16), we have

Tk := Tikjk
=

n1+n2∑
β=1

Ẑβ,ikjk
/

√
n2

2ζ1,ikjk
/n1 + n2ζ2,ikjk

. (A.12)

After introducing these notations, we explain how to use normal approximation to get the
extreme value distribution of max1≤k≤h(Tk)

2. First, by the Boferroni inequality (Lemma 1 of
Cai, Liu and Xia [10]), for any integer M with 0 < M < [h/2], we have

2M∑
�=1

(−1)�−1
∑

1≤k1<···<k�≤h

P

(
�⋂

j=1

Ekj

)
≤ P

(
max

1≤k≤h
(Tk)

2 ≥ yq

)

≤
2M−1∑
�=1

(−1)�−1
∑

1≤k1<···<k�≤h

P

(
�⋂

j=1

Ekj

)
,

(A.13)

where we set Ekj
= {(Tkj

)2 ≥ yq}. In next step, to simplify P(
⋂�

j=1 Ekj
), we define

Z̃βk = Ẑβ,ikjk
/(n2ζ1,ikjk

/n1 + ζ2,ikjk
)1/2 and Wβ = (Z̃βk1 , . . . , Z̃βk�

)T , (A.14)

for 1 ≤ k ≤ h and 1 ≤ β ≤ n1 + n2. Therefore, we have Tkj
= (n2)

−1 ∑n1+n2
β=1 Z̃βkj

. Define

‖v‖min = min1≤i≤� |vi | for vector v ∈ R
�. With these notations, we rewrite P(

⋂�
j=1 Ekj

) as

P

(
�⋂

j=1

Ekj

)
= P

(∥∥∥∥∥n
−1/2
2

n1+n2∑
β=1

Wβ

∥∥∥∥∥
min

≥ y
1/2
q

)
.

Second, we use a normal vector N� to approximate n
−1/2
2

∑n1+n2
β=1 Wβ . In detail, we set N� as

a normal vector with the same mean vector and the same covariance matrix as n
−1/2
2

∑n1+n2
β=1 Wβ .

More specifically, we have

N� := (Nk1 , . . . ,Nk�
)T

with E[N�] = 0,Var(N�) = n1 Var(W 1)/n2 + Var(W n1+1).
(A.15)

The following lemma uses N� to rewrite the the upper and lower bounds in (A.13).
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Lemma A.4. Under Assumption (A2), as n, q → ∞, we have

P

(
max

1≤k≤h
(Tk)

2 ≥ yq

)
≤

2M−1∑
�=1

(−1)�−1
∑

1≤k1<···<k�≤h

P
(‖N�‖min ≥ y

1/2
q − εn(logq)−1/2)

+ o(1),

(A.16)

P

(
max

1≤k≤h
(Tk)

2 ≥ yq

)
≥

2M∑
�=1

(−1)�−1
∑

1≤k1<···<k�≤h

P
(‖N�‖min ≥ y

1/2
q + εn(logq)−1/2)

− o(1).

(A.17)

The detailed proof of Lemma A.4 is in Supplement B.4 of Supplementary Material (Zhou
et al. [46]). At last, to complete the proof, we need to prove that the right-hand sides of (A.16)

and (A.17) have the same limit value 1−exp(−(
√

8π)
−1

exp(−x/2)) as n, q → ∞. To calculate
the limit value, we need the following lemma.

Lemma A.5. Under Assumption (A3), for any integer � ≥ 1 and x ∈R, we have

∑
1≤k1<···<k�≤h

P
(‖N�‖min ≥ y

1/2
q ± εn(logq)−1/2) = 1

�!
(

1√
8π

exp

(
−x

2

))�(
1 + o(1)

)
.

(A.18)

The detailed proof of Lemma A.5 is in Supplement B.5. By plugging (A.18) into (A.16) and
(A.17), we construct the following inequities:

lim sup
n,q→∞

P

(
max

1≤k≤h
(Tk)

2 ≥ yq

)
≤

2M−1∑
�=1

(−1)�−1 1

�!
(

1√
8π

exp

(
−x

2

))�

,

lim inf
n,q→∞P

(
max

1≤k≤h
(Tk)

2 ≥ yq

)
≥

2M∑
�=1

(−1)�−1 1

�!
(

1√
8π

exp

(
−x

2

))�

,

for any positive integer M . Letting M → ∞, we prove (A.10). Therefore, we finish the proof of
Theorem 2.2. �
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