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A Bernstein-type inequality for functions
of bounded interaction
ANDREAS MAURER

Adalbertstrasse 55, D 80799 München, Germany. E-mail: am@andreas-maurer.eu

We give a distribution-dependent concentration inequality for functions of independent variables. The result
extends Bernstein’s inequality from sums to more general functions, whose variation in any argument does
not depend too much on the other arguments. Applications sharpen existing bounds for U-statistics and the
generalization error of regularized least squares.
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1. Introduction

If X1, . . . ,Xn are independent real random variables, with Xk −EXk ≤ 1 almost surely, E[X2
k ] <

∞ and f (X1, . . . ,Xn) = ∑
k Xk , then Bernstein’s inequality ([3]) asserts that for t > 0

Pr
{
f (X1, . . . ,Xn) − E

[
f (X1, . . . ,Xn)

]
> t

} ≤ exp

( −t2

2
∑

k σ 2
k + 2t/3

)
,

where σ 2
k is the variance of Xk . This work gives an extension of Bernstein’s inequality to more

general functions f .
This extension requires two modifications. First, the variance

∑
k σ 2

k is replaced by the Efron–
Stein upper bound, or jackknife estimate, of the variance. Second, a correction term J (f ) is
added to the coefficient 2/3 of t in the denominator of the exponent. This correction term, which
we call the interaction functional of f , vanishes for sums and represents the extent to which the
variation of f in any given argument depends on other arguments.

To proceed, we introduce some notation. Let (�,T ) = ∏n
k=1(�k,T ) be some product of

measurable spaces and let A(�) be the algebra of all bounded, measurable real valued func-
tions on �. For fixed k ∈ {1, . . . , n} and y, y′ ∈ �k define the substitution operator Sk

y and the

difference operator Dk
y,y′ on A(�) by

(
Sk

yf
)
(x1, . . . , xn) = f (x1, . . . , xk−1, y, xk+1, . . . , xn)

and Dk
y,y′ = Sk

y − Sk
y′ . With Ak(�) we denote the subalgebra of functions in A(�) which do not

depend on the kth argument. Both Sk
yf and Dk

y,y′f are in Ak(�).
Let a probability measure μk be given on each �k and let μ be the product measure μ = ∏

μk

on �. For f ∈ A(�), the expectation Ef and variance σ 2(f ) are defined as Ef = ∫
�

f dμ and
σ 2(f ) = E[(f − Ef )2]. For k ∈ {1, . . . , n}, the conditional expectation Ek (conditional on the
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σ -algebra generated by the members of Ak(�)) and the conditional variance σ 2
k are operators on

A(�), which act on a function f ∈ A(�) as

Ekf = Ey∼μk

[
Sk

yf
] =

∫
�k

Sk
yf ∼ dμk(y) and

σ 2
k (f ) = Ek

[
(f − Ekf )2] = 1

2
E(y,y′)∼μ2

k

[(
Dk

y,y′f
)2]

,

where μ2
k is the product measure μk × μk on �k × �k . The sum of conditional variances is the

operator �2 : A(�) → A(�) defined by

�2(f ) =
n∑

k=1

σ 2
k (f ).

This operator appears in the Efron–Stein inequality ([8,18], see also Section 2.4) as

σ 2(f ) ≤ E
[
�2(f )

]
,

which becomes an equality if f is a sum of real valued functions Xk on �k . It also appears in
the following exponential tail bound ([17], Theorem 3.8, or [15], Theorem 11).

Suppose that f ∈A(�) satisfies f − Ekf ≤ b for all k ∈ {1, . . . , n}. Then

Pr{f − Ef > t} ≤ exp

( −t2

2 supx∈� �2(f )(x) + 2bt/3

)
. (1.1)

This inequality reduces to Bernstein’s inequality if f is a sum, but it suffers from the worst-
case choice of the configuration x, for which �2(f )(x) is evaluated. One would like to replace
the supremum by an expectation, just as in the Efron–Stein inequality.

This replacement is trivially possible when f is a sum, because then �2(f ) is constant. It
turns out that it is also possible if �2(f ) has the right properties of concentration about its mean,
a weak form of being constant. To insure this we control the interaction between the different
arguments of f , in the sense that the variation in any argument must not depend too much on the
other arguments.

Definition 1. The interaction functional J : A(�) → R
+
0 is defined by

J (f ) =
(

sup
x∈�

∑
k,l:k �=l

sup
z,z′∈�l

sup
y,y′∈�k

(
Dl

z,z′Dk
y,y′f

)2
(x)

)1/2

for f ∈A(�).

The distribution-dependent interaction functional Jμ is defined by

Jμ(f ) = 2

(
sup
x∈�

∑
l

sup
z∈�l

∑
k:k �=l

σ 2
k

(
f − Sl

zf
)
(x)

)1/2

.
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These quantities are related and bounded using the inequalities

Jμ(f ) ≤ J (f )

≤ n sup
x∈�

max
k,l

sup
z,z′∈�l

sup
y,y′∈�k

(
Dl

z,z′Dk
y,y′f

)
(x)

(1.2)

(see the end of Section 2.3). For our applications below the last, simplest and crudest bound
appears to be sufficient. The above functionals and bounds vanish for sums and are positive
homogeneous of degree one. The following is our main result.

Theorem 1. Suppose f ∈A(�) satisfies f − Ekf ≤ b for all k. Then for all t > 0

Pr{f − Ef > t} ≤ exp

( −t2

2E[�2(f )] + (2b/3 + Jμ(f ))t

)
.

Remarks:
1. If this is applied to sums of independent random variables (real valued functions Xk defined

on �k), we recover Bernstein’s inequality.
2. Consider the case that �k = �0, μk = μ0 and a sequence of functions fn ∈ A(�n

0),
such that Jμ(fn)/

√
n → 0 (for example if Jμ(fn) is bounded) and such that the limit σ 2 =

limn→∞ E[�2(fn)]/n exists. Applying Theorem 1 to the sequence fn/
√

n, and letting n → ∞,
we obtain the tail of a normal distribution with variance σ 2. In some cases, like U-statistics, this
is known to be the correct limiting distribution ([10], Theorem 7.1).

3. Although the distribution dependent functional Jμ is potentially much smaller than J , in
the applications considered sofar it seems sufficient to consider J or the above bounds thereof.

4. Since E[�2(f )] ≤ supx �2(f )(x) ≤ supx(1/4)
∑

k supy,y′(Dk
y,y′(f ))2(x), the variance

term above can never be larger than the variance term in (1.1), which in turn can never be
larger than what we get from the bounded difference inequality ([17], Theorem 3.7, or [5], The-
orem 6.5).

5. If also f − Ekf ≥ −b, then the result can be applied to −f so as to obtain a two-sided
inequality.

In Theorem 2.1, [11] bounds the bias in the Efron–Stein inequality in terms of iterated jack-
knifes, which correspond to the expectations of higher order differences. The second of these
iterates can be bounded in terms of the interaction functional and allows us to put the variance
σ 2(f ) back into the inequality of Theorem 1.

Proposition 1.

E
[
�2(f )

] ≤ σ 2(f ) + 1

4
H 2(f ) ≤ σ 2(f ) + 1

4
J 2(f ),

where the functional H : A(�) → R is defined by

H(f ) =
(

Ex∼μ

∑
k,l:k �=l

E(z,z′)∼μ2
l
E(y,y′)∼μ2

l

[(
Dl

z,z′Dk
y,y′f

)2
(x)

])1/2

.
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See Section 2.4 for the proof. In combination with Theorem 1 we obtain the following corol-
lary.

Corollary 1. Suppose f ∈A and f − Ekf ≤ b for all k. Then for all t > 0

Pr{f − Ef > t} ≤ exp

( −t2

2σ 2(f ) + H 2(f )/2 + (2b/3 + Jμ(f ))t

)
.

We apply Theorem 1 in two different situations. For undecoupled U-statistics of any order with
bounded, symmetric kernels it is very easy to bound the interaction functional, so as to obtain an
asymptotically sharp Bernstein inequality, with mild dependence on the order of the U-statistic.
Section 3 gives a derivation and discussion of this inequality.

In a different context Theorem 1 sharpens a stability based generalization bound for regular-
ized least squares. This application is discussed in Section 4.

The idea of using second differences (as in the definition of J ) has been put to work in [11] to
estimate the bias in the Efron–Stein inequality. The entropy method, which underlies our proof
of Theorem 1, has been developed by a number of authors, notably [13] and [4]. The latter work
also introduces the key-idea of combining it with the decoupling method used below. Our proof
follows a thermodynamic formulation of the entropy method as laid out in [15].

The next section gives a proof of Theorem 1. Then follow the applications to U-statistics and
ridge regression.

2. Proof of Theorem 1

The proof of our main result, Theorem 1, uses the entropy method ([4,5,13]), from which the
next section collects a set of tools. These results are taken from [15], which provides proofs and
additional motivation.

2.1. Definitions and tools

� and A(�) are as in the introduction, Ak(�) is the subalgebra of A(�) of those bounded,
measurable functions on � which are independent of the kth coordinate. For f ∈ A(�) and
β ∈ R define the expectation functional Eβf on A(�) by

Eβf [g] = Z−1
βf E

[
geβf

]
, g ∈A(�),

where Zβf = E[eβf ]. The entropy Sf (β) of f at β is given by

Sf (β) = KL
(
Z−1

βf eβf dμ,dμ
) = βEβf [f ] − lnZβf ,

where KL(ν,μ) is the Kullback–Leibler divergence.



A Bernstein-type inequality 1455

Lemma 1 (Theorem 1 in [15]). For any f ∈A(�) and β > 0 we have

lnE
[
eβ(f −Ef )

] = β

∫ β

0

Sf (γ )

γ 2
dγ

and, for t ≥ 0,

Pr{f − Ef > t} ≤ exp

(
β

∫ β

0

Sf (γ )

γ 2
dγ − βt

)
.

Define the real function ψ by ψ(t) := tet − et + 1.

Lemma 2 (Lemma 10 in [15]). Let f ∈ A(�) satisfy f − Ekf ≤ 1 for all k ∈ {1, . . . , n}. Then
for β > 0

Sf (β) ≤ ψ(β)Eβf

[
�2(f )

]
.

Bounding Eβf [�2(f )] ≤ supx �2(f )(x) and using Lemma 1 quickly leads to a proof of in-
equality (1.1). For Theorem 1, we need more tools.

Definition 2. The operator D :A(�)→ A(�) is defined by

Dg =
∑

k

(
g − inf

y∈�k

Sk
yg

)2
, for g ∈ A(�).

To clarify: infy∈�k
Sk

yg is the member of A(�) defined by

(
inf

y∈�k

Sk
yg

)
(x) = inf

y∈�k

(
Sk

y

(
g(x)

))
.

It does not depend on xk , so infy∈�k
Sk

yg ∈ Ak(�).

Lemma 3 (Lemma 15 in [15], also Proposition 5 in [14]). We have, for β > 0, that

Sf (β) ≤ β2

2
Eβf [Df ].

We use this to derive the following lemma, which, together with Proposition 2 below, gives
the concentration property of �2(f ) alluded to in the introduction.

Lemma 4. Suppose that

Df ≤ a2f. (2.1)

Then for β ∈ (0,2/a2)

lnE
[
eβf

] ≤ βEf

1 − a2β/2
. (2.2)
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Functions satisfying (2.1) are called weakly self-bounded in [5].

Proof of Lemma 4. Using Lemma 1 and Lemma 3 and the weak self-boundedness assumption
(2.1) we have for β > 0 that

lnE
[
eβ(f −E[f ])] = β

∫ β

0

Sf (γ )

γ 2
dγ ≤ β

2

∫ β

0
Eγf [Df ]dγ ≤ a2β

2

∫ β

0
Eγf [f ]dγ

= a2β

2
lnEeβf ,

where the last identity follows from the fact that Eγf [f ] = (d/dγ ) lnEeγf . Thus

lnE
[
eβf

] ≤ a2β

2
lnEeβf + βEf,

and rearranging this inequality for β ∈ (0,2/a2) establishes the claim. �

We also use the following decoupling technique: If μ and ν are two probability measures and
ν is absolutely continuous w.r.t. μ, then it is easy to show that

Eνg ≤ KL(dν, dμ) + lnEμeg.

Applying this inequality when ν is the measure Z−1
βf eβf dμ, we obtain the following

Lemma 5. We have for any g ∈A(�) that

Eβf [g] ≤ Sf (β) + lnE
[
eg

]
. (2.3)

2.2. Self-boundedness of the sum of conditional variances

We record some properties of the substitution operator. For k ∈ {1, . . . , n} and y ∈ �k the oper-
ator Sk

y is a homomorphism (linear and multiplicative) on A(�) and the identity on Ak(�). If
l �= k, it commutes with Sl

z and with El . Most importantly

Sk
yσ 2

l (f ) = 1

2
Sk

yE(z,z′)∼μ2
l

[(
Dl

z,z′f
)2] = 1

2
E(z,z′)∼μ2

l

[(
Dl

z,z′Sk
yf

)2] = σ 2
l

(
Sk

yf
)
.

Note however that for l = k, we get Sk
ySk

z = Sk
z and Sk

yEk = Ek and Sk
yσ 2

k = σ 2
k , because Sk

z , Ek

and σ 2
k map to Ak(�).

Proposition 2. We have D(�2(f )) ≤ Jμ(f )2�2(f ) for any f ∈A(�).
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Proof. Fix x ∈ �. Below all members of A(�) are understood as evaluated on x. For l ∈
{1, . . . , n} let zl ∈ �l be a minimizer in z of Sl

z�
2(f ) (existence is assumed for simplicity, an

approximate minimizer would also work), so that

inf
z∈�l

Sl
z�

2(f ) = Sl
zl
�2(f ) =

∑
k

Sl
zl
σ 2

k (f ) = σ 2
l (f ) +

∑
k:k �=l

Sl
zl
σ 2

k (f ),

where we used the fact that Sl
zl
σ 2

l (f ) = σ 2
l (f ), because σ 2

l (f ) ∈ Al(�). Then

D
(
�2(f )

) =
∑

l

(
�2(f ) − inf

zl∈�l

Sl
z�

2(f )
)2 =

∑
l

( ∑
k:k �=l

(
σ 2

k (f ) − Sl
zl
σ 2

k (f )
))2

.

This step gave us a sum over k �= l, which is important, because it allows us to use the commuta-
tivity properties mentioned above. Then, using 2σ 2

k (f ) = E(y,y′)∼μ2
k
(Dk

y,y′f )2, we get

4D
(
�2(f )

) =
∑

l

( ∑
k:k �=l

E(y,y′)∼μ2
k

(
Dk

y,y′f
)2 − Sl

zl
E(y,y′)∼μ2

k

(
Dk

y,y′f
)2

)2

=
∑

l

(∑
k �=l

E(y,y′)∼μ2
k

[(
Dk

y,y′f
)2 − (

Dk
y,y′Sl

zl
f

)2])2

=
∑

l

(∑
k �=l

E(y,y′)∼μ2
k

[(
Dk

y,y′f − Dk
y,y′Sl

zl
f

)(
Dk

y,y′f + Dk
y,y′Sl

zl
f

)])2

≤
∑

l

∑
k:k �=l

E(y,y′)∼μ2
k

[
Dk

y,y′
(
f − Sl

zl
f

)]2

×
∑
k:k �=l

E(y,y′)∼μ2
k

[
Dk

y,y′f + Dk
y,y′Sl

zl
f

]2

by an application of Cauchy–Schwarz. Now, using (a + b)2 ≤ 2a2 + 2b2, we can bound the last
sum independent of l by

∑
k:k �=l

E(y,y′)∼μ2
k

[
Dk

y,y′f + Dk
y,y′Sl

zl
f

]2

≤
∑
k:k �=l

E(y,y′)∼μ2
k

[
2
(
Dk

y,y′f
)2 + 2

(
Dk

y,y′Sl
zl
f

)2]

= 4
∑
k:k �=l

σ 2
k (f ) + 4Sl

zl

∑
k:k �=l

σ 2
k (f )

≤ 4
(
�2(f ) + Sl

zl
�2(f )

) = 4
(
�2(f ) + inf

z∈�l

Sl
z�

2(f )
)

≤ 8�2(f ),
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so that

D
(
�2(f )

) ≤ 2
∑

l

∑
k:k �=l

E(y,y′)∼μ2
k

[
Dk

y,y′
(
f − Sl

zl
f

)]2
�2(f )

= 4
∑

l

∑
k:k �=l

σ 2
k

(
f − Sl

zl
f

)
�2(f )

≤ 4 sup
x∈�

∑
l

sup
z∈�l

∑
k:k �=l

σ 2
k

(
f − Sl

zf
)
(x)�2(f )

= J 2
μ(f )�2(f ). �

2.3. Proof of Theorem 1

We need two more auxiliary results. Recall the definition of the function ψ(t) := tet − et + 1.

Lemma 6. For any a ≥ 0 and 0 ≤ γ < 1/(1/3 + a/2) we have

(i) a
√

ψ(γ )/2 < 1,
(ii)

ψ(γ )

γ 2(1 − a
√

ψ(γ )/2)2
≤ 1

2(1 − (1/3 + a/2)γ )2
.

Proof. If 0 ≤ γ < 1/(1/3+a/2) and a ≥ 0, then γ < 3. In this case, we have the two convergent
power series representations

1

2(1 − γ /3)2
=

∞∑
n=0

n + 1

2
3−nγ n =:

∞∑
n=0

bnγ
n,

γ eγ − eγ + 1

γ 2
=

∞∑
n=0

1

(n + 2)n!γ
n =:

∞∑
n=0

cnγ
n.

Now b0 = c0 = 1/2 by inspection and for n ≥ 1

bn

cn

= (n + 2)!
2 × 3n

= 1 × 2

2
×

n∏
k=1

(
k + 2

3

)
≥ 1,

so that bn ≥ cn for all non-negative n. Term by term comparison of the two power series gives

ψ(γ )

γ 2
= γ eγ − eγ + 1

γ 2
≤ 1

2(1 − γ /3)2
, (2.4)

which is (ii) in the case that a = 0.
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It also gives us for general a > 0 that

√
ψ(γ )/2 ≤ γ

2(1 − γ /3)
< a−1, (2.5)

since γ < 1/(1/3 + a/2) =⇒ γ /(2(1 − γ /3)) < a−1. This proves (i).
(ii) is equivalent to

ψ(γ )

γ 2
≤ (1 − a

√
ψ(γ )/2)2

2((1 − γ /3) − aγ /2)2
.

To complete the proof it suffices by (2.4) to show that the right-hand side above is, for fixed
γ , a non-decreasing function of a ∈ [0,2(1 − γ /3)/γ ). Let b := √

ψ(γ )/2, c := (1 − γ /3) and
d := γ /2, so the expression in question becomes (1 − ab)2/(2(c − ad)2). Calculus gives

d

da

(1 − ab)2

2(c − ad)2
= (1 − ab)(d − bc)

(c − ad)3
.

But c − ad = 1 − (1/3 + a/2)γ > 0 by assumption. Also 1 − ab > 0 by (i) and, using (2.5),

d − bc = γ

2
− √

ψ(γ )/2(1 − γ /3)

≥ γ

2
− γ (1 − γ /3)

2(1 − γ /3)
= 0.

The expression (1 − ab)2/(2(c − ad)2) is therefore non-decreasing in a. �

We finally need an optimization lemma.

Lemma 7. Let C and b denote two positive real numbers, t > 0. Then

inf
β∈[0,1/b)

(
−βt + Cβ2

1 − bβ

)
≤ −t2

2(2C + bt)
. (2.6)

The proof of this lemma can be found in [14] (Lemma 12).

Proposition 3. Suppose that f ∈ A(�) is such that ∀k, f − Ek(f ) ≤ 1, and that

D
(
�2(f )

) ≤ a2�2(f ),

with a ≥ 0. Then for all t > 0

Pr{f − Ef > t} ≤ exp

( −t2

2E[�2(f )] + (2/3 + a)t

)
.
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Proof. By a simple limiting argument, we may assume that a > 0. Now let 0 < γ ≤ β <

1/(1/3 + a/2). By Lemma 6, (i) θ := (1/a)
√

2ψ(γ ) < 2/a2 and also θ >
√

ψ(γ )/2
√

2ψ(γ ) =
ψ(γ ). By Lemma 2,

Sf (γ ) ≤ ψ(γ )Eγf

[
�2(f )

] = θ−1ψ(γ )Eγf

[
θ�2(f )

]
≤ θ−1ψ(γ )

(
Sf (γ ) + lnE

[
eθ�2(f )

])
,

where the second inequality follows from Lemma 5. Subtracting θ−1ψ(γ )Sf (γ ), multiplying by
θ and using Lemma 4 together with the assumed self-boundedness of �2(f ) gives us

Sf (γ )
(
θ − ψ(γ )

) ≤ ψ(γ ) lnE
[
eθ�2(f )

] ≤ θψ(γ )

1 − a2θ/2
E

[
�2(f )

]
,

which holds, since θ < 2/a2. Since θ > ψ(γ ) we can divide by θ − ψ(γ ) to rearrange and then
use the definition of θ to obtain

Sf (γ ) ≤ ψ(γ )

(1 − a
√

ψ(γ )/2)2
E

[
�2(f )

]
.

By Lemma 6(ii) for β < 1/(1/3 + a/2)

∫ β

0

Sf (γ ) dγ

γ 2
≤ E

[
�2(f )

] ∫ β

0

ψ(γ )

γ 2(1 − a
√

ψ(γ )/2)2
dγ

≤ E
[
�2(f )

] ∫ β

0

dγ

2(1 − (1/3 + a/2)γ )2

= E[�2(f )]
2

β

1 − (1/3 + a/2)β

and from Lemma 1

Pr{f − Ef > t} ≤ inf
β>0

exp

(
β

∫ β

0

Sf (γ )

γ 2
dγ − βt

)

≤ inf
β∈(0,1/(1/3+a/2))

exp

(
E[�2(f )]

2

β2

1 − (1/3 + a/2)β
− βt

)

≤ exp

( −t2

2(E[�2(f )] + (1/3 + a/2)t)

)
,

where we used Lemma 7 in the last step. �

By Proposition 2, we can substitute Jμ(f ) for a in Proposition 3, which gives Theorem 1 for
the case b = 1. The general case follows from rescaling and the homogeneity properties of �2

and Jμ.
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Of the inequalities in (1.2) only the first one is not completely obvious:

J 2
μ(f ) = 4 sup

x∈�

∑
l

sup
z∈�l

∑
k:k �=l

σ 2
k

(
f − Sl

zf
)
(x)

≤ 4 sup
x∈�

∑
l

sup
z,z′∈�l

∑
k:k �=l

σ 2
k

(
Dl

z,z′f
)
(x)

≤ sup
x∈�

∑
l

sup
z,z′∈�l

∑
k:k �=l

sup
y,y′

(
Dk

y,y′Dl
z,z′f

)2
(x) ≤ J 2(f ).

In the last inequality, we used the fact that the variance of a random variable is bounded by a
quarter of the square of its range, so that σ 2

k (f ) ≤ (1/4) supy,y′(Dk
y,y′f )2 for all f ∈ A(�).

2.4. The bias in the Efron–Stein inequality

Since the published work of Houdré ([11]) assumes symmetric functions and identically dis-
tributed variables, we give an independent derivation of Proposition 1 (the author is grateful to
Christian Houdré, who supplied a general version in private communication).

Let X1, . . . ,Xn be independent variables with Xi distributed as μi in �i , and let X′
1, . . . ,X

′
n

be independent copies thereof. For A ⊆ {1, . . . , n} denote with XA the vector

XA
i =

{
X′

i if i ∈ A,

Xi if i /∈ A,

and for k, l ∈ N, use [k, l] to denote the interval [k, l] = {k, . . . , l} if k ≤ l or the empty set
otherwise. Also write X = X∅ and X\ = X[1,n] and X\k = X[1,n]\k .

Let f : ∏
�i → R satisfy E[f ] = 0. Then, writing f (X) − f (X′) as a telescopic series, we

get

σ 2(f ) = E
[
f (X)

(
f (X) − f

(
X′))]

=
n∑

k=1

E
[
f (X)

(
f

(
X[1,k−1]) − f

(
X[1,k]))]

= −
n∑

k=1

E
[
f

(
X{k})(f (

X[1,k−1]) − f
(
X[1,k]))],

where the last identity is obtained by exchanging Xk and X′
k . This gives the variance formula

σ 2(f ) = 1

2

n∑
k=1

E
[(

f (X) − f
(
X{k}))(f (

X[1,k−1]) − f
(
X[1,k]))] (2.7)
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(apparently due to Chatterjee). The Cauchy–Schwarz inequality then gives the Efron–Stein in-
equality

σ 2(f ) ≤ E
[
�2(f )

] = 1

2

n∑
k=1

E
[(

f (X) − f
(
X{k}))2] =

n∑
k=1

E
[
σ 2(f (X)|X\k)]. (2.8)

Now we look at the bias in this inequality.

Theorem 2. With above conventions we have

n∑
k=1

σ 2[E[
f (X)|Xk

]] ≤ σ 2[f (X)
] ≤

n∑
k=1

E
[
σ 2[f (X)|X\k]]

≤
n∑

k=1

σ 2[E[
f (X)|Xk

]] + H 2(f )

4
.

These inequalities simultaneously bound the bias of both upper and lower variance-estimators
by H 2(f )/4.

Lemma 8.
n∑

k=1

σ 2[E[
f (X)|Xk

]] ≤ σ 2[f (X)
]
.

Proof. By induction on n. Recall the total variance formula

σ 2(Z) = σ 2[E[Z|X]] + E
[
σ 2[Z|X]].

With f (X) = Z this gives the case n = 1. For n = 2, we get

2σ 2[f (X)
] = σ 2[E[

f (X)|X1
]] + σ 2[E[

f (X)|X2
]]

+ E
[
σ 2[f (X)|X1

]] + E
[
σ 2[f (X)|X2

]]
≥ σ 2[E[

f (X)|X1
]] + σ 2[E[

f (X)|X2
]] + σ 2[f (X)

]
,

where we used the Efron–Stein inequality (2.8). This is where independence comes in and gives
us the case n = 2. But if the lemma holds for n − 1, then

n∑
k=1

σ 2[E[
f (X)|Xk

]] =
n−1∑
k=1

σ 2[E[
f (X)|Xk

]] + σ 2[E[
f (X)|Xn

]]

≤ σ 2[E[
f (X)|X1, . . . ,Xn−1

]] + σ 2[E[
f (X)|Xn

]]
≤ σ 2[E[

f (X)
]]

,
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where the first inequality follows from the induction hypothesis, and the second inequality fol-
lows from applying the case n = 2 to the two random variables (X1, . . . ,Xn−1) and Xn. �

Proof of Theorem 2. The first inequality is Lemma 8, the second is the Efron–Stein inequality
(2.8). To prove the last inequality, it suffices to show that for each k ∈ {1, . . . , n}

E
[
σ 2[f (X)|X\k]] − σ 2[E[

f (X)|Xk

]]

≤ 1

4

∑
i:i �=k

E
[(

f (X) − f
(
X{i}) − f

(
X{k}) + f

(
X{i}∪{k}))2]

,

because summing the R.H.S. over k gives H 2(f )/4. We first rewrite the left-hand side as

E
[
σ 2[f (X)|X\k]] − σ 2[E[

f (X)|Xk

]]
= E

[
f (X)

(
f (X) − f

(
X{k}) − (

f
(
X[1,n]\{k}) − f

(
X[1,n])))]

= E
[
f (X)

(
f

(
X∅

) − f
(
X[1,n]\{k}) − (

f
(
X{k}) − f

(
X[1,n])))].

(2.9)

Let π be a permutation of {1, . . . , n} such that π(n) = k (to get the idea of what follows, it helps
to first think of the case k = n, with π being the identity map). With π we can write the telescopic
expansions

f
(
X∅

) − f
(
X[1,n]\{k}) =

n−1∑
i=1

(
f

(
Xπ[1,i−1]) − f

(
Xπ[1,i]))

and

f
(
X{k}) − f

(
X[1,n]) =

n−1∑
i=1

(
f

(
Xπ[1,i−1]∪π{n}) − f

(
Xπ[1,i]∪π{n})),

so that, with π(n) = k

f
(
X∅

) − f
(
X[1,n]\{k}) − (

f
(
X{k}) − f

(
X[1,n]))

=
n−1∑
i=1

(
f

(
Xπ[1,i−1]) − f

(
Xπ[1,i]) − f

(
Xπ[1,i−1]∪{k}) + f

(
Xπ[1,i]∪{k}))

�
n∑

i=1

Ak,i

(
X,X′).

Each summand Ak,i(X,X′) changes sign when Xπ(i) and X′
π(i) are interchanged. Likewise it

changes sign if Xk and X′
k are interchanged. But both operations leave the expression in (2.9)
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unchanged. Thus,

E
[
σ 2[f (X)|X\k]] − σ 2[E[

f (X)|Xk

]]

=
n−1∑
i=1

E
[
f (X)Ak,i

(
X,X′)]

= 1

2

n−1∑
i=1

E
[(

f (X) − f
(
X{i}))Ak,i

(
X,X′)]

= 1

4

n−1∑
i=1

E
[(

f (X) − f
(
Xπ{i}) − f

(
X{k}) + f

(
Xπ{i}∪{k}))Ak,i

(
X,X′)]

≤ 1

4

n−1∑
i=1

E
[(

f (X) − f
(
Xπ{i}) − f

(
X{k}) + f

(
Xπ{i}∪{k}))2]1/2

× E
[
Ak,i

(
X,X′)2]1/2

= 1

4

∑
i:i �=k

E
[(

f (X) − f
(
X{i}) − f

(
X{k}) + f

(
X{i}∪{k}))2]

,

where the inequality follows from Cauchy–Schwarz, and the last identity from replacing all the
X′

π{j} for j < i by Xπ{j} in E[Ak,i(X,X′)2]. �

Since H(f ) ≤ J (f ), Proposition 1 is an immediate consequence of Theorem 2.

3. Application to U-statistics

Throughout this section let (X ,T ,μ0) be a probability space, n ∈ N and μ = μn
0 on X n. Let g

be a measurable, symmetric (permutation invariant) kernel g : Xm → [−1,1] with 1 < m < n,
and let un ∈A(X n) be defined by

un(x) =
(

n

m

)−1 ∑
1≤j1<···<jm≤n

g(xj1, . . . , xjm).

First we introduce some notation. If B is a set and m ∈N, then let Sm
B denote the set of all those

subsets of B which have cardinality m. Also, if S ⊆ {1, . . . , n} and x ∈ X n, we use xS to denote
the vector (xj1 , . . . , xj|S|) ∈ X |S|, where {j1, . . . , j|S|} = S and the jk are increasingly ordered.
For y, z ∈X we use (y, xS) and (y, z, xS) to denote respectively, the vectors (y, xj1 , . . . , xj|S|) ∈
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X |S|+1 and (y, z, xj1 , . . . , xj|S|) ∈ X |S|+2. With this notation

un(x) =
(

n

m

)−1 ∑
S∈Sm{1,...,n}

g(xS).

Lemma 9. (i) un − Ekun ≤ 2m/n, and (ii) J (un) ≤ 4m2/n.

Proof. (i) With reference to any given k ∈ {1, . . . , n}, using the symmetry of g, we have

un(x) =
(

n

m

)−1 ∑
S∈Sm−1

{1,...,n}\k

g(xk, xS) +
(

n

m

)−1 ∑
S∈Sm

{1,...,n}:k /∈S

g(xS).

This gives

un(x) − Ekun(x) =
(

n

m

)−1 ∑
S∈Sm−1

{1,...,n}\k

(
g(xk, xS) − Ey∼μk

[
g(y, xS)

]) ≤ 2m/n,

because g takes values in an interval of diameter 2.
(ii) For k �= l, y, y′ ∈ �k and z, z′ ∈ �l we get

Dk
y,y′un(x) =

(
n

m

)−1 ∑
S∈Sm−1

{1,...,n}\k

(
g(y, xS) − g

(
y′, xS

))

and

∣∣Dl
z,z′Dk

y,y′un(x)
∣∣ ≤

(
n

m

)−1 ∑
S∈Sm−2

{1,...,n}\{k,l}

∣∣(g(y, z, xS) − g
(
y′, z, xS

))

− (
g
(
y, z′, xS

) − g
(
y′, z′, xS

))∣∣

≤ 4

(
n−2
m−2

)
(
n
m

) = 4
m(m − 1)

n(n − 1)
.

It follows that

J (un) ≤
(

sup
x∈�

∑
k,l:k �=l

sup
y,y′,z,z′

(
Dl

z,z′Dk
y,y′un(x)

)2
)1/2

≤ 4m(m − 1)√
n(n − 1)

≤ 4m2

n
. �
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Substitution of this lemma in Corollary 1 gives for any t > 0 the Bernstein-type inequality

Pr
{
un − E[un] > t

} ≤ exp

( −t2

2σ 2(un) + H 2(un)/2 + ( 4m
3n

+ 4m2

n
)t

)
.

Since H 2(un) ≤ J 2(un) = 16m2/n → 0 as n → ∞ this bound is asymptotically sharp by the
central limit theorem for U-statistics [10]. Working directly from Theorem 1 instead of Corollary
1 one can also obtain the following inequality, which explicitly contains the variance of the limit
distribution (proof omitted).

Pr{un − Eun > t} ≤ exp

( −nt2

2m2σ 2
y∼μ0

(Ex∼μm−1
0

[g(y,x)]) + m2(m−1)2

n−m
+ 16m2t/3

)
.

The elementary estimates of Lemma 9 can similarly be made when the kernel is not symmetric,
or when there is a different bounded kernel gj for every m-tuple j = (j1, . . . , jm) of indices.
Similar estimates hold for V-statistics with bounded kernels [19]. Observe also that above some
improvement is possible by bounding Jμ instead of J .

To put the above result in perspective, we consider the classical work of [10], and more recent
results of [2,9,12] and [1]. Hoeffding [10] and Arcones [2] consider undecoupled, nondegenerate
U-statistics of arbitrary order and are therefore directly comparable to the above result. Hoeffding
[10] does not have the correct variance term, while [2] gives the correct variance term but severely
overestimates the scale-proxy in Bernstein’s inequality to be exponential in the degree m of the
U-statistics (above it is only of order m2). This problem results from the use of the decoupling
inequalities of [7] and seems to beset most works on U-statistics of higher order. Neither [10]
nor [2] nor our inequality can take advantage of degeneracy. This is different for [9,12] and [1],
which in this respect always improve over our result. Arcones [2], Giné et al. [9] and Adamczak
[1] also consider Banach-space valued U-statistics which are inaccessible to our version of Bern-
stein’s inequality, but in the undecoupled case of higher order they all suffer from the exponential
dependence on m as introduced by the decoupling inequalities. Houdré and Reynaud-Bouret [12]
contains explicit constants and is generally superior to our result (even if we improve our inequal-
ity by considering Jμ instead of J ), but it is limited to the case m = 2. In summary: our inequality
seems to be the only one, which applies to undecoupled, non-degenerate U-statistics of arbitrary
degree, and both gives the correct variance term and avoids an exponential dependence on the
degree. It is unsuited for application to degenerate and Banach-space-valued U-statistics. The
simplicity of its derivation is perhaps its greatest merit.

4. Application to ridge regression

Let B be the unit ball in a separable, real Hilbert space, and let Z = B×[−1,1]. Fix λ ∈ (0,1).
For z =((x1, y1), . . . , (xn, yn)) ∈Zn regularized least squares returns the vector

wz = arg min
w∈H

1

n

n∑
i=1

(〈w,xi〉 − yi

)2 + λ‖w‖2.
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Let Z = (Z1, . . . ,Zn) be a vector of independent random variables with values in Z , where Zi

is identically distributed to Z = (X,Y ). We can apply Theorem 1, to obtain tail-bounds for the
random variable �(Z) = R(Z)− R̂(Z), where the “true error” R and the “empirical error” R̂ are
defined on Zn by

R(z) = EZ

(〈wz,X〉 − Y
)2 and R̂(z) = 1

n

n∑
i=1

(〈wz, xi〉 − yi

)2
,

and the random variable �(Z) is the “generalization error”. We can prove the following result.

Theorem 3. There is an absolute constant c such that for every δ ∈ (0,1/e) with probability at
least 1 − δ in Z

�(Z) ≤ E[�] +
√

2σ 2(�) ln(1/δ) + cλ−3 ln(1/δ)

n
.

It can be shown ([6]) that the expectation E[�] is of order 1/n, so for large sample sizes the
generalization error �(Z) is dominated by the variance term. This application of Theorem 1 has
now been extended to other loss functions, see [16] for more details.

A major drawback is the dependence on λ−3 in the last term, because in practical applications
the regularization parameter λ typically decreases with n. The λ−3 is likely due to a very crude
method of bounding J (f ) by differentiation. A more intelligent method might give λ−2n−1.

With λ fixed the inequality in Theorem 3 gives optimal rates in n up to factor lnn. Suppose
the distribution of Z is such, that for some constant c and p ∈ [1/2,1] and all δ > 0 with proba-
bility at most 1 − δ we have � ≤ cn−p ln(1/δ). Then, since � can be shown to be bounded and
letting δ = n−2p , it easily follows that σ 2(�) ≤ Cn−2p ln(n) for some other constant C, so that
Theorem 3 gives a rate of O(n−p ln(n)).

The key to the application of Theorem 1 is the following lemma (L+(H) denoting the cone of
nonnegative definite operators in H ).

Lemma 10. Let G : (0,1)2 → L+(H) and g : (0,1)2 → H be both twice continuously differen-

tiable, satisfying the conditions ∂2

∂s∂t
G = 0, ∂2

∂s∂t
g = 0, ‖ ∂

∂t
G‖ ≤ B1, ‖ ∂

∂s
G‖ ≤ B1, ‖ ∂

∂t
g‖ ≤ B2

and ‖ ∂
∂s

g‖ ≤ B2 for real numbers B1 and B2. For λ > 0 define a function w : (0,1)2 → H by
w = (G + λ)−1g. Then w is twice differentiable and∥∥∥∥ ∂

∂t
w

∥∥∥∥ ≤ λ−1(B1‖w‖ + B2
)
, (4.1)

∥∥∥∥ ∂2

∂s ∂t
w

∥∥∥∥ ≤ 2λ−2(B2
1‖w‖ + B1B2

)
. (4.2)

Proof. To shorten expressions, write T := (G + λ)−1. A standard argument shows that ‖T ‖ ≤
λ−1 (we use ‖ · ‖ for the operator norm and for vectors in H , depending on context) and that

∂

∂t
T = −T

(
∂

∂t
G

)
T , so that

∥∥∥∥ ∂

∂t
T

∥∥∥∥ ≤ λ−2B1.
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Then

∂

∂t
w = −T

(
∂

∂t
G

)
w + T

∂

∂t
g.

This gives (4.1). Also, using the fact that the mixed partials vanish by assumption,

∂2

∂s ∂t
w = ∂

∂s

[
−T

(
∂

∂t
G

)
T g + T

∂

∂t
g

]

= T

(
∂

∂s
G

)
T

((
∂

∂t
G

)
w − ∂

∂t
g

)
+ T

(
∂

∂t
G

)
T

((
∂

∂s
G

)
w − ∂

∂s
g

)
,

which gives (4.2). �

Proof of Theorem 3. It is well known and easily verified that wz is well defined and explicitly
given by the formula

wz = (Gz + λ)−1gz,

where the positive semidefinite operator Gz and the vector gz = g are given by

Gzv = 1

n

n∑
i=1

〈v, xi〉xi and gz = 1

n

n∑
i=1

yixi .

Also we have

1

n

n∑
i=1

(〈wz, xi〉 − yi

)2 + λ‖wz‖2 ≤ 1

n

n∑
i=1

(〈0, xi〉 − yi

)2 + λ‖0‖2 ≤ 1,

from which we retain that
∑

(〈wz, xi〉 − yi)
2 ≤ n and ‖wz‖ ≤ λ−1/2.

Now consider any sample z ∈ Zn and fix two indices 1 ≤ k, l ≤ n with k �= l, and
z′
l = (x′

l , y
′
l ), z

′
k = (x′

k, y
′
k), z

′′
l = (x′′

l , y′′
l ) ∈ Z and z′′

k = (x′′
k , y′′

k ) ∈ Z . For (s, t) ∈ (0,1)2

we consider the behavior of ridge regression on the doubly modified sample z(s, t) :=
Sl

z′
l+s(z′′

l −z′
l )
Sk

z′
k+t (z′′

k−z′
k)

z (Z is a convex subset of H ×R). We write

G(s, t) := Gz(s,t) and g(s, t) := gz(s,t) and w(s, t) := wz(s,t) = (
G(s, t) + λ

)−1
g(s, t).

Then ∥∥∥∥
(

∂

∂t
G

)
v

∥∥∥∥ = 1

n

∥∥∥∥ ∂

∂t

〈
v, x′

k + t
(
x′′
k − x′

k

)〉(
x′
k + t

(
x′′
k − x′

k

))∥∥∥∥
= 1

n

∥∥〈
v, x′′

k − x′
k

〉(
x′
l + t

(
x′′
k − x′

k

)) + 〈
v, x′

k + t
(
x′′
k − x′

k

)〉(
x′′
k − x′

k

)∥∥

≤ 2

n
‖v‖∥∥x′′

k − x′
k

∥∥∥∥x′
l + t

(
x′′
k − x′

k

)∥∥ ≤ 4

n
‖v‖,
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because ‖x′′
k − x′

k‖ ≤ 2 and ‖x′
l + t (x′′

k − x′
k)‖ ≤ 1. Thus, ‖(∂/∂t)G‖ ≤ 4/n and similarly

‖(∂/∂s)G‖ ≤ 4/n. Since k �= l it is clear that (∂2/(∂s∂t))G = 0. Also∥∥∥∥ ∂

∂t
g

∥∥∥∥ = 1

n

∥∥∥∥ ∂

∂t

((
y′
k + t

(
y′′
k − y′

k

))(
x′
k + t

(
x′′
k − x′

k

)))∥∥∥∥
≤ 1

n

(∣∣y′′
k − y′

k

∣∣∥∥x′
k + t

(
x′′
k − x′

k

)∥∥ + ∣∣y′
k + t

(
y′′
k − y′

k

)∣∣∥∥x′′
k − x′

k

∥∥)

≤ 4

n
,

similarly ‖(∂/∂s)g‖ ≤ 4/n and again (∂2/(∂s∂t))g = 0. We can then apply Lemma (10) and
obtain (remembering 0 < λ ≤ 1)∥∥∥∥ ∂

∂t
w

∥∥∥∥ ≤ 4

n
λ−1(λ−1/2 + 1

) ≤ 8λ−3/2

n

and ∥∥∥∥ ∂2

∂s l∂t
w

∥∥∥∥ ≤ 8

n2
λ−2(λ−1/2 + 1

) ≤ 32λ−5/2

n2
,

where we used ‖w‖ ≤ λ−1/2.
Now we define

R(s, t) = E
[(〈

w(s, t),X
〉 − Y

)2]
,

R̂(s, t) = 1

n

∑
i

(〈
w(s, t), xi(s, t)

〉 − yi(s, t)
)2

.

For the expected error, we get∣∣∣∣ ∂

∂t
R(s, t)

∣∣∣∣ ≤ 2E

∣∣∣∣(〈w(s, t),X
〉 − Y

)〈 ∂

∂t
w(s, t),X

〉∣∣∣∣
≤ (

λ−1/2 + 1
)8λ−3/2

n
≤ 16λ−2

n

and ∣∣∣∣ ∂2

∂s ∂t
R(s, t)

∣∣∣∣ ≤ 2E

∣∣∣∣ ∂

∂s

((〈
w(s, t),X

〉 − Y
)〈 ∂

∂t
w(s, t),X

〉)∣∣∣∣
≤ 2E

∣∣∣∣
〈

∂

∂s
w(s, t),X

〉〈
∂

∂t
w(s, t),X

〉∣∣∣∣
+ 2E

∣∣∣∣(〈w(s, t),X
〉 − Y

)〈 ∂2

∂s ∂t
w(s, t),X

〉∣∣∣∣
≤ 256

n2
λ−3.



1470 A. Maurer

By a similar (and more tedious) analysis there are absolute constants c1 and c2, such that

∣∣∣∣ ∂

∂t

(
R(s, t) − R̂(s, t)

)∣∣∣∣ ≤ c1λ
−2

n

and ∣∣∣∣ ∂2

∂s ∂t

(
R(s, t) − R̂(s, t)

)∣∣∣∣ ≤ c2λ
−3

n2
.

Thus,

Dk
z′
k,z

′′
k
�(z) =

∫ 1

0

∂

∂t
Sk

z′
k+t (z′′

k−z′
k)

�(z) dt

≤
∫ 1

0

∣∣∣∣ ∂

∂t

(
R(s, t) − R̂(s, t)

)∣∣∣∣dt ≤ c1λ
−2

n
.

In particular, � − Ek[�] ≤ c1λ
−2/n = b. Also

Dl
z′
l ,z

′′
l
Dk

z′
k,z

′′
k
�(z) =

∫ 1

0

∫ 1

0

∂2

∂s ∂t
Sl

z′
l+s(z′′

l −z′
l )
Sk

z′
k+t (z′′

k−z′
k)

�(z) dt ds

≤ nλ2

c1

∫ 1

0

∫ 1

0

∣∣∣∣ ∂2

∂s ∂t

(
R(s, t) − R̂(s, t)

)∣∣∣∣dt ds ≤ c2λ
−3

n2
.

Substitution in the formula gives J (f ) ≤ c2λ
−3/n. Corollary 1 and the elementary bound

H(f ) ≤ J (f ) give

Pr
{
� − E[�] > t

} ≤ exp

( −t2

2σ 2(�) + J 2(�)/2 + (2b/3 + J (�))t

)
.

Equating the probability to δ ∈ (0,1/e), solving for the deviation gives with probability at least
1 − δ that

� − E[�] ≤
√

2σ 2(�) ln(1/δ) + (
2b/3 + 2J (�)

)
ln(1/δ),

and substitution of b = c1λ
−2/n and J (f ) ≤ c2λ

−3/n give the result. �
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