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Given a matrix, the seriation problem consists in permuting its rows in such way that all its columns have the
same shape, for example, they are monotone increasing. We propose a statistical approach to this problem
where the matrix of interest is observed with noise and study the corresponding minimax rate of estimation
of the matrices. Specifically, when the columns are either unimodal or monotone, we show that the least
squares estimator is optimal up to logarithmic factors and adapts to matrices with a certain natural structure.
Finally, we propose a computationally efficient estimator in the monotonic case and study its performance
both theoretically and experimentally. Our work is at the intersection of shape constrained estimation and
recent work that involves permutation learning, such as graph denoising and ranking.
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1. Introduction

Seriation has been a central technique for data analysis for over a century. It has roots in arche-
ology and especially sequence dating where the goal is to recover the chronological order of
sepultures based on artifacts found in them [58]. Since then seriation has found applications in a
variety of disciplines ranging from anthropology [26] to sociology [36], biology [64] and market-
ing [4]. More recently, it was proposed as a method in computational biology for de novo DNA
assembly [2]. See [49] for a detailed account of seriation in data analysis. In modern language,
seriation belongs to the class of unsupervised learning problems. Akin to clustering, it aims at
rearranging heterogeneous data into a simple structure that is amenable to better interpretation
and understanding. Actually, in his seminal work on clustering, Hartigan [42] advocates for a
post-processing of direct clustering with seriation for better data visualization. However, unlike
clustering methods that quantize the data into a pre-specified number of clusters, seriation meth-
ods are truly nonparametric and “non-destructive”, a term coined by Murtagh [56], meaning that
it does not discard information from the data. Perhaps one of the most spectacular successes of
seriation was achieved in bioinformatics where it was used to display genome-wide expression
patterns [32]. Despite its widespread use, seriation has not been the subject of statistical analysis.
The main goal of this paper is to propose a new model that is amenable to a statistical analysis
of seriation.

To describe seriation in further details, we begin with a canonical problem, the consecutive 1’s
problem (C1P) [38] that is defined as follows. Given a binary matrix A the goal is to permute
its rows in such a way that the resulting matrix enjoys the consecutive 1’s property: each of its
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columns is a vector v = (v1, . . . , vn)
� where vj = 1 if and only if a ≤ j ≤ b for two integers

a, b between 1 and n. This problem arises in the archeology where the entry Ai,j of matrix A

indicates the presence of an artifact of type j in sepulture i. In his seminal work, egyptologist
Flinders Petrie [58] formulated the hypothesis that two sepultures should be close in the time
domain if they present similar sets of artifacts, which indicate that the matrix A should be close
to a matrix having the consecutive 1’s property. In an influential follow-up work, Robinson [60]
generalized this problem to the case where Ai,j counts the number of artifacts of type j in
sepulture i. Robinson argues that “types come into and get out of general use” so that it is
reasonable to assume that the columns of A are, in fact unimodal: the count of a certain type
of artifact increases as it comes into general use and decreases as it gets out. Note that matrices
that satisfy the consecutive 1’s property have, in particular, unimodal columns. More generally,
seriation is used to rearrange matrices whose rows are permuted and whose columns satisfy a
nonparametric shape constraint. For example, the case where A has monotone columns arises
in bipartite ranking under the strong stochastic transitivity assumption (see Section 2.2.2). In the
rest of this paper, we consider both the unimodal and the monotone setting.

Because of the presence of a latent permutation, the C1P exhibits interesting algorithmic chal-
lenges already in the noiseless case and that have motivated much of its study. In particular, it
is reducible to the famous Traveling Salesman Problem [41] as observed by statistician David
Kendall [43–46] who employed early tools from multidimensional scaling as a heuristic to solve
it. The C1P belongs to a more general class of problems that consist in optimizing various cri-
teria over the discrete set of permutations and that can be recast as examples of the notoriously
hard quadratic assignment problem [51]. While such problems are NP-hard in general, some ex-
amples, including C1P, may be solved efficiently using either combinatorial optimization [38],
spectral methods [5] or convex optimization [35,50]. However, little is known about the robust-
ness to statistical noise of such methods.

In order to set the benchmark for the noisy case, we propose a statistical seriation model
and study optimal rates of estimation for this model. Assume that we observe an n × m matrix
Y = �A + Z, where � is an unknown n × n permutation matrix, Z is an n × m noise matrix
and A ∈ R

n×m is assumed to have columns that satisfy a certain shape constraint. Our goal is to
give estimators �̂ and Â so that �̂Â is close to �A. The shape constraint can be the consecutive
1’s property, but more generally, we consider the class of matrices that have unimodal columns,
which also include monotone columns as a special case. These terms will be formally defined at
the end of this section.

The rest of the paper is organized as follows. In Section 2, we formulate the model and discuss
related work. Section 3 collects our main results, including uniform and adaptive upper bounds
for the least squares estimator together with corresponding minimax lower bounds in the general
unimodal case. In Section 4, for the special case of monotone columns, we propose a computa-
tionally efficient alternative to the least squares estimator and study its rates of convergence both
theoretically and numerically. Section 5 presents new bounds for unimodal regression implied
by our analysis, which are minimax optimal up to logarithmic factors. Section 6 is devoted to the
proofs of the results. We conclude with a discussion in Section 7.

Notation. For a positive integer n, define [n] = {1, . . . , n}. For a matrix A ∈ R
n×m, let ‖A‖F

denote its Frobenius norm, and let Ai,· be its ith row and A·,j be its j th column. Let Bn(a, t)
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denote the Euclidean ball of radius t centered at a in R
n. We use C and c to denote positive

constants that may change from line to line. For any two sequences (un)n and (vn)n, we write
un � vn if there exists an absolute constant C > 0 such that un ≤ Cvn for all n. We define un � vn

analogously. Given two real numbers a, b, define a ∧ b = min(a, b) and a ∨ b = max(a, b).

Denote the closed convex cone of increasing1 sequences in R
n by Sn = {a ∈ R

n : a1 ≤ · · · ≤
an}. We define Sm to be the Cartesian product of m copies of Sn and we identify Sm to the set
of n × m matrices with increasing columns.

For any l ∈ [n], define the closed convex cone Cl = {a ∈ R
n : a1 ≤ · · · ≤ al} ∩ {a ∈ R

n : al ≥
· · · ≥ an}, which consists of vectors in R

n that increase up to the lth entry and then decrease.
Define the set U of unimodal sequences in R

n by U = ⋃n
l=1 Cl . We define Um to be the Carte-

sian product of m copies of U and we identify Um to the set of n × m matrices with unimodal
columns. It is also convenient to write Um as a union of closed convex cones as follows. For
l = (l1, . . . , lm) ∈ [n]m, let Cm

l = Cl1 × · · · × Clm . Then Um is the union of the nm closed convex
cones Cm

l , l ∈ [n]m.
Finally, let Sn be the set of n × n permutation matrices and define M = ⋃

�∈Sn
�Um where

�Um = {�A : A ∈ Um}, so that M is the union of the n!nm closed convex cones �Cm
l ,� ∈

Sn, l ∈ [n]m.

2. Problem setup and related work

In this section, we formally state the problem of interest and discuss several lines of related work.

2.1. The seriation model

Suppose that we observe a matrix Y ∈R
n×m, n ≥ 2 such that

Y = �∗A∗ + Z, (2.1)

where A∗ ∈ Um, � ∈ Sn and Z is a centered sub-Gaussian noise matrix with variance proxy
σ 2 > 0. Specifically, Z is a matrix such that E[Z] = 0 and, for any M ∈ R

n×m,

E
[
exp

(
Tr
(
Z�M

))] ≤ exp

(
σ 2‖M‖2

F

2

)
,

where Tr(·) is the trace operator. We write Z ∼ subGn,m(σ 2) or simply Z ∼ subG(σ 2) when
dimensions are clear from the context.

Given the observation Y , our goal is to estimate the unknown pair (�∗,A∗). The performance
of an estimator (�̂, Â) ∈Sn × Um, is measured by the quadratic loss:

1

nm

∥∥�̂Â − �∗A∗∥∥2
F
.

1Throughout the paper, we loosely use the terms “increasing” and “decreasing” to mean “monotonically non-decreasing”
and “monotonically non-increasing” respectively.
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In particular, its expectation is the mean squared error. Since we are interested in estimating
�∗A∗ ∈M, we can also view M as the parameter space.

In the general unimodal case, upper bounds on the above quadratic loss do not imply individual
upper bounds on estimation of the matrix �∗ or the matrix A∗ due to lack of identifiability.
Nevertheless, if we further assume that the columns of A∗ are monotone increasing, that is A∗ ∈
Sm, then the following lemma holds.

Lemma 2.1. If A∗, Ã ∈ Sm, then for any �∗, �̃ ∈Sn, we have that∥∥Ã − A∗∥∥2
F

≤ ∥∥�̃Ã − �∗A∗∥∥2
F
,

and that ∥∥�̃A∗ − �∗A∗∥∥2
F

≤ 4
∥∥�̃Ã − �∗A∗∥∥2

F
.

Proof. Let a, b ∈ Sn and bπ = (bπ(1), . . . , bπ(n)) where π : [n] → [n] is a permutation. It is easy
to check that

∑n
i=1 aibi ≥ ∑n

i=1 aibπ(i), so ‖a − b‖2
2 ≤ ‖a − bπ‖2

2. Applying this inequality to
columns of matrices, we see that∥∥Ã − A∗∥∥2

F
≤ ∥∥Ã − �̃−1�∗A∗∥∥2

F
= ∥∥�̃Ã − �∗A∗∥∥2

F
,

since A∗, Ã ∈ Sm. Moreover, ‖�̃A∗ − �̃Ã‖F = ‖A∗ − Ã‖F , so∥∥�̃A∗ − �∗A∗∥∥
F

≤ ∥∥A∗ − Ã
∥∥

F
+ ∥∥�̃Ã − �∗A∗∥∥

F
≤ 2

∥∥�̃Ã − �∗A∗∥∥
F
,

by the triangle inequality and the previous display. �

Lemma 2.1 guarantees that ‖�̃Ã−�∗A∗‖F is a pertinent measure of the performance of both
�̃ and Ã. Note further that ‖�̃A∗ − �∗A∗‖F is large if �̃ misplaces rows of A∗ that have large
differences, and is small if �̃ only misplaces rows of A∗ that are close to each other. We argue
that, in the seriation context, this measure of distance between permutations is more natural
than ad hoc choices such as the trivial 0/1 distance or popular choices such as Kendall’s τ or
Spearman’s ρ.

Apart from Section 4 (and Section 6.4), the rest of this paper focuses on the least squares (LS)
estimator defined by

(�̂, Â) ∈ argmin
(�,A)∈Sn×Um

‖Y − �A‖2
F . (2.2)

Taking M̂ = �̂Â, we see that it is equivalent to define the LS estimator by

M̂ ∈ argmin
M∈M

‖Y − M‖2
F . (2.3)

Note that in our case, the set of parameters M is a union of n!nm closed convex cones but is
not convex itself. Thus it is not clear how to compute the LS estimator efficiently. We discuss
this aspect in further details in the context of monotone columns in Section 4. Nevertheless, the
main focus of this paper is the least squares estimator which, as we shall see, is near-optimal in
a minimax sense and therefore serves as a benchmark for the statistical seriation model.



Statistical seriation 627

2.2. Related work

Our work falls broadly in the scope of statistical inference under shape constraints but presents a
major twist: the unknown latent permutation �∗.

2.2.1. Shape constrained regression

To set our goals, we first consider the case where the permutation is known and assume without
loss of generality that �∗ = In. In this case, we can estimate individually each column A∗·,j
by an estimator Â·,j and then obtain an estimator Â for the whole matrix by concatenating the
columns Â·,j . Thus, the task is reduced to estimation of a vector θ∗ which satisfies a certain
shape constraint from an observation y = θ∗ + z where z ∼ subGn,1(σ

2).
When θ∗ is assumed to be increasing we speak of isotonic regression [7]. The LS estimator

defined by θ̂ = argminθ∈Sn
‖θ − y‖2

2 can be computed in closed form in O(n) using the Pool-
Adjacent-Violators algorithm (PAVA) [6,7,59] and its statistical performance has been studied
by Zhang [72] (see also [30,53,57,69,71] for similar bounds using empirical process theory) who
showed in the Gaussian case z ∼ N(0, σ 2In) that the mean squared error behaves like

1

n
E
∥∥θ̂ − θ∗∥∥2

2 
(

σ 2V (θ∗)
n

)2/3

, (2.4)

where V (θ) = maxi∈[n] θi − mini∈[n] θi is the variation of θ ∈ R
n. Note that 2/3 = 2β/(2β + 1)

for β = 1 so that this is the minimax rate of estimation of Lipschitz functions (see, e.g., [66]).
The rate in (2.4) is said to be global as it holds uniformly over the set of monotone vectors with

variation V (θ∗). Recently, [20] have initiated the study of adaptive bounds that may be better if
θ∗ has a simpler structure in some sense. To define this structure, let k(θ) = card({θ1, . . . , θn})
denote the cardinality of entries of θ ∈ R

n. In this context, [20] showed that the LS estimator
satisfies the adaptive bound

1

n
E
∥∥θ̂ − θ∗∥∥2

2 ≤ C inf
θ∈Sn

(‖θ − θ∗‖2

n
+ σ 2k(θ)

n
log

en

k(θ)

)
. (2.5)

This result was extended in [9] to a sharp oracle inequality where C = 1. This bound was also
shown to be optimal in a minimax sense [8,20].

Unlike its monotone counterpart, unimodal regression where θ∗ ∈ U has received sporadic
attention [22,47,63]. This state of affairs is all the more surprising given that unimodal den-
sity estimation has been the subject of much more research [12,13,27,28,31,67]. It was recently
shown in [22] that the LS estimator also adapts to V (θ∗) and k(θ∗) for unimodal regression:

1

n

∥∥θ̂ − θ∗∥∥2
2 � min

(
σ 4/3

(
V (θ∗) + σ

n

)2/3

,
σ 2

n
k
(
θ∗)3/2

(logn)3/2
)

(2.6)

with probability at least 1 − n−α for some α > 0. The exponent 3/2 in the second term was
improved to 1 in the new version of [22] after the first version of our current paper was posted.
Note that the exponents in (2.6) are different from the isotonic case. Our results will imply that
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they are not optimal and in fact the LS estimator achieves the same rate as in isotonic regression.
See Corollary 5.1 for more details. The algorithmic aspect of unimodal regression has received
more attention [15,16,37,40] and [65] showed that the LS estimator can be computed with time
complexity O(n) using a modified version of PAVA. Hence there is little difference between
isotonic and unimodal regressions from both computational and statistical points of views.

2.2.2. Latent permutation learning

When the permutation �∗ is unknown the estimation problem is more involved. Noisy permuta-
tion learning was explicitly addressed in [24] where the problem of matching two sets of noisy
vectors was studied from a statistical point of view. Given n × m matrices Y = A + Z and
Ỹ = �∗A + Z̃, where A ∈ R

n×m is an unknown matrix and �∗ ∈ R
n×n is an unknown permu-

tation matrix, the goal is to recover �∗. It was shown in [24] that if mini �=j ‖Ai,· − Aj,·‖2 ≥
cσ ((logn)1/2 ∨ (m logn)1/4), then the LS estimator defined by �̂ = argmin�∈Sn

‖�Y − Ỹ‖2
F

recovers the true permutation with high probability. However they did not directly study the
behavior of ‖�̂A − �∗A‖2

F .
In his celebrated paper on matrix estimation [19], Sourav Chatterjee describes several noisy

matrix models involving unknown latent permutations. One is the nonparametric Bradley–
Terry–Luce (NP-BTL) model where we observe a matrix Y ∈ R

n×n with independent entries
Yi,j ∼ Ber(Pi,j ) for some unknown parameters P = {Pi,j }1≤i,j≤n where Pi,j ∈ [0,1] is equal to
the probability that item i is preferred over item j and Pj,i = 1 − Pi,j . Crucially, the NP-BTL
model assumes the so-called strong stochastic transitivity (SST) [29,33] assumption: there exists
an unknown permutation matrix � ∈ R

n×n such that the ordered matrix A = ��P� satisfies
A1,k ≤ · · · ≤ An,k for all k ∈ [n]. Note that the NP-BTL model is a special case of our model
(2.1) where m = n and Z ∼ subG(1/4) is taken to be Bernoulli. Chatterjee proposed an esti-
mator P̂ that leverages the fact that any matrix P in the NP-BTL model can be approximated
by a low rank matrix and proved [19], Theorem 2.11, that n−2‖P̂ − P‖2

F � n−1/4, which was
improved to n−1/2 by [61] for a variation of this estimator. This method does not yield individ-
ual estimators of � or A. Instead [23] proposed estimators �̂ and Â so that �̂Â�̂� estimates
P with the same rate n−1/2 up to a logarithmic factor. The non-optimality of this rate has been
observed in [61] who showed that the correct rate should be of order n−1 up to a possible logn

factor. However, it is not known whether a computationally efficient estimator could achieve the
fast rate. A recent work [62] explored a new notion of adaptivity for which the authors proved
a computational lower bound, and also proposed an efficient estimator whose rate of estimation
matches that lower bound.

Also mentioned in Chatterjee’s paper is the so-called stochastic block model that has since
received such extensive attention in various communities that it is futile to attempt to establish
a comprehensive list of references. Instead, we refer the reader to [39] and references therein.
This paper establishes the minimax rates for this problem and its continuous limit, the graphon
estimation problem and, as such, constitutes the state-of-the-art in the statistical literature. In the
stochastic block model with k ≥ 2 blocks, we assume that we observe a matrix Y = P +Z where
P = �A��,� ∈ R

n×n is an unknown permutation matrix and A has a block structure, namely,
there exist positive integers n1 < · · · < nk < nk+1 := n, and k2 real numbers as,t , (s, t) ∈ [k]2
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such that A has entries

Ai,j =
∑

(s,t)∈[k]2

as,t I{ns ≤ i ≤ ns+1, nt ≤ j ≤ nt+1}, i, j ∈ [n].

While traditionally, the stochastic block model is a network model and therefore pertains only
to Bernoulli observations, the more general case of sub-Gaussian additive error is also explicitly
handled in [39]. For this problem, Gao, Lu and Zhou have established that the least squares esti-
mator P̂ satisfies n−2‖P̂ −P‖2

F � k2/n2 + (logk)/n together with a matching lower bound. Us-
ing piecewise constant approximation to bivariate Hölder functions, they also establish that this
estimator with a correct choice of k leads to minimax optimal estimation of smooth graphons.
Both results exploit extensively the fact that the matrix P is equal to or can be well approxi-
mated by a piecewise constant matrix and our results below take a similar route by observing
that monotone and unimodal vectors are also well approximated by piecewise constant ones. In
addition, we allow for rectangular matrices.

In fact, our result can be also formulated as a network estimation problem but on a bipartite
graph, thus falling at the intersection of the above two examples. Assume that n left nodes rep-
resent items and that m right nodes represent users. Assume further that we observe the n × m

adjacency matrix Y of a random graph where the presence of edge (i, j) indicates that user j

has purchased or liked item i. Define P = E[Y ] and assume SST across items in the sense that
there exists an unknown n × n permutation matrix �∗ such that P = �∗A∗ and A∗ is such that
A∗

1,j ≤ · · · ≤ A∗
n,j for all users j ∈ [m]. This model of bipartite ranking falls into the scope of the

statistical seriation model (2.1).

3. Main results

3.1. Adaptive oracle inequalities

For a matrix A ∈ Um, let k(A·,j ) = card({A1,j , . . . ,An,j }) be the number of values taken by the
j th column of A and define K(A) = ∑m

j=1 k(A·,j ). Observe that K(A) ≥ m. The first theorem
shows that the LS estimator adapts to the complexity K .

Theorem 3.1. For A∗ ∈ R
n×m and Y = �∗A∗ + Z, let (�̂, Â) be the LS estimator defined in

(2.2). Then the following oracle inequality holds

1

nm

∥∥�̂Â − �∗A∗∥∥2
F
� min

A∈Um

(
1

nm

∥∥A − A∗∥∥2
F

+ σ 2 K(A)

nm
log

enm

K(A)

)
+ σ 2 logn

m
(3.1)

with probability at least 1 − e−c(n+m), c > 0. Moreover,

1

nm
E
∥∥�̂Â − �∗A∗∥∥2

F
� min

A∈Um

(
1

nm

∥∥A − A∗∥∥2
F

+ σ 2 K(A)

nm
log

enm

K(A)

)
+ σ 2 logn

m
. (3.2)
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Note that while we assume that A∗ ∈ Um in (2.1), the above oracle inequalities hold in fact
for any A∗ ∈ R

n×m even if its columns are not assumed to be unimodal. The oracle inequalities
indicate that the LS estimator automatically trades off the approximation error ‖A − A∗‖2

F for
the stochastic error σ 2K(A) log(enm/K(A)). Moreover, 3 is the best constant we can achieve
before the oracle approximation term when the error is expressed in the Frobenius norm, that is,∥∥�̂Â − �∗A∗∥∥

F
≤ min

A∈Um

(
3
∥∥A − A∗∥∥

F
+ stochastic error terms

)
.

This is the content of (6.6) in the proof of Theorem 3.1. Making (3.1) and (3.2) into sharp oracle
inequalities remains an interesting open problem.

If A∗ is assumed to have unimodal columns, then we can take A = A∗ in (3.1) and (3.2) to get
the following corollary.

Corollary 3.2. For A∗ ∈ Um and Y = �∗A∗ + Z, the LS estimator (�̂, Â) satisfies

1

nm

∥∥�̂Â − �∗A∗∥∥2
F
� σ 2

(
K(A∗)

nm
log

enm

K(A∗)
+ logn

m

)

with probability at least 1 − e−c(n+m), c > 0. Moreover, the corresponding bound with the same
rate holds in expectation.

The two terms in the adaptive bound can be understood as follows. The first term corresponds
to the estimation of the matrix A∗ with unimodal columns if the permutation �∗ is known. It can
be viewed as a matrix version of the adaptive bound (2.5) for the vector case. The LS estimator
adapts to the cardinality of entries of A∗ as it achieves a provably better rate if K(A∗) is smaller
while not requiring knowledge of K(A∗). The second term corresponds to the error due to the
unknown permutation �∗. As m grows to infinity this second term vanishes, because we have
more samples to estimate �∗ better. If m ≥ n, it is easy to check that the permutation term is
dominated by the first term, so the rate of estimation is the same as if the permutation is known.

3.2. Global oracle inequalities

The bounds in Theorem 3.1 adapt to the cardinality of the oracle. In this subsection, we state
another type of upper bounds for the LS estimator (�̂, Â). They are called global bounds be-
cause they hold uniformly over the class of matrices whose columns are unimodal and that have
bounded variation. Recall that we call variation of a vector a ∈ R

n the scalar V (a) ≥ 0 defined
by

V (a) = max
1≤i≤n

ai − min
1≤i≤n

ai .

We extend this notion to a matrix A ∈R
n×m by defining

V (A) =
(

1

m

m∑
j=1

V (A·,j )2/3

)3/2

.
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While this 2/3-norm may seem odd at first sight, it turns out to be the correct extrapolation from
vectors to matrices, at least in the context under consideration here. Indeed, the following upper
bound, in which this quantity naturally appears, is matched by the lower bound of Theorem 3.6
up to logarithmic terms.

Theorem 3.3. For A∗ ∈ R
n×m and Y = �∗A∗ + Z, let (�̂, Â) be the LS estimator defined in

(2.2). Then it holds that

1

nm

∥∥�̂Â − �∗A∗∥∥2
F
� min

A∈Um

[
1

nm

∥∥A − A∗∥∥2
F

+
(

σ 2V (A) logn

n

)2/3]
+ σ 2 logn

n ∧ m
(3.3)

with probability at least 1 − e−c(n+m), c > 0. Moreover, the corresponding bound with the same
rate holds in expectation.

If A∗ ∈ Um, then taking A = A∗ in Theorem 3.3 leads to the following corollary that indicates
that the LS estimator is adaptive to the quantity V (A∗).

Corollary 3.4. For A∗ ∈ Um and Y = �∗A∗ + Z, the LS estimator (�̂, Â) satisfies

1

nm

∥∥�̂Â − �∗A∗∥∥2
F
�

(
σ 2V (A∗) logn

n

)2/3

+ σ 2 logn

n ∧ m

with probability at least 1 − e−c(n+m), c > 0. Moreover, the corresponding bound with the same
rate holds in expectation.

Akin to the adaptive bound, the above inequality can be viewed as a sum of a matrix version of
(2.4) and an error due to estimation of the unknown permutation. Observe that if σ = 1, m ≥ n2/3

and all the entries are bounded by a universal constant, then the rate of estimation simplifies to
Õ(n−2/3). Since every monotone vector is unimodal, the rate Õ(n−2/3) also holds for the case
where columns of A∗ are monotone, which will be discussed in detail in Section 4. Recently, rates
of Õ(n−1) have been established for bi-isotonic matrices with latent permutations [23,61], where
bi-isotonicity means that the columns and the rows of the underlying matrix are both monotone.
We emphasize that our rate is slower because only the columns of the matrix are assumed to
be unimodal or monotone, while no constraints are imposed on the rows. The minimax lower
bounds below in fact suggest that the rate Õ(n−2/3) is optimal up to a logarithmic factor.

Having stated the main upper bounds, we digress a little to remark that the proofs of The-
orem 3.1 and Theorem 3.3 also yield a minimax optimal rate of estimation (up to logarithmic
factors) for unimodal regression, which improves the bound (2.6). We discuss the details in Sec-
tion 5.

3.3. Minimax lower bounds

Given the model Y = �∗A∗ + Z where entries of Z are i.i.d. N(0, σ 2) random variables, let
(�̂, Â) denote any estimator of (�∗,A∗), i.e., any pair in Sn × R

n×m that is measurable with
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respect to the observation Y . We will prove lower bounds that match the rates of estimation in
Corollary 3.2 and Corollary 3.4 up to logarithmic factors. The combination of upper and lower
bounds, implies simultaneous near optimality of the least squares estimator over a large scale of
matrix classes.

For m ≤ K0 ≤ nm and V0 > 0, define Um
K0

= {A ∈ Um : K(A) ≤ K0} and Um(V0) = {A ∈
Um : V (A) ≤ V0}. We present below two lower bounds, one for the adaptive rate uniformly over
Um

K0
and one for the global rate uniformly over Um(V0). This splitting into two cases is solely

justified by better readability but it is worth noting that a stronger lower bound that holds on the
intersection Um

K0
∩ Um(V0) can also be proved and is presented as Proposition 6.9.

Theorem 3.5. There exists a constant c ∈ (0,1) such that for any K0 ≥ m, and any estimator
(�̂, Â), it holds that

sup
(�,A)∈Sn×Um

K0

P�A

[
1

nm
‖�̂Â − �A‖2

F � σ 2
(

K0

nm
+ log l

m

)]
≥ c,

where l = min(K0 −m,m)+1 and P�A is the probability distribution of Y = �A+Z. It follows
that the lower bound with the same rate holds in expectation.

In fact, the lower bound holds for any estimator of the matrix �∗A∗, not only those of the
form �̂Â with Â ∈ Um. The above lower bound matches the upper bound in Corollary 3.2 up to
logarithmic factors.

Note the presence of a log l factor in the second term. If l = 1, then K0 = m which means
that each column of A is simply a constant block, so �A = A for any � ∈ Sn. In this case, the
second term vanishes because the permutation does not play a role. More generally, the number
l − 1 can be understood as the maximal number of columns of A on which the permutation does
have an effect. The larger l, the harder the estimation. It is easy to check that if l ≥ n the second
term in the lower bound will be dominated by the first term in the upper bound.

A lower bound corresponding to Corollary 3.4 also holds.

Theorem 3.6. There exists a constant c ∈ (0,1) such that for any V0 ≥ 0, and any estimator
(�̂, Â), it holds that

sup
(�,A)∈Sn×Um(V0)

P�A

[
1

nm
‖�̂Â − �A‖2

F �
(

σ 2V0

n

)2/3

+ σ 2

n
+ σ 2

m
∧ m2V 2

0

]
≥ c,

where P�A is the probability distribution of Y = �A + Z. The lower bound with the same rate
also holds in expectation.

There is a slight mismatch between the upper bound of Corollary 3.4 and the lower bound of

Theorem 3.6 above. Indeed the lower bound features a term σ 2

m
∧ m2V 2

0 instead of just σ 2

m
. In

the regime m2V 2
0 < σ 2

m
, where A has very small variation, the LS estimator may not be optimal.

Proposition 3.7 below, whose proof can be found in the supplement [34], indicates that a matrix
with constant columns obtained by averaging achieves optimality in this extreme regime.
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Proposition 3.7. For Y = �∗A∗ + Z where Z ∼ subG(σ 2), let �̂ = In and Â be defined by
Âi,j = 1

n

∑n
k=1 Yk,j for all (i, j) ∈ [n] × [m]. Then,

1

nm

∥∥�̂Â − �∗A∗∥∥2
F
� σ 2

n
+ m2V (A)2

with probability at least 1 − exp(−m) and the corresponding bound with the same rate holds in
expectation.

4. Further results in the monotone case

A particularly interesting subset of unimodal matrices is Sm, the set of n × m matrices with
monotonically increasing columns. While it does not amount to the seriation problem in its full
generality, this special case is of prime importance in the context of shape constrained estimation
as illustrated by the discussion and references in Section 2.2. In fact, it covers the example of
bipartite ranking discussed at the end of Section 2.2. In the rest of this section, we devote fur-
ther investigation to this important case. To that end, consider the model (2.1) where we further
assume that A∗ ∈ Sm. We refer to this model as the monotone seriation model. In this context,
define the LS estimator by

(�̂, Â) ∈ argmin
(�,A)∈Sn×Sm

‖Y − �A‖2
F .

Since Sm is a convex subset of Um, it is easily seen that the upper bounds in Theorem 3.1 and
3.3 remain valid in this case. The lower bounds of Theorem 3.5 (with log l replaced by 1) and
Theorem 3.6 also extend to this case; see Section 6.3.

Although for unimodal matrices the established error bounds do not imply any bounds on
estimation of A∗ or �∗ in general, for the monotonic case, however, Lemma 2.1 yields that

∥∥Â − A∗∥∥2
F

∨ 1

4

∥∥(�̂ − �∗)A∗∥∥2
F

≤ ∥∥�̂Â − �∗A∗∥∥2
F

so that the LS estimator (�̂, Â) also leads to good individual estimators of �∗ and A∗ respec-
tively.

4.1. RankScore: An efficient estimator and its performance

Because it requires optimizing over a union of n! cones �Sm, no efficient way of computing the
LS estimator is known since. As an alternative, we describe a simple and efficient algorithm to
estimate (�∗,A∗) and study its rate of estimation.

The main difficulty of the problem lies in providing an efficient estimator �̃ of �∗, because
after determining �̃ we may project Y onto the convex cone �̃Sm efficiently to estimate A∗. Re-
covering the permutation �∗ is equivalent to sorting the rows of �∗A∗ from their noisy version
Y . One simple method to aggregate information across columns, which we call RankSum, is to
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sort the rows of Y so that they have increasing row sums. However, it is easy to observe that this
method fails if

A∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0
...

...
...

0 0 . . . 0√
m 0 . . . 0
...

...
...√

m 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.1)

where the last �n
2 � entries in the first column of A∗ are equal to

√
m and the entries of Z are

i.i.d. standard Gaussian variables. Because the sum of noise in each row is of order
√

m which
is no less than the gaps between row sums of A∗, RankSum will place a nonzero row before a
zero row with a constant probability. Therefore, if �̃ is the permutation given by RankSum, then
‖�̃Ã − �∗A∗‖2

F will be of order nm regardless of the matrix Ã ∈ Sm, so we have no hope of
consistent estimation in general.

In fact, it is easy to distinguish the two types of rows of A∗ even when noise is present, for ex-
ample, by looking at the first entry of a row. To circumvent the issue raised by this A∗, we would
like to combine the information from rows sums with that from each individual column. This
motivates us to consider the following method called RankScore, which outperforms RankSum
and yields consistent estimation.

For A∗ ∈ R
n×m and i, i′ ∈ [n], define


A∗
(
i, i′

) = max
j∈[m]

(
A∗

i′,j − A∗
i,j

)∨ 1√
m

m∑
j=1

(
A∗

i′,j − A∗
i,j

)

and define 
Y (i, i′) analogously. The quantity 
A∗(i, i′) measures the difference between row
i and row i′ of A∗ by either the largest difference between two corresponding entries, or the
difference between the row sums scaled by the effective noise level m−1/2, whichever is larger.
If the noisy version 
Y (i, i′) is larger than some threshold τ , then with high probability row i of
Y should be placed after row i′ in the original order. The procedure RankScore aggregates the
comparison results between all pairs of rows of Y as follows:

1. For each i ∈ [n], define the score si of the ith row of Y by

si =
n∑

l=1

I
(

Y (l, i) ≥ 2τ

)
, (4.2)

where τ := Cσ
√

log(nm) for some tuning constant C (see Section 6.4 for details).
2. Order the rows of Y so that their scores are increasing, with ties broken arbitrarily.

The score si is just the number of comparisons row i wins. Intuitively, rows with larger entries
will win more comparisons and thus be placed after rows with smaller entries. Hence, RankScore
can be viewed as a variant of the classical counting-based method for ranking, Copeland’s
method [25], with a counting rule designed specifically for the model under consideration.
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The RankScore procedure recovers an order of the rows of Y , which leads to an estimator �̃

of the permutation. Then we define Ã ∈ Sm so that �̃Ã is the projection of Y onto the convex
cone �̃Sm.

To quantify the rate of estimation for the RankScore estimator (�̃, Ã), we define a new quan-
tity R(A) for A ∈ Sm as follows:

R(A) = 1

n
max
I⊂[n]2

|I|=n

∑
(i,j)∈I

( ‖Ai,· − Aj,·‖2
2

‖Ai,· − Aj,·‖2∞
∧ m‖Ai,· − Aj,·‖2

2

‖Ai,· − Aj,·‖2
1

)
, (4.3)

where the summand is understood to be 1 if the rows Ai,· and Aj,· are identical.
To understand what properties of A the quantity R(A) captures, consider the difference be-

tween the rows Ai,· and Aj,·, denoted by u ∈R
m. First, the quantity ‖u‖2

2/‖u‖2∞ is small when u

is sparse. We have ‖u‖2
2/‖u‖2∞ ≥ 1 with equality achieved when ‖u‖0 = 1. Second, the quantity

m‖u‖2
2/‖u‖2

1 is small when u is dense. We have m‖u‖2
2/‖u‖2

1 ≥ 1 with equality achieved when
all entries of u are the same. In particular, it holds that R(A) ≥ 1, and R(A) is small when the
differences between rows of A are either very sparse or very dense. For example, if A is the ma-
trix in (4.1), then the difference between any two distinct rows is 1-sparse, so we have R(A) = 1.
Another example is

A =
[

0
1

]
, (4.4)

where the lower �n/2� rows of A are all ones while the remaining entries are all zeros. For this
matrix, the difference between any two distinct rows is the all ones vector, so again we have
R(A) = 1.

Moreover, ‖u‖2
2 ≤ ‖u‖1‖u‖∞ by Hölder’s inequality, so

‖u‖2
2

‖u‖2∞
∧ m‖u‖2

2
‖u‖2

1
≤ √

m as the product

of the two terms is no larger than m. The equality is achieved by u = (1, . . . ,1,0, . . . ,0) where
the first

√
m entries are equal to one. Therefore, we have

R(A) ∈ [1,
√

m]. (4.5)

Roughly speaking, the quantity R(A) is large if there exist �(n) pairs of rows for which the
differences are

√
m-sparse. An example of such an A is the lower triangular matrix with all ones

on the lower triangle. We can take pairs of rows that are
√

m positions apart, and their differences
are exactly

√
m-sparse binary vectors. Thus, we have R(A)  √

m.
Since RankScore makes use of entrywise differences between rows, together with the dif-

ference between row sums, we expect a better performance of RankScore when the differ-
ences between rows of A∗ are either very sparse or very dense, which is exactly what cap-
tured by the quantity R(A∗). Therefore, it is natural that the estimator (�̃, Ã) enjoys the fol-
lowing rate of estimation, characterized by R(A∗) together with K(A) defined in the previous
section.



636 N. Flammarion, C. Mao and P. Rigollet

Theorem 4.1. For A∗ ∈ Sm and Y = �∗A∗ +Z, let (�̃, Ã) be the estimator defined above using
the RankScore procedure with threshold τ = 3σ

√
(C + 1) log(nm), C > 0. Then it holds that

1

nm

∥∥�̃Ã − �∗A∗∥∥2
F
� min

A∈Sm

(
1

nm

∥∥A − A∗∥∥2
F

+ σ 2 K(A)

nm
log

enm

K(A)

)

+ (C + 1)σ 2 R(A∗) log(nm)

m
,

with probability at least 1 − e−c(n+m) − (nm)−C for some constant c > 0.

The quantity R(A∗) only depends on the matrix A∗. If R(A∗) is bounded logarithmically, the
estimator (�̃, Ã) achieves the minimax rate up to logarithmic factors. In any case, R(A∗) ≤ √

m,
so the estimator is still consistent with the permutation error (i.e., the last term) decaying at a
rate Õ( 1√

m
). Furthermore, it is worth noting that R(A∗) is not needed to construct (�̃, Ã), so the

estimator adapts to R(A∗) automatically.

Remark 4.2. In the same way that Theorem 3.3 follows from Theorem 3.1, we can deduce from
Theorem 4.1 a global bound for the estimator (�̃, Ã) which has rate

(
σ 2V (A∗) logn

n

)2/3

+ σ 2
(

logn

n
+ R

(
A∗) log(nm)

m

)
.

4.2. Simulations

We corroborate the theoretical results above with a numerical comparison between the RankSum
and RankScore procedures.

Consider the model (2.1) with A∗ ∈ Sm and assume without loss of generality that �∗ =
In. For various n × m matrices A∗, we generate observations Y = A∗ + Z where entries of Z

are i.i.d. standard Gaussian variables. The performance of the estimators given by RankScore
and RankSum defined above is compared to the performance of the oracle Âoracle defined by
the projection of Y onto the cone Sm. Note that we are not able to compute the LS estimator
efficiently, so instead the oracle estimator is used as the benchmark. For the RankScore estimator,
we take τ = 6. The curves are generated based on 30 equally spaced points on the base-10
logarithmic scale, and all results are averaged over 10 replications. The vertical axis represents
the estimation error of an estimator �̂Â, measured by the sample mean of log10(

1
nm

‖�̂Â −
A∗‖2

F ) unless otherwise specified.
We begin with a simple example for which we set n = m. For each α ∈ [0,1], define a matrix

A∗ = A∗(α) ∈ R
n×n by A∗

i,j = m(1−α)/2 for n/2 ≤ i ≤ n,1 ≤ j ≤ mα and A∗
i,j = 0 otherwise.

Note that A∗ is an interpolation between the matrix in (4.1) (where α = 0) and the matrix in (4.4)
(where α = 1). The nonzero rows of A∗ have �2-norm equal to

√
m for any α ∈ [0,1].

In Figure 1, we plot the estimation errors of the oracle, RankScore and RankSum estimators
for this A∗ in the three plots, respectively. As expected, RankSum has poor performance in es-
timating the true permutation when α is close to zero, because it fails to exploit the differences



Statistical seriation 637

Figure 1. Estimation errors of the three estimators for A∗ = A∗(α) where α ranges from 0 to 1. Left: the
oracle estimator; Middle: the RankScore estimator; Right: the RankSum estimator.

between rows along individual columns. When α is close to one, the weight of a nonzero row of
A∗ is distributed evenly across the columns, so it is appropriate to only consider row sums and
thus RankSum behaves well. On the other hand, RankScore outperforms RankSum in recovering
the permutation for any α ∈ [0,1] when n is large, and it has roughly the same performance as
the oracle. According to the discussion after (4.3), we have R(A∗) = 1 for α = 0 or 1. Thus, The-
orem 4.1 predicts the fast rate, which is verified by the experiment. For α close to 1/2, however,
Theorem 4.1 only guarantees a rate Õ(m−1/2) while the experiment suggests that RankScore
still behaves as well as the oracle. Hence, improving the adaptive bound in Theorem 4.1 remains
an interesting problem for future research.

Note that the performance of each estimator for α = 0.6 is slightly better than that for α = 1.
This is not inconsistent with our theoretical guarantees as the bounds we proved are up to loga-
rithmic factors. Achieving sharper bounds to explain such a phenomenon also remains an inter-
esting open question out of the scope of the present work.

In Figure 2, we compare the performance of RankScore to that of the oracle in three regimes of
(n,m). The matrices A∗ are randomly generated for different values of n and m as follows. For
the right plot, A∗ is generated so that V (A∗) ≤ 1, by sorting the columns of a matrix with i.i.d.
U(0,1) entries. For the left plot, we further require that K(A∗) = 5m by uniformly partitioning

Figure 2. Estimation errors of the oracle (dashed lines) and RankScore (solid lines) for different regimes
of (n,m) and randomly generated A∗ of size n × m. Left: K(A∗) = 5m; Right: V (A∗) ≤ 1.
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Figure 3. Various estimation errors of the oracle and RankScore for the triangular matrix.

each column of A∗ into five blocks and assigning each block the corresponding value from a
sorted sample of five i.i.d. U(0,1) variables.

Since the oracle knows the true permutation, its behavior is independent of m, and its rates

of estimation are bounded by logn
n

for K(A∗) = 5m and (
logn

n
)

2
3 for V (A∗) = 1 respectively,

by Theorems 3.1 and 3.3. (The difference is minor in the plots as n is not sufficiently large). For
RankScore, the permutation term dominates the estimation term when m = n1/2 by Theorem 4.1.
From the plots, the rates of estimation are better than Õ(n−1/4) predicted by the worst-case
analysis in both examples. For m = n, we also observe rates of estimation faster than the worst-
case rate Õ(n−1/2) and close to the oracle rates. We could explain this phenomenon by R(A∗) <√

m, but such an interpretation may not be optimal since our analysis is based on worst-case
deterministic A∗. Potential study of random designs of A∗ is left open. Finally, for m = n3/2, the
permutation term is of order Õ(n−3/4) theoretically, in between of the oracle rates for the two
cases. Indeed RankScore has almost the same performance as the oracle experimentally. Overall
Figure 2 illustrates the good behavior of RankScore in these random scenarios.

To conclude our numerical experiments, we consider the n × n lower triangular matrix A∗
defined by A∗

i,j = I(i ≥ j). For this matrix, it is easy to check that K(A∗) = 2n−1 and R(A∗) ≈√
n. We plot in Figure 3 the estimation errors of �̃Ã, �̃A∗ and Ã given by RankScore, in addition

to the oracle. By Theorem 4.1, the rate of estimation achieved by �̃Ã is of order Õ(n−1/2),
while that achieved by the oracle is of order Õ(n−1) since there is no permutation term. The
plot confirms this discrepancy. Moreover, 1

n2 ‖�̃A∗ − A∗‖2
F is an appropriate measure of the

performance of �̃ by Lemmas 6.13 and 2.1, and the plot suggests that the rates of estimation
achieved by �̃A∗ and �̃Ã are about the same order. Finally Ã seems to have a slightly faster rate
of estimation than �̃Ã, so in practice Ã could be used to estimate A. However, we refrain from
making an explicit conjecture about the rate.

5. Unimodal regression

If the permutation in the main model (2.1) is known, then the estimation problem simply becomes
a concatenation of m unimodal regressions. In fact, our proofs imply new oracle inequalities for
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unimodal regression. Recall that U denotes the cone of unimodal vectors in R
n. Suppose that we

observe

y = θ∗ + z,

where θ∗ ∈ R
n and z is a sub-Gaussian vector with variance proxy σ 2. Define the LS estimator

θ̂ by

θ̂ ∈ argmin
θ∈U

‖θ − y‖2
2.

Moreover let k(θ) = card({θ1, . . . , θn}) and V (θ) = maxi∈[n] θi − mini∈[n] θi .

Corollary 5.1. There exists a constant c > 0 such that with probability at least 1 − n−α , α ≥ 1,

1

n

∥∥θ̂ − θ∗∥∥2
2 � min

θ∈U

(
1

n

∥∥θ − θ∗∥∥2
2 + σ 2 k(θ)

n
log

en

k(θ)

)
+ ασ 2 logn

n
(5.1)

and

1

n

∥∥θ̂ − θ∗∥∥2
2 � min

θ∈U

[
1

n

∥∥θ − θ∗∥∥2
2 +

(
σ 2V (θ) logn

n

)2/3]
+ ασ 2 logn

n
.

The corresponding bounds in expectation also hold.

The proof of Corollary 5.1 can be found in the supplement [34]. Note that the bounds above
match the minimax lower bounds for isotonic regression in [8] up to logarithmic factors. Since
every monotone vector is unimodal, lower bounds for isotonic regression automatically hold for
unimodal regression. Therefore, we have proved that the LS estimator is minimax optimal up to
logarithmic factors for unimodal regression.

A result similar to (5.1) was obtained by Pierre C. Bellec in the revision of [9] that was pre-
pared independently and contemporaneously to this paper. Sabyasachi Chatterjee and John Laf-
ferty also improved their bounds to having optimal exponents [22] after the first version of our
current paper was posted. Interestingly Bellec employs bounds on the statistical dimension by
leveraging results from [1], and Chatterjee and Lafferty use both the variational formula and
the statistical dimension. Moreover, their results are presented in the well-specified case where
θ∗ ∈ U and θ = θ∗.

6. Proofs

In this section, we provide the proofs of the main results.

6.1. Proof of the upper bounds

Before proving the main theorems, we discuss two methods adopted in recent works to bound
the error of the LS estimator in shape constrained regression, in a general setting. Consider the
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least squares estimator θ̂ of the model y = θ∗ + z, where θ∗ lies in a parameter space � and z is
Gaussian noise. One way to study E‖θ̂ − θ∗‖2

2 is to use the statistical dimension [1] of a convex
cone � defined by

E

[(
sup

θ∈�,‖θ‖2≤1
〈θ, z〉

)2]
.

This has been successfully applied to isotonic and more general shape constrained regression
[9,20].

Another prominent approach is to express the error of the LS estimator via what is known as
Chatterjee’s variational formula, proved in [18] and given by

∥∥θ̂ − θ∗∥∥
2 = argmax

t≥0

(
sup

θ∈�,‖θ−θ∗‖2≤t

〈
θ − θ∗, z

〉− t2

2

)
. (6.1)

Note that the first term is related to the Gaussian width (see, e.g., [17]) of � defined by
E[supθ∈�〈θ, z〉], whose connection to the statistical dimension was studied in [1]. The varia-
tional formula was first proposed for convex regression [18], and later exploited in several dif-
ferent settings, including matrix estimation with shape constraints [21] and unimodal regression
[22]. Similar ideas have appeared in other works, for example, analysis of empirical risk mini-
mization [55], ranking from pairwise comparison [61] and isotonic regression [9]. In this latter
work, Bellec has used the statistical dimension approach to prove spectacularly sharp oracle in-
equalities that seem to be currently out of reach for methods based on Chatterjee’s variational
formula (6.1). On the other hand, Chatterjee’s variational formula seems more flexible as com-
putations of the statistical dimension based on [1] are currently limited to convex sets � with a
polyhedral structure. In this paper, we use exclusively Chatterjee’s variational formula.

6.1.1. A variational formula for the error of the LS estimator

We begin the proof by stating an extension of Chatterjee’s variational formula. While we only
need this lemma to hold for a union of closed convex sets, we present a version that holds for all
closed sets. The latter extension was suggested to us by Pierre C. Bellec in a private communi-
cation [10].

Lemma 6.1. Let C be a closed subset of Rd . Suppose that y = a∗ + z where a∗ ∈ C and z ∈ R
d .

Let â ∈ argmina∈C ‖y − a‖2
2 be a projection of y onto C. Define the function fa∗ : R+ →R by

fa∗(t) = sup
a∈C∩Bd (a∗,t)

〈
a − a∗, z

〉− t2

2
.

Then we have ∥∥â − a∗∥∥
2 ∈ argmax

t≥0
fa∗(t). (6.2)

Moreover, if there exists t∗ > 0 such that fa∗(t) < 0 for all t ≥ t∗, then ‖â − a∗‖2 ≤ t∗.
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Proof. By definition,

â ∈ argmin
a∈C

(∥∥a − a∗∥∥2
2 − 2

〈
a − a∗, z

〉+ ‖z‖2
2

) = argmax
a∈C

(〈
a − a∗, z

〉− 1

2

∥∥a − a∗∥∥2
2

)
.

Together with the definition of fa∗ , this implies that

fa∗
(∥∥â − a∗∥∥

2

) ≥ 〈
â − a∗, z

〉− 1

2

∥∥â − a∗∥∥2
2

≥ sup
a∈C∩Bd (a∗,t)

(〈
a − a∗, z

〉− 1

2

∥∥a − a∗∥∥2
2

)

≥ sup
a∈C∩Bd (a∗,t)

〈
a − a∗, z

〉− t2

2
= fa∗(t).

Therefore (6.2) follows.
Furthermore, suppose that there is t∗ > 0 such that fa∗(t) < 0 for all t ≥ t∗. Since fa∗(‖â −

a∗‖2) ≥ fa∗(0) = 0, we have ‖â − a∗‖2 ≤ t∗. �

Note that this structural result holds for any error vector z ∈ R
d and any closed set C which

is not necessarily convex. In particular, this extends the results in [18] and [22] which hold for
convex sets and finite unions of convex sets respectively.

6.1.2. Proof of Theorem 3.1

For our purpose, we need a standard chaining bound on the supremum of a sub-Gaussian process
that holds in high probability. The interested readers can find the proof, for example, in [68],
Theorem 5.29, and refer to [48] for a more detailed account of the technique.

Lemma 6.2 (Chaining tail inequality). Let � ⊂ R
d and z ∼ subG(σ 2) in R

d . For any θ0 ∈ �,
it holds that

sup
θ∈�

〈θ − θ0, z〉 ≤ Cσ

∫ diam(�)

0

√
logN

(
�,‖ · ‖2, ε

)
dε + s

with probability at least 1 − C exp(− cs2

σ 2 diam(�)2 ) where C and c are positive constants.

Let Ã ∈ Um. To lighten the notation, we define two rates of estimation:

R1 = R1(Ã, n) = σ

(√
K(Ã) log

enm

K(Ã)
+√

n logn

)
(6.3)

and

R2 = R2(Ã, n) = σ 2
(

K(Ã) log
enm

K(Ã)
+ n logn

)
. (6.4)

Note that R2 ≤ R2
1 ≤ 2R2.
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Lemma 6.3. Suppose Y = A∗ + Z where A∗ ∈ R
n×m and Z ∼ subG(σ 2). For Ã ∈ Um and all

t > 0, define

f
Ã
(t) = sup

A∈M∩Bnm(Ã,t)

〈A − Ã, Y − Ã〉 − t2

2
.

Then for any s > 0, it holds simultaneously for all t > 0 that

f
Ã
(t) ≤ CR1t + t

∥∥A∗ − Ã
∥∥

F
− t2

2
+ st (6.5)

with probability at least 1 − C exp(− cs2

σ 2 ), where C and c are positive constants.

Proof. Define � = �M(Ã,1) = ⋃
λ≥0{B − λÃ : B ∈ M ∩ Bnm(λÃ,1)} (see also Defini-

tion (6.9)). In particular, � ⊂ Bnm(0,1) and 0 ∈ �. Since M is a finite union of convex cones
and thus is star-shaped, by scaling invariance,

sup
A∈M∩Bnm(Ã,t)

〈A − Ã,Z〉 = t sup
B∈M∩Bnm(t−1Ã,1)

〈
B − t−1Ã,Z

〉
≤ t sup

M∈�

〈M,Z〉.

By Lemma 6.2, with probability at least 1 − C exp(− cs2

σ 2 ),

sup
M∈�

〈M,Z〉 ≤ Cσ

∫ 2

0

√
logN

(
�,‖ · ‖F , ε

)
dε + s.

Moreover, it follows from Lemma 6.8 that

logN
(
�,‖ · ‖F , ε

) ≤ Cε−1K(Ã) log
enm

K(Ã)
+ n logn.

Combining the previous three displays, we see that

sup
A∈M∩Bnm(Ã,t)

〈A − Ã,Z〉

≤ Cσt

∫ 2

0

√
Cε−1K(Ã) log

enm

K(Ã)
+ n logndε + st

≤ Cσt

√
K(Ã) log

enm

K(Ã)
+ Cσt

√
n logn + st

= CR1t + st
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with probability at least 1 − C exp(− cs2

σ 2 ). Therefore,

f
Ã
(t) = sup

A∈M∩Bnm(Ã,t)

〈A − Ã, Y − Ã〉 − t2

2

≤ sup
A∈M∩Bnm(Ã,t)

〈A − Ã,Z〉 + sup
A∈M∩Bnm(Ã,t)

〈
A − Ã,A∗ − Ã

〉− t2

2

≤ CR1t + st + t
∥∥A∗ − Ã

∥∥
F

− t2

2

with probability at least 1 − C exp(− cs2

σ 2 ) simultaneously for all t > 0. �

We are now in a position to prove the adaptive oracle inequalities in Theorem 3.1. Recall that
(�̂, Â) denotes the LS estimator defined in (2.2). Without loss of generality, assume that �∗ = In

and Y = A∗ + Z.
Fix Ã ∈ Um and define f

Ã
as in Lemma 6.3. We can apply Lemma 6.1 with a∗ = Ã, z = Y −Ã,

y = Y and â = �̂Â to achieve an error bound on ‖�̂Â − Ã‖F , since �̂Â ∈ argminM∈M ‖Y −
M‖2

F . To be more precise, for any s > 0 we define t∗ = 3C1R1 + 2‖A∗ − Ã‖F + 2s where
C1 is the constant in (6.5). Then it follows from Lemma 6.3 that with probability at least 1 −
C exp(− cs2

σ 2 ), it holds for all t ≥ t∗ that

f
Ã
(t) ≤ C1R1t + t

∥∥A∗ − Ã
∥∥

F
− t2

2
+ st < 0.

Therefore by Lemma 6.1,

‖�̂Â − Ã‖F ≤ t∗ = 3C1R1 + 2
∥∥A∗ − Ã

∥∥
F

+ 2s,

and thus ∥∥�̂Â − A∗∥∥
F

≤ CR1 + 3
∥∥A∗ − Ã

∥∥
F

+ 2s (6.6)

with probability at least 1 − C exp(− cs2

σ 2 ).

In particular, if s = R1, then s ≥ σ
√

n + m as K(Ã) ≥ m. We see that with probability at least

1 − C exp(− cs2

σ 2 ) ≥ 1 − e−c(n+m),

∥∥�̂Â − A∗∥∥
F
� R1 + ∥∥A∗ − Ã

∥∥
F

and thus ∥∥�̂Â − A∗∥∥2
F
�

∥∥A∗ − Ã
∥∥2

F
+ σ 2K(Ã) log

enm

K(Ã)
+ σ 2n logn.

Finally, (3.1) follows by taking the infimum over Ã ∈ Um on the right-hand side and dividing
both sides by nm.
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Next, to prove the bound in expectation, observe that (6.6) yields

P
[∥∥�̂Â − A∗∥∥2

F
− C

(
R2 + ∥∥A∗ − Ã

∥∥2
F

) ≥ s
] ≤ C exp

(
− cs

σ 2

)
,

where R2 is defined in (6.4). Integrating the tail probability, we get that

E
∥∥�̂Â − A∗∥∥2

F
− C

(
R2 + ∥∥A∗ − Ã

∥∥2
F

)
�

∫ ∞

0
exp

(
− cs

σ 2

)
ds = σ 2

c

and therefore

E
∥∥�̂Â − A∗∥∥2

F
� R2 + ∥∥A∗ − Ã

∥∥2
F
.

Dividing both sides by nm and minimizing over Ã ∈ Um yields (3.2).

6.1.3. Proof of Theorem 3.3

In the setting of isotonic regression, [8] derived global bounds from adaptive bounds by a block
approximation method, which also applies to our setting. The lemma below is a generalization
of [8], Lemma 2, to the case of unimodal matrices.

For k ∈ [n], let

Uk = {
a ∈ U : card

({a1, . . . , an}
) ≤ k

}
.

Define k∗ = �( V (a)2n

σ 2 log(en)
)1/3�. More generally, for k ∈ [n]m, we write k = (k1, . . . , km) and let

Um
k = {

A ∈ Um : card
({A1,j , . . . ,An,j }

) = kj for 1 ≤ j ≤ m
}
.

Then K(A) = ∑m
j=1 kj for A ∈ Um

k . Define k∗ by

k∗
j =

⌈(
V (A·,j )2n

σ 2 log(en)

)1/3⌉
.

Lemma 6.4. For A ∈ Um, there exists Ã ∈ Um
k∗ such that

1

nm
‖Ã − A‖2

F ≤ 1

4

(
σ 2V (A) log(en)

n

)2/3

+ σ 2

4n
log(en)

and

σ 2K(Ã)

nm
log(en) ≤ 2

(
σ 2V (A) log(en)

n

)2/3

+ 2σ 2

n
log(en).
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The proof of the lemma is provided in the supplement [34]. To prove the theorem, for A ∈ Um,
choose Ã ∈ Um

k∗ according to Lemma 6.4. Then

1

nm

∥∥Ã − A∗∥∥2
F

≤ 2

nm

∥∥A − A∗∥∥2
F

+ 2

nm
‖Ã − A‖2

F

≤ 2

nm

∥∥A − A∗∥∥2
F

+ 5

4

(
σ 2V (A) logn

n

)2/3

+ 5σ 2

4n
logn (6.7)

by noting that log(en) ≤ 2.5 logn for n ≥ 2, and similarly

σ 2K(Ã)

nm
log(en) ≤ 5

(
σ 2V (A) logn

n

)2/3

+ 5σ 2

n
logn. (6.8)

Plugging (6.7) and (6.8) into the right-hand side of (3.1) and (3.2), and then minimizing over
A ∈ Um, we complete the proof.

6.2. Metric entropy

This section is devoted to studying various covering numbers or metric entropy related to the
parameter space of the model (2.1). The proofs of the lemmas in this section are provided in the
supplementary material [34].

Recall that an ε-net of a subset G ⊂R
n with respect to a norm ‖ · ‖ is a set {w1, . . . ,wN } ⊂ G

such that for any w ∈ G, there exists i ∈ [N ] for which ‖w − wi‖ ≤ ε. The covering number
N(G,‖ · ‖, ε) is the cardinality of the smallest ε-net with respect to the norm ‖ · ‖. Metric entropy
is defined as the logarithm of a covering number. In the following, we will consider the Euclidean
norm unless otherwise specified.

We start with a lemma bounding the metric entropy of a Cartesian product of convex cones. It
is useful in later proofs and has its own interest. Let {Ii}mi=1 be a partition of [n] with |Ii | = ni

and
∑m

i=1 ni = n. For a ∈R
n, the restriction of a to the coordinates in Ii is denoted by aIi

∈ R
ni .

Let Ci be a convex cone in R
ni and C = C1 × · · · × Cm.

Lemma 6.5. With the notation above, suppose that aIi
∈ Ci ∩ (−Ci ). Then for any t > 0 and

ε ∈ (0, t],

logN
(
C ∩Bn(a, t),‖ · ‖2, ε

) ≤ m log
Ct

ε
+

m∑
i=1

logN

(
Ci ∩Bni (aIi

, t),‖ · ‖2,
ε

3

)

for some constant C > 0.

Recall that Sn denotes the closed convex cone of increasing vectors in R
n. First, we give a

result on the metric entropy of Sn intersecting with a ball.

Lemma 6.6. Let b ∈ R
n be such that b1 = · · · = bn. Then for any t > 0 and ε > 0,

logN
(
Sn ∩Bn(b, t),‖ · ‖2, ε

) ≤ Cε−1t log(en).
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Next, we study the metric entropy of the set of matrices with unimodal columns. Recall that
Cl = {a ∈ R

n : a1 ≤ · · · ≤ al} ∩ {a ∈ R
n : al ≥ · · · ≥ an} for l ∈ [n]. For l = (l1, . . . , lm) ∈ [n]m,

define Cm
l = Cl1 × · · · × Clm . Moreover, for A ∈R

n×m, t > 0 and C ⊂R
n×m, define

�C(A, t) =
⋃
λ≥0

{
B − λA : B ∈ C ∩Bnm(λA, t)

}
(6.9)

=
⋃
λ≥0

(
C ∩Bnm(λA, t) − λA

)
.

Note that in particular �C(A, t) ⊂ Bnm(0, t).

Lemma 6.7. Given A ∈ R
n×m and l = (l1, . . . , lm) ∈ [n]m, we define the quantities k(A·,j ) =

card({A1,j , . . . ,An,j }) and K(A) = ∑m
j=1 k(A·,j ). Then for any t > 0 and ε > 0,

logN
(
�Cm

l
(A, t),‖ · ‖F , ε

) ≤ Cε−1tK(A) log
enm

K(A)
.

Finally, we consider the metric entropy of �M(A, t) for A ∈ R
n×m, t > 0 and M =⋃

�∈Sn
�Um. The above analysis culminates in the following lemma which we use to prove

the main upper bounds.

Lemma 6.8. Let A ∈ R
n×m and K(A) be defined as in the previous lemma. Then for any ε > 0

and t > 0,

logN
(
�M(A, t),‖ · ‖F , ε

) ≤ Cε−1tK(A) log
enm

K(A)
+ n logn.

6.3. Proof of the lower bounds

For minimax lower bounds, we consider the model Y = �∗A∗ + Z where entries of Z are
i.i.d. N(0, σ 2). Define Um

K0
(V0) = Um

K0
∩ Um(V0) and MK0(V0) = ⋃

�∈Sn
�Um

K0
(V0). Define

the subset of MK0(V0) containing permutations of monotone matrices by MS
K0

(V0) = {�A ∈
MK0(V0) : � ∈ Sn,A ∈ Sm}. Since each estimator pair (�̂, Â) gives an estimator M̂ = �̂Â of
M = �A, it suffices to prove a lower bound on ‖M̂ − M‖2

F . In fact, we prove a lower bound
stronger than the one in Theorem 3.5. The proofs of the lemmas below can be found in the
supplement [34].

Proposition 6.9. Suppose that K0 ≤ m( 16n

σ 2 )1/3V
2/3
0 − m. Then

inf
M̂

sup
M∈MK0 (V0)

PM

[
1

nm
‖M̂ − M‖2

F ≥ cσ 2 K0

nm

(6.10)

+ c max
1≤l≤min(K0−m,m)+1

min

(
σ 2

m
log l,m2l−3V 2

0

)]
≥ c′
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for some c, c′ > 0, where PM is the probability with respect to Y = M + Z. This bound remains
valid for the parameter subset MS

K0
(V0) if l = 1 or 2.

Note that the bound also holds for the larger parameter space MK0 = ⋃
�∈Sn

�Um
K0

. By tak-
ing l = min(K0 − m,m) + 1 and V0 large enough, we see that the assumption in Proposition 6.9

is satisfied and the second term becomes simply σ 2

m
log l, so Theorem 3.5 follows. In the mono-

tonic case, by the last statement of the proposition, if K0 ≥ m + 1 then taking l = 2 and V0
large enough yields a lower bound of rate σ 2(

K0
nm

+ 1
m

) for the set of matrices A with increasing
columns and K(A) ≤ K0.

The proof of Proposition 6.9 has two parts which correspond to the two terms respectively.
First, the term σ 2 K0

nm
is derived from the proof of lower bounds for isotonic regression in [8].

Then we derive the other term σ 2

m
log l for any 1 ≤ l ≤ min(K0 − m,m) + 1, which is due to the

unknown permutation.

Lemma 6.10. Suppose that K0 ≤ m( 16n

σ 2 )1/3V
2/3
0 − m. For some c, c′ > 0,

inf
M̂

sup
M∈MS

K0
(V0)

PM

[‖M̂ − M‖2
F ≥ cσ 2K0

] ≥ c,

where PM is the probability with respect to Y = M + Z.

For the second term in (6.10), we first note that the bound is trivial for l = 1 since log l = 0.
The next lemma deals with the case l = 2.

Lemma 6.11. There exist constants c, c′ > 0 such that for any K0 ≥ m + 1 and V0 ≥ 0,

inf
M̂

sup
M∈MS

K0
(V0)

PM

[‖M̂ − M‖2
F ≥ cnmin

(
σ 2,m3V 2

0

)] ≥ c′,

where PM is the probability with respect to Y = M + Z.

For the previous two lemmas, we have only used matrices with increasing columns. However,
to achieve the second term in (6.10) for l ≥ 3, we need matrices with unimodal columns.

Lemma 6.12. There exist constants c, c′ > 0 such that for any K0 ≥ m, V0 ≥ 0 and 3 ≤ l ≤
min(K0 − m,m) + 1,

inf
M̂

sup
M∈MK0 (V0)

PM

[‖M̂ − M‖2
F ≥ cnmin

(
σ 2 log l,m3l−3V 2

0

)] ≥ c′,

where PM is the probability with respect to Y = M + Z.

Proof of Proposition 6.9. Combining Lemmas 6.10, 6.11 and 6.12, and then dividing the bound
by nm, we get (6.10) because the max of two terms is lower bounded by a half of their sum. The
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last statement in Proposition 6.9 holds since Lemmas 6.10 and 6.11 are proved for matrices with
increasing columns. �

Furthermore, the proof of Theorem 3.6, provided in the supplement [34], only uses Lem-

mas 6.10 and 6.11, so the lower bound of rate (
σ 2V0

n
)2/3 + σ 2

n
+ min( σ 2

m
,m2V 2

0 ) holds even if the
matrices are required to have increasing columns.

6.4. Matrices with increasing columns

For the model Y = �∗A∗ + Z where A∗ ∈ Sm and Z ∼ subG(σ 2), a computationally efficient
estimator (�̃, Ã) has been constructed in Section 4 using the RankScore procedure. We will
bound its rate of estimation in this section. Recall that the definition of (�̃, Ã) consists of two
steps. First, we recover an order (or a ranking) of the rows of Y , which leads to an estimator �̃

of the permutation. Then define Ã ∈ Sm so that �̃Ã is the projection of Y onto the convex cone
�̃Sm. For the analysis of the algorithm, we deal with the projection step first, and then turn to
learning the permutation. The proofs of the results in the section can be found in the supplement
[34].

In fact, for any estimator �̃, if Ã is defined as above by the projection corresponding to �̃,
then the error ‖�̃Ã−�∗A∗‖2

F can be split into two parts: the permutation error ‖(�̃−�∗)A∗‖2
F

and the estimation error of order Õ(σ 2K(A∗)).

Lemma 6.13. Consider the model Y = �∗A∗ + Z where A∗ ∈ Sm and Z ∼ subG(σ 2). For any
�̃ ∈ Sn, define Ã ∈ Sm so that �̃Ã is the projection of Y onto �̃Sm. Then with probability at
least 1 − e−c(n+m), it holds simultaneously for all �̃ ∈Sn that

∥∥�̃Ã − �∗A∗∥∥2
F
� min

A∈Sm

(∥∥A − A∗∥∥2
F

+ σ 2K(A) log
enm

K(A)

)

+ σ 2n logn + ∥∥(�̃ − �∗)A∗∥∥2
F
.

The idea of splitting the error into two terms as in Lemma 6.13 has appeared in [23,61].
By virtue of Lemma 6.13, it remains to control the permutation error ‖�̃A∗ −�∗A∗‖2

F where
�̃ is given by the RankScore procedure defined in Section 4. Recall that


A∗
(
i, i′

) = max
j∈[m]

(
A∗

i′,j − A∗
i,j

)∨ 1√
m

m∑
j=1

(
A∗

i′,j − A∗
i,j

)

for i, i′ ∈ [n] and 
Y (i, i′) is defined analogously. Since columns of A∗ are increasing,

∣∣
A∗
(
i, i′

)∣∣ = ∥∥A∗
i′,· − A∗

i,·
∥∥∞ ∨ 1√

m

∥∥A∗
i′,· − A∗

i,·
∥∥

1. (6.11)

Recall that the RankScore procedure is defined as follows. First, for i ∈ [n], we associate
with the ith row of Y a score si defined by si = ∑n

l=1 I(
Y (l, i) ≥ 2τ) for the threshold τ :=
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3σ
√

log(nmδ−1) where δ is the probability of failure. Then we order the rows of Y so that
the scores are increasing with ties broken arbitrarily. This is equivalent to requiring that the
corresponding permutation π̃ : [n] → [n] satisfies that if si < si′ then π̃−1(i) < π̃−1(i′). Define
�̃ to be the n × n permutation matrix corresponding to π̃ so that �̃π̃(i),i = 1 for i ∈ [n] and all
other entries of �̃ are zero. Moreover, let π∗ : [n] → [n] be the permutation corresponding to
�∗.

To control the permutation error, we first state a lemma which asserts that if the gap between
two rows of A∗ is sufficiently large, then the permutation defined above will recover their relative
order with high probability.

Lemma 6.14. There is an event E of probability at least 1 − δ on which the following holds. For
any i, i′ ∈ [n], if 
A∗(i, i′) ≥ 4τ , then π̃−1 ◦ π∗(i) < π̃−1 ◦ π∗(i′).

Equipped with the above lemma, we are able to bound the permutation error in terms of the
quantity R(A∗) defined in (4.3).

Lemma 6.15. There is an event E of probability at least 1 − δ on which

∥∥�̃A∗ − �∗A∗∥∥2
F
� σ 2R

(
A∗)n log

(
nmδ−1).

Finally, the bound of Theorem 4.1 is an immediate consequence of Lemma 6.13 and
Lemma 6.15 with δ = (nm)−C for C > 0.

7. Discussion

While computational aspects of the seriation problem have received significant attention, the ro-
bustness of this problem to noise was still unknown to date. To overcome this limitation, we
have introduced in this paper the statistical seriation model and studied optimal rates of estima-
tion by showing, in particular, that the least squares estimator enjoys several desirable statistical
properties such as adaptivity and minimax optimality (up to logarithmic terms).

While this work paints a fairly complete statistical picture of the statistical seriation model, it
also leaves many unanswered questions. There are several logarithmic gaps in the bounds. In the
case of adaptive bounds, some logarithmic terms are unavoidable as illustrated by Theorem 3.5
(for the permutation term) and also by statistical dimension consideration explained in [9] (for
the estimation term). However, a more refined argument for the uniform bound, namely one
that uses covering in �2-norm rather than �∞-norm, would allow us to remove the logn factor
from the estimation term in the upper bound of Corollary 3.4. Such an argument can be found
in [3,14,70] for the larger class of vectors with bounded total variation (see [54]) but we do not
pursue sharp logarithmic terms in this work. For the permutation term, logn in the upper bound
of Corollary 3.2 and log l in the lower bound of Theorem 3.5 do not match if l < n. We do not
seek answers to these questions in this paper but note that their answers may be different for the
unimodal and the monotone case.
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Perhaps the most pressing question is that of computationally efficient estimators. Indeed,
while statistically optimal, the least squares estimator requires searching through n! permuta-
tions, which is not realistic even for problems of moderate size, let alone genomics applica-
tions. We gave a partial answer to this question in the specific context of monotone columns by
proposing and studying the performance of a simple and efficient estimator called RankScore.
This study reveals the existence of a potentially intrinsic gap between the statistical performance
achievable by efficient estimators and that achievable by estimators with access to unbounded
computation. A similar gap is also observed in the SST model for pairwise comparisons [61].
We conjecture that achieving optimal rates of estimation in the seriation model is computation-
ally hard in general but argue that the planted clique assumption that has been successfully used
to establish statistical vs. computational gaps in [11,52,62] for example, is not the correct prim-
itive. Instead, one has to seek for a primitive where hardness comes from searching through
permutations rather than subsets.
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