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Consider a nonparametric regression model with one-sided errors and regression function in a general
Hölder class. We estimate the regression function via minimization of the local integral of a polynomial
approximation. We show uniform rates of convergence for the simple regression estimator as well as for a
smooth version. These rates carry over to mean regression models with a symmetric and bounded error dis-
tribution. In such a setting, one obtains faster rates for irregular error distributions concentrating sufficient
mass near the endpoints than for the usual regular distributions. The results are applied to prove asymptotic√

n-equivalence of a residual-based (sequential) empirical distribution function to the (sequential) empirical
distribution function of unobserved errors in the case of irregular error distributions. This result is remark-
ably different from corresponding results in mean regression with regular errors. It can readily be applied to
develop goodness-of-fit tests for the error distribution. We present some examples and investigate the small
sample performance in a simulation study. We further discuss asymptotically distribution-free hypotheses
tests for independence of the error distribution from the points of measurement and for monotonicity of the
boundary function as well.

Keywords: goodness-of-fit testing; irregular error distribution; one-sided errors; residual empirical
distribution function; uniform rates of convergence

1. Introduction

We consider boundary regression models of the form

Yi = g(xi)+ εi, i = 1, . . . , n,

with negative errors εi whose survival function 1− F(y) near the origin behaves like a multi-
ple of |y|α for some α > 0. Such models naturally arise in image analysis, analysis of auctions
and records, or in extreme value analysis with covariates. For such a boundary regression model
with multivariate random covariates and twice differentiable regression function, Hall and Van
Keilegom [17] establish a minimax rate for estimation of g(x) (for fixed x) under quadratic loss
and determine pointwise asymptotic distributions of an estimator which is defined as a solution
of a linear optimization problem (cf. Remark 2.7). Relatedly, Müller and Wefelmeyer [25] con-
sider a mean regression model with (unknown) symmetric support of the error distribution and
Hölder continuous regression function. They discuss pointwise MSE rates for estimators of the
regression function that are defined as the average of local maxima and local minima. Meister
and Reiß [24] consider a regression model with known bounded support of the errors. They show
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asymptotic equivalence in the strong LeCam sense to a continuous-time Poisson point process
model when the error density has a jump at the endpoint of its support. For a regression model
with error distribution that is one-sided and regularly varying at 0 with index α > 0, Jirak et al.
[19] suggest an estimator for the boundary regression function which adapts simultaneously to
the unknown smoothness of the regression function and to the unknown extreme value index α.
Reiß and Selk [29] construct efficient and unbiased estimators of linear functionals of the regres-
sion function in the case of exponentially distributed errors as well as in the limiting Poisson
point process experiment by Meister and Reiß [24].

Closely related to regression estimation in models with one-sided errors is the estimation of a
boundary function g based on a sample from (X,Y ) with support {(x, y) ∈ [0,1] × [0,∞]|y ≤
g(x)}. For such models, Härdle et al. [18] and Hall et al. [16] proved minimax rates both for
pointwise estimation of g(x) and for the L1-distance between g and its estimator. Moreover,
they showed that an approach using local polynomial approximations of g yields this optimal
rate. Explicit estimators in terms of higher order moments were proposed and analyzed by Girard
and Jacob [14] and Girard et al. [13].

Our first aim is to develop uniform rates of convergence for a local polynomial regression es-
timator in boundary models. To our knowledge, uniform rates so far have only been shown by
Daouia et al. [6] who consider spline estimation of a support frontier curve, but obtain slower
rates. Our results can also be applied to mean regression models with bounded symmetric er-
ror distribution. For regression functions g in a Hölder class of order β , we obtain the rate
((logn)/n)β/(αβ+1). Thus, for tail index α ∈ (0,2) of the error distribution, the rate is faster
than the typical rate one has in mean regression models with regular errors. For pointwise and
Lp-rates of convergence, it has been known in the literature that faster rates are possible for non-
parametric regression estimation in models with irregular error distribution, see, for example,
Gijbels and Peng [12], Hall and Van Keilegom [17], or Müller and Wefelmeyer [25].

The uniform rate of convergence for the regression estimator enables us to derive asymptotic
expansions for residual-based empirical distribution functions and to prove weak convergence of
the residual-based (sequential) empirical process. We state conditions under which the influence
of the regression estimation is negligible such that the same results are obtained as in the case of
observable errors.

Our results allow us to develop several hypotheses tests for boundary regression models. In
particular, we will suggest asymptotically distribution-free tests for

• parametric classes of error distributions (goodness-of-fit),
• independence of the error distribution from the points of measurement,
• monotonicity of the boundary function.

Testing for a parametric class of distributions is a classical topic. The approach to compare
the empirical distribution function with the parametrically estimated c.d.f. dates back to Darling
[7] and is presented in detail in Chapter 5.5 of Shorack and Wellner [32] for i.i.d. data. Using an
analogous approach for the error distribution in mean regression models (based on the residual
e.d.f.) is hindered by the fact that the regression estimation strongly influences the asymptotic
behavior of the empirical distribution function in these regular models (see Koul [23], for linear
models and Akritas and Van Keilegom [1], for nonparametric mean regression). Therefore either
resampling procedures (see Neumeyer et al. [26]) or martingale transformations (see Khmaladze
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and Koul [20,21]) are employed in order to obtain asymptotically distribution-free tests. As we
will show, in boundary regression models with an irregular error distribution, neither is necessary,
but standard critical values from the i.i.d. theory can be used.

In production frontier models, xi corresponds to the input and Yi to the output of the ith con-
sidered firm. Then g is the production frontier or optimal boundary, corresponding to the most
efficient firms (g(x) is the maximal possible output with input x). Thus, εi = Yi − g(xi) corre-
sponds to the (in)efficiency of firm i, see, for example, Daouia et al. [6]. So the hypothesis of
independence of errors from covariates means independence of the (in)efficiency from the input
level. This hypothesis is certainly of interest for applications in economics. It may be violated,
for example, because higher input levels may correspond to larger firms with better managers and
thus more efficiency. For a detailed discussion, see Wilson [37] who considers several possible
tests for assumptions of independence in a related model, but does not derive asymptotic dis-
tributions. Moreover, those independence assumptions are not only of intrinsic interest, but are
also needed to prove validity of bootstrap procedures for nonparametric frontier models and are
thus crucial in applications; see Simar and Wilson [33]. Tests for independence in nonparametric
mean and quantile regression models that are similar to the test we will consider are suggested
by Einmahl and Van Keilegom [8] and Birke et al. [4].

There is an extensive literature on regression with one-sided error distributions and similar
models (in particular production frontier models) which assume monotonicity of the boundary
function; see Gijbels et al. [11], the literature cited therein and the monotone nonparametric
maximum likelihood estimator in Reiß and Selk [29]. In a production frontier model as above
the production axiom of free disposability of input and output says that if x can produce y and
x′ ≥ x, y′ ≤ y, then x′ can produce y′. This means that the boundary curve g is increasing. This
assumption is important for applications, but may often not be fulfilled; see, for example, Färe
and Grosskopf [9]. To give a simple example, the use of more fertilizer will increase crop only
until it is too much. To mention an entirely different area of application for monotonicity tests
consider annual sport records. Here Yi corresponds to the record in year i and g corresponds the
best possible result for a given year, see Knight [22]. Non-monotonicity of g might be connected
to changes in doping control procedures, see Jirak et al. [19] who consider yearly best men’s
outdoor 1500 m times. We are not aware of hypothesis tests for monotonicity or other shape
constraints in the context of boundary regression, but would like to mention Gijbels’ [10] review
on testing for monotonicity in mean regression. Tests similar in spirit to the one we are suggesting
here were considered by Birke and Neumeyer [3] and Birke et al. [4] for mean and quantile
regression models, respectively.

The remainder of the article is organized as follows. In Section 2, the regression model un-
der consideration is presented and model assumptions are formulated. The regression estimator
is defined and uniform rates of convergence are given. A smooth modification of the estimator
is considered and uniform rates of convergence for this estimator as well as its derivative are
shown. In Section 3, residual empirical distribution functions based on both regression estima-
tors are investigated. Conditions are stated under which the influence of regression estimation is
asymptotically

√
n-negligible. Furthermore, an expansion of the residual empirical distribution

function is shown that is valid under more general conditions. In Section 4, goodness-of-fit tests
for the error distribution are discussed in general and in some detailed examples. We investigate
the finite sample performance of the tests in a small simulation study. We further discuss hypothe-
ses tests for independence of the error distribution from the design points, a test for monotonicity
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of the boundary function and tests on the parameter α which governs the (ir)regularity of the
error distribution as well. All proofs are given in the Appendix.

2. The regression function: Uniform rates of convergence

We consider a regression model with fixed equidistant design and one-sided errors,

Yi = g

(
i

n

)
+ εi, i = 1, . . . , n, (2.1)

under the following assumptions:

(F1) The errors ε1, . . . , εn are independent and identically distributed and supported on
(−∞,0]. The error distribution function fulfills

F(y)= 1− c|y|α + r(y), y < 0,

for some α > 0, with r(y)= o(|y|α) for y↗ 0.

(G1) The regression function g belongs to some Hölder class of order β ∈ (0,∞), i.e. g is
	β
-times differentiable on [0,1] and the 	β
th derivative satisfies

cg := sup
t,x∈[0,1]

t �=x

|g(	β
)(t)− g(	β
)(x)|
|t − x|β−	β
 <∞.

In Figure 1, some scatter plots of data according to model (2.1) are shown for different tail
indices α of the error distribution.

Remark 2.1. Strictly speaking, we consider a triangular scheme in (2.1), and the errors εi de-
pend on n too, as the ith regression point i/n varies with n. For notational simplicity, we suppress
the second index, because the distribution of the errors does not depend on n.

Figure 1. Scatter plots of ( i
n , Yi), i = 1, . . . , n, and the true regression function g(x)=−3(x− 0.4)3. The

error distribution is Weibull F(y)= exp(−(|y|/θ)α)I(−∞,0)(y)+ I[0,∞)(y) with scale θ = 0.3 and shape
parameter α.
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We consider an estimator that locally approximates the regression function by a polynomial
while lying above the data points. Polynomial estimators for boundary curves were already con-
sidered by Hall et al. [16], Hall and Park [15], Hall and Van Keilegom [17] and Jirak et al. [19].
For x ∈ [0,1], let

ĝn(x) := ĝ(x) := p(x),

where p is a polynomial of degree β∗ ∈N0 and minimizes the local integral

∫ x+hn

x−hn

p(t) dt (2.2)

under the constraints p(
j
n
) ≥ Yj for all j ∈ {1, . . . , n} such that | j

n
− x| ≤ hn. This estimation

procedure can be realized by linear programming. For the asymptotic analysis of this estimator,
we need the following assumption:

(H1) Let (hn)n∈N be a sequence of positive bandwidths that satisfies limn→∞ hn = 0 and
limn→∞ nhn/ logn=∞.

We obtain the following uniform rates of convergence.

Theorem 2.2. In model (2.1), under the assumptions (F1), (G1) with β ∈ (0, β∗ + 1], and (H1),
we have

sup
x∈[hn,1−hn]

∣∣ĝ(x)− g(x)
∣∣=O

(
hβ

n

)+OP

(( | loghn|
nhn

)1/α)
.

Note that the deterministic part O(h
β
n) arises from approximating the regression function by a

polynomial, whereas the random part originates from the observational error. Balancing the two

sources of error by setting hn � ((logn)/n)
1

αβ+1 gives

sup
x∈[hn,1−hn]

∣∣ĝ(x)− g(x)
∣∣=OP

((
logn

n

) β
αβ+1
)

. (2.3)

(Here an � bn means that 0 < lim infn→∞ |an/bn| ≤ lim supn→∞ |an/bn|<∞.)
This result is of particular interest in the case of irregular error distributions, i.e. α ∈ (0,2),

when the rate improves upon the typical optimal rate OP (((logn)/n)β/(2β+1)) for estimating
mean regression functions in models with regular errors. This improvement for small values of
α is intuitively expected since then many data very close to g are observed (see Figure 1).

Remark 2.3. If the degree β∗ of the polynomial in our estimator is chosen smaller than �β�−1,
then we obtain the rate

sup
x∈[hn,1−hn]

∣∣ĝ(x)− g(x)
∣∣=O

(
hβ∗+1

n

)+OP

(( | loghn|
nhn

)1/α)
.
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This is a direct conclusion from Theorem 2.2 and the fact that if g is Hölder of order β then it is
also Hölder of order β ′ for all β ′ ≤ β .

Remark 2.4. Jirak et al. [19] consider a similar boundary regression estimator while replacing
the integral in (2.2) by its Riemann approximation

∑n
i=1 p( i

n
)I {| i

n
− x| ≤ hn}. In particular,

using the Lepskii method, they propose a fully data-driven bandwidth (merely assuming an upper
bound on β , but no information about α) such that the resulting estimator converges pointwise
with the optimal rate. (Proposition 3.2 in that paper is not fully correct, but the error can be fixed
by using an estimator of α of the type considered in Section 4.4 of the present paper instead
of their estimator (3.10) and modifying the estimator (3.13) accordingly.) We conjecture that an
analogous adaptive choice of the bandwidth leads to an estimator which converges at the rate
((logn)/n)β/(αβ+1) w.r.t. the supremum norm on [hn,1−hn], too. Indeed, one of the main steps
in the proof of adaptivity has been established in Proposition 3.1 of Jirak et al. [19] for a general
seminorm.

Remark 2.5. For local constant approximation (i.e. β∗ = 0) the estimator reduces to a local
maximum ĝ(x)=max{Yi |i = 1, . . . , n s.t. | i

n
− x| ≤ hn}. In this case we obtain the rate of con-

vergence as given in Theorem 2.2 uniformly over the whole unit interval.

Remark 2.6. Müller and Wefelmeyer [25] consider a mean regression model Yi =m(Xi)+ ηi ,
i = 1, . . . , n, with symmetric error distribution supported on [−a, a] (with a unknown); see the
left panel of Figure 2. The error distribution function fulfills F(a − y)∼ 1− yα for y↘ 0. The
local empirical midrange of responses, that is,

m̂(x)= 1

2

(
min

i∈{1,...,n}
|Xi−x|≤hn

Yi + max
i∈{1,...,n}
|Xi−x|≤hn

Yi

)

is shown to have pointwise rate of convergence O(h
β
n) + OP ((nhn)

−1/α) to m(x) if m is
Hölder continuous with exponent β ∈ (0,1]. Theorem 2.2 enables us to extend Müller’s and

Figure 2. Example for data as in Remark 2.6.
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Wefelmeyer’s [25] results in two ways (in a model with fixed design Xi = i
n

): we consider more
general Hölder classes with general index β > 0, and we obtain uniform rates of convergence.
To this end, we use the mean regression estimator m̂ = (ĝ − ˆ̃g)/2 with ĝ as before and ˆ̃g de-
fined analogously, but based on ( i

n
,−Yi), i = 1, . . . , n; see the right panel of Figure 2. The rates

obtained for supx∈[hn,1−hn] |m̂(x)−m(x)| are the same as in Theorem 2.2.

Remark 2.7. For β ∈ (1,2], Hall and Van Keilegom [17] consider the following local linear
boundary regression estimator:

ǧ(x)= inf

{
α0

∣∣∣(α0, α1) ∈R
2 : Yi ≤ α0 + α1

(
i

n
− x

)
∀i ∈ {1, . . . , n} s.t.

∣∣∣∣ in − x

∣∣∣∣≤ hn

}
.

Because of
∫ x+hn

x−hn
(α0+ α1(t − x)) dt = 2α0hn this estimator coincides with ĝ for β∗ = 1. How-

ever, in the case β∗ ≥ 2 replacing the linear function in the definition of ǧ by a polynomial of
degree β∗ renders the estimator useless. One obtains ǧ(x)=−∞ for x /∈ { j

n
|j = 1, . . . , n} while

ǧ(
j
n
)= Yj , j = 1, . . . , n. This was already observed by Jirak et al. [19].

Note that typically the estimator ĝ is not continuous. One might prefer to consider a smooth
estimator by convoluting ĝ with a kernel. Such a modified estimator will also be advantageous
when deriving an expansion for the residual based empirical distribution function in the next
section. Therefore we define

g̃(x)=
∫ 1−hn

hn

ĝ(z)
1

bn

K

(
x − z

bn

)
dz (2.4)

and formulate some additional assumptions.

(K1) K is a continuous kernel with support [−1,1] and order β∗+1, that is,
∫

K(u)du= 1,∫
urK(u)du = 0 ∀r = 1, . . . , β∗. Furthermore, K is differentiable with Lipschitz-continuous

derivative K ′ on (−1,1).
(B1) The sequence (bn)n∈N of positive bandwidths satisfies limn→∞ bn = 0.

(B2.δ)

hβ
n +

(
logn

nhn

)1/α

= o
(
b

(1+2δ)∨(3−(β−1)(1/δ−1))
n

)

=

⎧⎪⎨
⎪⎩

o
(
b1+2δ
n

)
if δ ≤ β − 1

2
,

o
(
b

3−(β−1)(1/δ−1)
n

)
if δ >

β − 1

2
.

Here we assume that the parameter δ, which quantifies the minimal required smoothness of the
estimator of g′, lies in (0,1 ∧ (β − 1)). For example, if β ∈ (1,3) and the bandwidth hn �
((logn)/n)1/(αβ+1) is chosen, then (B2.δ) is fulfilled with δ = (β − 1)/2 for any bn that satisfies
hn = o(bn).

The estimator g̃ is differentiable and we obtain the following uniform rates of convergence for
g̃ and its derivative g̃′.
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Theorem 2.8. Assume the model assumptions (2.1), (F1), (G1) with β ∈ (1, β∗ + 1], (H1), (K1),
and (B1) are valid, and define In = [hn + bn,1− hn − bn]. Then it holds that

(i) supx∈In
|g̃(x)− g(x)| =O(b

β
n )+O(h

β
n)+OP ((

| loghn|
nhn

)
1
α ),

(ii) supx∈In
|g̃′(x)− g′(x)| =O(b

β−1
n )+O(b−1

n h
β
n)+OP (b−1

n (
| loghn|

nhn
)

1
α ).

If additionally assumption (B2.δ) holds for δ ∈ (0,1∧ (β − 1)), then

(iii) supx,y∈In,x �=y
|g̃′(x)−g′(x)−g̃′(y)+g′(y)|

|x−y|δ = oP (1).

Note that Theorem 2.8(ii) gives supx∈In
|g̃′(x)− g′(x)| = oP (1) if h

β
n + (logn/(nhn))

1/α =
o(bn). This holds in particular if (B2.δ) is fulfilled for some δ ∈ (0,1∧ (β − 1)).

3. The error distribution

3.1. Estimation

In this section, we consider estimators of the error distribution in model (2.1). For the asymptotic
analysis, we need the following additional assumption.

(F2) The c.d.f. F of the errors is Hölder continuous of order α ∧ 1.

We define residuals ε̂i = Yi − ĝ( i
n
), and a resulting modified sequential empirical distribution

function by

F̂n(y, s)= 1

mn

	ns
∑
i=1

I {ε̂i ≤ y}I
{
hn <

i

n
≤ 1− hn

}
,

where mn = �{i ∈ {1, . . . , n}|hn < i
n
≤ 1− hn} = n− 	nhn
 − �nhn�. We consider the sequen-

tial process, because it will be useful for testing hypotheses in Section 4. With slight abuse of
notation, let F̂n(y)= F̂n(y,1) denote the corresponding estimator for F(y).

We first treat a simple case where the influence of the regression estimation on the residual
empirical process is negligible. To this end, let Fn denote the standard empirical distribution
function of the unobservable errors ε1, . . . , εn. Further, define s̄n = (	n(s ∧ (1− hn))
 − 	n(s ∧
hn)
)/mn and interpret s̄n/	ns
 as 0 for s = 0. Note that s̄n = 1 if s = 1 and s̄n → s as n→∞,
for each fixed s.

Theorem 3.1. Assume that the conditions (F1), (G1), (H1) and (F2) are fulfilled and that
supx∈[hn,1−hn] |ĝ(x)− g(x)| = oP (n−1/(2(α∧1))). Then we have

sup
y∈R,s∈[0,1]

∣∣F̂n(y, s)− s̄nF	ns
(y)
∣∣= oP

(
n−1/2).

Thus the process {√n(F̂n(y, s)− s̄nF (y))|s ∈ [0,1], y ∈ R} converges weakly to a Kiefer pro-
cess KF , a centered Gaussian process with covariance function ((s1, y1), (s2, y2)) �→ (s1 ∧
s2)(F (y1 ∧ y2)− F(y1)F (y2)).
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Remark 3.2. The assumption supx∈[hn,1−hn] |ĝ(x)− g(x)| = oP (n−1/(2(α∧1))) is satisfied under
the following condition on the bandwidth hn:

(B3) The sequence of bandwidths satisfies hn = o(n−1/(2(α∧1)β)), n(α∨1)/2−1 logn= o(hn).

Condition (B3) can be fulfilled if and only if 1
β

< α < 2 − 1
β

, which requires β > 1. Note
that the condition can be met for all α ∈ (0,2), provided the regression function g is suf-
ficiently smooth (i.e. β is large enough). In this case, a bandwidth hn � ((logn)/n)1/(αβ+1)

fulfills (B3). Moreover, an adaptive version of ĝ as discussed in Remark 2.4 would satisfy
supx∈[hn,1−hn] |ĝ(x)− g(x)| = oP (n−1/(2(α∧1))).

Remark 3.3. Theorem 3.1 implies that for α ∈ (1/β,2 − 1/β) the estimation of the re-
gression function has no asymptotic impact on the estimation of the irregular error distribu-
tion. This is remarkably different from corresponding results on the estimation of the error
distribution in mean regression models with regular error distributions. Here the empirical
distribution function of residuals, say F̌n, is not asymptotically

√
n-equivalent to the em-

pirical distribution function of true errors. The process
√

n(F̌n − F) converges to a Gaus-
sian process whose covariance structure depends on the error distribution in a complicated
way; cf. Theorem 2 in Akritas and Van Keilegom [1]. In the simple case of a mean regres-
sion model with equidistant design and an error distribution F with bounded density f one
has

√
n
(
F̌n(y)− Fn(y)

)= f (y)√
n

n∑
i=1

εi + oP (1)

uniformly with respect to y ∈ R when the regression function is estimated by a local polyno-
mial estimator, under appropriate bandwidth conditions (see Proposition 3 in Neumeyer and Van
Keilegom [27]).

In order to obtain asymptotic results for estimators of the error distribution for α ≥ 2− 1
β

, a
finer analysis is needed. In what follows, we will use the smooth regression estimator g̃ defined
in (2.4). Let F̃n denote the empirical distribution function based on residuals ε̃j = Yj − g̃(

j
n
),

that is,

F̃n(y)= 1

mn

n∑
j=1

I {ε̃j ≤ y}I
{

j

n
∈ In

}
, (3.1)

where In = [hn + bn,1− hn − bn] and mn = �{j ∈ {1, . . . , n}|hn + bn ≤ j
n
≤ 1 − hn − bn} =

n− 2�n(hn + bn)� + 1. Then the following asymptotic expansion is valid.
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Theorem 3.4. If the conditions (F1), (F2), (G1) with β > 1, (H1), (K1), (B1), and (B2.δ) for
some δ ∈ (0∨ (1/α − 1),1∧ (β − 1)) are fulfilled, then

F̃n(y)= 1

n

n∑
j=1

I {εj ≤ y} + 1

mn

n∑
j=1

(
F

(
y + (g̃ − g)

(
j

n

))
− F(y)

)
I

{
j

n
∈ In

}

+ oP

(
1√
n

) (3.2)

uniformly for all y ∈R.

Remark 3.5. One can choose bandwidths hn and bn such that the conditions (H1), (B1) and
(B2.δ) are fulfilled for some δ ∈ (0∨ (1/α − 1),1∧ (β − 1)) if this interval is not empty, which
in turn is equivalent to α > 1/(β ∧ 2). Thus, the expansion given in Theorem 3.4 is also valid for
regular error distributions.

If one assumes (B2.δ) for some δ ∈ (0,1∧ (β − 1)), but drops the condition δ > 1/α− 1 and,
in addition, replaces (F2) with the assumption that F is Lipschitz continuous on (−∞, κ] for
some κ < 0, then expansion (3.2) still holds uniformly on (−∞, κ̃] for all κ̃ < κ . In particular,
this holds if F has a bounded density on (−∞, κ].

Next, we examine under which conditions the additional term in (3.2) depending on the esti-
mation error is asymptotically negligible. Beyond that the expansion in Theorem 3.5 might be
the starting point for a more general investigation of the empirical residual process in the future.
Here, we focus on those arguments y which are bounded away from 0, because in this setting
weaker conditions on α and β are needed. Moreover, for the analysis of the tail behavior of the
error distribution at 0, tail empirical processes are better suited and will be considered in future
work.

Note that the estimator ĝ tends to underestimate the true function because it is defined via a
polynomial which is minimal under the constraint that it lies above all observations (i/n,Yi),
which in turn all lie below the true boundary function. As this systematic underestimation does
not vanish from (local or global) averaging, we first have to introduce a bias correction.

Let Eg≡0 denote the expectation if the true regression function is identical 0. For the remaining
part of this section, we assume that μ = Eg≡0(ĝ(1/2)) is known or that it can be estimated
sufficiently accurately. For example, if the empirical process of residuals shall be used to test a
simple null hypothesis H0 : F = F0, then one may calculate or simulate μ under the given null
distribution. If the process is used for testing for a parametric class H0 : F ∈ {Fϑ |ϑ ∈ �} (see
Section 4.1), then μ(ϑ)= Eϑ,g≡0(ĝ(1/2)) can be estimated by μ̂= μ(ϑ̂n), where ϑ̂n denotes a
consistent estimator for the true parameter under the null. If the expectation has no explicit form,
it can be approximated via Monte Carlo methods. The results of Theorem 3.7 hold true under the
condition μ(ϑ̂n)−μ(ϑ)= oPϑ (n−1/2) if one defines g̃∗n(x) := g̃(x)−μ(ϑ̂n).

We define a bias corrected version of the smoothed estimator by

g̃∗n(x) := g̃(x)−Eg≡0
(
ĝ(1/2)

)
,
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for x ∈ In. Note that Eg≡0(ĝn(x)) = Eg≡0(ĝn(1/2)) for any x ∈ [hn,1 − hn] because under
g ≡ 0 we observe i.i.d. data Yi = εi , i = 1, . . . , n. The following lemma ensures that the above
results for g̃ carry over to this variant if the following condition on the lower tail of F holds:

(F3) There exists τ > 0 such that F(−t)= o(t−τ ) as t →∞.

Lemma 3.6. If model (2.1) holds with g identical 0 and the conditions (F1), (F3), (G1), and
(H1) are fulfilled, then for all x ∈ [hn,1− hn]

Eg≡0
(∣∣ĝn(x)

∣∣)=O

((
logn

nhn

)1/α)
.

We need some additional conditions on the rates at which the bandwidths hn and bn tend to 0:

(H2) hn = o(n−1/(2β) ∧ n−1/(αβ+1)), nα/4−1 logn= o(hn),
(B4) bn = o(n−1/(2β) ∧ (h

−2β
n n−1)∧ (( nhn

logn
)2/αn−1)).

In particular, these assumptions ensure that the bias terms of order h
β
n +b

β
n are of smaller order

than n−1/2 and (nhn)
−1/α and hence asymptotically negligible, and that quadratic terms in the

estimation error are uniformly negligible, that is, supx∈In
|g̃∗n(x)− g(x)|2 = oP (n−1/2).

Theorem 3.7. Suppose the model assumptions (2.1) with α ∈ (0,2), β > 1, (F1), (F3), (G1),
(H1), (H2), (K1), (B1), (B2.δ) for some δ > 0, and (B4) hold and F has a bounded density on
(−∞, κ] for some κ < 0. Then

sup
y∈(−∞,κ]

∣∣∣∣∣ 1

mn

n∑
j=1

(
F

(
y + (g̃∗n − g

)(j

n

))
− F(y)

)
I

{
j

n
∈ In

}∣∣∣∣∣= oP

(
n−1/2).

Remark 3.8. The conditions on hn and bn used in Theorem 3.7 can be fulfilled if and only
if α < 2β − 1. In particular, this theorem is applicable if β ≥ 3/2 and the error distribution is
irregular, i.e., α < 2. A possible choice of bandwidths is

hn �
(
n−1/(2β)∧n−1/(αβ+1)

)
/ logn, bn � n−λ for some λ ∈

(
1

2β
,

β

αβ + 1
∧ 2β − 1

2αβ

)
.

We obtain asymptotic equivalence of the empirical process of residuals (restricted to (−∞, κ])
to the empirical process of the errors. To formulate the result, let F̃ ∗n be defined analogously to
F̃n, but with g̃ replaced by g̃∗.

Corollary 3.9. Under the assumptions of Theorems 3.4 and 3.7, we have supy∈(−∞,κ] |F̃ ∗n (y)−
Fn(y)| = oP (n−1/2). Thus, the process (

√
n(F̃ ∗n (y) − F(y)))y∈(−∞,κ] converges weakly to a

centered Gaussian process with covariance function (y1, y2) �→ F(y1 ∧ y2) − F(y1)F (y2),
y1, y2 ∈ (−∞, κ].

Note that for the corollary one needs the condition 1/(β ∧ 2) < α < (2β − 1)∧ 2.
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4. Hypotheses testing

4.1. Goodness-of-fit testing

Let F = {Fϑ |ϑ ∈ �} denote a continuously parametrized class of error distributions such that
for each ϑ ∈�, Fϑ(y) = 1− cϑ |y|αϑ + rϑ (y) with rϑ (y) = o(|y|αϑ ) for y ↗ 0. Our aim is to
test the null hypothesis H0 : F ∈ F . We assume that αϑ ∈ (1/β,2 − 1/β) for all ϑ ∈ �, such
that Theorem 3.1 can be applied under H0. Let ϑ̂n denote an estimator for ϑ based on residuals
ε̂i = Yi − ĝ( i

n
), i = 1, . . . , n. The goodness-of-fit test is based on the empirical process

Sn(y)=√n
(
F̂n(y)− F

ϑ̂n
(y)
)
, y ∈R,

where, as before, F̂n(y) = F̂n(y,1). Under any fixed alternative that fulfills (F1) for some α,
ĝ still uniformly consistently estimates g, and thus F̂n is a consistent estimator of the error
distribution F . If ϑ̂n converges to some ϑ∗ ∈ � under the alternative, too, then a consistent
hypothesis test is obtained by rejecting H0 for large values of, for example, a Kolmogorov–
Smirnov test statistic supy∈R |Sn(y)|. Note that under H0 it follows from Theorem 3.1 that

Sn(y)=√n
(
Fn(y)− Fϑ(y)

)−√n
(
F

ϑ̂n
(y)− Fϑ(y)

)+ oP (1),

where ϑ denotes the true parameter. We consider two examples.

Example 4.1. Consider the mean regression model Yi =m( i
n
)+ ηi , i = 1, . . . , n, with symmet-

ric error c.d.f. F and β > 1, and define m̂ as in Remark 2.6 with some bandwidth hn that fulfills
(B3). We want to test the null hypothesis H0 : F ∈F = {Fϑ |ϑ ∈�} for some �⊂ (0,∞), where
Fϑ denotes the distribution function of the uniform distribution on [−ϑ,ϑ] (with αϑ = 1 for all
ϑ > 0). Define residuals η̂i = Yi − m̂( i

n
), i = 1, . . . , n, and let

ϑ̂n = max
(

max
nhn≤i≤n−nhn

η̂i ,− min
nhn≤i≤n−nhn

η̂i

)
= max

nhn≤i≤n−nhn

|η̂i |.

Then |ϑ̂n − ϑ | is bounded by |maxnhn≤i≤n−nhn |ηi | − ϑ | + supx∈[hn,1−hn] |m̂(x) − m(x)| =
oP (n−1/2). Since Fϑ(y) = y+ϑ

2ϑ
I[−ϑ,ϑ](y) + I(ϑ,∞)(y), one may conclude supy∈R |Fϑ̂n

(y) −
Fϑ(y)| = oP (n−1/2). Thus, the process Sn converges weakly to a Brownian bridge B com-
posed with F . The Kolmogorov–Smirnov test statistic supy∈R |Sn(y)| converges in distribution
to supt∈[0,1] |B(t)|. Thus, although our testing problem requires the estimation of a nonparamet-
ric function and we have a composite null hypothesis, the same asymptotic distribution arises as
in the Kolmogorov–Smirnov test for the simple hypothesis H0 : F = F0 based on an i.i.d. sample
with distribution F .

Example 4.2. Again assume that the Hölder coefficient β is greater than 1. Consider the null
hypothesis H0 : F ∈ F = {Fϑ |ϑ ∈ (0,∞)}, where Fϑ(y)= e−(−ϑy)α I(−∞,0)(y)+ I[0,∞)(y) de-
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notes a Weibull distribution with some fixed shape parameter α ∈ (1/β,2− 1/β) and unknown
scale parameter ϑ . Note that Fϑ satisfies (F1) with c= ϑα .

Define the moment estimator ϑ̂n = ( 1
mn

∑n
j=1(−ε̂j )

αI {hn <
j
n
≤ 1− hn})− 1

α which is moti-
vated by Eϑ [(−ε1)

α] = ϑ−α . A Taylor expansion of x �→ xα at x =−εj yields

ϑ̂α
n − ϑα = −(ϑ̂nϑ)α

(
1

mn

n∑
j=1

(
(−εj )

α − ϑ−α
)
I

{
hn <

j

n
≤ 1− hn

}

+ α

mn

n∑
j=1

(−ξj )
α−1
(

ĝ

(
j

n

)
− g

(
j

n

))
I

{
hn <

j

n
≤ 1− hn

})

= −ϑ2α 1

mn

n∑
j=1

(
(−εj )

α − ϑ−α
)
I

{
hn <

j

n
≤ 1− hn

}
+ oPϑ

(
n−1/2)

= OPϑ

(
n−1/2)

for some ξj between ε̂j and εj , where in the last steps we have applied Theorem 2.2, the law
of large numbers and a central limit theorem. With a Taylor expansion of G(θ, y)= e−(−y)αθ in
θ = ϑ̂α

n around θ = ϑα one obtains

F
ϑ̂n

(y)− Fϑ(y)=−(−y)αe−(−ϑy)α
(
ϑ̂α

n − ϑα
)+OPϑ

(
n−1)

uniformly for all y ∈ (−∞,0]. Now analogously to the proof of Theorem 19.23 in van der Vaart
[35], we can conclude weak convergence of

Sn(y) =√n
(
Fn(y)− F(y)

)
− e−(−ϑy)αϑ2α(−y)α

√
n

mn

n∑
j=1

(
(−εj )

α − 1

ϑα

)
I

{
hn <

j

n
≤ 1− hn

}

+ oPϑ (1),

y ∈R, to a Gaussian process with covariance function (y1, y2) �→ Fϑ(y1∧y2)−Fϑ(y1)Fϑ(y2)−
e−(−ϑ)α(yα

1+yα
2 )(y1y2)

αϑ2α , where the covariance function follows by simple calculations and
the fact that Eϑ [I {ε1 ≤ y}((−ε1)

α − ϑ−α)] = (−y)αe−(−ϑy)α . For the special case of a test for
exponentially distributed errors (α = 1), the asymptotic quantiles for the Cramér–von-Mises test
statistic

∫
Sn(y)2 dF

ϑ̂n
(y) are tabled in Stephens [34].

Simulations

To study the finite sample performance of our goodness-of-fit test, we investigate its behaviour
on simulated data according to Examples 4.1 and 4.2 for samples of size 50, 100, 200 and 500.
In both settings, the regression function is given by g(x)= 0.5 sin(2πx)+ 4x. We use the local

linear estimator (corresponding to β = 2) with bandwidth n− 1
3 , which corresponds to the rate
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Figure 3. Monte-Carlo simulations for Example 4.1.

considered in (2.3) for α = 1 and β = 2 (up to a log term). The hypothesis tests are based on the
adjusted Cramér–von-Mises test statistic mn

n

∫
Sn(y)2 dF

ϑ̂n
(y) and have nominal size 5%. The

results reported below are based on 200 Monte Carlo simulations for each model.
In the situation of Example 4.1, the errors are drawn according to the density fε(y)= 0.5(ζ +

1)(1− |y|)ζ I[−1,1](y) for different values of ζ ∈ (−1,0]. Note that the null hypothesis H0 : ∃ϑ :
εi ∼ U [−ϑ,ϑ] holds if and only if ζ = 0. Figure 3 shows the empirical power of the Cramér–
von-Mises type test. The actual size is close to the nominal level for all sample sizes and the
power function is monotone both in ζ and the sample size n. For parameter values ζ ∈ [−0.2,0),
one needs rather large sample sizes to detect the alternative, as the error distribution is too similar
to the uniform distribution.

In the setting of Example 4.2, we simulate Weibull(ϑ,α) distributed errors for ϑ = 1 and
different values of α > 0. We test the null hypothesis H0 : ∃ϑ : −εi ∼ Exp(ϑ) of exponentiality,
which is only fulfilled for α = 1. In Figure 4, the empirical power function of our test is displayed
for different sample sizes. Again the actual size is close to the 5% and the power increases with
α departing from one as well as with increasing n.

To examine the influence of the bandwidth choice, in addition we have simulated the same
models with hn = c · n− 1

3 for different values of c ranging from c = 0.2 to c = 1.2. The results
for the test of uniformity in Example 4.1 are similar to those displayed in Figure 3 for all these
bandwidths. In the situation of Example 4.2, we obtain similar power functions as reported above
for c between 0.8 and 1.2, whereas for smaller bandwidths the actual size of the test exceeds its
nominal value substantially.
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Figure 4. Monte-Carlo simulations for Example 4.2.

4.2. Test for independence

In model (2.1), we assume that the distributions of the errors εi (i = 1, . . . , n) do not depend on
the point of measurement xi = i/n. We can test this assumption by comparing the sequential em-
pirical distribution function F̂n(y, s) with the estimator s̄nF̂n(y), which should behave similarly
if the errors are i.i.d. The following corollary to Theorem 3.1 describes the asymptotic behavior
of the Kolmogorov–Smirnov type test statistic

Tn = sup
s∈[0,1],y∈R

√
n
∣∣F̂n(y, s)− s̄nF̂n(y)

∣∣
under the null hypothesis of i.i.d. errors.

Corollary 4.3. Assume model (2.1) with (F1), (F2), (G1) and that supx∈[hn,1−hn] |ĝ(x)−g(x)| =
oP (n−1/(2(α∧1))) holds. Then Tn converges in distribution to sups∈[0,1],z∈[0,1] |G(s, z)| where G

is a completely tucked Brownian sheet, that is, a centered Gaussian process with covariance
function ((s1, z1), (s2, z2)) �→ (s1 ∧ s2 − s1s2)(z1 ∧ z2 − z1z2).

The proof is given in the Appendix. Note that under the assumptions of the corollary the limit
of the test statistic Tn is distribution free. The asymptotic quantiles tabled by Picard [28] can be
used to determine the critical value for a given asymptotic size of the test.
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4.3. Test for monotone boundary functions

We consider model (2.1) and aim at testing the null hypothesis

H0 : g is increasing,

which is a common assumption in boundary models. Let g̃ denote the smooth local polynomial
estimator for g defined in (2.4). Such an unconstrained estimator can be modified to obtain
an increasing estimator g̃I . To this end, for any function h : [0,1] → R define the increasing
rearrangement on [a, b] ⊂ [0,1] as the function �(h) : [a, b]→R with

�(h)(x)= inf

{
z ∈R

∣∣∣a + ∫ b

a

I
{
h(t)≤ z

}
dt ≥ x

}
.

Denote by �n the operator � with [a, b] = In. We define the increasing rearrangement of
g̃ as g̃I = �n(g̃), so that g̃I = g̃ if g̃ is nondecreasing (see Anevski and Fougères [2], and
Chernozhukov et al. [5]). We now consider residuals obtained from the monotone estimator:
ε̂I,i = Yi − g̃I (

i
n
), i = 1, . . . , n. Under the null hypothesis, these residuals should be approxi-

mately i.i.d., whereas under the alternative they show a varying behavior for i
n

in different subin-
tervals of [0,1]. For illustration, see Figure 5 where we have generated a data set (upper panel)
with true non-monotone boundary curve g (dashed curve). The solid curve is the increasing re-
arrangement gI . The lower left panel shows the errors εi , i = 1, . . . , n, with i.i.d.-behaviour. The
lower right panel shows εI,i = Yi − gI (

i
n
), i = 1, . . . , n, with a clear non-i.i.d. pattern.

Similarly as in Section 4.2, we compare the sequential empirical distribution function

F̃I,n(y, s)= 1

mn

	ns
∑
j=1

I {ε̃I,j ≤ y}I
{

j

n
∈ In

}

based on the increasing estimator g̃I with the product estimator s̄nF̃n(y), where again In :=
[hn + bn,1− hn − bn] and mn := n− 2�n(hn + bn)� + 1 and F̃n is defined in (3.1). Let

G̃n(s, y)=√n
(
F̃I,n(y, s)− s̄nF̃n(y)

)
, s ∈ [0,1], y ∈R.

To derive its limit distribution under the null hypothesis, we need additional assumptions:

(I1) Let infx∈[0,1] g′(x) > 0.

(B5) Let b
β
n = o(n−1/(2(α∧1))) and h

β
n + (logn/(nhn))

1/α = o(bn).

Note that under (B5), from Theorem 2.8(ii), we obtain uniform consistency of g̃′.

Theorem 4.4. Assume model (2.1) with (F1), (F2), (G1), (K1), (I1) and (B5), and that
supx∈[hn,1−hn] |ĝ(x)− g(x)| = oP (n−1/(2(α∧1))) holds. Then,

sup
y∈R,s∈[0,1]

∣∣F̃I,n(y, s)− s̄nF	ns
(y)
∣∣= oP

(
n−1/2). (4.1)
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Figure 5. The upper panel shows data points and the true boundary function (dashed curve) as well as the
increasing rearrangement (solid curve). The lower left panel shows the errors. The lower right panel shows
residuals built with respect to the increasing rearrangement.

Thus the Kolmogorov–Smirnov test statistic sups∈[0,1],y∈R |G̃n(s, y)|, converges in distribution to
sups∈[0,1],z∈[0,1] |G(s, z)| where G is the completely tucked Brownian sheet (see Corollary 4.3).

Remark 4.5. A test that rejects H0 for large values of the Kolmogorov–Smirnov test statistic
Tn = sups∈[0,1],y∈R |G̃n(s, y)| is consistent. To see this, note that by Theorem 1 of Anevski and
Fougères [2], supx∈In

|g̃I (x) − gI (x)| ≤ supx∈In
|g̃(x) − g(x)| = oP (1) with gI denoting the
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increasing rearrangement of g. Thus, n−1/2Tn converges to

T = sup
s∈[0,1],y∈R

∣∣∣∣
∫ s

0
F
(
y + (gI − g)(x)

)
dx − sF (y)

∣∣∣∣.
Since T > 0 under the alternative hypothesis g �= gI , the test statistic Tn converges to infinity.

4.4. Tests for irregularity

For some of our results (e.g., Corollary 3.9), we assume an irregular model, that is condition
(F1) with α < 2. In this subsection, we discuss tests of this assumption and related hypotheses.
We focus on a rather simple test statistic which directly uses the observations Yi locally in the
neighborhood of some fixed x0. A more refined approach based on an approximation of the tail
behavior of the empirical c.d.f. of all residuals is the topic of future research.

Fix some x0 ∈ (0,1) and let Ỹi := Y	nx0
+i , 1 ≤ i ≤ ln ≤ n − 	nx0
, for some intermediate
sequence (ln)n∈N, that is, ln →∞, but ln/n→ 0. Denote the corresponding order statistics by
Ỹ1:ln ≤ Ỹ2:ln ≤ · · · ≤ Ỹln:ln . For another intermediate sequence kn = o(ln) let

α̂n := −
[

kn∑
i=2

dni log
Ỹln:ln − Ỹln−i+1:ln
Ỹln:ln − Ỹln−kn:ln

]−1

,

with dni = k−1
n d(i/kn) for some continuously differentiable function d : [0,1]→R such that∫ 1

0
d(t)| log t |dt =−1 (4.2)

and that there exists λ > 0 such that d(t)= 0 for all t ∈ [0, λ).
The basic assumption (F1) on the error c.d.f. F is equivalent to

F←(1− t)=−(t/c)1/α + r̃(t) (4.3)

for some function r̃(t) = o(t1/α) as t ↓ 0. Here F← denotes the quantile function (generalized
inverse) pertaining to F .

Proposition 4.6. Suppose that the condition (F1) and (G1) hold for some β ≥ 1, that α < 2,

k
1/2−1/α
n l

1+1/α
n = o(n) (4.4)

and, for some ι > 0,

k
1/2−1/α
n l

1/α
n sup

0<t≤(1+ι)kn/ ln

∣∣r̃(t)∣∣→ 0. (4.5)

Then

k
1/2
n (α̂n − α)→ α

∫ 1

λ

d(t)
B(t)

t
dt weakly (4.6)
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for a Brownian bridge B . The limit has a centered normal distribution with variance

σ 2
α = 2α2

∫ 1

λ

∫ 1

t

s−1 d(s) d(t) ds dt.

Remark 4.7. (i) In extreme value theory, it is common to assume a second order condition of
the type

r̃(t)=O
(
t (1+ρ)/α

)
as t ↓ 0

for some ρ > 0. Then condition (4.5) is fulfilled if kn = o(l
2ρ/(2ρ+α)
n ). This condition can be

jointly fulfilled with (4.4) if and only if l
3/2+(α+1)/(2ρ)
n = o(n). In particular, for α < 2, this last

condition is satisfied for ln =O(n2ρ/(3(ρ+1))).
(ii) A close inspection of the proof of Proposition 4.6 reveals that α̂n is a consistent estimator

of α (not assumed to be less than 2), provided the basic assumptions (F1) and (G1) hold with
β ≥ 1 and k

−1/α
n l

1+1/α
n = o(n).

Now tests of hypotheses on α can be easily deduced. The following exemplary result is an
immediate consequence of Proposition 4.6 and Remark 4.7(ii).

Corollary 4.8. Consider the problem of testing the null hypothesis α ∈ (0, α0] for some α0 < 2.
If the conditions of Proposition 4.6 are fulfilled with α = α0, then the test that rejects the null
hypothesis if α̂n > α0 + k

−1/2
n σα0�

−1(1− τ) is consistent and has asymptotic size τ ∈ (0,1).

Appendix: Proofs

A.1. Auxiliary results

Proposition A.1. Assume that model (2.1) holds and that the regression function g fulfills
condition (G1) for some β ∈ (0, β∗ + 1] and some cg ∈ [0, c∗]. Then there exist constants
Lβ∗,c∗ ,Lβ∗ > 0 and a natural number jβ∗ (depending only on the respective subscripts) such
that ∣∣ĝ(x)− g(x)

∣∣≤ Lβ∗,c∗h
β
n +Lβ∗ max

1≤j≤2jβ∗

(
min

i:−1+(j−1)/jβ∗≤(i/n−x)/hn≤−1+j/jβ∗
|εi |
)
.

This proposition can be verified by an obvious modification of the proof of Theorem 3.1 by
Jirak et al. [19].

Lemma A.2. Under assumptions (F1) and (H1) for any fixed set I1, . . . , Im of disjoint non-
degenerate subintervals of [−1,1] we have

sup
x∈[hn,1−hn]

max
1≤j≤m

min
i∈{1,...,n}

(i/n−x)/hn∈Ij

|εi | =OP

(( | loghn|
nhn

)1/α)
.
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Proof. Let rn := (| loghn|/(nhn))
1/α . Obviously it suffices to prove that for all non-degenerate

subintervals I ⊂ [−1,1] there exists a constant L such that

lim
n→∞P

{
sup

x∈[hn,1−hn]
min

i∈{1,...,n}
(i/n−x)/hn∈I

|εi |> Lrn

}
= 0.

Denote by d = sup I − inf I > 0 the diameter of I and let dn := �nhnd� − 1 and ln := 	n/dn
.
Then for all y > 0

P
{

sup
x∈[hn,1−hn]

min
i∈{1,...,n}

(i/n−x)/hn∈I

|εi |> y
}

≤ P
{

max
j∈{1,...,n−dn}

min
i∈{j,...,j+dn}

|εi |> y
}

(A.1)

≤ P
{

max
l∈{0,...,ln}

l even

Mn,l > y
}
+ P

{
max

l∈{0,...,ln}
l odd

Mn,l > y
}

with

Mn,l := max
j∈{ldn+1,...,(l+1)dn}

min
i∈{j,...,j+dn}

|εi |.

Since the random variables Mn,l for l even are i.i.d., we have

P
{

max
l∈{0,...,ln}

l even

Mn,l > y
}
= 1− (1− P {Mn,0 > y})	ln/2
+1

,

and an analogous equation holds for the maxima over the odd numbered block maxima Mn,l .
Let G be the c.d.f. of |εi |. If Mn,0 exceeds y, then there is a smallest index j ∈ {1, . . . , dn} for

which mini∈{j,...,j+dn} |εi |> y. Hence,

P {Mn,0 > y} = P
{

min
i∈{1,...,1+dn}

|εi |> y
}
+

dn∑
j=2

P
{
|εj−1| ≤ y, min

i∈{j,...,j+dn}
|εi |> y

}

= (1−G(y)
)dn+1 + (dn − 1)G(y)

(
1−G(y)

)dn+1

≤ (1+ dnG(y)
)(

1−G(y)
)dn .

To sum up, we have shown that

P
{

sup
x∈[hn,1−hn]

min
i∈{1,...,n}

(i/n−x)/hn∈I

|εi |> Lrn

}
≤ 2
(
1− (1− (1+ dnG(Lrn)

)(
1−G(Lrn)

)dn
)	ln/2
+1)

.

It remains to be shown that the right hand side tends to 0 for sufficiently large L which is true if
and only if (

1+ dnG(Lrn)
)(

1−G(Lrn)
)dn = o(1/ln).
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This is an immediate consequence of 1/ln ∼ dhn and

G(Lrn)= cLα | loghn|
nhn

(
1+ o(1)

)

=⇒ (
1−G(Lrn)

)dn = exp

(
−nhndcLα | loghn|

nhn

(
1+ o(1)

))

=⇒ (
1+ dnG(Lrn)

)(
1−G(Lrn)

)dn

=O
(| loghn| exp

(−cdLα| loghn|
(
1+ o(1)

)))= o(hn)

if cdLα > 1. �

A.2. Proof of Theorem 2.2

The assertion directly follows from Proposition A.1 and Lemma A.2.

A.3. Proof of Theorem 2.8

(i) Using Theorem 2.2, a Taylor expansion of g of order 	β
 and assumption (K1), one can show
by direct calculations that for some τu ∈ (0,1)

sup
x∈In

∣∣g̃(x)− g(x)
∣∣

≤ sup
x∈In

∣∣∣∣
∫ 1−hn

hn

(
ĝ(z)− g(z)

) 1

bn

K

(
x − z

bn

)
dz

∣∣∣∣
+ sup

x∈In

∣∣∣∣
∫ 1−hn

hn

(
g(z)− g(x)

) 1

bn

K

(
x − z

bn

)
dz

∣∣∣∣
≤ sup

z∈[hn,1−hn]

∣∣ĝ(z)− g(z)
∣∣O(1) (A.2)

+ sup
x∈In

∣∣∣∣
∫ 1

−1

(
g(x − ubn)− g(x)

)
K(u)du

∣∣∣∣
≤O

(
hβ

n

)+OP

(( | loghn|
nhn

) 1
α
)

+ b	β
n sup
x∈In

∣∣∣∣ 1

	β
!
∫ 1

−1
u	β


(
g(	β
)(x − τuubn)− g(	β
)(x)

)
K(u)du

∣∣∣∣. (A.3)

Now the Hölder property of g combined with (K1) yields the desired result.
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(ii) Since g is bounded on [hn,1− hn] and supx∈[hn,1−hn] |ĝ(x)− g(x)| = oP (1), ĝ is even-
tually bounded on [hn,1 − hn] too. Note that the partial derivative of ĝ(z)b−1

n K((x − z)/bn)

with respect to x is continuous and bounded (for fixed n). Thus, we can exchange integration and
differentiation and obtain

sup
x∈In

∣∣g̃′(x)− g′(x)
∣∣

= sup
x∈In

∣∣∣∣
∫ 1−hn

hn

ĝ(z)
1

b2
n

K ′
(

x − z

bn

)
dz− g′(x)

∣∣∣∣.
Integration by parts yields

∫ 1−hn

hn

g(z)
1

b2
n

K ′
(

x − z

bn

)
dz

=
∫ 1−hn

hn

g′(z) 1

bn

K

(
x − z

bn

)
dz

since K(−1)=K(1)= 0. Therefore,

sup
x∈In

∣∣g̃′(x)− g′(x)
∣∣ ≤ sup

x∈In

∣∣∣∣
∫ 1−hn

hn

(
ĝ(z)− g(z)

) 1

b2
n

K ′
(

x − z

bn

)
dz

∣∣∣∣
+ sup

x∈In

∣∣∣∣
∫ 1−hn

hn

(
g′(z)− g′(x)

) 1

bn

K

(
x − z

bn

)
dz

∣∣∣∣
≤ sup

z∈[hn,1−hn]
∣∣ĝ(z)− g(z)

∣∣O(b−1
n

)

+ sup
x∈In

∣∣∣∣
∫ 1

−1

(
g′(x − ubn)− g′(x)

)
K(u)du

∣∣∣∣.
Similarly as in the proof of (i), assertion (ii) follows by Theorem 2.2, a Taylor expansion of g′ of
order 	β
 − 1 and the Assumptions (K1) and (G1).

(iii) We distinguish the cases |x−y|> an and |x−y| ≤ an for some suitable sequence (an)n∈N
with limn→∞ an = 0 specified later. In the first case, we obtain

sup
x,y∈In,|x−y|>an

|g̃′(x)− g′(x)− g̃′(y)+ g′(y)|
|x − y|δ

≤ 2 sup
x∈In

∣∣g̃′(x)− g′(x)
∣∣a−δ

n (A.4)

=
(

O
(
bβ−1
n

)+(O
(
hβ

n

)+OP

(( | loghn|
nhn

) 1
α
))

b−1
n

)
a−δ
n .
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In the second case, we use a decomposition like in the proof of (ii):

sup
x,y∈In,0<|x−y|≤an

|g̃′(x)− g′(x)− g̃′(y)+ g′(y)|
|x − y|δ

≤ sup
x,y∈In,0<|x−y|≤an

| ∫ 1−hn

hn
(ĝ(z)− g(z)) 1

b2
n
(K ′( x−z

bn
)−K ′( y−z

bn
)) dz|

|x − y|δ

+ sup
x,y∈In

0<|x−y|≤an

|g′(x)− g′(y)|
|x − y|δ + sup

x,y∈In

0<|x−y|≤an

| ∫ 1−hn

hn
g′(z) 1

bn
(K(x−z

bn
)−K(

y−z
bn

)) dz|
|x − y|δ .

By Lipschitz continuity of K ′ and Theorem 2.2, the first term on the right-hand side is of the
order (

O
(
hβ

n

)+OP

(( | loghn|
nhn

) 1
α
))

1

b3
n

O
(
a1−δ
n

)
. (A.5)

For β ≥ 2, the second term is of the order a1−δ
n as g′ is Lipschitz continuous, while for β ∈ (1,2)

assumption (G1) yields the rate a
β−1−δ
n . In both cases, condition (B2.δ) ensures that the second

term converges to 0.
The last term on the right-hand side can be rewritten as

sup
x,y∈In

0<|x−y|≤an

| ∫ 1
−1(g

′(x − hnu)− g′(y − hnu))K(u)du|
|x − y|δ

and is thus of the same order as the second term by assumption (G1).
To conclude the proof, one needs to find a sequence an = o(1) such that (A.4) and (A.5) tend

to 0 in probability, that is,

bβ−1
n + ϑn

bn

= o
(
aδ
n

)
and a1−δ

n = o

(
b3
n

ϑn

)

with ϑn := h
β
n + (| loghn|/(nhn))

1/α . Obviously, such a sequence an exists if and only if

bβ−1
n + ϑn

bn

= o

((
b3
n

ϑn

) δ
1−δ
)

,

which in turn is equivalent to condition (B2.δ).

A.4. Some preliminaries

For easy reference, we give some preliminaries on empirical process theory that is used in Sec-
tions A.5 and A.6. See, for example, van der Vaart and Wellner [36] for details.
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Let T denote an index set. P ∗ and E∗ denote outer probability and outer expectation. Weak
convergence of a sequence (Xn)n∈N in �∞(T ) to a tight limit X is equivalent to convergence
of the finite dimensional distributions and the existence of a semimetric ρ on T , such that T is
totally bounded and

∀ε, η > 0 ∃δ > 0 : lim sup
n→∞

P ∗
(

sup
s,t∈T

ρ(s,t)<δ

∣∣Xn(s)−Xn(t)
∣∣> ε

)
< η.

The latter condition means that (Xn)n∈N is asymptotically equicontinuous with respect to ρ. If it
holds, then for sequences δn↘ 0 one has

sup
s,t∈T

ρ(s,t)<δn

∣∣Xn(s)−Xn(t)
∣∣= oP (1). (A.6)

For stochastic processes Zn1, . . . ,Znn with index set F and for ε > 0 the bracketing number
N[](ε,F,Ln

2) is defined as the minimal number Nε of sets in a partition F =⋃Nε

j=1 Fn
εj of the

index set F such that
n∑

i=1

E
[

sup
ϕ,ψ∈Fn

εj

∣∣Zni(ϕ)−Zni(ψ)
∣∣2]≤ ε2

for every partitioning set Fn
εj . We now state Theorem 2.11.9 of van der Vaart and Wellner [36]

(p. 211) that will be applied in Section A.6.

Theorem. For each n ∈N let Zn1, . . . ,Znn be independent stochastic processes with finite sec-
ond moments indexed by a totally bounded semimetric space (F, ρ). Suppose that

n∑
i=1

E∗
[

sup
ϕ∈F

∣∣Zni(ϕ)
∣∣I{ sup

ϕ∈F

∣∣Zni(ϕ)
∣∣> η

}]
→ 0 for all η > 0, (A.7)

sup
ρ(ϕ,ψ)<δn

n∑
i=1

E
[(

Zni(ϕ)−Zni(ψ)
)2]→ 0 for every sequence δn↘ 0, (A.8)

∫ δn

0

√
logN[]

(
ε,F,Ln

2

)
dε → 0 for every sequence δn↘ 0. (A.9)

Then the sequence
∑n

i=1(Zni − E[Zni]) converges weakly in �∞(F) provided it converges
marginally.

A.5. Proof of Theorem 3.1

By our assumptions, there exists a sequence an = o(n−1/(2(α∧1))) such that

P
(

sup
x∈[hn,1−hn]

∣∣ĝ(x)− g(x)
∣∣≤ an

)
−−−→
n→∞ 1.
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For this rate an we then have by Hölder continuity of F ,∣∣F(y + an)− F(y)
∣∣=O

(
aα∧1
n

)= o
(
n−1/2). (A.10)

Let F̄n(y, s) := 1
mn

∑	ns

j=1 I {εj ≤ y}I {hn <

j
n
≤ 1− hn}. Since

F̂n(y, s) = 1

mn

	ns
∑
j=1

I

{
εj ≤ y + (ĝ − g)

(
j

n

)}
I

{
hn <

j

n
≤ 1− hn

}

we may conclude

√
n
(
F̄n(y − an, s)− s̄nF	ns
(y)

) ≤ √n
(
F̂n(y, s)− s̄nF	ns
(y)

)
≤ √n

(
F̄n(y + an, s)− s̄nF	ns
(y)

)
for all y ∈R and s ∈ [0,1] with probability converging to 1.

We take a closer look at the bounds. The sequential empirical process

En(y, s)= n−1/2
	ns
∑
j=1

(
I {εj ≤ y} − F(y)

)
, y ∈R, s ∈ [0,1], (A.11)

converges weakly to a Kiefer process; see, for example, Theorem 2.12.1 in van der Vaart and
Wellner [36]. Now, n ∼ mn, the asymptotic equicontinuity of the process En (see (A.6)), the
Hölder continuity (F2) and (A.10) imply

√
n
(
F̄n(y ± an, s)− s̄nF	ns
(y)

)
= n

mn

(
En

(
y ± an, s ∧ (1− hn)

)−En

(
y, s ∧ (1− hn)

)
−En(y ± an, s ∧ hn)+En(y, s ∧ hn)

)
+√ns̄n

(
F(y ± an)− F(y)

)+√n
(
F̄n(y, s)− s̄nF	ns
(y)

)
= oP (1)+√n

(
F̄n(y, s)− s̄nF	ns
(y)

)
uniformly for all y ∈R, s ∈ [0,1].

It remains to be shown that

√
n
(
F̄n(y, s)− s̄nF	ns
(y)

)

=
√

n

mn

	ns
∑
j=1

(
I {εj ≤ y} − F(y)

)
I

{
hn <

j

n
≤ 1− hn

}
−
√

ns̄n

	ns

	ns
∑
j=1

(
I {εj ≤ y} − F(y)

)

=
(

n

mn

− 1

)(
En

(
y, s ∧ (1− hn)

)−En(y, s ∧ hn)
)

(A.12)
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−
(

ns̄n

	ns
 − 1

)
En(y, s)

+ (En

(
y, s ∧ (1− hn)

)−En(y, s ∧ hn)−En(y, s)
)

tends to 0 in probability uniformly for all y ∈R, s ∈ [0,1].
The first term vanishes asymptotically, because En is uniformly stochastically bounded and

n∼mn.
Next note that s̄n = 0 for s < hn, while for s ≥ hn

ns̄n

	ns
 − 1= 	n(s ∧ (1− hn))
 − 	nhn

(1− 2hn +O(n−1))	ns
 − 1= O(nhn)

(1− 2hn +O(n−1))	ns
 , (A.13)

which is uniformly bounded for all s ∈ [hn,1] and tends to 0 uniformly with respect to s ∈
[h1/2

n ,1]. Moreover, En is uniformly stochastically bounded and sup
0≤s≤h

1/2
n ,y∈R |En(y, s)| =

oP (1), because En is asymptotically equicontinuous with En(y,0) = 0 (cf. (A.6)). Hence, the
second term in (A.12) converges to 0 in probability, too. Likewise, the convergence of the last
term to 0 follows from the asymptotic equicontinuity of En and (A.6). This concludes the proof.

A.6. Proof of Theorem 3.4 and of Remark 3.5

For any interval I ⊂R and constants k > 0, δ ∈ (0,1), define the following class of differentiable
functions:

C1+δ
k (I )=

{
d : I →R

∣∣∣max

{
sup
x∈I

∣∣d(x)
∣∣, sup

x∈I

∣∣d ′(x)
∣∣, sup

x,y∈I,x �=y

|d ′(x)− d ′(y)|
|x − y|δ

}
≤ k

}
.

Then Theorem 2.8 yields P((g̃ − g) ∈ C1+δ
1/2 (In)) → 1 as n →∞. Hence, there exist ran-

dom functions dn : [0,1] → R such that dn(x) = (g̃ − g)(x) for all x ∈ In and P(dn ∈
C1+δ

1 ([0,1]))→ 1 for n→∞. (For instance, one may extrapolate g̃ − g linearly on [0, hn]
and on [1− hn,1].)

On the space F :=R×C1+δ
1 ([0,1]) we define the semimetric

ρ
(
(y, d),

(
y∗, d∗

))
=max

{
sup

x∈[0,1]
sup

γ∈C1+δ
1 ([0,1])

∣∣F (y + γ (x)
)− F

(
y∗ + γ (x)

)∣∣, sup
x∈[0,1]

∣∣d(x)− d∗(x)
∣∣}.

For ϕ = (y, d) ∈F let

Znj (ϕ) :=
√

n

mn

I

{
εj ≤ y + d

(
j

n

)}
I

{
j

n
∈ In

}
− 1√

n
I {εj ≤ y}

and

Gn(ϕ) :=
n∑

j=1

(
Znj (ϕ)−E

[
Znj (ϕ)

])
.
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Note that

Gn(y, dn) =
√

n

mn

n∑
j=1

I
{
εj ≤ y − g(j/n)+ g̃(j/n)

}
I {j/n ∈ In}

−
√

n

mn

n∑
j=1

F
(
y + (g̃ − g)(j/n)

)
I {j/n ∈ In} − 1√

n

n∑
j=1

I {εj ≤ y} +√nF(y)

=√n

(
F̃n(y)− 1

n

n∑
j=1

I {εj ≤ y}

− 1

mn

n∑
j=1

(
F

(
y + (g̃ − g)

(
j

n

))
− F(y)

)
I

{
j

n
∈ In

})
.

In the following, we will apply Theorem 2.11.9 of van der Vaart and Wellner [36] (see Sec-
tion A.4) to show that the process (Gn(ϕ))ϕ∈F converges to a (Gaussian) limiting process. In
particular, Gn is asymptotically equicontinuous. Note that for

Gn(y,0)= 1√
n

n∑
j=1

((
n

mn

− 1

)
I {εj ≤ y}I {j/n ∈ In} − I {εj ≤ y}I {j/n /∈ In}

)

we have

Var
(
Gn(y,0)

) = 1

n

n∑
j=1

((
n

mn

− 1

)
I {j/n ∈ In} − I {j/n /∈ In}

)2

F(y)
(
1− F(y)

)

≤ 1

2

((
n

mn

− 1

)2

+ n−mn

n

)
→ 0

for n →∞. Now note that supy∈R ρ((y, dn), (y,0)) = supx∈[0,1] |dn(x)| = oP (1). From the
asymptotic equicontinuity of Gn it follows that Gn(y, dn) = oP (1) uniformly in y (see (A.6))
and the assertion holds.

One may proceed as in the proof of Lemma 3 in Neumeyer and Van Keilegom [27] (see the
online supporting information to that article) to prove that the conditions of Theorem 2.11.9 of
van der Vaart and Wellner [36] are fulfilled. The proof of (A.7) and (A.8) are analogous. The
only difference is that Neumeyer and Van Keilegom [27] assume a bounded error density while
we use Hölder continuity of F , see assumption (F2). Next, we show that the bracketing entropy
condition (A.9) is fulfilled and that (F, ρ) is totally bounded.

To this end, let dL
m ≤ dU

m , m = 1, . . . ,M , be brackets for C1+δ
1 ([0,1]) of length η2/(α∧1)

w.r.t. the supremum norm. According to van der Vaart and Wellner [36], Theorem 2.7.1
and Corollary 2.7.2, M = O(exp(κη−2/((1+δ)(α∧1)))) brackets are needed. For each m de-
fine FL

m(y) := n−1∑n
j=1 F(y + dL

m(j/n)) and choose yL
m,k , k = 1, . . . ,K = O(η−2) such that

FL
m(yL

m,k)− FL
m(yL

m,k−1) < η2 for all k ∈ {1, . . . ,K + 1} with yL
m,0 := −∞ and yL

m,K+1 := ∞.
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Define FU
m and yU

m,k analogously, ỹL
m,k := yL

m,k and denote by ỹU
m,k the smallest yU

m,l larger than

or equal to yL
m,k+1. Then F is covered by

Fmk :=
{
(y, d) ∈F |ỹL

m,k ≤ y ≤ ỹU
m,k, d

L
m ≤ d ≤ dU

m

}
, m= 1, . . . ,M,k = 1, . . . ,K.

Check that by condition (F2)

sup
y∈R

∣∣FU
m (y)− FL

m(y)
∣∣ ≤ sup

y∈R
n−1

n∑
j=1

∣∣F (y + dU
m (j/n)

)− F
(
y + dL

m(j/n)
)∣∣

(A.14)
≤ LF sup

x∈R

∣∣dU
m (x)− dL

m(x)
∣∣α∧1 ≤ LF η2

with LF denoting the Hölder constant of F . Thus,

1

n

n∑
j=1

E
[

sup
(y,d),(y∗,d∗)∈Fmk

∣∣I{εj ≤ y + d(j/n)
}− I

{
εj ≤ y∗ + d∗(j/n)

}∣∣]2

≤ 1

n

n∑
j=1

E
[
I
{
εj ≤ ỹU

m,k + dU
m (j/n)

}− I
{
εj ≤ ỹL

m,k + dL
m(j/n)

}]2
≤ FU

m

(
ỹU
m,k

)− FL
m

(
ỹL
m,k

)
≤ ∣∣FU

m

(
ỹU
m,k

)− FU
m

(
ỹL
m,k+1

)∣∣+ ∣∣FU
m

(
ỹL
m,k+1

)− FL
m

(
ỹL
m,k+1

)∣∣+ ∣∣FL
m

(
ỹL
m,k+1

)− FL
m

(
ỹL
m,k

)∣∣
≤ (2+LF )η2,

where the last step follows from (A.14) and the definitions of ỹL
m,k and ỹU

m,k . Hence we obtain
for the squared diameter of Fmk w.r.t. Ln

2

n∑
j=1

E
[

sup
(y,d),(y∗,d∗)∈Fmk

∣∣Znj (y, d)−Znj

(
y∗, d∗

)∣∣]2

≤ 2
n

m2
n

n∑
j=1

E
[

sup
(y,d),(y∗,d∗)∈Fmk

∣∣I{εj ≤ y + d(j/n)
}− I

{
εj ≤ y∗ + d∗(j/n)

}∣∣]2
I {j/n ∈ In}

+ 2

n

n∑
j=1

E
[

sup
(y,d),(y∗,d∗)∈Fmk

∣∣I {εj ≤ y} − I
{
εj ≤ y∗

}∣∣]2

≤ 3(2+LF )η2

for sufficiently large n. This shows that the bracketing number satisfies logN[](η,F,Ln
2) =

O(logM + logK)=O(η−2/((1+δ)(α∧1))), and (A.9) follows from δ > 1/α − 1.
It remains to show that (F, ρ) is totally bounded, that is, that, for all η ∈ (0,1), the space

F can be covered by finitely many sets with ρ-diameter less than 5η. To this end, choose dL
m



452 H. Drees, N. Neumeyer and L. Selk

and dU
m as above. For each m ∈ {1, . . . ,M} and j ∈ {0, . . . , J := �η−1�}, let sj := jη1/(α∧1) ∧ 1

and Fjm(y) := P(ε1 ≤ y + dL
m(sj )), and choose an increasing sequence yjm,k , k = 1, . . . ,K :=

	η−1
, such that Fjm(yjm,k)− Fjm(yjm,k−1) < η for all k ∈ {1, . . . ,K + 1} with yjm,0 := −∞
and yjm,K+1 := ∞. Denote by ȳl , 1 ≤ l ≤ L, all points yjm,k , j ∈ {0, . . . , J }, m ∈ {1, . . . ,M},
k ∈ {1, . . . ,K}, in increasing order. We show that all sets Fml := {(y, d)|ȳl−1 ≤ y ≤ ȳl , d

L
m ≤

d ≤ dU
m } have ρ-diameter less than 5η. Check that, for all 1≤ l ≤L, one has

sup
x∈[0,1]

sup
γ∈C1+δ

1 ([0,1])

∣∣F (ȳl + γ (x)
)− F

(
ȳl−1 + γ (x)

)∣∣
≤ max

1≤j≤J
sup

sj−1≤x≤sj

max
1≤m≤M

sup
dL
m≤γ≤dU

m

[∣∣F (ȳl + γ (x)
)− F

(
ȳl + γ (sj )

)∣∣
+ ∣∣F (ȳl + γ (sj )

)− F
(
ȳl + dL

m(sj )
)∣∣

+ ∣∣F (ȳl + dL
m(sj )

)− F
(
ȳl−1 + dL

m(sj )
)∣∣ (A.15)

+ ∣∣F (ȳl−1 + dL
m(sj )

)− F
(
ȳl−1 + γ (sj )

)∣∣+ ∣∣F (ȳl−1 + γ (sj )
)− F

(
ȳl−1 + γ (x)

)∣∣]
< max

1≤j≤J

[
(sj − sj−1)

α∧1 + η2 + η+ η2 + (sj − sj−1)
α∧1]

≤ 5η.

Therefore, for all (y, d), (y∗, d∗) ∈Fml

ρ
(
(y, d),

(
y∗, d∗

))
≤max

{
sup

x∈[0,1]
sup

γ∈C1+δ
1 ([0,1])

∣∣F (ȳl + γ (x)
)− F

(
ȳl−1 + γ (x)

)∣∣, sup
x∈[0,1]

dU
m (x)− dL

m(x)
}

≤max
{
5η,η2/(α∧1)

}= 5η,

which concludes the proof of Theorem 3.4.
If we drop the assumption δ > 1/α − 1 but require F to be Lipschitz continuous, then we use

brackets for C1+δ
1 ([0,1]) of length η2 (instead of η2/(α∧1)) and replace (A.14) with

sup
y∈R

∣∣FU
m (y)− FL

m(y)
∣∣ ≤ sup

y∈R
n−1

n∑
j=1

∣∣F (y + dU
m (j/n)

)− F
(
y + dL

m(j/n)
)∣∣

≤ LF sup
x∈R

∣∣dU
m (x)− dL

m(x)
∣∣≤ LF η2

with LF denoting the Lipschitz constant of F to prove logN[](η,F,Ln
2)=O(η−2/(1+δ)), which

again yields (A.9). Likewise, in the last part of the proof, one defines sj := jη ∧ 1 and replaces
(A.15) with max1≤j≤J [(sj − sj−1)+ η2 + η+ η2 + (sj − sj−1)] ≤ 5η.

In the remaining proofs to Section 3, we use the index n for the estimators to emphasize the
dependence on the sample size and to distinguish between estimators and polynomials corre-
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sponding to a given sample on the one hand and corresponding objects in a limiting setting on
the other hand.

A.7. Proof of Lemma 3.6

Proposition A.1 and the proof of Lemma A.2 show that there exist constants d, d̃ > 0 depend-
ing only on β and cg such that E(ĝn(x)) ≤ d̃E(Mn,0) and P {Mn,0 > t} ≤ (1 + dnhn(1 −
F(−t)))(F (−t))dnhn for all t > 0.

Let an := a(logn/(nhn))
1/α for a suitable constant a > 0 and fix some t0 > 0 such that (1−

F(−t))/(ctα) ∈ (1/2,2) for all t ∈ (0, t0]. Then

E(Mn,0)

=
∫ ∞

0
P {Mn,0 > t}dt

≤ an +
∫ t0

an

(
1+ dnhn

(
1− F(−t)

))(
F(−t)

)dnhn dt

+ (1+ dnhn)

∫ ∞

t0

(
F(−t)

)dnhn dt.

Now, for sufficiently large n,∫ t0

an

(
1+ dnhn

(
1− F(−t)

))(
F(−t)

)dnhn dt

≤
∫ t0

an

(
1+ 2cdnhnt

α
)(

1− c

2
tα
)dnhn

dt

≤ (1+ 2cd)nhn

∫ t0

an

tα exp

(
− c

2
dnhnt

α

)
dt

≤ (1+ 2cd)nhn

t0

α

∫ tα0

aα
n

exp

(
− c

2
dnhnu

)
du

≤ 2(1+ 2cd)nhnt0

αcdnhn

exp

(
− c

2
daα logn

)

= o
(
n−ξ
)

for all ξ > 0 if a is chosen sufficiently large. Hence the assertion follows from (H1) and (F3)
which imply ∫ ∞

t0

(
F(−t)

)dnhn dt ≤ nhn

(
F(−t0)

)dnhn +
∫ ∞

nhn

t−dτnhn dt = o
(
n−ξ
)

for all ξ > 0.
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A.8. Proof of Theorem 3.7

As the density f is bounded and Lipschitz continuous, one has

∣∣F (y + (g̃∗n − g
)
(j/n)

)− F(y)− f (y)
(
g̃∗n − g

)
(j/n)

∣∣
=
∣∣∣∣
∫ (g̃∗n−g)(j/n)

0
f (y + t)− f (y)dt

∣∣∣∣
=O

((
g̃∗n − g

)2
(j/n)

)
uniformly for y ≤ y0 and j/n ∈ In. Hence, the remainder term can be approximated by a sum of
estimation errors as follows:∣∣∣∣∣ 1

mn

n∑
j=1

(
F
(
y + (g̃∗n − g

)
(j/n)

)− F(y)
)
I {j/n ∈ In}

− f (y)

mn

n∑
j=1

(
g̃∗n − g

)
(j/n)I {j/n ∈ In}

∣∣∣∣∣
=O

(
1

mn

n∑
j=1

(
g̃∗n − g

)2
(j/n)I {j/n ∈ In}

)

=OP

(
h2β

n + b2β
n +

(
logn

nhn

)2/α)
= oP

(
n−1/2),

where for the last conclusions we have used Theorem 2.2, Lemma 3.6 and the assumptions (H2)
and (B4). Thus the assertion follows if we show that

1

mn

n∑
j=1

(
g̃∗n − g

)
(j/n)I {j/n ∈ In} = oP

(
n−1/2).

To this end, note that g̃∗n(x) and g̃∗n(y) are independent for |x−y|> 2(hn+bn). For simplicity,
we assume that 2n(hn+bn)=: kn is a natural number. If we split the whole sum into blocks with
kn consecutive summands, then all blocks with odd numbers are independent and all blocks with
even numbers are independent. It suffices to show that

1

mn

	n/(2kn)
∑
�=1

�n,2�−1 = oP

(
n−1/2),

1

mn

	n/(2kn)
∑
�=1

�n,2� = oP

(
n−1/2),



Estimation and hypotheses testing in boundary regression models 455

where �n,l =∑(l+2)kn−1
j=(l+1)kn

(g̃∗n − g)(j/n), 1 ≤ � ≤ 	n/kn
. We only consider the second sum,
because the first convergence obviously follows by the same arguments.

It suffices to verify

E
(
�2

n,2�

) = o(kn), (A.16)

E(�n,2�) = o
(
n−1/2kn

)= o
(
n1/2(hn + bn)

)
(A.17)

uniformly for all 1≤ �≤ 	n/(2kn)
, since then

E

(	n/(2kn)
∑
�=1

�n,2�

)2

=
	n/(2kn)
∑

�=1

Var(�n,2�)+
(	n/(2kn)
∑

�=1

E(�n,2�)

)2

= o(n),

which implies the assertion.
To prove (A.16), note that according to the definition of g̃∗n and Lemma 3.6

sup
x∈In

∣∣g̃∗n(x)− g(x)
∣∣

≤ sup
x∈In

∣∣g̃(x)− g(x)
∣∣+O

((
logn

nhn

)1/α)

≤ c0 sup
x∈[hn,1−hn]

∣∣ĝ(x)− g(x)
∣∣+O

(
bβ
n

)+O

((
logn

nhn

)1/α)

by (A.2) and (A.3) in the proof of Theorem 2.8(i). (Here and in the sequel, ci denote generic
constants depending only on β , cg and the kernel K .) Further, by Proposition A.1 and (A.1) in
the proof of Lemma A.2, we obtain

sup
x∈In

∣∣g̃∗n(x)− g(x)
∣∣≤O

(
hβ

n

)+O
(
bβ
n

)+O

((
logn

nhn

)1/α)
+ c1 max

(
M∗

1 ,M∗
2

)
,

where M∗
1 =maxl∈{0,...,ln},l even Mn,l and M∗

2 =maxl∈{0,...,ln},l odd Mn,l .

Because kn(h
β
n + b

β
n + (logn/(nhn))

1/α)= o(k
1/2
n ) by (H2) and (B4), it suffices to show that

E
((

M∗
i

)2)= ∫ ∞

0
P
{
M∗

i > t1/2}dt = o(1/kn). (A.18)

Recall from the proof of Lemma A.2 that P {M∗
i > t} ≤ 1− (1− P {Mn,0 > t})c2(hn+bn)/hn with

P {Mn,0 > t} ≤ (1+ c3nhn

(
1− F(−t)

))(
F(−t)

)c3nhn .

Fix some t0 ∈ (0, (2c)−2/α) such that (1 − F(−t))/(ctα) ∈ (1/2,2) for all t ∈ (0, t0]. In what
follows, d denotes a generic constant (depending only on β , cg , c and K) which may vary from
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line to line. Applying the inequalities exp(−2ρu) ≤ (1− u)ρ ≤ exp(−ρu), which holds for all
ρ > 0 and u ∈ (0,1/2), we obtain for (nhn/ logn)−2/α < t ≤ t0 and sufficiently large n

P
{
M∗

i > t1/2} ≤ 1− [1− (1+ c3nhn2ctα/2)(1− ctα/2/2
)c3nhn

]c2(hn+bn)/hn

≤ 1− [1− 3c3cnhnt
α/2 exp

(−c3cnhnt
α/2/2

)]c2(hn+bn)/hn

≤ 1− exp
(−dn(hn + bn)t

α/2 exp
(−c3cnhnt

α/2/2
))

≤ dn(hn + bn)t
α/2 exp

(−c3cnhnt
α/2/2

)
.

Therefore, for sufficiently large a > 0,

∫ t2
0

0
P
{
M∗

i > t1/2}dt

≤ a

(
nhn

logn

)−2/α

+ dt0n(hn + bn)

∫ t0

a(nhn/ logn)−2/α

tα/2−1 exp
(−c3cnhnt

α/2/2
)
dt

(A.19)
≤ o
(
1/
(
n(hn + bn)

))+ dt0n(hn + bn) exp
(−c3ca

α/2 logn/2
)

= o
(
1/
(
n(hn + bn)

))
,

where in the last but one step we apply the conditions (B4) and (H2). Now, assertion (A.18) (and
hence (A.16)) follows from

∫ ∞

t2
0

P
{
M∗

i > t1/2}dt ≤
∫ ∞

t2
0

1− [1− c3nhn

(
F
(−t1/2))c3nhn

]c2(hn+bn)/hn dt

≤
∫ ∞

t2
0

1− exp
(−dn(hn + bn)

(
F
(−t1/2))c3nhn

)
dt

≤ dn(hn + bn)

(
nhn

(
F(−t0)

)c3nhn +
∫ ∞

nhn

t−τc3nhn/2 dt

)

= o
(
n−ξ
)

for all ξ > 0 and sufficiently large n, where we have used (H2) and (F3).
To establish (A.17), first note that for a kernel K of order greater than or equal to �β�

E
(
g̃n(x)− g(x)

) = E

(∫ 1

−1

(
ĝn(x + bnu)−

�β�−1∑
j=0

g(j)(x)

j ! (bnu)j

)
K(u)du

)

=
∫ 1

−1
E
(
ĝn(x + bnu)− g(x + bnu)

)
K(u)du+O

(
bβ
n

)
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uniformly for all x ∈ [hn + bn,1− hn − bn]. In view of (K1), (H2) and (B4), it thus suffices to
show that∣∣E(ĝn(x)− g(x)

)−Eg≡0
(
ĝn(1/2)

)∣∣= ∣∣E(ĝn(x)− g(x)
)−Eg≡0

(
ĝn(x)

)∣∣
= o
(
n−1/2) (A.20)

uniformly for Lebesgue almost all x ∈ [hn,1− hn]. Note that the distribution of ĝn(x) does not
depend on x if g equals 0.

Recall that ĝn(x) = p̃n(0) where p̃n is a polynomial on [−1,1] of degree β∗ that solves the
linear optimization problem ∫ 1

−1
p̃n(t) dt →min!

under the constraints

p̃n

(
i/n− x

hn

)
≥ Yi, ∀i ∈ [n(x − hn), n(x + hn)

]
.

Define polynomials

qx(t) :=
	β
∑
k=0

1

k!g
(k)(x)(hnt)

k, pn(t) := (nhn)
1/α
(
p̃n(t)− qx(t)

)
, t ∈ [−1,1].

Then qx((u− x)/hn) is the Taylor expansion of order 	β
 of g(u) at x and the estimation error
can be written as

ĝn(x)− g(x)= (nhn)
−1/αpn(0). (A.21)

Note that pn is a polynomial of degree β∗ that solves the linear optimization problem

∫ 1

−1
pn(t) dt →min!

subject to

pn

(
i/n− x

hn

)
≥ (nhn)

1/αε̄i , ∀i ∈ [n(x − hn), n(x + hn)
]
, (A.22)

with

ε̄i := εi + g(i/n)− qx

(
i/n− x

hn

)
.

We now use point process techniques to analyze the asymptotic behavior of this linear program.
Denote by

Nn :=
∑

i∈[n(x−hn),n(x+hn)]
δ((i/n−x)/hn,(nhn)1/α ε̄i )
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a point process of standardized error random variables. Then the constraints (A.22) can be refor-
mulated as Nn(Apn)= 0 where Af := {(t, u) ∈ [−1,1]×R|u > f (t)} denotes the open epigraph
of a function f .

Since by (H2) |ε̄i − εi | = g(in)− qx((i/n− x)/hn)=O(h
β
n)= o((nhn)

−1/α) uniformly for
all i ∈ [n(x − hn),n(x + hn)], one has

E
(
Nn

([−1,1] × (−1,∞)
))∼ 2nhnP

{
ε̄1 >−(nhn)

−1/α
}→ 2c.

Therefore, Nn converges weakly to a Poisson process N on [−1,1] ×R with intensity measure
2cU[−1,1] ⊗ να where να has Lebesgue density x �→ α|x|α−1I (−∞,0) (see, e.g., Resnick [31],
Theorem 6.3). By Skorohod’s representation theorem, we may assume that the convergence holds
a.s.

Next, we analyze the corresponding linear program in the limiting model to minimize∫ 1
−1 p(t) dt over polynomials of degree β∗ subject to N(Ap) = 0. In what follows, we use a

representation of the Poisson process as N =∑∞
i=1 δ(Ti ,Zi ) where Ti are independent random

variables which are uniformly distributed on [−1,1].
First, we prove by contradiction that the optimal solution is almost surely unique. Suppose

that there exist more than one solution. From the theory of linear programs, it is known that
then there exists a solution p such that J := {j ∈ N|p(Tj ) = Zj } has at most β∗ elements.
Because p is bounded and N has a.s. finitely many points in any bounded set, η := inf{|p(Ti)−
Zi ||i ∈ N \ J }> 0 a.s. Since p is an optimal solution, all polynomials � of degree β∗ such that
�(Tj )= 0, j ∈ J , and ‖�‖∞ < η must satisfy

∫ 1
−1 �(t) dt = 0, because both p+� and p−�

satisfy the constraints N(Ap±�) = 0. In particular, for all polynomials q of degree β∗ − |J |,
�(t) = τ

∏
i∈J (t − Ti)q(t) is of that type if τ > 0 is sufficiently small. Write

∏
i∈J (t − Ti) in

the form t |J | +∑|J |−1
l=0 alt

l . Then necessarily

∫ 1

−1

∏
i∈J

(t − Ti)t
j dt = 2

|J | + j + 1
I
{|J | + j even

}+ |J |−1∑
l=0

2al

l + j + 1
I {l + j even} = 0,

for all j ∈ {0, . . . , β∗ − |J |}. This implies that (Ti)i∈J lies on a manifold M|J |,β∗ of dimension
|J | − (β∗ − |J | + 1)= 2|J | − β∗ − 1 which only depends on |J | and β∗. However, by Proposi-
tion A.1, ‖p‖∞ ≤Kβ∗Zmax where

Zmax := max
1≤i≤jβ∗

min
{|Zi ||Ti ∈

[−1+ (j − 1)/jβ∗ ,−1+ j/jβ∗
]}

.

The above conclusion contradicts P {Zmax > K}→ 0 as K →∞, since

P
{
∃J ⊂N : |J | ≤ β∗, (Tj )j∈J ∈M|J |,β∗ ,max

j∈J
|Zj | ≤Kβ∗K

}
= 0

for all K > 0 (i.e., the fact that among finitely many values Ti a.s. there does not exist a subset
which lies on a given manifold of lower dimension).

Therefore the solution p must be a.s. unique which in turn implies that it is a basic feasible
solution, that is, |J | ≥ β∗ + 1. On the other hand, because the intensity measure of N is abso-
lutely continuous, |J | ≤ β∗ + 1 a.s. and thus |J | = β∗ + 1. Because of Nn → N a.s., one has
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Nn([−1,1] × [−Kβ∗Zmax,∞))=N([−1,1] × [−Kβ∗Zmax,∞))=:M for sufficiently large n.
Moreover, one can find a numeration of the points (Tn,i ,Zn,i), 1 ≤ i ≤M , of Nn and (Ti,Zi),
1≤ i ≤M , of N in [−1,1] × [−Kβ∗Zmax,∞) such that (Tn,i ,Zn,i)→ (Ti,Zi).

Next we prove that the solution to the linear program to minimize
∫ 1
−1 pn(t) dt subject to

Nn(Apn) = 0 is eventually unique with pn → p a.s. Since any optimal solution can be written
as a convex combination of basic feasible solutions, w.l.o.g. we may assume that Jn := {1≤ i ≤
M|pn(Tn,i) = Zn,i} has at least β∗ + 1 elements. The polynomial pn is uniquely determined
by this set Jn. Suppose that along a subsequence n′ the set Jn′ is constant, but not equal to J .
Then p′n converges uniformly to the polynomial p̄ of degree β∗ that is uniquely determined by
the conditions p̄(Ti) = Zi for all i ∈ Jn′ . In particular, p̄ is different from the unique optimal
polynomial p for the limit Poisson process, but it satisfies the constraints N(Ap) = 0. Thus,∫ 1
−1 p̄(t) dt >

∫ 1
−1 p(t) dt . On the other hand, for all η > 0 the polynomial p + η eventually

satisfies the constraints Nn(Ap+η)= 0 and thus
∫ 1
−1 p(t)+ η dt ≥ ∫ 1

−1 p̄n(t) dt , which leads to a
contradiction.

Hence, Jn = J for all sufficiently large n and the optimal solution pn for Nn is unique and
it converges uniformly to the optimal solution p for the Poisson process N . Moreover, using
the relation (pn(Tn,j ))j∈J = (Zn,j )j∈J (which is a system of linear equation in the coefficients
of pn), pn(0) can be calculated as wt

n(Zn,j )j∈J for some vector wn which converges to a limit
vector w (corresponding to the analogous relation for p).

Exactly the same arguments apply if we replace ε̄i with εi , which corresponds to the case that
g is identical 0. Since the points (T̃n,i , Z̃n,i) of the pertaining point process equal (Tn,i ,Zn,i −
(nhn)

1/α(g(i/n)− qx((i/n)− x)/hn)) and thus |Z̃n,i −Zn,i | ≤ cg(nhn)
1/αh

β
n , the difference of

the resulting values for optimal polynomial at 0 is bounded by a multiple of (nhn)
1/αh

β
n . In view

of (A.21) and (H2), we may conclude that the difference between the estimation errors can be
bounded by a multiple of h

β
n = o(n−1/2), which finally yields (A.20) and thus the assertion.

A.9. Proof of Corollary 4.3

Note that 	ns
√
n

(F	ns
(y)−Fn(y))=En(y, s)− 	ns

n

En(y,1) with En defined in (A.11). A similar
reasoning as in the proof of Theorem 3.1 (see (A.13)) shows that

sup
y∈R,s∈[0,1]

∣∣∣∣
(

ns̄n

	ns
 − 1

)	ns
√
n

(
F	ns
(y)− Fn(y)

)∣∣∣∣= oP (1).

Hence, by Theorem 3.1, uniformly for all y ∈R, s ∈ [0,1],
√

n(F̂n(y, s)− s̄nF̂n(y))

=√n
(
F̂n(y, s)− s̄nF	ns
(y)

)− s̄n
√

n
((

F̂n(y)− Fn(y)
))+ s̄n

√
n
(
F	ns
(y)− Fn(y)

)
= ns̄n

	ns

	ns
√

n

(
F	ns
(y)− Fn(y)

)+ oP (1)
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=En(y, s)− 	ns

n

En(y,1)+ oP (1)

=En(y, s)− sEn(y,1)+ oP (1)

which converges weakly to KF (y, s)− sKF (y,1) for the Kiefer process KF defined in Theo-
rem 3.1. Check that this Gaussian process has the same law as G(s,F (y)), because they have
the same covariance function. Thus, the Kolmogorov–Smirnov statistic Tn converges weakly
to sups∈[0,1],y∈R |G(s,F (y))| = sups∈[0,1],z∈[0,1] |G(s, z)|, where the last equality holds by the
continuity of F .

A.10. Proof of Theorem 4.4

Note that under the given assumptions, the statements of Theorem 2.8(i) and (ii) are valid with
rate oP (1). Let �n := {infx∈In g̃′(x) > 0}. From assumption (I1) and Theorem 2.8(ii) it fol-
lows that P(�n)→ 1 for n→∞. But on �n the estimators g̃I and g̃ are identical, and thus
F̃I,	ns
 = F̃	ns
. Now (4.1) can be concluded as in the proof of Theorem 3.1, because as in Theo-
rem 2.8(i) we may conclude from our assumptions that supx∈In

|g̃(x)−g(x)| = oP (n−1/(2(α∧1))).
The convergence of the Kolmogorov–Smirnov test statistic then follows exactly as in the proof
of Corollary 4.3.

A.11. Proof of Proposition 4.6

Let ε̃i := ε	nx0
+i , 1 ≤ i ≤ ln. By assumption (G1) we have Ỹi = g(x0) + ε̃i + O(ln/n). Let
Ui , 1 ≤ i ≤ ln, be i.i.d. standard uniform random variables so that (ε̃i )1≤i≤ln has the same dis-
tribution as (F←(1−Ui))1≤i≤ln . Let R̃n := sup0<t≤(1+ι)kn/ ln

|r̃(t)|. Since (ln/kn)Ukn:ln → 1 in
probability and U1:kn =OP (k−1

n ), we obtain

1

α̂n

=d −
kn∑

i=2

dni log
ε̃ln:ln − ε̃ln−i+1:ln +O(ln/n)

ε̃ln:ln − ε̃ln−kn:ln +O(ln/n)

= −
kn∑

i=2

dni log
U

1/α
i:ln −U

1/α

1:ln +OP (ln/n+ R̃n)

U
1/α

kn+1:ln −U
1/α

1:ln +OP (ln/n+ R̃n)

= −
kn∑

i=2

dni log
(Ui:ln/Ukn+1:ln )1/α − (U1:ln/Ukn+1:ln )1/α +O((kn/ln)

−1/α(ln/n+ R̃n))

1− (U1:ln/Ukn+1:ln )1/α +O((kn/ln)−1/α(ln/n+ R̃n))

=d −
kn∑

i=2

dni log
U

1/α
i:kn
−U

1/α

1:kn
+ oP (k

−1/2
n )

1−U
1/α

1:kn
+ oP (k

−1/2
n )

= −
kn∑

i=2

dni log
[
U

1/α
i:kn
+ oP

(
k
−1/2
n

)]
,
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where in the last but one step we have used Corollary 1.6.2 of Reiss [30] and the conditions (4.4)
and (4.5).

For suitable versions of Ui and B , one has

sup
1≤i≤kn

∣∣k1/2
n (Ui:kn − i/kn)−B(i/kn)

∣∣→ 0 a.s.

(see, e.g., Shorack and Wellner [32], Theorem 3.1.1, p. 93). Therefore,

U
1/α
i:kn

=
(

i

kn

)1/α[
1+ k

1/2
n

i
B(i/kn)+ o

(
k
−1/2
n

)]1/α

=
(

i

kn

)1/α[
1+ k

1/2
n

αi
B(i/kn)+ o

(
k
−1/2
n

)]

uniformly for λkn ≤ i ≤ kn. Thus,

1

α̂n

=d 1

α

kn∑
i=�λkn�

dni

∣∣∣∣log
i

kn

∣∣∣∣−
kn∑

i=�λkn�
dni log

[
1+ k

1/2
n

αi
B(i/kn)+ o

(
k
−1/2
n

)]

= 1

α

∫ 1

λ

d(t)| log t |dt +O
(
k−1
n

)− 1

α

kn∑
i=�λkn�

dni

[
k

1/2
n

i
B(i/kn)+ o

(
k
−1/2
n

)]
.

In view of (4.2), we conclude

k
1/2
n

(
1

α̂n

− 1

α

)
→− 1

α

∫ 1

λ

d(t)t−1B(t) dt weakly,

from which assertion (4.6) easily follows.
The asymptotic variance can be calculated as α2

∫ 1
0

∫ 1
0 d(s) d(t)(st)−1 Cov(B(s),B(t)) ds dt .
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