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On the convex Poincaré inequality and weak
transportation inequalities
RADOSŁAW ADAMCZAK* and MICHAŁ STRZELECKI**

Institute of Mathematics, University of Warsaw, Banacha 2, 02–097 Warsaw, Poland.
E-mail: *R.Adamczak@mimuw.edu.pl; **M.Strzelecki@mimuw.edu.pl

We prove that for a probability measure on R
n, the Poincaré inequality for convex functions is equivalent

to the weak transportation inequality with a quadratic-linear cost. This generalizes recent results by Gozlan,
Roberto, Samson, Shu, Tetali and Feldheim, Marsiglietti, Nayar, Wang, concerning probability measures
on the real line.

The proof relies on modified logarithmic Sobolev inequalities of Bobkov–Ledoux type for convex and
concave functions, which are of independent interest.

We also present refined concentration inequalities for general (not necessarily Lipschitz) convex func-
tions, complementing recent results by Bobkov, Nayar, and Tetali.

Keywords: concentration of measure; convex functions; Poincaré inequality; weak transport-entropy
inequalities

1. Introduction

In the last thirty years a substantial body of research has been devoted to the interplay between
various functional inequalities, transportation of measure theory, and the concentration of mea-
sure phenomenon, showing intimate connection between them. While most of the investigations
have been carried out in the setting of general Lipschitz functions, concentration inequalities re-
stricted to the class of convex Lipschitz functions have also been considered by many authors,
starting from the seminal work by Talagrand in the 1990s ([30,31], see also [21,24,28,29] and
the monograph [23] for subsequent developments). A crucial feature of these results is that they
are satisfied under much less restrictive assumptions concerning the regularity of the underlying
probability measure when compared to inequalities valid for all Lipschitz functions. Even though
the theory of concentration of measure for convex functions to some extent parallels the classical
theory, there are some subtle differences related to the fact that convexity is not preserved under
general contractions – even under the change of signs – which creates certain difficulties in the
proofs and makes many well known arguments, which have been established in the classical con-
text, invalid. As a consequence, the theory of concentration of measure for convex functions has
not yet reached a satisfactory level of completeness. Nevertheless, several important results have
been obtained in recent years, connecting dimension-free concentration inequalities for convex
functions with the convex Poincaré inequality [17] and a new type of weak transportation cost
inequalities [18,19]. We will now briefly describe these developments, which will allow us to
formulate our main result.
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Let | · | stand for the standard Euclidean norm on R
n. Let μ be a Borel probability measure on

R
n and let X be a random vector with law μ. We say that μ (equivalently X) satisfies the convex

Poincaré inequality with constant λ > 0 if for all convex functions f : Rn → R we have

Varf (X) ≤ 1

λ
E
∣∣∇f (X)

∣∣2, (1.1)

where by |∇f (x)| we mean the length of gradient at x, defined as

∣∣∇f (x)
∣∣= lim sup

y→x

|f (y) − f (x)|
|y − x| . (1.2)

Note that this coincides with the length of the “true” gradient provided f is differentiable at x.
Also, it is enough to assume that (1.1) holds for convex Lipschitz functions, since an arbitrary
convex function can be pointwise approximated by convex Lipschitz functions.

It follows from the results by Gozlan, Roberto, and Samson [17] that μ satisfies the convex
Poincaré inequality if and only if there exists a constant c > 0 such that for any N , any convex
set A ⊆ (Rn)N with μ⊗N(A) ≥ 1/2, and any t > 0,

μ⊗N
(
A + tBNn

2

)≥ 1 − 2 exp(−ct), (1.3)

where Bk
2 denotes the unit Euclidean ball in R

k and + stands for the Minkowski addition.
It is not difficult to see that (1.3) is equivalent to the one-sided deviation inequality for convex

1-Lipschitz functions, that is,

P
(
f (X1, . . . ,XN) ≥ Medf (X1, . . . ,XN) + t

)≤ 2e−ct (1.4)

for all t ≥ 0, where X1, . . . ,XN are i.i.d. copies of X, and MedY denotes the median of the
random variable Y , that is, MedY = inf{t ∈R : P(Y ≤ t) ≥ 1/2}.

Thus, the convex Poincaré inequality is equivalent to a dimension-free deviation inequality for
the upper tail of convex Lipschitz functions.

Let us now pass to the connections between the Poincaré inequality and transportation in-
equalities. Let θ : Rn → [0,∞] be a measurable function with θ(0) = 0. Recall that the optimal
transport cost between two probability measures μ and ν on R

n, induced by θ is given by

Tθ (ν,μ) = inf
π

∫
Rn

∫
Rn

θ(x − y)π(dx dy), (1.5)

where the infimum is taken over all couplings between μ and ν, that is, over all probability
measures on (Rn)2 such that π(dx × R

n) = μ(dx), π(Rn × dy) = ν(dy). Recall also that the
relative entropy H(ν|μ) is defined as

H(ν|μ) =
∫
Rn

log
dν

dμ
dν, (1.6)

if ν is absolutely continuous with respect to μ and H(ν|μ) = ∞ otherwise.
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It has been proved in [7] that μ satisfies the Poincaré inequality (1.1) for all smooth functions
if and only if there exist constants C,D such that for all probability measures ν,

TθC,D
(ν,μ) ≤ H(ν|μ), (1.7)

where

θC,D(x) =

⎧⎪⎨⎪⎩
|x|2
2C

for |x| ≤ CD,

D|x| − CD2

2
for |x| > CD.

(1.8)

Recently Gozlan, Roberto, Samson, Shu, and Tetali [18] formulated a similar characterization
of the convex Poincaré inequality on the real line. In order to formulate their result we need to
introduce the weak transport cost between probability measures and corresponding transportation
inequalities as defined in [18,19].

In what follows, by P1(R
n) we denote the class of all probability measures ν on R

n such that∫
Rn |x|dν(x) < ∞.

Definition 1.1. Let μ and ν be probability measures on R
n. Assume that ν ∈ P1(R

n). For a
convex, lower semicontinuous function θ : Rn → [0,∞], such that θ(0) = 0 define the weak
transport cost between μ and ν as

T θ (ν|μ) = inf
π

∫
Rn

θ

(
x −

∫
Rn

ypx(dy)

)
μ(dx),

where the infimum is taken over all couplings between μ and ν and for x ∈ R
n, px(·) is the

conditional measure defined (μ almost surely) by π(dx dy) = px(dy)μ(dx).

Note that in the probabilistic notation one can write

T θ (ν|μ) = inf
(X,Y )

Eθ
(
X −E(Y |X)

)
,

where the infimum is taken over all pairs of random vectors (X,Y ) with values in R
n ×R

n, such
that X is distributed according to μ and Y according to ν.

Due to the asymmetry between μ and ν, one can now introduce three different inequalities
related to the cost T θ .

Definition 1.2. Let μ ∈ P1(R
n) and θ : Rn → [0,∞] be a convex lower semicontinuous func-

tion with θ(0) = 0. We will say that μ satisfies the inequality

• T
+
θ if for every probability measure ν ∈ P1(R

n),

T θ (ν|μ) ≤ H(ν|μ),



344 R. Adamczak and M. Strzelecki

• T
−
θ if for every probability measure ν ∈P1(R

n),

T θ (μ|ν) ≤ H(ν|μ),

• Tθ if μ satisfies both T
+
θ and T

−
θ .

The definition of those inequalities in [19] differs formally from the one presented above
(which is taken from [18]). It is not difficult to see that the definitions presented in both articles
are equivalent up to universal constants – the version above is more convenient for our purposes.

The authors of [18] proved that a probability measure μ on the real line satisfies the convex
Poincaré inequality for some constant λ > 0 if and only if it satisfies the transportation inequality
TθC,D

for some C,D > 0. In a dual formulation (expressed in terms of infimum convolution
inequalities), this result has been also obtained in [14].

Our main result is an extension of this equivalence to arbitrary dimension.

Theorem 1.3. Let μ be a probability measure on R
n. Then the following conditions are equiva-

lent:

(i) There exists λ > 0 such that μ satisfies the convex Poincaré inequality (1.1).
(ii) There exist C,D > 0 such that μ satisfies the transportation inequality TθC,D

.

Remark 1.4. The implication (ii) =⇒ (i) is standard, in this case λ = 1
C

. In our proof the
constants C,D in the implication (i) =⇒ (ii) depend not only on λ but also on certain quantiles
related to the measure μ (which are always finite but may be of the order of up to

√
n). This is

related to the inequality T
+
θC,D

responsible for the lower tail of convex functions, which is usually
more difficult to deal with than the upper tail. We suspect that this is an artefact of our proof and
one should be able to obtain T

+
θC,D

with C,D depending only on λ. As for T
−
θC,D

our argument
does yield it with C,D depending only on λ (see Corollary 4.3 below for details).

Remark 1.5. Thanks to well known tensorization properties of the inequality TθC,D
, Theo-

rem 1.3 implies that the convex Poincaré inequality is equivalent to improved two-level dimen-
sion free concentration inequality for convex functions (see Example 6.9 below for a precise
formulation). In the class of Lipschitz functions inequalities of this type have been first obtained
by Talagrand [30] in the case of the product exponential distribution (with an alternate proof,
using infimum-convolution inequalities, by Maurey [24]). The fact that they are consequences
of the Poincaré inequality for smooth functions was established by Bobkov and Ledoux [6]. By
results due to Gozlan et al. [17], this can be regarded as a self-improvement of dimension-free
concentration properties of Lipschitz functions. Our result shows that similar self-improvements
are present also in the setting of convex concentration.

Remark 1.6. In [8], Bobkov and Götze provide a simple characterization of measures on R

which satisfy the convex Poincaré inequality for some λ > 0 (and thus also the inequality TC,D)
in terms of the probability distribution function. A similar characterization for larger n seems to
be a non-trivial open problem.



Convex Poincaré inequality 345

The organization of the article is as follows. First, in Section 2, we present preliminary proper-
ties of measures satisfying the convex Poincaré inequality and weak transportation inequalities,
to be used in the proofs. Section 3 contains our most important technical result, that is modified
log-Sobolev inequalities for convex and concave functions, which in Section 4 are combined
with the Hamilton–Jacobi equations giving the proof of Theorem 1.3.

Next, in Section 5, we briefly discuss operations preserving the convex Poincaré inequality,
which may be used to provide new non-trivial examples of measures satisfying it.

In Section 6, we present refined concentration of measure inequalities, which are consequences
of weak transportation inequalities. We consider there more general cost functions than the one
corresponding to the convex Poincaré inequality and discuss applications both to the Lipschitz
and non-Lipschitz setting.

Finally, in Section 7, we state a few open questions. The Appendix contains basic facts con-
cerning Hamilton–Jacobi equations, which are used in the proof of Theorem 1.3.

2. Preliminaries on the convex Poincaré inequality and weak
transportation inequalities

In this section, we present basic concentration of measure properties implied by the convex
Poincaré inequality and the dual formulations of weak transportation inequalities. They will be
needed in the proof of our main result.

We begin with a simple reformulation of the convex Poincaré inequality.

Lemma 2.1. Let X be a random vector in R
n satisfying the convex Poincaré inequality (1.1).

Then for every convex function f : Rn →R,

E
(
f (X) − Medf (X)

)2 ≤ 2

λ
E
∣∣∇f (X)

∣∣2.
Proof. Note that for every random variable Z, thanks to the fact that the median minimizes the
mean absolute deviation, we have

(EZ − MedZ)2 ≤ (
E|Z − MedZ|)2 ≤ (

E|Z −EZ|)2 ≤ VarZ.

Thus

E(Z − MedZ)2 = VarZ + (EZ − MedZ)2 ≤ 2 VarZ

and it is enough to set Z = f (X) and apply (1.1). �

2.1. Concentration inequalities

Let us start with the already mentioned (see (1.4)) upper tail estimate for convex Lipschitz func-
tions implied by the convex Poincaré inequality. The proposition below can be also obtained up
to constants by abstract results from [17], but we would like to provide an alternative derivation
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based on moments (the possibility of such a proof was suggested in [17]). Our strategy mimics
a well known approach from the general Lipschitz case (see e.g. Proposition 2.5 in [25]), how-
ever we have to deal with some small difficulties related to the fact that in the convex setting we
cannot truncate the function as this operation does not preserve convexity.

Proposition 2.2. Assume that X is a random vector in R
n, satisfying the convex Poincaré in-

equality (1.1). Then for any L-Lipschitz convex function f : Rn → R and any t > 0,

P
(
f (X) ≥ Medf (X) + t

)≤ 8 exp

(
−

√
2λ

eL
t

)
.

Proof of Proposition 2.2. Consider the random variable Y = (|X| − a)+, where a ∈ R+ is
arbitrary such that P(|X| ≤ a) > 1/4, and let Y ′ be an independent copy of Y . Since the function
ϕ(x) = (|x| − a)+ is convex,

1

λ
P
(|X| ≥ a

)= 1

λ
E
∣∣∇ϕ(X)

∣∣2 ≥ VarY = 1

2
E
(
Y − Y ′)2

≥ 1

2
E
(
Y − Y ′)2

(1{Y>0}1{Y ′=0} + 1{Y=0}1{Y ′>0})

≥ 1

4
EY 21{Y>0} ≥ 2

λ
P
(|X| > a + 2

√
2/λ

)
and so P(|X| ≥ a+2

√
2/λ) ≤ 2−1

P(|X| ≥ a), which implies that |X| is exponentially integrable.
In particular for every Lipschitz function f and all p > 0, E|f (X)|p < ∞.

Assume now that f : Rn → R is convex. Then for all p ≥ 2, applying Lemma 2.1 to the
convex function x 
→ (f (x) − Medf (X))

p/2
+ (note that its median is zero and |∇(f (x) −

Medf (X))+| ≤ |∇f (x)|), we obtain

E
(
f (X) − Medf (X)

)p
+ ≤ 2

λ
· p2

4
E
(
f (X) − Medf (X)

)p−2
+

∣∣∇f (X)
∣∣2

≤ p2

2λ

(
E
(
f (X) − Medf (X)

)p
+
)1−2/p(

E
∣∣∇f (X)

∣∣p)2/p
,

where we used Hölder’s inequality with exponents p/(p − 2), p/2. If we additionally assume
that f is Lipschitz, so that E(f (X) − Medf (X))

p
+ < ∞, we get

(
E
(
f (X) − Medf (X)

)p
+
)1/p ≤ p√

2λ

(
E
∣∣∇f (X)

∣∣p)1/p
, (2.1)

which via Chebyshev’s inequality in Lp implies

P

(
f (X) ≥ Medf (X) + e

p√
2λ

(
E
∣∣∇f (X)

∣∣p)1/p
)

≤ e2−p (2.2)
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for p ≥ 0 (the inequality holds trivially for 0 ≤ p < 2 because of the multiplicative constant e2).
Now, if the Lipschitz constant of f equals one, the above inequality yields for t > 0,

P
(
f (X) ≥ Medf (X) + t

)≤ exp

(
2 −

√
2λ

e
t

)
≤ 8 exp

(
−

√
2λ

e
t

)
. �

Remark 2.3. Another possible approach is based on the Laplace transform: assume without loss
of generality that Ef (X) = 0 and denote M(s) = Eesf (X) for s ≥ 0. Since the function esf (·)/2

is convex, the Poincaré inequality yields

M(s) − M(s/2)2 = Var
(
esf (X)/2)≤ 1

4λ
Es2

∣∣∇f (X)
∣∣2esf (X) ≤ L2s2

4λ
M(s).

The idea would be now to regroup the expressions appearing in the above inequality, repeat
the procedure (with s/2 instead of s), and – after a simple limit argument – obtain a bound on
Eesf (X). After that we could use Markov’s inequality and optimize in s to obtain an estimate
of the upper tail of f . However a delicate issue emerges: we have to a priori know that (for
reasonable choices of the parameter s) esf (X) is integrable (in the setting of smooth functions
one overcomes this problem simply by truncating f , for convex functions one would need e.g.
to repeat the beginning of the proof of Proposition 2.2); cf. the remark following Theorem 6.8
in [17].

We do not know if the convex Poincaré inequality implies similar tail estimates – which depend
only on λ and the Lipschitz constant of the function – for the lower tail of convex Lipschitz
functions, that is, for P(f (X) ≤ Medf (X) − t), t > 0 (cf. Question 7.3 below).

Nonetheless, we can easily get estimates in terms of λ and certain quantiles of X. They will
be crucial in the proof of the implication

Convex Poincaré inequality =⇒ T
+
θC,D

.

Lemma 2.4. Let X be a random vector in R
n satisfying the convex Poincaré inequality (1.1) and

let M be any number such that P(|X −EX| ≤ M) ≥ 3/4. Then for every convex f : Rn →R and
for any t > 32ME|∇f (X)|,

P
(
f (X) ≤ Medf (X) − t

)≤ 8 exp

(
−

√
2λ

16eE|∇f (X)| t
)

.

Proof. By Proposition 2.2 (note that the function x 
→ |x −EX| is convex and 1-Lipschitz),

P
(|X −EX| ≥ M + t

)≤ 8 exp

(
−

√
2λ

e
t

)
, t ≥ 0. (2.3)

Let f : Rn → R be a convex function. Without loss of generality, we may assume Medf (X) =
0. We have

P
(
f (X) ≥ 0

)≥ 1/2,
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P
(|X −EX| ≤ M

)≥ 3/4,

P
(∣∣∇f (X)

∣∣< 8E
∣∣∇f (X)

∣∣)≥ 7/8.

Thus, there exists x0 such that f (x0) ≥ 0, |x0 −EX| ≤ M , and |∇f (x0)| < 8E|∇f (X)|. Define

f̃ (x) = f (x0) + 〈u,x − x0〉, x ∈ R
n,

where u is any subgradient of f at x0, so that f̃ (x) ≤ f (x) for all x ∈ R
n. Taking x = x0 + εu

with ε → 0 we see that |u| ≤ |∇f (x0)| ≤ 8E|∇f (X)|, and thus we have

P
(
f (X) ≤ −t

)≤ P
(
f̃ (X) ≤ −t

)≤ P
(〈u,X − x0〉 ≤ −t

)
≤ P

(|u||X − x0| ≥ t
)≤ P

(|X − x0| ≥ t/
(
8E

∣∣∇f (X)
∣∣))

≤ P
(|X −EX| ≥ t/

(
8E

∣∣∇f (X)
∣∣)− |x0 −EX|)

≤ P
(|X −EX| ≥ t/

(
8E

∣∣∇f (X)
∣∣)− M

)
.

If now t/(16E|∇f (X)|) ≥ 2M , we can conclude from (2.3) that

P
(
f (X) ≤ −t

)≤ P
(|X −EX| ≥ M + t/

(
16E

∣∣∇f (X)
∣∣))≤ 8 exp

(
−

√
2λ

16eE|∇f (X)| t
)

,

which ends the proof. �

2.2. Infimum convolution. Dual formulation of transportation inequalities

We will rely on the following lemma proved in [18] (and in a slightly different version also
in [19]). The proof in [18] is presented for the real line, but it is not difficult to see that it gener-
alizes to arbitrary dimension.

Lemma 2.5. Let θ : Rn → R+ be a convex cost function, θ(0) = 0, limx→∞ θ(x) = ∞. For all
functions f : Rn →R bounded from below, x ∈ R

n, and t > 0 set

Qtf (x) = Qθ
t f (x) = inf

y∈Rn

{
f (y) + tθ

(
x − y

t

)}
.

Then

(i) μ satisfies T
+
θ if and only if for all convex f : Rn →R, bounded from below,

exp

(∫
Rn

Q1f dμ

)∫
Rn

e−f dμ ≤ 1; (2.4)

(ii) μ satisfies T
−
θ if and only if for all convex f : Rn →R, bounded from below,∫

Rn

exp(Q1f )dμ exp

(
−
∫
Rn

f dμ

)
≤ 1; (2.5)
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(iii) if μ satisfies Tθ , then for all convex f : Rn →R, bounded from below,∫
Rn

exp(Qtf )dμ

∫
Rn

e−f dμ ≤ 1 (2.6)

holds with t = 2. Conversely, if μ satisfies (2.6) for some t > 0, then it satisfies Tθ̃ with θ̃ (·) =
tθ(·/t).

Moreover, the inequality (2.4) (resp. (2.5)) for all convex, Lipschitz functions bounded from below
is a sufficient condition for T

+
θ (resp. T

−
θ ).

The inequality (2.6) was introduced by Maurey in [24] and the relation with transportation
cost inequalities was first observed in [9].

3. From convex Poincaré inequality to modified log-Sobolev
inequalities for convex and concave functions

In this section, we present modified log-Sobolev inequalities for convex and concave functions
which are implied by the convex Poincaré inequality. Our approach builds heavily on the argu-
ments introduced by Bobkov and Ledoux in [6] for arbitrary Lipschitz functions, however some
non-trivial modifications will be necessary in order to handle the difficulties imposed by the
restriction of the Poincaré inequality to convex functions.

In what follows for a nonnegative random variable Y , we define its entropy as

EntY = EY logY −EY log(EY)

if EY logY < ∞ and EntY = ∞ otherwise. We refer for example, to [5,23] for basic properties
of entropy and log-Sobolev inequalities.

Throughout this section, we assume that μ is a probability measure on R
n satisfying the convex

Poincaré inequality (1.1) and that X is a random vector with law μ, which will not be explicitly
stated in all the theorems.

3.1. Modified log-Sobolev inequalities for convex functions

Theorem 3.1. Let f : Rn → R be convex with |∇f (x)| ≤ c <
√

2λ/e for all x ∈R
n. Then

Ent
(
ef (X)

)≤ CE
∣∣∇f (X)

∣∣2ef (X), (3.1)

where

C = C(λ, c) = 1

3λ
exp(c

√
2/λ) + 1

3(
√

λ/2 − c/2)2
.
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Our constants are slightly worse than in [6], basically because we need to work with the median
rather than the mean. However the argument (which works also in the classical case) seems to
slightly simplify the technicalities of [6]. The proof relies on two propositions.

Proposition 3.2. Let f : Rn → R be convex with Medf (X) = 0 and |∇f (x)| ≤ c <
√

2λ/e for
all x ∈R

n. Then

Ef (X)2ef (X) ≤ C1E
∣∣∇f (X)

∣∣2ef (X),

where C1 = C1(c, λ) = (
√

λ/2 − c/2)−2.

Proof. For x ∈ R we define �(x) = xex/2 and

	(x) =
{

xex/2 for x ≥ −2,

−2/e for x < −2.

One easily checks that |�(x)| ≤ |	(x)|, |	′(x)| ≤ |� ′(x)|, and 	 is convex nondecreasing.
Denote a2 = E|	(f (X))|2 and b2 = E|∇f (X)|2ef (X) (where a, b ≥ 0). The function 	(f )

is convex, moreover Med	(f (X)) = 0. Hence, by Lemma 2.1,

a2 ≤ 2

λ
E
∣∣∇f (X)

∣∣2(1 + f (X)/2
)2

ef (X)1{f (X)≥−2}

≤ 2

λ

(
b2 + cE

∣∣∇f (X)
∣∣ef (X)/2 · ∣∣f (X)

∣∣ef (X)/2 + c2

4
Ef (X)2ef (X)

)

≤ 2

λ

(
b2 + cb

√
Ef (X)2ef (X) + c2

4
a2
)

≤ 2

λ
(b + ca/2)2.

Note that a < ∞ (by Proposition 2.2 and since c <
√

2λ/e). Thus a(
√

λ/2 − c/2) ≤ b and the
assertion follows. �

Proposition 3.3. Let f : Rn → R be either convex or concave, with Medf (X) = 0 and
|∇f (x)| ≤ c for all x ∈R

n. Then

E
∣∣∇f (X)

∣∣2 ≤ C2E
∣∣∇f (X)

∣∣2ef (X),

where C2 = C2(c, λ) = exp(c
√

2/λ). Consequently,

Ef (X)2 ≤ 2

λ
C2E

∣∣∇f (X)
∣∣2ef (X).

Proof. If |∇f (X)| vanishes with probability one, there is nothing to prove. Otherwise, denote
by Ẽ the expectation with respect to the probability measure with density |∇f (X)|2/E|∇f (X)|2
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relative to P. By Jensen’s inequality,

E
∣∣∇f (X)

∣∣2e−|f (X)| = E
∣∣∇f (X)

∣∣2Ẽe−|f (X)| ≥ E
∣∣∇f (X)

∣∣2e−Ẽ|f (X)|.

Thus, using the trivial inequality −|f | ≤ f , we conclude that

E
∣∣∇f (X)

∣∣2 ≤ eẼ|f (X)|
E
∣∣∇f (X)

∣∣2ef (X).

But since by Lemma 2.1 we have

E
∣∣∇f (X)

∣∣2∣∣f (X)
∣∣≤ cE

∣∣∇f (X)
∣∣∣∣f (X)

∣∣≤ c

√
E
∣∣∇f (X)

∣∣2√Ef (X)2

≤ c
√

2/λE
∣∣∇f (X)

∣∣2,
we can bound Ẽ|f (X)| by c

√
2/λ. This yields the assertion of the proposition. �

Proof of Theorem 3.1. Without loss of generality, assume Medf (X) = 0. Denote F(t) =
Ef (X)2etf (X), t ∈ [0,1]. By the formula

∫ 1
0 ta2eta dt = aea − ea + 1 and the convexity of

t 
→ F(t),

Ent
(
ef (X)

)≤ E
(
f (X)ef (X) − ef (X) + 1

)= E

∫ 1

0
tf (X)2etf (X) dt =

∫ 1

0
tF (t) dt

≤
∫ 1

0
t (1 − t)F (0) + t2F(1) dt = 1

6
F(0) + 1

3
F(1)

(note that for this argument to work we do not need the expectation of f (X) to vanish). Thus
Propositions 3.2 and 3.3 imply the assertion of the theorem. �

3.2. Modified log-Sobolev inequalities for concave functions

Theorem 3.4. Let f : Rn → R be convex with |∇f (x)| ≤ c <
√

2λ/(32e) for all x ∈ R
n. As-

sume that M ∈ R+ satisfies P(|X −EX| ≤ M) ≥ 3/4. Then

Ent
(
e−f (X)

)≤ CE
∣∣∇f (X)

∣∣2e−f (X),

where C = C(λ, c,M) is a constant depending only on λ, c,M .

Remark 3.5. If we denote by X1, . . . ,Xn the coordinates of X, then by the Poincaré inequality
we have

E|X −EX|2 =
n∑

i=1

E|Xi −EXi |2 ≤ n

λ
,

and hence, by the Chebyshev inequality, M = 2
√

n/λ satisfies P(|X − EX| ≤ M) ≥ 3/4. Thus
in fixed dimension n and for say c = √

2λ/(64e), the constant C in Theorem 3.4 can be bounded
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uniformly over all probability measures satisfying the convex Poincaré inequality with con-
stant λ.

Proof of Theorem 3.4. We start as in the proof of Theorem 3.1. Denote g = −f (this is a con-
cave function). Without loss of generality, assume Medf (X) = 0. Denote F(t) = Eg(X)2etg(X),
t ∈ [0,1]. By the convexity of t 
→ F(t),

Ent
(
eg(X)

) ≤ E
(
g(X)eg(X) − eg(X) + 1

)= E

∫ 1

0
tg(X)2etg(X) dt =

∫ 1

0
tF (t) dt

(3.2)

≤
∫ 1

0
t (1 − t)F (0) + t2F(1) dt = 1

6
F(0) + 1

3
F(1).

We have

F(1) ≤ Eg(X)2 +Eg+(X)2eg+(X) = F(0) +Eg+(X)2eg+(X). (3.3)

By Proposition 3.3, F(0) ≤ 2
λ

exp(c
√

2/λ)E|∇g(X)|2eg(X), so it remains to estimate
Eg+(X)2eg+(X).

Integration by parts and Lemma 2.4 yield

Ee2g+(X) = 1 +
∫ ∞

0
2e2t

P
(
g+(X) ≥ t

)
dt

= 1 +
∫ 32Mc

0
2e2t dt +

∫ ∞

32Mc

2e2t
P
(
g+(X) ≥ t

)
dt

≤ e64Mc +
∫ ∞

32Mc

16 exp

(
2t −

√
2λ

16ec
t

)
dt < D1 = D1(λ, c,M) < ∞,

if only c <
√

2λ/(32e). Similarly (using Lemma 2.4 in its full strength),

Eg+(X)4 =
∫ ∞

0
4t3

P
(
g+(X) ≥ t

)
dt

=
∫ 32ME|∇f (X)|

0
4t3 dt +

∫ ∞

32ME|∇f (X)|
4t3

P
(
g+(X) ≥ t

)
dt

≤ (
32ME

∣∣∇f (X)
∣∣)4 + 4

∫ ∞

32ME|∇f (X)|
t3 exp

(
−

√
2λ

16eE|∇f (X)| t
)

dt

≤ D2
(
E
∣∣∇f (X)

∣∣)4 ≤ D2
(
E
∣∣∇f (X)

∣∣2)2

for some D2 = D2(λ,M). Thus, by Proposition 3.3, applied to g,

Eg+(X)2eg+(X) ≤
√
Eg+(X)4

√
Ee2g+(X) ≤√

D1D2E
∣∣∇f (X)

∣∣2
≤√

D1D2e
c
√

2/λ
E
∣∣∇f (X)

∣∣2e−f (X).
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This, together with (3.2) and (3.3), ends the proof:

Ent
(
e−f (X)

)≤ 1

6
F(0) + 1

3
F(1) ≤ 1

2
F(0) + 1

3
Eg+(X)2eg+(X)

≤
(

1

λ
+ 1

3

√
D1D2

)
ec

√
2/λ

E
∣∣∇f (X)

∣∣2e−f (X). �

4. Proof of the main result

We will now present the proof of Theorem 1.3. As already mentioned, the implication (ii) =⇒ (i)
is standard, we provide a sketch of its proof just for the sake of completeness. The proof of the
implication (i) =⇒ (ii) follows the arguments introduced first in [7] and based on the analysis of
the Hamilton–Jacobi equations. A crucial element of the proof will be the modified log-Sobolev
inequalities obtained in Section 3.

Lemma 4.1. Let X be a random vector in R
n. Assume that there exist C < ∞ and L > 0 such

that

EeL|X| < ∞ (4.1)

and the inequality

Ent
(
ef (X)

)≤ CE
∣∣∇f (X)

∣∣2ef (X) (4.2)

holds for every convex (respectively: concave) L-Lipschitz function f : Rn → R. Then, for every
convex Lipschitz function f : Rn → R bounded from below,

EeQα
1 f (X)e−Ef (X) ≤ 1,(

respectively: eEQα
1 f (X)

Ee−f (X) ≤ 1
)
,

where Qα
t f (x) = infy∈Rn{f (x − y) + tα(y/t)}, t > 0, is the infimum convolution operator with

the cost function α : Rn → R given by the formula

α(s) =
⎧⎨⎩

|s|2
4C

for |s| ≤ 2CL,

L|s| − L2C for |s| > 2CL.

(4.3)

Remark 4.2. The condition (4.1) is introduced to exclude heavy-tailed measures for which the
only exponentially integrable convex functions are constants. Note that in this case the inequality
(4.2) may be trivially satisfied, while the transportation inequality cannot hold (as it implies the
existence of exponential moments).

If we recall the dual formulations of the weak transport-entropy inequalities T
−

and T
+

(see
Lemma 2.5), the definition of θC,D from (1.8), and the results of the preceding section (namely,
Theorems 3.1 and 3.4), we immediately obtain the following corollaries.
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Corollary 4.3. Let X be a random vector in R
n satisfying the convex Poincaré inequality (1.1).

Then, for any positive c <
√

2λ/e, the law of X satisfies the inequality T
−
θ2C,c

with

C = C(λ, c) = 1

3λ
exp(c

√
2/λ) + 1

3(
√

λ/2 − c/2)2
.

Corollary 4.4. Let X be a random vector in R
n satisfying the convex Poincaré inequality (1.1)

and let M be any number such that P(|X −EX| ≤ M) ≥ 3/4. Then, for any c <
√

2λ/(32e), the
law of X satisfies the inequality T

+
θ2C,c

for some constant C = C(λ, c,M) depending only on λ,
c, and M .

Proof of Lemma 4.1. Suppose that the log-Sobolev inequality (4.2) holds for all convex and
L-Lipschitz functions. We first present a perturbation argument which allows us to work with
random vectors with an absolutely continuous law. We then shall follow the approach of [18],
Proof of Theorem 1.5.

Let G be a Gaussian random vector in R
n, independent of X, with the covariance matrix being

a sufficiently small multiple of identity, so that it satisfies the usual log-Sobolev inequality with
constant C,

Ent ef (G) ≤ CE
∣∣∇f (G)

∣∣2ef (G)

for all Lipschitz functions f : Rn → R (see, e.g., Theorem 5.1 in [23] for an equivalent formula-
tion).

Then, by the tensorization property of entropy (see, e.g., Proposition 5.6 in [23]), the random
vector (X,G) on R

n ×R
n satisfies the modified log-Sobolev inequality

Ent
(
eF(X,G)

)≤ CE
(∣∣∇XF(X,G)

∣∣2 + ∣∣∇GF(X,G)
∣∣2)eF(X,G) (4.4)

for all convex functions F : Rn × R
n → R which are L-Lipschitz with respect to the first coor-

dinate (here |∇XF | and |∇GF | denote partial lengths of gradients with respect to the first and
second variable, with the other variable fixed).

Let f : Rn → R be a convex L-Lipschitz function and consider ε > 0. Applying the inequal-
ity (4.4) to the function defined by the formula F(x, y) = f (x + εy) for x, y ∈ R

n (which is
L-Lipschitz with respect to the first variable), we see that the random vector Xε = X + εG sat-
isfies the modified log-Sobolev inequality

Ent
(
ef (Xε)

)≤ CεE
∣∣∇f (Xε)

∣∣2ef (Xε), (4.5)

where Cε = C(1 + ε2). Note that the law of Xε is absolutely continuous with respect to the
Lebesgue measure on R

n, and so almost surely Xε is a differentiability point of f and |∇f (Xε)|
coincides with the Euclidean length of the “true” gradient ∇f (Xε).

Moreover, (4.5) can be rewritten in the form

Ent
(
ef (Xε)

)≤ Eα∗
ε

(∇f (Xε)
)
ef (Xε), (4.6)
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where α∗
ε : Rn → R is the Legendre transform of

αε(s) = |s|2
4Cε

1{|s|≤2CεL} + (
L|s| − L2Cε

)
1{|s|>2CεL},

that is, more explicitly,

α∗
ε (s) =

{
Cε|s|2 for |s| ≤ L,

+∞ for |s| > L.

If f : Rn → R is convex, Lipschitz (with arbitrary Lipschitz constant) and bounded from be-
low, then Q

αε
t f is well defined, convex (as an infimum convolution of two convex functions),

and L-Lipschitz for t > 0 (since Q
αε
t f (x) = infy∈Rn{f (y) + tαε((y − x)/t)} and the function

x 
→ tαε((y − x)/t) is L-Lipschitz for t > 0).
Moreover, the function u(t, x) = Q

αε
t f (x) is Lipschitz on (0,∞) × R

n and satisfies the
Hamilton–Jacobi equation

d

dt
u(t, x) + α∗

ε

(∇xu(t, x)
)= 0 for Lebesgue almost all (t, x) ∈ (0,∞) ×R

n

(see Proposition A.1 in the Appendix). Set

F(t) = 1

t
ln
(
EetQ

αε
t f (Xε)

)
, t ∈ (0,1].

(Note that F(t) < ∞ since Q
αε
t f is L-Lipschitz.) Using the integrability properties of X (and as

a consequence of Xε), together with the Lipschitz property of u it is not difficult to see that F is
locally Lipschitz and for Lebesgue almost all t ∈ (0,1),

d

dt
F (t) = − 1

t2
ln
(
EetQ

αε
t f (Xε)

)+ 1

t

EetQ
αε
t f (Xε)(Q

αε
t f (Xε) + t d

dt
Q

αε
t f (Xε))

EetQ
αε
t f (Xε)

= 1

t2EetQ
αε
t f (Xε)

(
Ent

(
etQ

αε
t f (Xε)

)− t2
Eα∗

ε

(∇Q
αε
t f (Xε)

)
etQ

αε
t f (Xε)

)
≤ 1

EetQ
αε
t f (Xε)

CεE
(∣∣∇Q

αε
t f (Xε)

∣∣2 − ∣∣∇Q
αε
t f (Xε)

∣∣2)etQ
αε
t f (Xε) = 0,

where we used (4.6), the definition of α∗
ε , and the fact that Q

αε
t f is L-Lipschitz. Thus,

F(1) ≤ lim inf
t→0+ F(t) ≤ lim

t→0+
ln(Eetf (Xε))

t
= Ef (Xε),

or, in other words,

EeQ
αε
1 f (Xε) ≤ eEf (Xε).

It is easy to see that by taking ε → 0 we arrive at the assertion of the lemma (recall that f and
Q

αε

1 are Lipschitz and αε ≤ α).
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Suppose now that the log-Sobolev inequality (4.2) holds for all concave and L-Lipschitz func-
tions. As before, we pass to the random vector Xε which has an absolutely continuous distri-
bution. Let g : Rn → R be convex and bounded from below. Then the function f = −Q

αε

1 g is
concave and L-Lipschitz. The same calculation as above yields

EeQ
αε
1 f (Xε) ≤ eEf (Xε),

or equivalently

EeQ
αε
1 (−Q

αε
1 g)(Xε) ≤ e−EQ

αε
1 g(Xε).

We stress that now, in order to prove the Hamilton–Jacobi equations via Proposition A.1, we
need to use the L-Lipschitz property of f , since in general f is not bounded from below.

Since

−g(x) ≤ inf
y∈Rn

sup
z∈Rn

{−g(z) − αε(z − y) + αε(y − x)
}= Q

αε

1

(−Q
αε

1

)
g(x)

(to verify the inequality take z = x), a limit argument yields the assertion of the lemma. �

We are now ready for the proof of our main result.

Proof of Theorem 1.3. The implication (i) =⇒ (ii) follows immediately from Corollaries 4.3
and 4.4, and the definition of Tθ2C,c

. To obtain the reverse implication one can use a standard
Taylor expansion argument. Assume that TθC,D

holds. Let f : Rn →R be convex, Lipschitz, and
bounded from below. For x ∈ R

n denote

f x(z) = f (x) + 〈ux, z − x〉, z ∈ R
n,

where ux is any subgradient of f at x, so that f x ≤ f on R
n. Taking z = x + εux with ε → 0

we see that |ux | ≤ |∇f (x)|.
For sufficiently small ε we have ε|∇f (x)| ≤ D for all x ∈R

n, and hence

Q
θC,D

2 (εf )(x) ≥ inf
y∈R

{
εf x(x − y) + 2θC,D(y/2)

}
= εf (x) + inf

y∈R
{−ε〈ux, y〉 + 2θC,D(y/2)

}
= εf (x) − 2θ∗

C,D(εux) ≥ εf (x) − ε2C
∣∣∇f (x)

∣∣2
(recall that |ux | ≤ |∇f (x)|). We now substitute εf into the dual formulation (2.6) and use the
above estimate. An inspection of the Taylor expansions up to order ε2 yields

Var
(
f (X)

)≤ CE
∣∣∇f (X)

∣∣2.
This ends the proof. �
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5. Operations preserving the convex Poincaré inequality

We will now discuss several tools which allow to construct measures satisfying the convex
Poincaré inequality. To shorten the notation, we will denote by Eμ and Varμ, respectively, the
mean and variance of f seen as a random variable on R

n equipped with probability measure μ.
Let us start with the well known tensorization property of variance (see, e.g., [5], Proposi-

tion 1.4.1), which asserts that whenever μi are probability measures on Xi , i = 1, . . . , n, then the
product measure μ = μ1 ⊗ · · · ⊗ μn on X1 × · · · ×Xn, satisfies the inequality

Varμ f ≤
n∑

i=1

Eμ Varμi
f,

for every function f : X1 × · · · ×Xn → R, where Varμi
f denotes the variance of f treated as a

function on Xi , with the other coordinates fixed.
This immediately implies the tensorization property for the convex Poincaré inequality,

namely if μi (i = 1, . . . ,N ) is a probability measure on R
ni , satisfying the convex Poincaré

inequality with constant λ, then the product measure μ = μ1 ⊗ · · · ⊗ μN on R
n1+···+nN satisfies

Varμ f ≤ 1

λ
E

N∑
i=1

|∇if |2, (5.1)

for every convex function f : Rn1+···+nN → R, where |∇if | denotes the “partial length of gra-
dient” along R

ni . If the measures μi are absolutely continuous with respect to the Lebesgue
measure, then by Rademacher’s theorem locally Lipschitz functions are almost everywhere dif-
ferentiable, in particular the right-hand side of the above inequality coincides with λ−1

E|∇f |2
and so we obtain that μ satisfies the convex Poincaré inequality with constant λ. The situation
is more delicate for measures which are not absolutely continuous, however thanks to results by
Gozlan, Roberto and Samson [17], we can obtain the following simple proposition.

Proposition 5.1. Assume that μi are probability measures on R
ni , i = 1, . . . ,N , satisfying the

convex Poincaré inequality with constant λ. Then the measure μ = μ1 ⊗· · ·⊗μN on R
n1+···+nN

satisfies the convex Poincaré inequality with constant λ/C for some universal constant C.

Proof. We provide only a sketch of the proof, leaving some computational details to the Reader.
Denote n = n1 + · · · + nN and consider an arbitrary convex smooth 1-Lipschitz function f on
R

nk , k ≥ 1. By (5.1) we have Varμ⊗k f ≤ λ−1
Eμ⊗k |∇f |2 ≤ 1/λ. Using an analogous argument

as in the proof of Proposition 2.2 (for p > 2, to remain in the smooth setting) we arrive at

μ⊗k(f ≥ Medμ⊗k f + t) ≤ 8e−√
λt/2 (5.2)

for all 1-Lipschitz smooth convex functions. We can extend this inequality to arbitrary 1-
Lipschitz convex function (approximating them with 1-Lipschitz smooth convex functions, for
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example, by convolving them with Gaussian densities, see [28], p. 429), so in particular we get
that for any convex set A ⊆R

nk , with μ⊗k(A) ≥ 1/2, and all t > 0,

μ⊗k
(
A + tBnk

2

)≥ 1 − 8e−√
λt/2,

where Bnk
2 is the unit Euclidean ball in R

nk . Recall the notation

∣∣∇−f (x)
∣∣= lim sup

y→x

(f (y) − f (x))−
|x − y| .

By [17], Theorem 6.7, the dimension-free subexponential concentration for convex sets of the
form (5.2) implies that μ satisfies the Poincaré inequality

Varμ f ≤ 1

λ′E
∣∣∇−f

∣∣2 ≤ 1

λ′E|∇f |2 (5.3)

for all convex functions f : Rn →R, where

√
λ′ = sup

{
	̄−1(8 exp(−√

λr/2))

r
: r ≥ 2 log(16)√

λ

}
,

where 	̄ is the Gaussian tail function. Using the estimate 	̄(x) ≥ 1
2e−x2

and performing some
elementary calculations, we arrive at the assertion of the proposition. �

Remark 5.2. The above argument shows that if μ satisfies the Poincaré inequality (1.1) then it
also satisfies the formally stronger inequality (5.3) with λ′ = λ/C. We remark that in the category
of all Lipschitz functions it is known that the Poincaré inequalities with the length of gradients
|∇−f | and |∇f | are equivalent and the involved constants do not change (cf. [17], Remark 1.1).

Tensorization allows in particular to pass from one-dimensional measures satisfying the con-
vex Poincaré inequality (characterized in [8]) to product measures in higher dimensions. Another
standard tool for producing new examples is perturbation: if μ satisfies the convex Poincaré in-
equality with constant λ and ν is a measure with density eU with respect to μ, then ν satisfies the
convex Poincaré inequality with constant λ exp(infU − supU). For the proof see, for example,
[5], Chapter 3.4, (the proof therein is written in the context of Markov processes and Dirichlet
forms but it is based only on the elementary observation that Varf = infa∈RE|f −a|2 and works
in exactly the same way in the convex setting).

Perturbation and tensorization are tools that appeared for the first time in the “classical” theory
of Poincaré and log-Sobolev inequalities for smooth (or locally Lipschitz) functions. The next
proposition does not have a counterpart in the classical setting and significantly extends the set
of tools for creating new examples. Namely, we will show that the convex Poincaré inequality
passes to mixtures of measures. This cannot be the case for the classical Poincaré inequality since
it clearly cannot hold for measures with disconnected support. We note however that the preser-
vation of the Poincaré and log-Sobolev inequalities by mixtures of measures with overlapping
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supports has been investigated by Chafaï and Malrieu in [11]. In particular, the Proposition 5.3
below has been inspired by calculations in Section 4.1 therein.

Let T2(μ0,μ1) stand for the usual Kantorovich transport cost between μ1 and μ0 (defined by
taking θ(x) = |x|2 in (1.5)), in other words the square of the Kantorovich–Wasserstein distance
W2.

Proposition 5.3. Let {μθ }θ∈� be a family of probability measures on R
n which satisfy the convex

Poincaré inequality (1.1) with constants {λθ }θ∈� respectively. Let ν be a probability measure on
� and assume that for each Borel set A ⊆ R

n, the map θ → μθ(A) is measurable. Then the
measure μ = ∫

μθ dν(θ), satisfies the convex Poincaré inequality (1.1) with constant

λ =
(

sup
θ∈�

{1/λθ } + 2 diam
({μθ }θ∈�

)2
)−1

,

where diam({μθ }θ∈�)2 = supθ1,θ2∈� T2(μθ1 ,μθ2).

Proof. If f : Rn →R is a convex function, then as one can easily check,

Varμ(f ) =
∫

Varμθ (f ) dν(θ) + 1

2

∫∫
(Eμθ1

f −Eμθ2
f )2 dν(θ1) dν(θ2)

≤ sup
θ∈�

{1/λθ }Eμ|∇f |2 + 1

2

∫∫
(Eμθ1

f −Eμθ2
f )2 dν(θ1) dν(θ2)

and it suffices to estimate the last term.
For fixed θ1, θ2 ∈ � let X and Y be random vectors in R

n with laws μθ1 and μθ2 respectively.
By convexity of f ,∣∣Ef (X) −Ef (Y )

∣∣≤ E
(∣∣∇f (X)

∣∣+ ∣∣∇f (Y )
∣∣)|X − Y |

≤ (√
E
∣∣∇f (X)

∣∣2 +
√
E
∣∣∇f (Y )

∣∣2)√E|X − Y |2.
Taking the infimum over all realizations of X and Y , we conclude that

(Eμθ1
f −Eμθ2

f )2 ≤ 2
(
Eμθ1

|∇f |2 +Eμθ2
|∇f |2)diam

({μθ }θ∈�

)2
.

Thus,

1

2

∫∫
(Eμθ1

f −Eμθ2
f )2 dν(θ1) dν(θ2)

≤
∫∫ (

Eμθ1
|∇f |2 +Eμθ2

|∇f |2)dν(θ1) dν(θ2)diam
({μθ }θ∈�

)2

= 2 diam
({μθ }θ∈�

)2
Eμ|∇f |2.

This implies the assertion of the proposition. �
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Example 5.4. Having the above results concerning the preservation of the convex Poincaré in-
equality under appropriate transformations of measures, as well as the characterization of one-
dimensional measures satisfying it (obtained by Bobkov and Götze in [8]), one can create many
examples of measures in high dimensions, satisfying the convex Poincaré inequalities but not sat-
isfying the usual Poincaré inequality for smooth functions or any stronger functional inequalities
for convex functions.

To illustrate this, we will provide a specific class of examples, built from perturbation, products
and mixtures of one dimensional measures. Fix h > 0 and consider a bounded set � in R

d and a
probability measure ν supported on �. For ech x ∈ � let μx be a measure on R such that for all
t > Medμx , μx([t + h,∞)) ≤ 1

2μ([t,∞)) and a symmetric condition is satisfied by the lower
tail of the measure. Assume also that the set {Medμx}x∈� is bounded by some constant l. By the
results in [8], the measures μx satisfy (1.1) with constant λx uniformly bounded from below by
some ch > 0. It is easy to see that by Proposition 5.3, the measure μ on R

d+1 = R
d ×R defined

as μ(dx dt) = μx(dt)ν(dx) satisfies (1.1) with λ > 0, depending only on h, l and the diameter of
�. Note that if suppν ⊆ � is not connected, then μ cannot satisfy the usual Poincaré inequality
for smooth functions. Moreover, if for x from a set of positive ν-measure, the measures μx have
tails bounded from below by e−cx for some c < ∞ (which may happen under the requirements on
μx introduced above), then at least one marginal of μ also has exponential tails, which means that
μ cannot satisfy any weak transportation inequality or convex modified log-Sobolev inequality
substantially stronger than the convex Poincaré inequality. Now, thanks to stability of the convex
Poincaré inequality under bounded perturbations and tensorization, one can pass to products
and perturbations of measures μ (for various choices of the driving measure ν) and build more
complicated examples in higher dimension, still satisfying the convex Poincaré inequality with
constants depending only on h, l and the diameter of �.

6. Refined concentration of measure derived from infimum
convolution inequalities

In this section, we explain what concentration inequalities for convex functions can be obtained
from general infimum convolution inequalities of the form (2.6). While some parts of our deriva-
tion are well known and are included only for the sake of completeness, we also provide new
inequalities valid beyond the setting of Lipschitz functions. Their proofs are elementary but to
our best knowledge they have not been noted in the literature before.

Throughout this section, θ : Rn → [0,∞) is a convex function. We also assume the following
conditions:

• θ(x) = θ(−x) for all x ∈ R
n,

• θ(x) = 0 if and only if x = 0 (in particular, by convexity, limx→∞ θ(x) = ∞).

We remark that at the cost of some technical work one can obtain the results we present
below for more general cost functions (e.g., taking the value ∞ or not satisfying the symmetry
condition). We restrict to a smaller class to simplify the presentation.

In what follows, for a function f : Rn → R, bounded from below, we set

Qf (x) = Qθ
1f (x) = inf

y∈Rn

{
f (y) + θ(x − y)

}
.
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We also denote

Bθ(r) = {
x ∈R

n : θ(x) < r
}
, r > 0.

6.1. Enlargements of sets and concentration for Lipschitz functions

Let us start with the classical description of concentration of measure in terms of enlargements
of sets. The following proposition goes back to [24].

Proposition 6.1. Assume that μ is a probability measure on R
n, satisfying∫

Rn

eQf dμ

∫
Rn

e−f dμ ≤ 1 (6.1)

for all convex functions f : Rn → R, bounded from below. Then for all convex subsets A ⊆ R
n

and r > 0, we have

μ
((

A + Bθ(r)
)c)

μ(A) ≤ e−r .

Proof. Consider f = ∞1(clA)c and note that Qf (x) < r if and only if there exists y ∈ A such
that θ(x − y) < r . Applying the inequality (6.1) to f (which can be justified by monotone ap-
proximation), we obtain

erμ
((

A + Bθ(r)
)c)

μ(A) ≤
∫
Rn

eQf dμ

∫
Rn

e−f dμ ≤ 1. �

To formulate corollaries to the above proposition we need to introduce new notation, which
at first may seem rather abstract. However, as the examples presented in the subsequent parts of
this section will show, it will prove useful in providing a uniform framework for concentration
inequalities, especially in the non-Lipschitz case.

Definition 6.2. Define the norm | · | 1
p

θ
on R

n, as the Orlicz norm corresponding to the function

x 
→ 1
p
θ(x), i.e.

|x| 1
p

θ
= inf

{
a > 0 : θ(x/a) ≤ p

}
.

Define also the norm | · |θ,p on R
n as the dual to | · | 1

p
θ
, that is,

|x|θ,p = sup

{
n∑

i=1

xiyi : θ(y) ≤ p

}
.

The norm |x|θ,p is equivalent (up to universal constants) to the Orlicz norm | · |θ∗
p

related to

the function θ∗
p(x) = 1

p
θ∗(px), explicitly given by

| · |θ∗
p

= inf
{
a > 0 : θ∗

p(x/a) ≤ 1
}= inf

{
a > 0 : θ∗(px/a) ≤ p

}
.
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It was observed by Gluskin and Kwapień in [15] that norms of this type play an important role
in moment estimates for sums of independent random variables. Recently it has been noted [1,3]
that they also appear in moment estimates for smooth functions of random vectors satisfying
modified log-Sobolev inequalities. Since in the context of transportation or infimum convolution
inequalities one starts from the function θ and not from θ∗ (which is the case in the corresponding
log-Sobolev setting) it is more convenient to work with | · |θ,p rather than with the equivalent
norm | · |θ∗

p
used in [1,3].

In what follows we will need a simple inequality which can be easily derived from convexity
of θ and the assumption θ(0) = 0. For x ∈ R

n, p > 0, and t ≥ 1,

|x|θ,tp ≤ t |x|θ,p. (6.2)

The following corollary to Proposition 6.1 is again based on by now standard arguments,
written however in the language of the norms | · |θ,p .

Corollary 6.3. Let X be a random vector with law μ, satisfying (6.1) for all convex functions
f : Rn → R bounded from below. Then for any smooth convex Lipschitz function f : Rn → R

and p ≥ 0,

P

(∣∣f (X) − Medf (X)
∣∣> sup

x∈Rn

∣∣∇f (x)
∣∣
θ,p

)
≤ 4e−p. (6.3)

Remark 6.4. It is easy to see that if the inequality (6.3) holds for all smooth convex Lip-
schitz functions, then one can apply it to arbitrary convex Lipschitz function, replacing
supx∈Rn |∇f (x)|θ,p by the Lipschitz constant of f with respect to the norm | · | 1

p
θ
. To verify

this it is enough to consider convolutions of f with a sequence of Gaussian densities converging
to Dirac’s mass at zero – they are smooth, have the same Lipschitz constant as f and converge
to f uniformly (see, e.g., [28], p. 429).

Proof of Corollary 6.3. Let A = {y ∈ R
n : f (y) ≤ Medf (X)}, so that P(X ∈ A) ≥ 1/2. Then

by convexity, for any y ∈ A,

f (X) ≤ f (y) + 〈∇f (X),X − y
〉≤ Medf (X) + ∣∣∇f (X)

∣∣
θ,p

· |X − y| 1
p

θ
. (6.4)

Thus,

P

(
f (X) > Medf (X) + sup

x∈Rn

∣∣∇f (x)
∣∣
θ,p

)
≤ P

(
inf
y∈A

|X − y| 1
p

θ
> 1

)
(6.5)

= P
(
X /∈ A + clBθ(p)

)≤ e−p

P(X ∈ A)
≤ 2e−p,

where in the second inequality we used Proposition 6.1.
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Let now A = {y ∈ R
n : f (y) < Medf (X) − supx∈Rn |∇f (x)|θ,p}. Similarly as above, we

obtain

1/2 ≤ P
(
f (X) ≥ Medf (X)

)≤ P

(
inf
y∈A

|X − y| 1
p
θ

≥ 1
)

≤ P
(
X /∈ A + Bθ(p)

)≤ e−p

P(X ∈ A)
,

which shows that

P

(
f (X) < Medf (X) − sup

x∈RN

∣∣∇f (x)
∣∣
θ,p

)
≤ 2e−p.

Combining the last inequality with (6.5) proves the corollary. �

6.2. Concentration inequalities for general convex functions

We are now ready to state the main result of this section, contained in the following theorem,
dealing with general (not necessarily Lipschitz) convex functions. In its formulation, we adopt the
convention 0

0 = 0. The proof of the theorem as well as of its corollary is postponed to Section 6.3
We would like to emphasize, that in the theorem we assume only (6.3), which is strictly weaker

than the infimum-convolution inequality (6.1).

Theorem 6.5. Let X be a random vector satisfying (6.3) for all smooth convex Lipschitz func-
tions f : Rn → R. Then for any smooth convex function f : Rn → R, the following properties
hold.

(i) For any p ≥ 1, ∥∥∥∥ (f (X) − Medf (X))+
|∇f (X)|θ,p

∥∥∥∥
p

≤ 31/p. (6.6)

(ii) Let p > 0, q ∈ (1/2,1] and let Mp,q ∈R satisfy P(|∇f (X)|θ,p ≤ Mp,q) ≥ q . Then

P
(
f (X) < Medf (X) − Mp,q

(
1 + log

(
8/(2q − 1)

)))≤ 4e−p.

In particular for p ≥ 0,

P
(
f (X) < Medf (X) − 16E

∣∣∇f (X)
∣∣
θ,p

)≤ 4e−p. (6.7)

(iii) For all p ≥ 1, ∥∥(f − Medf (X)
)
−
∥∥

p
≤ 48E

∣∣∇f (X)
∣∣
θ,p

.
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Remark 6.6. As will become clear in the proof, the part (i) of the above theorem holds in fact
under one-sided concentration, that is, it is enough to assume that

P

(
f (X) − Medf (X) > sup

x∈Rn

∣∣∇f (x)
∣∣
θ,p

)
≤ 4e−p. (6.8)

Let us now illustrate the above theorem with a few concrete examples and a corollary. In
particular, we will show what the norms | · |θ,p look like for various choices of the cost function θ .

Example 6.7. If θ(x) = c|x|r for some r ≥ 1 and c > 0, then |x|θ,p = c−1/rp1/r |x| and (6.3) is
equivalent to

P
(∣∣f (X) − Medf (X)

∣∣≥ t
)≤ 4 exp

(−ctr
)

(6.9)

for all 1-Lipschitz convex functions (in particular for r = 2 we get the sub-Gaussian concentra-
tion). The first part of Theorem 6.5 gives then the following inequality for all (not necessarily
Lipschitz) convex functions and p ≥ 1,∥∥∥∥ (f (X) − Medf (X))+

|∇f (X)|
∥∥∥∥

p

≤ 31/pc−1/rp1/r .

Thus by the Lp-Chebyshev inequality, with p = ctr/(3e)r , we obtain for t ≥ 0,

P

(
f (X) − Medf (X)

|∇f (X)| ≥ t

)
≤ e exp

(
− ctr

(3e)r

)
(6.10)

(the additional factor e on the right-hand side is introduced artificially to encompass all t ≥ 0,
also those for which p < 1; note that in this case the right-hand side exceeds one). We remark that
similar self-normalized inequalities are known for example, in the theory of empirical processes
(see [12]).

The lower tail inequalities give

P
(
f (X) ≤ Medf (X) − t

)≤ 4 exp

(
−c

tr

16r (E|∇f (X)|)r
)

. (6.11)

Moreover, using the full strength of part (ii) of Theorem 6.5, one can replace E|∇f (X)| by
4−1M3/4, where M3/4 is the 3/4 quantile of |∇f (X)|. Thus, no integrability conditions on the
gradient are in fact required.

Remark 6.8. Let us note that inequalities similar to (6.11) were previously known with the
quantity (E|∇f (X)|2)1/2 instead of the quantile or E|∇f (X)| (see [28] or [22], Chapter 3.3).
Very recently, Paouris and Valettas [26] have proved that the standard Gaussian vector in R

n

satisfies a similar inequality (for r = 2) with E|f (X) − Medf (X)| in place of E|∇f (X)|. Their
proof uses in a crucial way isoperimetric properties of Gaussian measures. The version with
E|∇f (X)| follows simply by an application of the (1,1)-Poincaré inequality for the Gaussian
measure, that is, E|f (X) − Medf (X)| ≤ CE|∇f (X)| (see, e.g., [25,27]). In fact, the proof in
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[26] gives also inequalities in terms of quantiles of |f (X) − M|. We do not know if they are
comparable to our estimates (specialized to the standard Gaussian measure) in terms of quantiles
of |∇f (X)|.

Note also that (6.9) for r = 1 is a consequence of the convex Poincaré inequality (however, we
do not know if (1.1) implies (6.9) with c depending only on λ and not on the dimension n, see
Question 7.3 below).

Example 6.9. Let us now consider a measure μ on R
n satisfying the convex Poincaré inequality

with constant λ. Then, by Theorem 3.1 it satisfies the convex Bobkov–Ledoux inequality (3.1)
with constants C and c depending only on λ. By the classical Herbst argument, it follows (see,
e.g., [2,6]) that for each N ≥ 1, if X is an Nn-dimensional random vector with law μ⊗N , then
for any smooth convex function f : RNn →R and any t > 0,

P
(
f (X) ≥ Ef (X) + t

)
≤ 2 exp

(
−c′(λ)min

{
t2

supx∈RNn |∇f (x)|2 ,
t

supx∈RNn maxi≤N |∇if (x)|
})

,

where for x = (x1, . . . , xN) ∈ (Rn)N = R
Nn, ∇if (x) denotes the partial gradient with respect

to xi .
Moreover, by the Poincaré inequality

∣∣Ef (X) − Medf (X)
∣∣≤ 1√

λ
sup

x∈RNn

∣∣∇f (x)
∣∣,

which at the cost of changing the constant allows to replace the mean by the median in the above
inequality. Thus, we obtain that for some constant c′′(λ) and p > 0,

P

(
f (X) ≥ Medf (X) + c′′(λ) sup

x∈RNn

(√
p
∣∣∇f (x)

∣∣+ p max
i≤N

∣∣∇if (x)
∣∣))≤ 2e−p.

It is easy to see that up to universal constants c′′(λ)(
√

p|x| + p maxi≤N |xi |) is equivalent to
|x|θ,p , where

θ(x) =
N∑

i=1

(∣∣∣∣ xi

c′′(λ)

∣∣∣∣21{| xi
c′′(λ)

|≤1} +
(

2

∣∣∣∣ xi

c′′(λ)

∣∣∣∣− 1

)
1{| xi

c′′(λ)
|>1}

)

(e.g., by comparing θ with θ1(x) = ∑N
i=1 min(|xi/c

′′(λ)|2, |xi/c
′′(λ)|), which is not convex but

is comparable to θ up to multiplicative constants). More precisely,

|x|θ,p ≤ c′′(λ)
(√

p|x| + p max
i≤N

|xi |
)

≤ 4|x|θ,p.
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Thus, the first part of Theorem 6.5 together with Remark 6.6 gives for arbitrary smooth convex
function f on R

Nn, the inequality∥∥∥∥ (f (X) − Medf (X))+√
p|∇f (X)| + p maxi≤N |∇if (X)|

∥∥∥∥
p

≤ c′′′(λ),

for p ≥ 1, where c′′′(λ) depends only on λ. By Chebyshev’s inequality, this implies that

P

(
(f (X) − Medf (X))+√

t |∇f (X)| + t maxi≤N |∇if (X)| ≥ ec′′′(λ)

)
≤ e−t

for t ≥ 1 (note that contrary to (6.10) this time t cannot be removed from the denominator).
As for the lower tail, by Theorem 1.3, Remark 1.4, Lemma 2.5 and tensorization properties

of infimum convolution inequalities (see Lemma 5 in [24]) we obtain that X satisfies (6.1) and
thus also (6.3) with θ(x) = K(λ,n)

∑N
i=1(|xi |21{|xi |≤1} + (2|xi | − 1)1{|xi |>1}), where K(λ,n)

depends only on λ and the dimension n. Thus, by the second part of Theorem 6.5,

P

(
f (X) ≤ Medf (X) − K ′(λ,n)−1

[√
pE

∣∣∇f (X)
∣∣+ pEmax

i≤N

∣∣∇if (X)
∣∣])≤ 4e−p,

or equivalently (up to constants depending only on λ,n),

P
(
f (X) ≤ Medf (X) − t

)≤ 4 exp

(
−K ′′(λ,n)min

{
t2

(E|∇f (X)|)2
,

t

Emaxi≤N |∇if (X)|
})

.

We stress that all the above inequalities are dimension-free in the sense that the constants do not
depend on the number N but just on the initial dimension n (cf. Remark 1.5).

Example 6.10. Finally, we remark that general cost functions θ lead to other concentration pro-
files, which have been studied in the literature. One can for instance, consider products of mea-
sures on R, satisfying (6.1) with

θ(x) � |x|21{|x|≤1} + |x|r1{|x|>1}

for r ≥ 1 (such measures are characterized thanks to results in [18]). If we denote for x ∈ R
n,

|x|r = (|x1|r +· · ·+ |xn|r )1/r and let r∗ be the Hölder conjugate of r , then such costs correspond
for r ∈ [1,2] to norms of the form |x|θ,p � √

p|x|+p1/r |x|r∗ (the case r = 1 has been discussed
above), while for r > 2 to

|x|θ,p � p1/r
∣∣(x∗

i

)p
i=1

∣∣
r∗ + √

p
∣∣(x∗

i

)n
i=p+1

∣∣,
where (x∗

i )ni=1 is the non-increasing rearrangement of the sequence (|xi |)ni=1.

We will now present a corollary to Theorem 6.5, providing concentration inequalities for non-
Lipschitz convex functions, in the spirit of recent results due to Bobkov, Nayar, and Tetali [10].
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Corollary 6.11. Under the assumptions of Theorem 6.5 for all convex functions f : Rn →R and
t ≥ 0,

P
(
f (X) − Medf (X) ≥ t

)≤ inf
p≥1

{
e−p + P

(∣∣∇f (X)
∣∣
θ,p

≥ t/(3e)
)}

.

Moreover, for any p ≥ 1,

P
(∣∣f (X) − Medf (X)

∣∣≥ 3e2
∥∥∣∣∇f (X)

∣∣
θ,p

∥∥
p

)≤ 6e−p. (6.12)

Let us note that inequalities of the form (6.12) have been obtained in [1] for all smooth func-
tions of random vectors satisfying modified log-Sobolev inequalities (assumed to hold for all
smooth functions). Therein, the function θ had to satisfy some appropriate growth condition.

Example 6.12. In particular for θ(x) = c|x|2, the above corollary gives

P
(
f (X) − Medf (X) ≥ t

)≤ inf
p≥1

{
e−p + P

(√
p/c

∣∣∇f (X)
∣∣≥ t/(3e)

)}
.

By substituting p = ct2

(3e)2L2 and adjusting the constant, we obtain

P
(
f (X) − Medf (X) ≥ t

)≤ inf
L>0

{
2e

−c′ t2

L2 + P
(∣∣∇f (X)

∣∣≥ L
)}

, (6.13)

where c′ is positive and depends only on c. The factor 2 in the above inequality is introduced for
notational simplicity to allow the whole range of L > 0 in the infimum (note that for large L we
have p < 1 and we cannot apply Corollary 6.11, on the other hand in this case for an appropriate
choice of c′ the value under the infimum above exceeds one, so we can indeed extend the range
of L to the whole positive half-line).

Recall also the second part of Theorem 6.5 which for q = 3/4 gives in this case

P
(
f (X) ≤ Medf (X) − t

)≤ 4 exp

(
−c′′ t2

M2
3/4

)
, (6.14)

where M3/4 = inf{x ∈R
n : P(|∇f (X)| ≤ x) ≥ 3/4} and c′′ again depends only on c.

The above inequalities should be compared with a recent result in [10], which asserts that for
some positive constant c′′′ depending only on c,

P
(∣∣f (X) − f (Y )

∣∣≥ t
)≤ 2 inf

L≥Med |∇f (X)|
{
e
−c′′′ t2

L2 + P
(∣∣∇f (X)

∣∣≥ L
)}

, (6.15)

where Y is an independent copy of X.
It is not difficult to see that in the regime of t for which the above inequalities are of inter-

est, that is, the right-hand sides are small, (6.13) gives estimates on the upper tail which (up to
numerical constants) are comparable to those implied by (6.15), whereas for the lower tail, the
inequality (6.14) improves over (6.15).
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Example 6.13. Consider the function θ(x) =∑N
i=1(|xi/c|21{|xi/c|≤1} + (2|xi/c|−1)1{|xi/c|>1}),

which we have already discussed in Example 6.9. From Corollary 6.11, we get

P
(
f (X) − Medf (X) ≥ t

)≤ inf
p≥1

{
e−p + P

(√
p
∣∣∇f (X)

∣∣+ p max
i≤N

∣∣∇if (X)
∣∣≥ t/c′)}.

By substituting p = min{ t2

(2c′)2L2 , t
2c′M } and using the union bound, we obtain

P
(
f (X) − Medf (X) ≥ t

)
≤ inf

L,M>0

{
2 exp

(
−c′′ min

{
t2

L2
,

t

M

})
+ P

(∣∣∇f (X)
∣∣≥ L

)+ P

(
max
i≤N

∣∣∇if (X)
∣∣≥ M

)}
,

with c′′ depending only on c. As in the preceding example, the factor 2 is introduced to allow for
all positive values of L,M .

Remark 6.14. Let us note that another way of obtaining estimates on the upper tail of non-
Lipschitz convex functions under the convex Poincaré inequality is to use the estimates (2.1) and
(2.2). By approximating arbitrary convex functions with Lipschitz ones, we can easily see that
they hold in fact for all convex functions. Thus, if one controls the moments of |∇f (X)|, one
can obtain tail estimates beyond the Lipschitz case. Such inequalities are however different from
those of the above example as they are of exponential type and not of mixed exponential/Gaussian
type. On the other hand, the weak transportation inequality with the cost function of Example 6.9
arises usually as a consequence of tensorization, so in order to apply it we need some additional
product structure of the measure.

6.3. Proofs of Theorem 6.5 and Corollary 6.11

Proof of Theorem 6.5. Let us start with (i), the proof of which is quite similar to the proof of
Corollary 6.3. Let us again define A = {x ∈ R

n : f (x) ≤ Medf (X)}. Using (6.2) and (6.4), we
can write for t ≥ 1,

f (X) − Medf (X)

t |∇f (X)|θ,p

≤ f (X) − Medf (X)

|∇f (X)|θ,tp

≤ inf
y∈A

|X − y| 1
tp

θ
.

Hence for t ≥ 1,

P

(
f (X) − Medf (X)

|∇f (X)|θ,p

> t

)
≤ P

(
inf
y∈A

|X − y| 1
tp

θ
> 1

)
≤ 4e−pt ,

where we used the fact that the function g(x) = infy∈A |x − y| 1
tp

θ
is convex, 1-Lipschitz with

respect to | · | 1
tp

θ
and Medg(X) = 0, together with Corollary 6.3 and Remark 6.4. We can now



Convex Poincaré inequality 369

integrate by parts and get

E

∣∣∣∣ (f (X) − Medf (X))+
|∇f (X)|θ,p

∣∣∣∣p ≤ 1 + 4
∫ ∞

1
ptp−1e−pt dt ≤ 1 + 4

∫ ∞

1
e−t dt ≤ 3

(the integrand is pointwise non-increasing with respect to p ≥ 1, as the computation of the deriva-
tive with respect to p reveals), which proves the first part of the theorem.

Let us now pass to the second part. Assume without loss of generality that Medf (X) = 0 and
p ≥ 1. Consider the set B = {x ∈ R

n : |∇f (x)|θ,p ≤ Mp,q}. By the definition of Mp,q , we have
P(X ∈ B) ≥ q . Let f̃ : Rn → R be defined as

f̃ (x) = sup
y∈B

{
f (y) + 〈∇f (y), x − y

〉}
.

Then f̃ is convex, moreover by convexity of f we have f̃ ≤ f pointwise and f̃ = f on B . By the
definition of the set B and inequality (6.2), for any t ≥ 1 all linear functionals x 
→ 〈∇f (y), x〉,
y ∈ B , are (tMp,q)-Lipschitz with respect to | · | 1

tp
θ

and therefore so is f̃ . By Corollary 6.3 and

Remark 6.4, this implies that for any t ≥ 1,

P
(∣∣f̃ (X) − Med f̃ (X)

∣∣> tMp,q

)≤ 4e−tp. (6.16)

We also have P(f̃ (X) ≥ 0) ≥ P(f (X) ≥ 0 and X ∈ B) ≥ q − 1/2. Therefore, the above inequal-
ity applied with t ↘ log(8/(2q − 1)) > 1 gives (recall that p ≥ 1)

Med f̃ (X) + Mp,q log
(
8/(2q − 1)

)≥ 0,

which by another application of (6.16) implies

P
(
f (X) < −Mp,q

(
1 + log

(
8/(2q − 1)

)))≤ P
(
f̃ (X) < Med f̃ (X) − Mp,q

)≤ 4e−p.

This proves the first inequality of part (ii).
The second inequality of part (ii) follows from the first one by specializing to q = 3/4, Mp,q =

4E|∇f (X)|θ,p and some elementary calculations.
As for part (iii), using again (6.2) and (6.7), we get for t ≥ 16E|∇f (X)|θ,p

P
(
f (X) − Medf (X) ≤ −t

)≤ 4 exp

(
− pt

16E|∇f (X)|θ,p

)
.

Now, again by integration by parts,

E
(
f (X) − Medf (X)

)p
−

≤ (
16E

∣∣∇f (X)
∣∣
θ,p

)p + 4p

∫ ∞

16E|∇f (X)|θ,p

tp−1 exp

(
− pt

16E|∇f (X)|θ,p

)
dt

≤ 3
(
16E

∣∣∇f (X)
∣∣
θ,p

)p
,
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which ends the proof. �

Proof of Corollary 6.11. To prove the first inequality, it is enough to note that if |∇f (X)|θ,p ≤
t/(3e) and f (X) − Medf (X) ≥ t , then

Z := (f (X) − Medf (X))+
|∇f (X)|θ,p

≥ 3e ≥ e‖Z‖p,

where the last inequality follows from (6.6). The assertion follows thus from Chebyshev’s in-
equality: P(Z ≥ e‖Z‖p) ≤ e−p .

As for the second inequality, we apply the first one with t = 3e2‖|∇f (X)|θ,p‖p and combine
it with the estimate (6.7). �

7. Further questions

Let us conclude with some open questions, which seem natural in view of our results.
As already mentioned in the Introduction, in our proof of the implication

μ satisfies the convex Poincaré inequality with constant λ

=⇒ μ satisfies the inequality TθC,D
for some C,D,

the constants C,D do not depend just on λ, but also on certain quantiles of the measure μ. In
fact, the issue comes from the inequality T

+
, since the constants in T

−
do depend only on λ

(see Corollary 4.3). This gives rise to our first question.

Question 7.1. Does the convex Poincaré inequality with constant λ imply the weak transporta-
tion inequality TθC,D

with constants C,D depending only on λ?

The inspection of our proof shows that in order to answer the above question in the affirmative,
it is enough to remove the restriction on t in Lemma 2.4. An improved version of this lemma,
valid for all t > 0 would follow by part (ii) of Theorem 6.5 provided that one can show that
the convex Poincaré inequality with constant λ implies subexponential concentration for convex
1-Lipschitz functions, with constants depending only on λ. The problem lies in the lower-tail (as
the upper one is handled by Proposition 2.2). More precisely, we have the following result.

Theorem 7.2. Assume that μ is a probability measure on R
n, satisfying the convex Poincaré

inequality (1.1) with constant λ and c is a positive constant, such that for all 1-Lipschitz convex
functions f : Rn →R and all t > 0,

μ
({

x ∈ R
n : f (x) ≤ Medμ f − t

})≤ 2 exp(−ct).

Then μ satisfies the inequality TθC,D
with C,D depending only on λ and c.

This motivates the following question, which is clearly of interest also in its own right.
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Question 7.3. Does the convex Poincaré inequality (1.1) with constant λ imply subexponential
estimates for the lower-tail of convex 1-Lipschitz functions, with constants depending only on λ?
Specifically, is it true that whenever μ is a probability measure on R

n satisfying (1.1), then for
every convex 1-Lipschitz function f : Rn →R,

μ
({

x ∈R
n : f (x) ≤ Medμ f − t

})≤ 2 exp
(−c(λ)t

)
,

where the constant c(λ) depends only on λ?

The inequality provided by Lemma 2.4 introduces an additional dependence on n, which car-
ries over to the dependence of constants in Theorem 1.3. Let us point out that all the proofs of
lower-tail estimates based on the Poincaré inequality and available for the category of all smooth
functions, which we have been able to find in the literature, seem to break down in the convex
setting (see e.g. the arguments in [4,17,20]).

Appendix A: Facts related to Hamilton–Jacobi equations

We will now present some basic properties of Hamilton–Jacobi equations related to infimum
convolution operators with the cost θ(x) = α(x), where α is given by (4.3), which have been
exploited in the proof of Lemma 4.1. We remark that all the facts we will rely on are quite
standard, however in the literature they are usually considered under slightly different sets of
assumptions, which makes it difficult to find an off the shelf result applicable to our situation.
We will briefly indicate how the reasonings from [13], Chapter 3, can be modified to yield the
properties we need. Alternatively, as in [18], one could rely on a modification of the results from
[16], where the theory of Hamilton–Jacobi equations is extended to the setting of metric spaces.

Proposition A.1. Let C,L be positive constants and let α be defined by (4.3). Assume that
f : Rn → R is either bounded from below or L-Lipschitz and let u : (0,∞) ×R

n → R be given
by u(t, x) = Qα

t f (x), where

Qα
t f (x) = inf

y∈Rn

{
f (y) + tα

(
(x − y)/t

)}
, t > 0.

Then the following conditions hold.

(a) For every s, t > 0 and every x ∈R
n, QtQsf (x) = Qt+sf (x).

(b) The function u is Lipschitz on (0,∞) ×R
n,

(c) At every point (t, x) ∈ (0,∞) ×R
n of differentiability of u, one has

d

dt
u(t, x) + α∗(∇xu(t, x)

)= 0,

where α∗ : Rn → R is the Legendre transform of α, given explicitly by the formula

α∗(s) =
{

C|s|2 for |s| ≤ L,

+∞ for |s| > L.
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Sketch of proof. Let us note that if f is bounded from below or L-Lipschitz, then Qtf is well
defined.

Ad (a). To show the semigroup property, one can repeat the argument from the proof of [13],
Chapter 3.3.2, Lemma 1, however in our setting one needs to work with infima rather then min-
ima.

Ad (b). For fixed t , u is L-Lipschitz in x, as an infimum of L-Lipschitz functions. Indeed for
each y, the function x 
→ tα((x −y)/t) is L-Lipschitz. As for the Lipschitz property with respect
to t , the argument in the proof of [13], Chapter 3.3.2, Lemma 2, shows that if f is L-Lipschitz,
then for any x, ∣∣u(t, x) − f (x)

∣∣≤ Mt,

where M = max|x|≤L α∗(x) = CL2. Now the Lipschitz condition with respect to t > 0 (for gen-
eral f , which may not be L-Lipschitz) follows from the semigroup property and the fact that
Qtf is an L-Lipschitz function of x.

Ad (c). Using again the fact that Qtf is L-Lipschitz, it is enough to consider the case when
so is f . One can then repeat the proof of [13], Chapter 3.3.2, Theorem 5, provided that one can
prove that the infimum in the definition of Qtf is in fact achieved. To this end, it is enough to
note that whenever |y − x| > 2CLt we have, denoting z = x + 2CLt(y − x)/|x − y|,

f (y) + tα
(
(x − y)/t

)
= f (z) + tα

(
(x − z)/t

)+ (
f (y) − f (z)

)+ tα
(
(x − y)/t

)− tα
(
(x − z)/t

)
≥ f (z) + tα

(
(x − z)/t

)− L|z − y| + tα
(
(x − y)/t

)− tα
(
(x − z)/t

)
= f (z) + tα

(
(x − z)/t

)
,

where the inequality holds by the Lipschitz property of f and the last equality follows from
the definition of α (and the fact that z lies on the interval with endpoints x and y). Thus
Qtf (x) = inf|y−x|≤2CLt {f (y)+ tα((y −x)/t)} and the existence of the minimizer follows from
compactness and continuity of f and α. �
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