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Feller property of the multiplicative
coalescent with linear deletion
BALÁZS RÁTH

Department of Stochastics, Budapest University of Technology and Economics, 1 Egry József u., 1111 Bu-
dapest, Hungary. E-mail: rathb@math.bme.hu

We modify the definition of Aldous’ multiplicative coalescent process (Ann. Probab. 25 (1997) 812–854)
and introduce the multiplicative coalescent with linear deletion (MCLD). A state of this process is a square-
summable decreasing sequence of cluster sizes. Pairs of clusters merge with a rate equal to the product of
their sizes and clusters are deleted with a rate linearly proportional to their size. We prove that the MCLD
is a Feller process. This result is a key ingredient in the description of scaling limits of the evolution of
component sizes of the mean field frozen percolation model (J. Stat. Phys. 137 (2009) 459–499) and the
so-called rigid representation of such scaling limits (Electron. J. Probab. To appear).
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1. Introduction

Let us define

�
↓∞ = {

m = (m1,m2, . . . ) : m1 ≥ m2 ≥ · · · ≥ 0
}
,

�
↓
2 =

{
m ∈ �

↓∞ :
∞∑
i=1

m2
i < ∞

}
,

�
↓
0 = {

m ∈ �
↓∞ : ∃i0 ∈ N : mi = 0 for any i ≥ i0

}
.

For m,m′ ∈ �
↓
2 one defines the distance

d
(
m,m′) = ∥∥m − m′∥∥

2 =
(∑

i≥1

(
mi − m′

i

)2
)1/2

. (1.1)

The metric space (�
↓
2 ,d(·, ·)) is complete and separable.

The multiplicative coalescent process (or briefly MC process), defined in [3], Section 1.5, is
a continuous-time Markov process mt , t ≥ 0 with state space �

↓
2 . The state mt represents the

ordered sequence of sizes of components, where two components of size mi and mj merge with
rate mi · mj . By [3], Proposition 5, the multiplicative coalescent process has the Feller property

with respect to the metric d(·, ·) on �
↓
2 . On the other hand, if m0 ∈ �

↓∞ \ �
↓
2 , then all of the

components instantaneously coagulate and form one component with infinite mass, see [14],
Section 2.1. In Section 2, we collect the basic results about MC relevant for our study.

1350-7265 © 2019 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
https://doi.org/10.3150/17-BEJ984
mailto:rathb@math.bme.hu


222 B. Ráth

Let λ ∈ R+. For any m ∈ �
↓
2 we want to define a continuous time Markov process mt with

state space �
↓
2 where m0 = m and mt represents the ordered sequence of sizes of components

of a coagulation-deletion process at time t . We want the dynamics of the process mt , t ≥ 0 to
satisfy

(i) two components of size mi and mj merge with rate mi · mj ,
(1.2)

(ii) a component of size mi is deleted with rate λ · mi .

We are going to call such a process a multiplicative coalescent with linear deletion with dele-
tion rate λ, and briefly denote it by MCLD(λ).

If m ∈ �
↓
0 , then the MCLD(λ) process obviously exists and mt ∈ �

↓
0 for any t ≥ 0. In fact,

if m ∈ �
↓∞ with

∑∞
i=1 mi < ∞ then the definition of MCLD(λ) is still quite simple because the

time between consecutive coalescences/deletions is always positive. On the other hand, for initial
conditions with infinite total mass, the set of times when a coalescence or deletion occurs will
be dense in R+, and it is not a priori clear that a well-defined stochastic process satisfying (1.2)
exists (see Remark 1.4 below for related non-existence results).

In Section 3, we will give a graphical construction of the process mt with initial state m ∈ �
↓
2

and deletion rate λ. This construction of MCLD(λ) is similar to, but not as simple as the graphical
construction of the MC given in [3], Section 1.5, because MCLD(λ) lacks the monotonicity
properties of MC, see Remark 1.3 below. In Section 3 we also prove the following proposition.

Proposition 1.1. For any m ∈ �
↓
2 our graphical construction of MCLD(λ) (see Section 3) almost

surely gives a function t �→ mt with m0 = m which is càdlàg with respect to the d(·, ·)-metric.

The main result of this paper is that our construction indeed gives rise to a well-behaved
continuous-time Markov process on �

↓
2 :

Theorem 1.2 (Feller property). Let m(n), n ∈ N be a convergent sequence of elements of �
↓
2

with limit m(∞), that is, limn→∞ d(m(n),m(∞)) = 0. For any t ∈ R+ and n ∈ N+ ∪ {∞}, denote
by m(n)

t the MCLD(λ) process with initial condition m(n) at time t . For any t ≥ 0 we have

m(n)
t

d−→ m(∞)
t , n → ∞, (1.3)

where
d−→ denotes convergence in distribution of random variables on the Polish space

(�
↓
2 ,d(·, ·)).

We will prove Theorem 1.2 in Section 4 using an argument that involves truncation and cou-
pling.

Remark 1.3. The reason why the proof of the Feller property for MCLD(λ) is more involved
than the proof of the Feller property for MC (cf. the proof of [3], Proposition 5, in [3], Section 4.2)
is that the natural graphical construction of MCLD(λ) is not monotone:
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If we obtain m′
t , t ≥ 0 from mt , t ≥ 0 by inserting an extra deletion event at time t1, then

it might happen that this deletion prevents later coagulations and deletions, so that m′
t2

has
more/bigger components than mt2 for some t2 > t1. Similarly, insertion of an extra coagula-
tion event at some time might lead to the deletion of more/bigger components and thus create a
state with fewer/smaller components at a later time.

1.1. Motivation, related results

Our reason for developing the theory of MCLD(λ) on the state space �
↓
2 is that we want to

understand the scaling limit of the time evolution of large connected component sizes in the
self-organized critical mean field frozen percolation model [18], as we now explain.

The frozen percolation process on the binary tree was defined in [5]: the model is a modifica-
tion of the dynamical percolation process on the binary tree which makes the following informal
description precise: edges appear with rate 1 and if an infinite component appears, we immedi-
ately “freeze” it, and we do not allow edges with an end-vertex in a frozen component to appear.

Remark 1.4. I. Benjamini and O. Schramm showed that it is impossible to define a similar mod-
ification of the percolation process on Z

2, cf. [23], Section 3, Remark (i). Various modifications
of the two-dimensional frozen percolation model where large finite clusters are frozen are further
explored in [12,20–22]. The result of [13] about the closely related model of two-dimensional
self-destructive percolation implies non-existence of the so-called two dimensional forest fire
process, cf. [13], Section 3.2. However, the result of [2] about self-destructive percolation on
the high-dimensional lattice Z

d indicates that the self-organized critical forest fire process on
Z

d should exist if d is high enough. The existence and uniqueness of the subcritical forest fire
process on Z

d was proved in [10,11].

Let us now recall the notion of mean-field frozen percolation process from [18] (using slightly
different notation).

Definition 1.5 (FP(n,λ(n))). We start with a graph F
(n)
0 on n vertices. Between each pair of

unconnected vertices an edge appears with rate 1/n; also, every connected component of size k

is deleted with rate λ(n) · k. (When a component is deleted, its vertices as well as its edges are
removed from the graph.) Let F

(n)
t be the graph at time t . Denote by

M(n)(t) = (
M

(n)
1 (t),M

(n)
2 (t), . . .

) ∈ �
↓
0

the sequence of component sizes of F
(n)
t , arranged in decreasing order.

Then M(n)(t), t ≥ 0 is a Markov process – let us call it here the frozen percolation component
process on n vertices with lightning rate λ(n), or briefly FP(n,λ(n)). In fact, up to time-change,
M(n)(t), t ≥ 0 evolves according to the rules (1.2) of MCLD.

Remark 1.6. We note that FP(n,λ(n)) is a simplification of the mean field forest fire model
[19], the definition of which agrees with Definition 1.5 above, with the only difference that in
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the forest fire model we only delete the edges of the connected components that are destroyed by
fire, that is, a destroyed component of size k is immediately replaced by k singletons. The mean
field forest fire model behaves very similarly to the mean field frozen percolation model (e.g., the
self-organized critical behaviour of the two models are quite similar, see also Remark 1.10(iii)
below), however the mathematics of the mean field frozen percolation model is simpler than
that of the mean field forest fire model, for example, the solution of the system of differential
equations that appears in [18], Theorem 1.2, is fairly explicit, while the system of differential
equations that appears in [19], Theorem 2, currently does not have an explicit solution.

Remark 1.7. One studies the asymptotic behaviour of the component size structure of
FP(n,λ(n)) when 1 � n and 1/n � λ(n) � 1. Definition 1.5 above is slightly different from
the one proposed in [5], Section 5.5, and studied in [17] where connected components are frozen
when their size exceeds a threshold ω(n) satisfying 1 � ω(n) � n. The results [17], Theo-
rem 1.1, and [18], Theorem 1.2, are very similar: indeed, if one is interested in small connected
component densities then the two models produce exactly the same (self-organized critical) be-
haviour. However, if one is interested in the scaling limit of big component dynamics, the exact
deletion mechanism does crucially enter the picture.

We are interested in identifying the scaling limit of FP(n,λ(n)) as n → ∞. In order to de-
scribe the kind of result we are after, let us recall that the large components of the dynamical

Erdős–Rényi random graph process in the critical window G(n, 1+tn−1/3

n
), t ∈ R, scaled by n2/3,

converge in law to the standard multiplicative coalescent process (M(t), t ∈ R), see [3], Sec-
tion 4.3.

Remark 1.8. The family of multiplicative coalescent processes defined for all t ∈ R (i.e., the
eternal MC processes) are characterized in [4]. The class of inhomogeneous random graph mod-
els whose scaling limit is the standard MC is explored in [6,8] (see also references therein).
The scaling limits of other classes of inhomogeneous random graph models are related to non-
standard eternal MC processes, see [4,9]. The continuum scaling limit of the metric structure of
critical random graphs is studied in [1,7] (see also references therein).

The next result gives a scaling limit for the frozen percolation process started from a critical
Erdős–Rényi graph.

Proposition 1.9. Fix u ∈R and let F
(n)
0 be an Erdős–Rényi graph G(n,p) with edge probability

p = 1+un−1/3

n
. Let λ > 0 and let M(n)(t), t ≥ 0 be the FP(n,λn−1/3) process with initial state

F
(n)
0 . Define m(n)(t), t ≥ 0 by

m(n)(t) := (
n−2/3M

(n)
1

(
n−1/3t

)
, n−2/3M

(n)
2

(
n−1/3t

)
, . . .

)
. (1.4)

Then as n → ∞ the finite dimensional marginals of the sequence of �
↓
2 -valued processes

m(n)(t), t ≥ 0 converge in law to the finite dimensional marginals of the MCLD(λ) process
(m(t), t ≥ 0) started from an initial state with distribution m(0) ∼ M(u) (i.e., the state of the
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standard multiplicative coalescent process at time u), i.e., for every k ∈ N and 0 ≤ t1 < t2 <

· · · < tk we have(
m(n)(t1),m(n)(t2), . . . ,m(n)(tk)

) d−→ (
m(t1),m(t2), . . . ,m(tk)

)
, n → ∞.

The proof of Proposition 1.9 follows as an application of Theorem 1.2 (for details of the proof,
we refer to [15], Proposition 6.10).

Remark 1.10. (i) Loosely speaking, if (m(t), t ≥ 0) is the MCLD(λ) process started from an ini-
tial state with distribution m(0) ∼M(u) (this is the limit object that appears in Proposition 1.9),
then we have m(t) ∼ M(u + t − �(t)), where �(t) denotes the sum of the sizes of the compo-
nents deleted up to time t (see [15], Proposition 6.7(ii), for a precise formulation of this property).
In fact, in [15], Proposition 6.7, we give a representation of (m(t), t ≥ 0) on the probability space
of a standard Brownian motion using what we call the “rigid” representation of MCLD(λ). We
note that Theorem 1.2 is also crucially used when we extend our rigid representation results from
�
↓
0 to �

↓
2 in [15], Section 5.

(ii) In [16], we describe the possible scaling limits that can arise from a FP(n,λn−1/3) pro-
cess started from an empty graph. The possible limit objects are eternal MCLD(λ) processes
(i.e., they are defined for any t ∈ R). The “arrival at the critical window” gives rise to a non-
stationary MCLD(λ) scaling limit, while the scaling limit in the “self-organized critical” regime
is a stationary MCLD(λ) (see also [15], Remark 6.8).

(iii) We conjecture that the scaling limit of the coagulation-fragmentation dynamics of big
components of the mean field forest fire model (cf. Remark 1.6 above) with lightning rate λn−1/3

is also an MCLD(λ) process.

2. Notation and basic results

The aim of this section is to collect some basic results about the multiplicative coalescent from
[3] and [14]. In some cases, we will augment these results to fit our purposes or present them
using different notation.

We define

�+
2 =

{
x = (x1, x2, . . . ) : ∀i xi ≥ 0,

∑
i≥1

x2
i < +∞

}
.

We have �
↓
2 ⊆ �+

2 . Define the mapping

ord : �+
2 → �

↓
2 (2.1)

by letting ord(x) be the decreasing rearrangement of x ∈ �+
2 .

Definition 2.1. If m ∈ �
↓
2 and G is a graph with vertex set V ⊆ N+, denote by ord(m,G) the

ordered sequence of the weights of the connected components of G. More precisely, if C1,C2, . . .
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is the sequence of the vertex sets of the connected components of G, we define

xG =
(∑

i∈C1

mi,
∑
i∈C2

mi, . . .

)
and ord(m,G)

(2.1)= ord(xG), (2.2)

assuming that xG ∈ �+
2 . We also denote

SG
2 =

∞∑
k=1

(∑
j∈Ck

mj

)2

= ‖xG‖2
2 = ∥∥ord(xG)

∥∥2
2. (2.3)

Let us now state an elementary yet useful result which involves the metric d(·, ·) defined in
(1.1).

Lemma 2.2. If m ∈ �
↓
2 and G,G′ are graphs with vertex sets V,V ′ ⊆ N+ such that V ⊆ V ′,

G ⊆ G′ and ord(m,G) ∈ �
↓
2 , then we have

d
(
ord(m,G),ord

(
m,G′)) ≤

√∥∥ord
(
m,G′)∥∥2

2 − ∥∥ord(m,G)
∥∥2

2.

Proof. This is a special case of [3], Lemma 17. �

Let us recall the graphical construction used in [3], Section 1.5, to define the multiplicative
coalescent process.

Definition 2.3. Let (ξi,j )1≤i<j<∞ denote independent random variables with EXP(1) distribu-
tion. Given x ∈ �+

2 let us define the simple graph Gt with vertex set N+ and an edge between i

and j if and only if ξi,j ≤ txixj . For i, j ∈ N+ we denote by i
Gt←→ j the event that i and j are

connected by a simple path in the graph Gt .

Given Gt we define the connected components (Ck(t))
∞
k=1 of Gt by

ik = min

{
N+

∖ k−1⋃
l=1

Cl (t)

}
, Ck(t) = {i ∈ N+ : i Gt←→ ik}, k ≥ 1. (2.4)

Note that we have

S
Gt

2
(2.3)= S

G0
2 +

∑
i �=j

xixj1[i Gt←→ j ] (2.5)

and S
G0
2 = ∑∞

i=1 x2
i < +∞ if x ∈ �+

2 .
The statement of the next lemma follows from [3], Proposition 5, and shows that Defini-

tions 2.1 and 2.3 give rise to a graphical representation of the �
↓
2 -valued multiplicative coalescent

process with initial state m ∈ �
↓
2 in the form ord(m,Gt ), t ≥ 0.
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Lemma 2.4. For any t ≥ 0 and x ∈ �+
2 we have

P
(
S

Gt

2 < +∞) = 1. (2.6)

In particular, for any t ∈ R+ the weights of the connected components of Gt are almost surely
finite:

P
(

∀k ∈ N+ :
∑

i∈Ck(t)

xi < +∞
)

= 1. (2.7)

The next lemma is an extended version of [14], (2.2).

Lemma 2.5. For any x ∈ �+
2 and i, j ∈ N+ and t < 1

S
G0
2

we have

P(i
Gt←→ j) ≤ xi · xj · t

1 − t · SG0
2

. (2.8)

Proof.

P(i
Gt←→ j)

≤
∞∑

k=1

P
( ∃i0, . . . , ik ∈N+ : i0 = i, ik = j and

(i0, i1, . . . , ik−1, ik) is a simple path in Gt

)

≤
∞∑

k=1

∑
(i1,...,ik−1)∈Nk−1+

k∏
l=1

(
1 − exp(−xil−1xil t)

)

≤
∞∑

k=1

∑
(i1,...,ik−1)∈Nk−1+

k∏
l=1

xil−1xil t = xixj t ·
∞∑

k=1

∑
(i1,...,ik−1)∈Nk−1+

k−1∏
l=1

x2
il
t

= xixj t ·
∞∑

k=1

(
t · SG0

2

)k−1 = xi · xj · t
1 − t · SG0

2

. (2.9)
�

Corollary 2.6. For any x ∈ �+
2 , t ≥ 0 and i, j ∈ N+, if

S
G0
2 ≤ 1

2t
(2.10)

holds then we have

E
(
S

Gt

2

) ≤ 2S
G0
2 . (2.11)
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Proof. Using (2.5), (2.8) and (2.10), we obtain

E
(
S

Gt

2

) ≤ S
G0
2 + 2t

∑
i �=j

x2
i x2

j ≤ S
G0
2 + 2t · (SG0

2

)2 (2.10)≤ 2S
G0
2 . (2.12)

�

The next lemma is based on [3], Lemma 23, and [14], (2.5). It will be used in Section 4 to show
that the truncated process is close to the original process if the truncation threshold is chosen big
enough.

Lemma 2.7. Let x, y ∈ �+
2 and t ≥ 0. Denote the index set of x by I and the index set of y by J .

Denote by

a = ‖x‖2
2 < +∞ and b = ‖y‖2

2 < +∞.

Consider the bipartite random graph Bt with vertex set I ∪ J , where i ∈ I and j ∈ J are con-
nected with probability 1 − exp(−txiyj ). Then we have

|I | < +∞ =⇒ E
(
S

Bt

2

)
< +∞. (2.13)

Moreover, if

t2ab ≤ 1

2
, (2.14)

holds then we have

E
(
S

Bt

2

) − a ≤ 2b · (1 + ta)2. (2.15)

Proof. First note that, similarly to (2.5), we have

E
(
S

Bt

2

) = a + b +
∑

i1 �=i2∈I

xi1xi2P(i1
Bt←→ i2)

(2.16)
+

∑
j1 �=j2∈J

yj1yj2P(j1
Bt←→ j2) + 2

∑
i∈I,j∈J

xiyj P(i
Bt←→ j).

Now note that the number of visits to I of a simple path in Bt is at most |I |. Using this idea and
a calculation similar to (2.9), we obtain the inequalities

P(i1
Bt←→ i2) ≤ (

xi1xi2 · b · t2) ·
|I |∑

k=1

(
t2ab

)k−1
, i1 �= i2, i1, i2 ∈ I,

P(j1
Bt←→ j2) ≤ (

yj1yj2 · a · t2) ·
|I |∑

k=1

(
t2ab

)k−1
, j1 �= j2, j1, j2 ∈ J,

P(i
Bt←→ j) ≤ (xiyj t) ·

|I |∑
k=1

(
t2ab

)k−1
, i ∈ I, j ∈ J.
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Combining these inequalities with (2.16) we obtain (2.13) as well as

E
(
S

Bt

2

) − a
(2.14)≤ b + 2

(
a2 · b · t2 + b2 · a · t2 + 2a · b · t)

(2.14)≤ b · (1 + 2a2t2 + 1 + 4at
) = 2b(1 + at)2.

This completes the proof of (2.15). �

Lemma 2.8. With probability 1, the function t �→ ord(m,Gt ) (see (2.2)) is càdlàg with respect
to the d(·, ·)-metric (defined in (1.1)).

Proof. Let us fix some T ≥ 0. Denote by A the event

A = {
S

GT

2 < +∞} ∩
{

for any i, j ∈N the number of simple
paths connecting i and j in GT is finite

}
. (2.17)

By Lemma 2.4 the event A almost surely holds. Assuming that A holds, we will show that
t �→ ord(m,Gt) is càdlàg on [0, T ).

Since Gs ⊆ Gt if s ≤ t , we can apply Lemma 2.2 in order to reduce our task to showing that
the function t �→ S

Gt

2 is càdlàg on [0, T ). If A holds, then for any i, j ∈ N the function t �→
1[i Gt←→ j ] is càdlàg on [0, T ). Using this fact, (2.5) and the dominated convergence theorem,
we obtain that indeed t �→ S

Gt

2 is also càdlàg on [0, T ). �

3. Graphical construction of MCLD(λ)

Recall the informal definition of the MCLD(λ) process mt from (1.2). We now give a graphical
construction of the process mt with initial state m ∈ �

↓
2 and deletion rate λ. Let

(ξi,j )1≤i<j<∞ be random variables with EXP(1) distribution,
(3.1)

(λi)1≤i<∞ be random variables with EXP(λ) distribution,

and let us also assume that all of these random variables are independent.
The heuristic description of our graphical construction is as follows: we increase t continu-

ously and if the event ξi,j = tmimj occurs for some 1 ≤ i < j < ∞, we merge the components
of the vertices i and j , moreover, if λi = tmi for some i ∈ N+, then we say that a lightning
strikes vertex i and delete the connected component of vertex i. Since the total rate of merger
and deletion events is infinite if

∑
i mi = +∞, we need to be careful with the above heuristic

definition if we want to make it precise: we will now provide the graphical construction.
In Definition 2.3, we defined the simple graph Gt with vertex set N+.
We will define for any t ∈R+

the set of intact vertices Vt ⊆N+ and
(3.2)

the set of burnt vertices N+ \ Vt .
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The graph Ht will denote the subgraph of Gt spanned by Vt and mt will denote the ordered
sequence of component weights of Ht .

Recall that we enumerated the connected components Ck(t), k ∈ N+ of Gt in (2.4). By the
properties of exponential random variables, (2.7) and the independence of the exponential ran-
dom variables (ξi,j )1≤i<j<∞ and (λi)

∞
i=1, we see that for every t ≥ 0

P
(

∀k ∈N+ :
∑

i∈Ck(t)

1[λi ≤ tmi] < +∞
)

= 1. (3.3)

This implies that for every t ≥ 0 and k ∈ N+, there exists an almost surely finite N-valued
random variable N (the number of lightnings that hit the component Ck(t) by time t ), indices
i1, . . . , iN ⊆ Ck(t) (the vertices that are hit by lightning) and times 0 < t1 < · · · < tN ≤ t (the
ordered sequence of the times of the lightnings) such that

{
i ∈ Ck(t) : λi ≤ tmi

} = {i1, . . . , iN } and ∀1 ≤ l ≤ N : tl = λil

mil

.

We now define the set of intact vertices Vt ⊆N+ by constructing Vt ∩ Ck(t) for every k ∈N+.
Let us fix k ∈N+. We recursively define Vtl ∩ Ck(t) for each 1 ≤ l ≤ N in the following way.

(i) At t0 = 0 we have Vt0 ∩ Ck(t) = Ck(t).
(ii) Assume that we have already constructed Vtl−1 ∩ Ck(t) for some 1 ≤ l ≤ N . We define

Vtl ∩ Ck(t) by deleting the connected component of il in the restriction of the graph Gtl to the
vertex set Vtl−1 ∩ Ck(t).

(iii) With this recursion we define VtN ∩ Ck(t). Since there are no lightnings hitting Ck(t)

between tN and t , let Vt ∩ Ck(t) = VtN ∩ Ck(t).

Since Ck(t), k ∈ N+ is a partition of N+, we define

Vt =
⋃
k≥1

(
Vt ∩ Ck(t)

)
and

(3.4)
Ht to be the subgraph of Gt spanned by Vt .

Recalling Definition 2.1 we let

mt = ord(m,Ht). (3.5)

Lemma 3.1. For any m ∈ �
↓
2 the graphical construction (3.5) of the process mt gives an

MCLD(λ) process with initial condition m, i.e., an �
↓
2 -valued Markov process whose dynam-

ics satisfy the informal definition given in (1.2).

Proof. mt is a random element of �
↓
2 , because we have

‖mt‖2
2 = S

Ht

2 ≤ S
Gt

2
(2.6)
< +∞.
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The fact that mt is a Markov process with the prescribed transition rates follows from the mem-
oryless property and independence of the random variables (ξi,j )1≤i<j<∞ and (λi)

∞
i=1. We omit

further details. �

Proof of Proposition 1.1. We will show that with probability 1, the function t �→ ord(m,Ht ) is
càdlàg with respect to the d(·, ·)-metric, see (1.1).

Let us fix some T ≥ 0. We know that the event A defined in (2.17) almost surely holds. Denote
by B the event that every connected component of GT is exposed to only finitely many lightning
strikes on [0, T ]. By (3.3), the event B occurs almost surely. Assuming that A∩B holds, we will
show that t �→ ord(m,Ht) is càdlàg on [0, T ). For any t ≥ 0, define

• Ĥt+�t to be the subgraph of Gt spanned by Vt+�t ,
• Ȟt+�t to be the subgraph of Gt+�t spanned by Vt .

Recalling (3.4) and the inclusions Gt ⊆ Gt+�t and Vt+�t ⊆ Vt we see that

Ĥt+�t ⊆ Ht ⊆ Ȟt+�t and Ĥt+�t ⊆ Ht+�t ⊆ Ȟt+�t ,

so we can apply Lemma 2.2 and the triangle inequality in order to reduce our task of proving
right-continuity of t �→ ord(m,Ht) at t to showing that

(a) lim
�t→0+

S
Ȟt+�t

2 − S
Ht

2 = 0, (b) lim
�t→0+

S
Ht

2 − S
Ĥt+�t

2 = 0.

Now (a) follows from the fact that the graphical representation of the multiplicative coalescent
possesses the càdlàg property (see Lemma 2.8).

In order to show (b) we observe that on the event B , for every connected component C of GT ,
we have

lim
�t→0

1
[∃i ∈ C : tmi < λi ≤ (t + �t)mi

] = 0.

Given this observation, we see that for every connected component C of Ht we have
lim�t→0 1[C ⊆ Vt+�t ] = 1. Using this fact, S

Ht

2 < ∞ and the dominated convergence theorem,
we obtain (b).

The proof of the existence of left limits is similar and we omit it. �

4. Feller property of MCLD(λ)

Definition 4.1. The graphical construction of Section 3 gives a joint realization of all of the
MCLD(λ) processes with different initial conditions by using the same collection of random
variables (ξi,j )1≤i<j<∞ and (λi)1≤i<∞ (see (3.1)). We call this coupling the (ξ, λ)-coupling.

Theorem 4.2. Let m(n), n ∈ N be a convergent sequence of elements of �
↓
2 and let m(∞) denote

their limit, i.e., limn→∞ d(m(n),m(∞)) = 0. For any t ∈ R+ and n ∈ N+ ∪ {∞}, denote by m(n)
t
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the MCLD(λ) process with initial condition m(n) at time t . Under the (ξ, λ)-coupling, we have

d
(
m(n)

t ,m(∞)
t

) p−→ 0, n → ∞. (4.1)

Theorem 4.2 implies that the MCLD(λ) Markov process indeed possesses the Feller property,
that is, Theorem 1.2 holds.

We want to prove Theorem 4.2 using truncation, because (4.1) trivially holds for the truncated
process. However, we cannot directly apply Lemma 2.2 to compare the original with the trun-
cated process, because we cannot upper bound the state of the truncated process at time t by the
state of the original process at time t (cf. Remark 1.3).

In Section 4.1, we overcome this problem by introducing two auxiliary objects that up-
per/lower bound both the original and the truncated object, but yet these auxiliary objects can
be shown to be close to each other if we only throw away a small part of the original when we
truncate.

In Section 4.2, we prove Theorem 4.2 using the results of Section 4.1 and variant of the ε/3-
argument.

4.1. Bounding the effect of truncation

In this subsection, we will fix t ≥ 0 as well as an initial state m ∈ �
↓
2 , and omit the dependence

of random variables on t and m. We also fix a truncation threshold m ∈N.

Definition 4.3. Recall Definition 2.3. Denote by G, Gm↓ and Gm↑ the graphs with adjacency
matrix 1[ξi,j ≤ tmimj ] on the vertex set N+, {1, . . . ,m}, and {m + 1,m + 2, . . . }, respectively.

Let m(m) denote the vector m truncated at index m:

m(m) = (m1, . . . ,mm,0,0, . . . ), where m = (m1,m2, . . . ).

Let m (resp. m(m)) denote the state at time t of the realization under the (ξ, λ)-coupling of the
MCLD(λ) process with initial state m (resp. m(m)).

Denote by V and V(m) the corresponding sets of intact vertices, see (3.4).
Denote by H and H(m) the subgraphs of G spanned by V and V(m).

In order to compare m with m(m), we need the following result.

Lemma 4.4. If Ĝ(m) and Ǧ(m) are random graphs with vertex sets

V
(
Ĝ(m)

)
,V

(
Ǧ(m)

) ⊆N+

and under the (ξ, λ)-coupling we have

Ĝ(m) ⊆ H(m) ⊆ Ǧ(m), Ĝ(m) ⊆ H ⊆ Ǧ(m) (4.2)

then almost surely we have

d
(
m,m(m)

) ≤ 3 ·
√

SǦ(m)

2 − SĜ(m)

2 . (4.3)
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Proof. First note that it follows from (4.2) that

SĜ(m)

2 ≤ SH(m)

2 ≤ SǦ(m)

2 , SĜ(m)

2 ≤ SH
2 ≤ SǦ(m)

2 . (4.4)

Thus, we have

d
(
m,m(m)

) (2.2)≤ d
(
m,ord

(
m,Ǧ(m)

))
+ d

(
ord

(
m,Ǧ(m)

)
,ord

(
m(m), Ĝ(m)

)) + d
(
ord

(
m(m), Ĝ(m)

)
,m(m)

)
(∗)≤

√
SǦ(m)

2 − SH
2 +

√
SǦ(m)

2 − SĜ(m)

2 +
√

SH(m)

2 − SĜ(m)

2

(4.4)≤ 3 ·
√

SǦ(m)

2 − SĜ(m)

2 ,

where (∗) follows from (3.5), the inclusions (4.2) and Lemma 2.2. �

In Definition 4.8 below, we will construct auxiliary graphs Ĝ(m) and Ǧ(m) in such a way that
(4.2) holds. Recall Definition 4.3. Note that H(m) is the subgraph of Gm↓ spanned by the vertex
set V(m). In particular, every connected component of H(m) is a subset of a connected component
of Gm↓.

The next definition only involves the random variables (ξi,j )1≤i<j<∞ (i.e., we don’t have to
look at (λi)

∞
i=1).

Definition 4.5. Given Gm↓ and Gm↑, denote the connected components of Gm↓ by Cm↓
k , k ∈ K

and the connected components of Gm↑ by Cm↑
l , l ∈ L.

Let us define an auxiliary bipartite multigraph B with vertex set K ∪ L. Declare k ∈ K and
l ∈ L connected in B if Cm↓

k is connected to Cm↑
l in G. We allow parallel edges to be present

in B: if Cm↓
k is connected to Cm↑

l by more than one edge in G, then we put an equal number of
parallel edges between k ∈ K and l ∈ L in B.

Now we define a subset K∗ ⊆ K indexing “bad” components of Gm↓. This definition involves
the random variables (ξi,j )1≤i<j<∞ as well as (λi)

∞
i=1. The components indexed by k ∈ K \ K∗

are “good”. The key property of good components will be stated in Lemma 4.7 below.

Definition 4.6. Recall the definition of B from Definition 4.5.

(i) An edge-simple path in B is a path with no repeated edges.
(ii) We say that k ∈ K (resp. l ∈ L) is intact if no lightning hit any vertex of Cm↓

k (resp. Cm↑
l )

before time t . If a vertex of B is not intact, then we say that it is damaged.
(iii) We say that k ∈ K∗ if k ∈ K and there is a edge-simple path in B which consists of at

least one edge and connects k to a damaged vertex of B.

For an illustration of Definition 4.6, see Figure 1.

Lemma 4.7. Recalling Definition 4.3, we have

∀k ∈ K \ K∗ : Cm↓
k ∩ V(m) = Cm↓

k ∩ V . (4.5)
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Figure 1. An illustration of Definition 4.6. The blobs marked with a lightning are damaged connected
components of Gm↓ and Gm↑. The grey blobs are the “bad” components of Gm↓. The set of indices of
“bad” components is denoted by K∗. Note that intact connected components of Gm↓ can be “bad” and
damaged connected components of Gm↓ can be “good”.

Proof. Let k ∈ K \ K∗. Denote by C′ the connected component of k in B. We prove (4.5) by
considering two cases separately.

First case: k is intact.
Denote by K ′ = C′ ∩ K and L′ = C′ ∩ L. Then

C =
( ⋃

k′∈K ′
Cm↓

k′

)
∪

( ⋃
l′∈L′

Cm↑
l′

)

is a connected component of G which contains Cm↓
k (cf. Definition 4.5), moreover our assumption

that k is intact together with k ∈ K \ K∗ imply that C is intact (cf. Definition 4.6), thus we have
Cm↓

k ∩ V(m) = Cm↓
k and Cm↓

k ∩ V = Cm↓
k , therefore (4.5) holds.

Second case: k is damaged.
C′ \ {k} is the disjoint union of some connected components C′

N,N ∈ N of B \ {k}. Our as-
sumption that k is damaged, Definition 4.6 and the fact that k ∈ K \K∗ together imply that there
are no parallel edges connected to k in B and no edge-simple circle of the graph B contains k as
a vertex. Therefore for each N ∈ N, the cluster C′

N is connected to k by one single edge eN of B.
Note that k ∈ K \K∗ implies that C′

N is intact for all N ∈N. Therefore, the fires caused by light-
nings can only spread “away” from k on the edges eN ,N ∈ N, so by the graphical construction
given in Section 3 and Definition 4.3 we obtain (4.5). �

Now we define auxiliary random graphs Ĝ(m) and Ǧ(m) (cf. Lemma 4.4).

Definition 4.8. Let Ǧ(m) be the subgraph of G spanned by the vertices

V
(
Ǧ(m)

) =
( ⋃

k∈K\K∗
Cm↓

k ∩ V(m)

)
∪

( ⋃
k∈K∗

Cm↓
k

)
∪ {m + 1,m + 2, . . . }. (4.6)
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Define Ĝ(m) to be the subgraph of G spanned by the vertices

V
(
Ĝ(m)

) =
⋃

k∈K\K∗
C↓m

k ∩ V(m). (4.7)

Lemma 4.9. With the above definitions the inclusions (4.2) hold.

Proof. The inclusions V (Ĝ(m)) ⊆ V(m) ⊆ V (Ǧ(m)) follow from the definitions (4.6), (4.7). Thus
Ĝ(m) ⊆ H(m) ⊆ Ǧ(m) follows from the fact that H(m) is the subgraph of G spanned by the vertex
set V(m).

The inclusions Ĝ(m) ⊆ H ⊆ Ǧ(m) follow from Lemma 4.7 and the fact that H is the subgraph
of G spanned by the vertex set V . �

The next lemma is similar to Lemma 2.7.

Lemma 4.10. Given the above set-up let us condition on the graphs Gm↓ and Gm↑ and denote
by

α = SGm↓
2 , β = SGm↑

2 .

There exists a constant C = C(λ, t) such that if

t2αβ ≤ 1

2
(4.8)

holds then we have

E
(
SǦ(m)

2 − SĜ(m)

2 |Gm↓,Gm↑) ≤ C · β · ((1 + tα)2 + (1 + tα) · α3/2). (4.9)

4.1.1. Proof of Lemma 4.10

For any subset C of N, denote by

w(C) =
∑
i∈C

mi

the weight of the subset, where m = (m1,m2, . . . ).

Definition 4.11. Define a bipartite weighted graph B̃ whose “left” vertices correspond to the
connected components of the restriction of G to the vertex set

Ṽ (m) := V
(
Ǧ(m)

) ∩ {1, . . . ,m} (4.6)=
( ⋃

k∈K\K∗
Cm↓

k ∩ V(m)

)
∪

( ⋃
k∈K∗

Cm↓
k

)
,

and the “right” vertices correspond to the components of Gm↑. Define the weights of the vertices
of B̃ to be the w(·)-weight of the corresponding connected components. We declare two vertices
in B̃ to be connected if the corresponding subsets are connected in Ǧ(m). Denote by G̃(m) the
subgraph of G spanned by Ṽ (m).
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With the above notation, we have

SǦ(m)

2
(4.6)= SB̃

2 , SG̃(m)

2
(4.7)= SĜ(m)

2 +
∑
k∈K∗

w
(
Cm↓

k

)2
.

Thus we can start to rewrite the left-hand side of (4.9):

E
(
SǦ(m)

2 − SĜ(m)

2 |Gm↓,Gm↑)
= E

(
SB̃

2 − SG̃(m)

2 |Gm↓,Gm↑) + E
( ∑

k∈K∗
w

(
Cm↓

k

)2|Gm↓,Gm↑
)

.

In order to show (4.9), it is enough to prove that (4.8) implies

E
(
SB̃

2 − SG̃(m)

2 |Gm↓,Gm↑) ≤ 2β · (1 + tα)2, (4.10)

E
( ∑

k∈K∗
w

(
Cm↓

k

)2|Gm↓,Gm↑
)

≤ 2t2λβ · (1 + tα) · α3/2. (4.11)

First, we deduce (4.10) from Lemma 2.7, with the underlying bipartite graph being B̃. Note that
the condition (2.14) holds, because a = SG̃(m)

2 ≤ SGm↓
2 = α and b = SGm↑

2 = β . Thus we have

E
(
SB̃

2 − SG̃(m)

2 |Gm↓,Gm↑, (λi)
m
i=1

)
(2.15)≤ 2SGm↑

2 · (1 + tSG̃(m)

2

)2 ≤ 2β · (1 + tα)2.

Now (4.10) follows by averaging over the values of (λi)
m
i=1.

In order to prove (4.11), we first give an upper bound on the probability of the event {k ∈ K∗}.
For k ∈ K , denote by x′

k = w(Cm↓
k ) and for l ∈ L, denote y′

l = w(Cm↑
l ). Note that we have

α =
∑
k∈K

(
x′
k

)2
, β =

∑
l∈L

(
y′
l

)2
.

Recall the definition of K∗ from Definition 4.6. The next calculation is similar to (2.9), so we
omit the first few steps.

P
(
k ∈ K∗|Gm↓,Gm↑)
≤

∑
l1∈L

(
x′
ky

′
l1
t
)(

λy′
l1
t
) +

∑
l1∈L

∑
k1∈K

(
x′
ky

′
l1
t
)(

y′
l1
x′
k1

t
)(

λx′
k1

t
)

+
∑
l1∈L

∑
k1∈K

∑
l2∈L

(
x′
ky

′
l1
t
)(

y′
l1
x′
k1

t
)(

x′
k1

y′
l2
t
)(

λy′
l2
t
) + · · ·

= x′
kt

2λβ + x′
kt

3λαβ + x′
kt

4λαβ2 + · · ·

= x′
kt

2λβ · (1 + tα) ·
∞∑

n=0

(
t2αβ

)n (4.8)≤ 2x′
kt

2λβ · (1 + tα).
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Now we are ready to prove (4.11):

E
( ∑

k∈K∗

(
x′
k

)2|Gm↓,Gm↑
)

≤
∑
k∈K

2
(
x′
k

)3
t2λβ · (1 + tα)

(∗)≤ 2t2λβ · (1 + tα) · α3/2,

where in (∗) we used the fact that x′
k ≤ √

α for any k ∈ K . This completes the proof of (4.9) and
Lemma 4.10.

4.2. Proof of Theorem 4.2

Let us fix t, λ ∈ R+, the sequence m(n), n ∈ N and the limit m(∞). For any n ∈ N+ ∪ {∞}, let
m(n,m)

t denote the realization under the (ξ, λ)-coupling of the MCLD(λ) with initial state

m(n,m) = (
m

(n)
1 , . . . ,m(n)

m ,0,0, . . .
)
, where m(n) = (

m
(n)
1 ,m

(n)
2 , . . .

)
. (4.12)

We also define V(n,m)
t to be the set of intact vertices of the graph H

(n,m)
t of the MCLD(λ) with

initial state m(n,m) under the (ξ, λ)-coupling.
In order to prove (4.1), we only need to show that for every ε > 0 there exists m,n0 ∈ N such

that for all n ≥ n0 we have

P
(
d
(
m(n)

t ,m(n,m)
t

) ≥ ε
) ≤ 4ε, (4.13)

P
(
d
(
m(n,m)

t ,m(∞,m)
t

) ≥ ε
) ≤ ε, (4.14)

P
(
d
(
m(∞,m)

t ,m(∞)
t

) ≥ ε
) ≤ 4ε. (4.15)

Let us fix ε > 0. We know from Lemma 2.4 that

P
(
S

G
(∞)
t

2 < +∞) = 1,

where G
(∞)
t denotes the random graph constructed from the exponential random variables

(ξi,j )1≤i<j<∞ and the initial state m(∞) ∈ �
↓
2 according to the rules described in Definition 2.3.

Given ε > 0, we can find M ∈ R+ such that

P
(
S

G
(∞)
t

2 ≥ M − 1
) ≤ ε. (4.16)

Recall the notion of the constant C = C(t, λ) from Lemma 4.10. Let us choose δ > 0 such that

t2Mδ ≤ 1

2
and 9C · δ · ((1 + tM)2 + (1 + tM) · M3/2) ≤ ε3. (4.17)

Now we choose the truncation threshold m. Since m(n) → m(∞) in l2, we can make

sup
n∈N∪{∞}

∥∥m(n) − m(n,m)
∥∥

2
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(where m(n,m) is defined in (4.12)) as small as we wish by making m large. Thus by (2.11) and
the Markov inequality we can choose m such that

sup
n∈N∪{∞}

P
(
S

G
(n,m)↑
t

2 ≥ δ
) ≤ ε. (4.18)

Having fixed m, we note that under the (ξ, λ)-coupling we have

d
(
m(n,m)

t ,m(∞,m)
t

) p−→ 0, n → ∞.

We also have

S
G

(n,m)↓
t

2
p−→ S

G
(∞,m)↓
t

2 ≤ S
G

(∞)
t

2 , (4.19)

thus we can choose n0 such that for all n ≥ n0 we have (4.14) and

∀n ∈ {n0, n0 + 1, . . . } ∪ {∞} : P
(
S

G
(n,m)↓
t

2 ≥ M
) (4.16),(4.19)≤ 2ε. (4.20)

We are ready to show (4.13) and (4.15) for the above choice of m and n0.
For any n ∈ {n0, n0 + 1, . . . } ∪ {∞} we have

P
(
d
(
m(n)

t ,m(n,m)
t

) ≥ ε
) ≤ P

(
S

G
(n,m)↑
t

2 ≥ δ
) + P

(
S

G
(n,m)↓
t

2 ≥ M
)

+ P
(
d
(
m(n)

t ,m(n,m)
t

) ≥ ε,S
G

(n,m)↑
t

2 ≤ δ, S
G

(n,m)↓
t

2 ≤ M
)

(4.18),(4.20)≤ ε + 2ε + P
(
d
(
m(n)

t ,m(n,m)
t

) ≥ ε,A
)
,

where A = {SG
(n,m)↑
t

2 ≤ δ, S
G

(n,m)↓
t

2 ≤ M}. We bound

P
(
d
(
m(n)

t ,m(n,m)
t

) ≥ ε,A
) (4.3)≤ P

(
9 · (SǦ(n,m)

2 − SĜ(n,m)

2

) ≥ ε2,A
)

= E
(
P
(
9 · (SǦ(n,m)

2 − SĜ(n,m)

2

) ≥ ε2|G(n,m)↓,G(n,m)↑);A)
(∗)≤ 9C · δ · ((1 + tM)2 + (1 + tM) · M3/2)

ε2

(4.17)≤ ε,

where in the equation marked by (∗) we used Lemma 4.10 and the Markov inequality. This
concludes the proof of (4.13), (4.14), (4.15) and Theorem 4.2.

Acknowledgements

I thank James Martin for collaborating with me on [15], which inspired this work. I also thank
an anonymous referee for useful comments on the manuscript. This work is partially supported
by OTKA (Hungarian National Research Fund) grant K100473, the Postdoctoral Fellowship
of the Hungarian Academy of Sciences and the Bolyai Research Scholarship of the Hungarian
Academy of Sciences.



Feller property of the MCLD 239

References

[1] Addario-Berry, L., Broutin, N. and Goldschmidt, C. (2012). The continuum limit of critical random
graphs. Probab. Theory Related Fields 152 367–406. MR2892951

[2] Ahlberg, D., Duminil-Copin, H., Kozma, G. and Sidoravicius, V. (2015). Seven-dimensional forest
fires. Ann. Inst. Henri Poincaré Probab. Stat. 51 862–866. MR3365964

[3] Aldous, D. (1997). Brownian excursions, critical random graphs and the multiplicative coalescent.
Ann. Probab. 25 812–854. MR1434128

[4] Aldous, D. and Limic, V. (1998). The entrance boundary of the multiplicative coalescent. Electron. J.
Probab. 3 No. 3, 59 pp. MR1491528

[5] Aldous, D.J. (2000). The percolation process on a tree where infinite clusters are frozen. Math. Proc.
Cambridge Philos. Soc. 128 465–477. MR1744108

[6] Bhamidi, S., Broutin, N., Sen, S. and Wang, X. (2014). Scaling limits of random graph models at
criticality: Universality and the basin of attraction of the Erdős–Rényi random graph. Available at
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