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We study the number of white balls in a classical Pólya urn model with the additional feature that, at random
times, a black ball is added to the urn. The number of draws between these random times are i.i.d. and, under
certain moment conditions on the inter-arrival distribution, we characterize the limiting distribution of the
(properly scaled) number of white balls as the number of draws goes to infinity. The possible limiting
distributions obtained in this way vary considerably depending on the inter-arrival distribution and are
difficult to describe explicitly. However, we show that the limits are fixed points of certain probabilistic
distributional transformations, and this fact provides a proof of convergence and leads to properties of the
limits. The model can alternatively be viewed as a preferential attachment random graph model where added
vertices initially have a random number of edges, and from this perspective, our results describe the limit
of the degree of a fixed vertex.

Keywords: distributional convergence; distributional fixed point equation; Pólya urns; preferential
attachment random graph

1. Introduction and main results

Pólya urn schemes form a rich class of fundamental probability models with a long history going
back to Eggenberger and Pólya [16] and extending to present day research. The standard general
model is a recursive Markov process which begins with “balls” of different colors in an urn,
and at each step a ball is drawn randomly from the urn and returned along with the addition or
removal of some prescribed number of balls of each color. The popularity of these models is due
to the fact that variations of this basic Pólya urn reinforcement mechanism appear in applica-
tions in biology, computer science, statistics, and elsewhere; see Pemantle [30] and Mahmoud
[24]. Here we study the limiting behavior of a new urn model that is a simple variation of the
classical Pólya urn and which arises naturally from a certain random graph model. Outside of
application, the model is intrinsically interesting since the limiting behavior is subtle and in-
tricately related to our method of proof, and other more standard techniques for analyzing urn
models do not naturally apply (a more thorough discussion of existing literature and these other
methods of proof can be found in Section 1.3). We now define our model and then state our main
results.

Let τ1, τ2, . . . be i.i.d. non-negative integer valued random variables having distribution π =
(πk)k≥0, where we assume throughout that π0 < 1, and let Tj = ∑j

i=1 τi . It is helpful to think of
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the τi as inter-arrival interval lengths in a renewal process, so that the Tj are the arrival times.
Consider the following Pólya urn model. Initially, there are b black balls and w white balls. At
each step, a ball is drawn and replaced along with another of the same color. Additionally, after
draws T1, T2, . . . , regardless of the outcome of the draw, a single extra black ball is added to the
urn. Note that if τi = 0, so Ti = Ti+1, then more than one black ball can be added to the urn
between draws.

For example, if (τ1, . . . , τ5) = (1,3,0,0,4), then (T1, . . . , T5) = (1,4,4,4,8). At Step 1,
a regular Pólya urn step is performed (that is, a ball is drawn and replaced along with a ball
of the same color), and then one additional black ball is added since T1 = 1. At Steps 2 and 3,
regular Pólya urn steps are performed with no added black ball. Then, at Step 4, a regular Pólya
urn step is performed and then three additional black balls are added, since T2 = T3 = T4 = 4.
Then, four regular Pólya urn steps are performed after which another black ball is added (T5 = 8).
Note that given a black ball is added at a particular time step, the total number of balls added
at that step has a geometric distribution (support starting at 1) with success probability 1 − π0.
Note also that the number of black balls after Step 0 is not necessarily b; this happens if τ1 = 0,
in which case black balls are added already before the first draw and replacement step is per-
formed.

We study the distribution of the number of white balls in the urn after n steps in this model,
denoted by Pπ(

b
w

;n). In particular, we show that Pπ (
b
w

;n) properly scaled converges in distri-
bution to a non-standard limit law. The limits for deterministic π are studied in Janson [19] for
π1 = 1 and Peköz et al. [29] for πk = 1 with k > 1. Before stating the result, we need to describe
the limit.

1.1. Urn limit laws

Let v > 0, and let a1, a2, . . . be a sequence of non-negative numbers so that ak > 0 for at least
one k ≥ 1. Let

A(x) =
∑
k≥1

akx
k, (1.1)

and assume the radius of convergence ρ = sup{x ≥ 0 : A(x) < ∞} is either positive or infinite.
For such (ak)k≥1, we define the probability density

u(x) = cxv−1 exp

{
−v

∫ x

0

A(t)

t
dt

}
, 0 < x < ρ, (1.2)

where c is an appropriate normalising constant depending on v and (ak)k≥1, and we de-
note the corresponding probability distribution by UL(v; (ak)k≥1). Specific instances of the
UL family include many standard non-negative continuous distributions such as the exponen-
tial, Rayleigh, absolute normal, gamma, beta, and roots of gamma variables. We first establish
that (1.2) is indeed a proper probability density and derive some basic properties of the laws
UL.
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Lemma 1.1. Under the assumptions and notation above, the function u(x) defined by (1.2) is a
probability density for an appropriate normalisation c. Moreover, Z ∼ UL(v; (ak)k≥1) has finite
moments μk = EZk of all orders, which satisfy the relation

μk = v

v + k

∑
l≥1

alμk+l , for all k ≥ 0. (1.3)

Furthermore, for θ > 0,

θZ ∼ UL
(
v; (θ−kak

)
k≥1

)
. (1.4)

Proof. For the first assertion, we show that the density given at (1.2) has finite integral over
(0, ρ). Let k0 ≥ 1 be such that ak0 > 0. Observe that

�(x) :=
∫ x

0

A(t)

t
dt =

∑
k≥1

ak

k
xk

so that

xv−1 exp
{−v�(x)

} ≤ xv−1 exp
{−vak0x

k0/k0
}
,

which clearly has finite integral. Replacing xv−1 by any arbitrary power, we also conclude that
all moments are finite. After noting that since the coefficients of (1.1) are all non-negative, Titch-
marsh [34], 7.21, implies that limx→ρ− A(x) = ∞ and hence also limx→ρ− �(x) = ∞, the rela-
tion (1.3) is just integration by parts; we have

μk = c

∫ ρ

0
xk+v−1 exp

{−v�(x)
}
dx

= c

∫ ρ

0

xk+v

k + v
· vA(x)

x
exp

{−v�(x)
}
dx

= v

k + v
c

∫ ρ

0
xk+v−1A(x) exp

{−v�(x)
}
dx

= v

k + v

∑
l≥1

al

∫ ρ

0
xk+lu(x) dx.

Interchange of summation and integration is justified by the monotone convergence theorem,
since all coefficients are non-negative. The final assertion (1.4) is straightforward. �

1.2. Limit results for urns with random immigration

To state our first main result, let Beta(α,β), where α and β are positive numbers, denote the
law of the beta distribution supported on (0,1) with density proportional to xα−1(1 − x)β−1,
and interpret Beta(α,0) as the point mass at 1. We first consider the problem of convergence
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of moments of the (appropriately scaled) number of white balls in the urn. In what follows, we
interpret ∞

∞+1 as 1. Here and below, C is a generic constant that may change from line to line.

Theorem 1.2. Let b and w be positive integers, let π be a probability distribution on the non-
negative integers with mean 0 < μ ≤ ∞, and let τ ∼ π . If k is an integer such that either

(a) Eτp < ∞ for some p > 1, and 1 ≤ k < (
p
2 − 1)(μ + 1) − 1, or

(b) there is ε > 0 such that P[τ > n] ≥ Cn−(1−ε) for n large enough, and k ≥ 1,

then there is a positive constant mk(b,w,π) such that, for Xn ∼Pπ (
b
w

;n), we have

E

{(
Xn

nμ/(μ+1)

)k}
→ mk(b,w,π) as n → ∞. (1.5)

We now formulate the main distributional convergence result which essentially says that when
b = 1, the scaled urn limits are of the form UL(w; (ak)k≥1) for appropriate choice of (ak)k≥1,
and when b > 1, the limits are in the same family up to multiplication by an independent beta
variable.

Theorem 1.3. Let b and w be positive integers, and let π be a probability distribution on the
non-negative integers with mean 0 < μ ≤ ∞, and let τ ∼ π . Assume that either

(a) Eτp < ∞ for all p ≥ 1, or
(b) there is ε > 0 such that P[τ > n] ≥ Cn−(1−ε) for n large enough,

and let mk(1, b + w − 1,π), k ≥ 1, be as in Theorem 1.2. Set

ak = πk−1

mk(1, b + w − 1,π)
, for all k ≥ 1, (1.6)

and let Z ∼ UL(b + w − 1; (ak)k≥1). Then

EZk = mk(1, b + w − 1,π), for all k ≥ 1, (1.7)

and, with Xn ∼Pπ(
b
w

;n),

L

(
Xn

nμ/(μ+1)

)
→ L(BZ) as n → ∞, (1.8)

where B ∼ Beta(w,b − 1) is independent of Z.

Our expressions for the moments of (1.7) are not explicit and so then neither are the parameters
of the limits, which leads to many intriguing open questions; see Section 3. In the case where π

is deterministic, the limiting distributions can be described explicitly in a number of ways, see
Janson [19], Peköz et al. [27,29], and so it is interesting that adding randomness in this way leads
to limiting distributions that are complicated and difficult to describe.
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The moment results of Theorem 1.2 follow by first deriving formulas conditional on the par-
tial sums (T1, T2, . . .) of the i.i.d. inter-arrival times τ1, τ2, . . . , and then using classical mo-
ment and concentration inequalities for such quantities. The moment results show that the se-
quence n−μ/(μ+1)Xn, n ≥ 1, is tight as long as we have either μ < ∞ and Eτ 6/(μ+1)+2 < ∞ or
P[τ > n] ≥ Cn−(1−ε), and so in these cases, a distributional limit follows by showing unique-
ness of subsequential limits. For the case b = 1, we are able to show that in the two cases just
described, any subsequential limit is a fixed point (unique given moments) of a certain distribu-
tional transformation which we describe in Section 2 below.

The organization of the remainder of the paper is as follows. We finish this section with a
discussion of related literature and then provide a connection between our model and preferen-
tial attachment graphs with random number of initial attachments for each vertex. In Section 2,
we describe the distributional fixed point equation used to identify the limits appearing in Theo-
rem 1.3. Our study leads to many further questions, especially around descriptions of the limits
and moment sequences appearing in Theorems 1.2 and 1.3, and so we discuss some of these in
Section 3, where we also list open problems and conjectures. Section 4 contains the proof of
Theorem 1.2, Section 5 has the proof of Theorem 1.3, and in Section 6 we derive some basic
properties of the UL family.

1.3. Related literature

The literature around Pólya urn models is too vast for a complete survey, but the the main re-
sults and modern techniques are well covered by Chauvin et al. [8], Chauvin et al. [7], Chen and
Wei [11], Chen and Kuba [10], Flajolet et al. [17], Janson [18,19], Knape and Neininger [20],
Kuba and Mahmoud [21,22], Laruelle and Pagès [23], Pouyanne [32], and references therein.
These papers cover many variations of the standard model, including random replacement rules
and drawing multiple balls at a time. Techniques used to study limits include finding appropriate
martingales, stochastic approximation, embedding the process into continuous time branching
processes, deriving moments or moment generating functions using analytic or algebraic rela-
tions derived from the Markovian dynamics of the process, and the contraction method. All of
these methods rely on a reasonably nice Markovian dynamics and in general, the model studied
here is not Markov in its natural time scale. It is possible to make the model Markov by observing
the process at the random times of immigration, but then the dynamics are complicated, and so
it is challenging to apply the techniques mentioned above. On the other hand, our distributional
fixed point approach is naturally suited to the model and leads to intriguing descriptions of the
limiting behavior and to further avenues of study. We leave the question of what can be learned
by studying this model with other methods to further work (see Section 3).

1.4. Connection to preferential attachment random graph

In preferential attachment random graph models, vertices are sequentially added and randomly
connected to existing vertices such that connections to higher degree nodes are more likely. There
are many variations of these popular models; a good reference is van der Hofstad [35], Chapter 8.
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Consider the following sequence (G(n))n≥0 of preferential attachment random graphs. The
initial state G(0) is a “seed” graph with s vertices, where the degree or “weight” of vertex 1 ≤ i ≤
s is di > 0. We denote the weight of vertex i in G(n) by di(n) so note for 1 ≤ i ≤ s, di(0) = di .

Let τ1, τ2, . . . be i.i.d. distributed according to inter-arrival distribution π . Given the graph
G(n − 1) having s + n − 1 vertices, G(n) is formed by adding a vertex labeled s + n and se-
quentially attaching τn edges between it and the vertices of G(n − 1) according to the following
rules. The first edge attaches to vertex k with probability

dk(n − 1)∑s+n−1
i=1 di(n − 1)

, 1 ≤ k ≤ n − 1; (1.9)

denote by K1 the vertex which received that first edge. The weight of K1 is updated immediately,
so that the second edge attaches to vertex k with probability

dk(n − 1) + I[k = K1]
1 + ∑s+n−1

i=1 di(n − 1)
, 1 ≤ k ≤ n − 1.

The procedure continues this way, edges attach with probability proportional to weights at that
moment, and additional received edges add one to the weight of a vertex, until vertex n has
τn outgoing edges. Lastly, we set ds+n(n) = 1, and let G(n) be the resulting graph. Note that
multiple edges between vertices are possible.

This model is a randomized version of the “sequential” model of Berger et al. [5]; also the
“N
” model of Peköz et al. [26]. For related models where the number of edges are random but
the updating rule is not sequential (meaning each of the τn edges of vertex s + n attach with
probability (1.9)) see Deijfen et al. [13] and a particular choice of parameters in the general
model of Cooper and Frieze [12].

Writing ci := ∑i
j=1 dj , the connection between the preferential attachment model above and

our urn model is that for 1 ≤ k < s,

L

(
k∑

i=1

di(n)

)
=Pπ

(
cs − ck

ck

;
n∑

i=1

τi

)
,

where the τi ’s on the right-hand side drive the urn process. Thus, for π having all positive in-
teger moments finite, we have (in particular) Tn/n := n−1 ∑n

i=1 τi → μ almost surely and so
Theorem 1.2 implies that for k = 1, . . . , s,

L

( ∑k
i=1 di(n)

(μn)μ/(μ+1)

)
→ L(BZ),

where, in accord with Theorem 1.3, Z ∼ UL(cs − 1, (
πk−1
mk

)k≥1), mk = mk(1, cs − 1,π) are the
limiting moments given in (1.5) of Theorem 1.2, and B ∼ Beta(ck, cs − ck − 1) is independent
of Z.

For later vertices, if k ≥ s, then for n ≥ k − s + 1,

L

(
k∑

i=1

di(n)

)
=Pπ

(
1

cs + (k − s) + Tk−s+1
;

n∑
i=k−s+2

τi

)
, (1.10)
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where again the τi ’s on the right-hand side drive the urn process. Given τ1, . . . , τk−s+1, it is still
the case that n−1 ∑n

i=k−s+2 τi → μ and thus

L

( ∑k
i=1 di(n)

(μn)μ/(μ+1)

∣∣∣(τ1, . . . , τk−s+1)

)
→ UL

(
cs + (k − s) + Tk−s+1,

(
πk−1

mk

)
k≥1

)
,

where mk = mk(1, cs + (k − s) + Tk−s+1,π) is the limiting moment sequence (1.5) of Theo-
rem 1.2. Thus the (unconditional) limiting cumulative degree counts are an appropriate mixture
of the UL laws.

To our knowledge, these are the first results regarding the degree of fixed vertices in prefer-
ential attachment models with random initial degrees. The degree of a randomly chosen node is
studied in Deijfen et al. [13] and Cooper and Frieze [12].

2. Distributional fixed point equation

To describe the distributional fixed point equation used to identify the limits appearing in Theo-
rem 1.3, we first need a preliminary distributional transformation.

Definition 2.1. Let ψ be a probability distribution concentrated on the non-negative integers, and
let X be a positive random variable such that EXk < ∞ for all k for which ψk > 0. A random
variable X(ψ) is said to have the ψ -power-bias distribution of X if

Ef
(
X(ψ)

) =
∑

k:ψk>0

ψk

E{Xkf (X)}
EXk

(2.1)

for all f for which the expectation on the right hand side exists.

If ψ1 = 1, then the ψ -power-bias distribution is commonly known as the size-bias distribution;
see, for example, Arratia et al. [2] and Brown [6]. If ψk = 1 for some k ≥ 2, then the ψ -power-
bias distribution is sometimes referred to as the k-power bias distribution, denoted by X(k).
We can realize X(ψ) by first sampling a random index K according to ψ , and conditional on
K = k, we let X(ψ) have the k-power-bias distribution of X. This description implies that the ψ -
power-bias transformation may be amenable to analysis in our setting since constructing constant
k-power bias distributions is understood in Pólya urn models Peköz et al. [27–29], Ross [33], and
other discrete probability applications Barbour et al. [3], Chen et al. [9], Bartroff and Goldstein
[4].

To establish the distributional transformation for which UL(w; (ak)k≥1) is a fixed point, note
first that if Z ∼ UL(w; (ak)k≥1) and μk = EZk , then (1.3) yields, in particular,∑

k≥1

akμk = 1,

so that

ψk = akμk, k ≥ 1 (2.2)
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defines a probability distribution on the positive integers, which, by (1.4), is invariant to scaling
of Z. The next result gives the UL family as fixed point of a distributional transformation; the
connection between this transformation and the representation (1.2) was first made in Pakes and
Navarro [25].

Proposition 2.2. The following holds.

(i) If X ∼ UL(w; (ak)k≥1) and ψ is defined as in (2.2), then

L(X) = L
(
VwX(ψ)

)
, (2.3)

where Vw ∼ Beta(w,1) is independent of X(ψ).
(ii) Let w > 0, and let ψ be a probability distribution on the positive integers. If X is a positive

random variable such that EXk < ∞ whenever ψk > 0 and (2.3) holds, then A(x), defined
with respect to the sequence ak = ψk/EXk if ψk > 0 and ak = 0 otherwise, has positive
or infinite radius of convergence and X ∼ UL(w; (ak)k≥1).

Proof. To prove (i), assume X ∼ UL(w; (an)n≥1). Using the formula for the density of prod-
ucts of independent random variables and denoting the density of X(ψ) by u(ψ), we obtain that
VwX(ψ) has density

∫ ρ

x

w

(
x

t

)w−1
u(ψ)(t)

t
dt =

∫ ρ

x

w

(
x

t

)w−1
u(t)

t

∑
n≥1

ψn

μn

tn dt

=
∫ ρ

x

w

(
x

t

)w−1
u(t)

t

∑
n≥1

ant
n dt

=
∫ ρ

x

w

(
x

t

)w−1

u(t)
A(t)

t
dt

= xw−1
∫ ρ

x

w
A(t)

t

u(t)

tw−1
dt = u(x).

To prove (ii), assume X is a positive random variable such that EXk < ∞ for all k ≥ 1 with
ψk > 0, and assume (2.3) holds. Since, by Jensen’s inequality,

∑
k≥1

ψk

EXk
xk ≤

∑
k≥1

1

(EX)k
xk < ∞

whenever x < EX, the radius of convergence of A(x) must be at least EX, which is positive
since X is positive. It follows from (2.3) that X has a density, and the representation (1.2) then
follows from Pakes and Navarro [25], Theorem 3.1. �

Remark 2.3. It is important to note that Proposition 2.2 does not answer the question whether,
for given w > 0 and probability distribution ψ , there is an X satisfying (2.3). It merely says
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that, if such X exists, then it has to be from the family UL(w; (ak)k≥1), where (ak)k≥1 can be
expressed in terms of ψ and the moments of X. Note also that, for given w and ψ , there might a
priori be more than one (ak)k≥1 satisfying ψk = akEXk ; see the discussion in the next section.

Proposition 2.2 suggests that if a random variable W is such that L(W) is close in an appro-
priate sense to L(VwW(ψ)), then L(W) is close to UL(w, (ψk/EWk)k≥1). We formalize this as
a convergence statement in Lemma 5.1 in Section 5. We then apply this result to our urn models,
where ψ has the immigration distribution π , but shifted by one, and the limiting moments are
those given by Theorem 1.2. That the urn law and its transformation are close is achieved by
coupling, in particular that power-biasing our urn models corresponds to adding extra white balls
before starting the process (Lemma 5.4), and that multiplying by a beta corresponds to running
a classical Pólya urn (Lemma 5.8); see Section 5 for details.

3. Open problems

We discuss some of the many questions that are not answered by our study.

Question 3.1. Are solutions to the distributional fixed point equation (2.3) unique up to scaling?

This is the most pressing open problem, and a positive answer would have a large impact on
our understanding of the relation between limits of our urn model and the family of distributions
UL(w; (ak)k≥1). The main consequence of a positive answer would be the following “inversion”
of Theorem 1.3.

Conjecture 3.2. Fix w and (ak)k≥1, and let Z ∼ UL(w; (ak)k≥1). Then, with πk = ak+1EZk+1

for k ≥ 0 (and possibly further conditions on (ak)k≥1), the sequence Xn ∼Pπ(
1
w

;n) satisfies

L

(
Xn

nμ/(μ+1)

)
→ L(θZ),

where θ = m1(1,w,π)/EZ with m1(1,w,π) given by Theorem 1.2.

It is clear that, for any (ak)k≥1 with positive or infinite radius of convergence, we can define
the probability distribution πk = ak+1EZk+1, k ≥ 0, and consider the limit of the corresponding
urn model. But unless the solution to (2.3) is unique up to scaling, our method of proof does not
guarantee that the corresponding urn limit is a scaling of the one given by this (ak)k≥1.

The following question recasts Question 3.1 differently; it must have a positive answer if
Question 3.1 has a negative answer.

Question 3.3. Fix w > 0. Are there two sequences (ak)k≥1 and (ãk)k≥1 such that Z ∼
UL(w; (ak)k≥1) and Z̃ ∼ UL(w; (ãk)k≥1) are not scaled versions of each other, but such that
akEZk = ãkEZ̃k for all k ≥ 1?
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If Question 3.3 could be answered positively, then we would have a counter example to Con-
jecture 3.2 – both (ak)k≥1 and (ãk)k≥1 would give rise to the same immigration distribution, but
the corresponding urn model could converge to at most one of them.

One issue with Theorem 1.2 is that the limiting moments mk are defined rather indirectly, and
they are are difficult to calculate explicitly; the same comment applies to moments of the UL
family.

Question 3.4. Are there a more explicit formulas for mk in Theorem 1.2 in terms of w and π ;
or for the moments of UL(w; (ak)k≥1) in terms of w and (ak)k≥1?

There are a few examples where we can make explicit calculations and partially address this
last question; see the end of this section.

A natural example that we have struggled to prove anything more specific about than the
conclusion of Theorem 1.3, is for π a positive geometric variable. In this case the urn model can
be described as follows: at each step, a Pólya urn step is performed and then a p-coin is tossed
to determine if an additional black ball is added to the urn. So the process is Markovian, which
could make more detailed analyses possible.

Question 3.5. What is a concrete description of the distributional limit of Pπ (
1
w

;n) (properly
scaled) when π is a positive geometric distribution (support starting at 1)?

Question 3.6. There are a large number of ways the model can be generalized: more colors,
different replacement rules. What can be said in these cases?

Question 3.7. Can other methods, such as those described in Section 1.3, be applied to
strengthen our results? For example, if appropriate martingales can be found, then the conver-
gence can be strengthened to almost sure and in Lp for appropriate p.

We conclude this section with three examples.

3.1. Explicit choices of π

The relationship between the sequences (ak)k≥1 and π appearing in Theorem 1.3 is rather im-
plicit, and so in this section, we work out some examples where explicit calculations are possible.

Example 3.8 (Deterministic π ). If πk = 1 for some k ≥ 1, then the scaled limit of Pπ(
1
w

;n)

has density proportional to

xw−1 exp
{−wxk+1/

(
(k + 1)mk+1

)}
dx,

which is the same as an appropriately scaled, standard gamma variable with parameter w/(k+1),
raised to the power 1/(k +1). For k = 1, the urn model is a time homogeneous triangular urn and
the limit can be read from Janson [19]. The general case is studied in detail in Peköz et al. [29],
where rates of convergence to the limit are also provided. The limiting moments can be made
explicit as well as the constant mk+1.
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Example 3.9 (Bernoulli inter-arrival distribution). We study Pπ (
1
w

;n) where π0 =
1 − π1 �= 1. Note that for this choice of π , at each step a Pólya urn step is performed and
then a geometric with parameter π1 (support started at 0) distributed number of black balls are
added to the urn. In the spirit of Conjecture 3.2, we start with a positive integer w and positive
numbers a1 and a2, and then use these to determine π .

First, define the function U for a > 0, z > 0 and b ∈R by

U(a,b, z) = 1

�(a)

∫ ∞

0
e−zt ta−1(1 + t)b−a−1 dt.

This function is known as Kummer U (also called the confluent hypergeometric function of the
second kind; see Abramowitz and Stegun [1], 13.2.5). Second, we calculate the normalising
constant c in (1.2); one can show that

∫ ∞

0
xw−1 exp

{−w
(
a1x + a2x

2/2
)}

dx = �(w)U(w
2 , 1

2 ,
a2

1w

2a2
)

(2a2w)w/2
,

so that

u(x) = (2a2w)w/2

�(w)U(w
2 , 1

2 ,
a2

1w

2a2
)

xw−1 exp
{−w

(
a1x + a2x

2/2
)}

for x > 0. (3.1)

Third, we calculate the relevant moments and obtain

EZ = wa1

2a2
· U(w

2 + 1, 3
2 ,

wa2
1

2a2
)

U(w
2 , 1

2 ,
wa2

1
2a2

)

, EZ2 = 1 + w

2a2
· U(w

2 + 1, 1
2 ,

wa2
1

2a2
)

U(w
2 , 1

2 ,
wa2

1
2a2

)

. (3.2)

Putting this together we obtain

π0 = 1 − π1 = wa2
1

2a2
· U(w

2 + 1, 3
2 ,

wa2
1

2a2
)

U(w
2 , 1

2 ,
wa2

1
2a2

)

= U(w+1
2 , 1

2 ,
wa2

1
2a2

)

U(w+1
2 , 3

2 ,
wa2

1
2a2

)

. (3.3)

The second equality of (3.3) follows by applying the identity U(a,b, z) = z1−bU(1 + a − b,2 −
b, z) (see Abramowitz and Stegun [1], 13.1.29) to both the numerator and the denominator of
the middle expression of (3.3) with z = wa2

1/(2a2) and a = w/2 + 1 and b = 3/2, respectively,
a = w/2 and b = 1/2. As a check on (3.2), we can see directly that

π0 + π1 = a1EZ + a2EZ2 = 1

from Abramowitz and Stegun [1], 13.4.18, with a = w/2 + 1, b = 1/2, and z = (wa2
1)/(2a2).

Theorems 1.2 and 1.3 give moment and distributional convergence results for the urn model
with inter-arrival distribution (π0,π1). Furthermore, it is possible to show directly that for fixed
w, the function on positive pairs of numbers

(a1, a2) 	→ π0
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is surjective on (0,1); hence, every inter-arrival distribution concentrated on {0,1} can be gener-
ated by starting with an appropriate a1 and a2. Finally, we note that Conjecture 3.2 is verified in
this case since if

ã1EZ̃ = a1EZ, ã2EZ̃2 = a2EZ2,

then (3.2) implies that ã2
1/ã2 = a2

1/a2, which implies ã2
1/a2

1 = ã2/a2 =: θ2 (which is the same as
the conjecture, noting (1.4)).

Conjectural Example 3.10 (Power law inter-arrival distribution). Let α and β be positive
numbers, and set a = (βα−1, βα−2, βα−3, . . .). Then for 0 < x < α,∑

k≥1

akx
k/k = −β log(1 − x/α).

Thus, if Z ∼ UL(w; (ak)k≥1) has density given by (1.2) with v = w, we find L(α−1Z) =
Beta(w,wβ + 1) and that

EZj = αj �(w(β + 1) + 1)�(w + j)

�(w)�(w(β + 1) + j + 1)
.

Following the blueprint of Conjecture 3.2, define for j = 0,1, . . . ,

πj = aj+1EZj+1 = β
�(w(β + 1) + 1)�(w + j + 1)

�(w)�(w(β + 1) + j + 2)
. (3.4)

These calculations suggest that if α, β and w are positive numbers, and π has distribution given
by (3.4), then there is a constant θ > 0 such that, for Xn ∼Pπ(

1
w

;n) and as n → ∞,

L
(
n

− μ
μ+1 Xn

) → L(θZ),

where L(α−1Z) = Beta(w,wβ + 1) and μ denotes the mean of π given by

μ =
{

(w + 1)(βw − 1)−1 if wβ > 1,

∞ if wβ ≤ 1.

The previous statement is conjectural for two reasons. In the case that wβ > 1, π has fi-
nite mean but not all moments finite, so even convergence in this case is not covered by Theo-

rem 1.3. For wβ < 1, Theorem 1.3 applies and says that L(n
− μ

μ+1 Xn) converges in distribution
to UL(w, (πk/mk(1,w,π))k≥1), but without a result like Conjecture 3.2, we cannot conclude
that πk/mk(1,w,π) = θkβα−k for some θ > 0.

Also note that β → 0 roughly corresponds to πk = 0 for all k, and so τ = ∞, which should be-
have as a classical Pólya urn, and indeed the conjectured limit tends to the anticipated Beta(w,1).
In general the π distribution in this case is heavy-tailed and the conjecture suggests that extra
balls are not added with enough frequency to get too far away from the classical Pólya urn.
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4. Proof of Theorem 1.2

We will show the following result, which is the analogue of Theorem 1.2, but for factorial mo-
ments. In what follows, we interpret products

∏b
j=a as 1 whenever b < a.

Proposition 4.1. Let b and w be positive integers, let π be a probability distribution on the
non-negative integers with mean 0 < μ ≤ ∞, and let τ ∼ π . Let Xn ∼Pπ (

b
w

;n), and set

Dk,n =
k−1∏
j=0

(Xn + j), k ≥ 1, n ≥ 0.

If either

(a) Eτp < ∞ for some p > 1, and 1 ≤ k < (
p
2 − 1)(μ + 1) − 1, or

(b) there is ε > 0 such that P[τ > n] ≥ Cn−(1−ε) for n large enough, and k ≥ 1,

then there is a positive constant mk(b,w,π) such that

E

{
Dk,n

nkμ/(μ+1)

}
→ mk(b,w,π) as n → ∞. (4.1)

To prove the proposition we need some lemmas. We first establish a moment formula for Dk,n,
conditional on the immigration times T1, T2, . . . .

Lemma 4.2. Let Dk,n be as in Proposition 4.1, let T = (T1, T2, . . .) be the sequence of immigra-
tion times of the process, and for n ≥ 0, let Nn = #{i ≥ 1 : Ti ≤ n}, the number of immigrations
up to and including draw n. Then, for any k ≥ 1 and n ≥ 1,

E(Dk,n|T ) = �(w + k)

�(w)

n−1∏
j=0

b + w + k + j + Nj

b + w + j + Nj

(4.2)

= �(w + k)�(b + w)

�(w)�(b + w + k)

�(b + w + Nn−1 + n + k)

�(b + w + Nn−1 + n)
(4.3)

×
Nn−1∏
j=1

b + w + j − 1 + Tj

b + w + j − 1 + Tj + k
.

Proof. Let Xn ∼ Pπ (
b
w

;n). To shorten the formulas, let c = b + w. Since the total number of
balls in the urn after draw n − 1 is c + Nn−1 + n − 1, we have

P[Xn = Xn−1 + 1|T ,Xn−1] = Xn−1

c + Nn−1 + n − 1
,
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and we easily find

E(Dk,n|T ,Xn−1) = Dk,n−1
c + k + Nn−1 + n − 1

c + Nn−1 + n − 1
.

Iterating yields

E(Dk,n|T ) = E(Dk,0|T )

n−1∏
j=0

c + k + j + Nj

c + j + Nj

,

which is easily seen to be (4.2). Now, set T0 = 0 and note that for i ≥ 1, if Ti−1 < Ti , then
NTi−1 = · · · = NTi−1 = i − 1, so we can rewrite this last expression as

E(Dk,n|T )

E(Dk,0|T )
=

(
Nn−1∏
i=1

Ti−1∏
j=Ti−1

c + k + j + i − 1

c + j + i − 1

)
n−1∏

j=TNn−1

c + k + j + Nn−1

c + j + Nn−1

=
(

Nn−1∏
i=1

�(c + k + i − 1 + Ti)�(c + i − 1 + Ti−1)

�(c + k + i − 1 + Ti−1)�(c + i − 1 + Ti)

)

× �(c + k + Nn−1 + n)�(c + Nn−1 + TNn−1)

�(c + k + Nn−1 + TNn−1)�(c + Nn−1 + n)

=
(

Nn−1∏
i=1

�(c + k + i − 1 + Ti)

�(c + i − 1 + Ti)

)(
Nn−1−1∏

i=0

�(c + i + Ti)

�(c + k + i + Ti)

)

× �(c + k + Nn−1 + n)�(c + Nn−1 + TNn−1)

�(c + k + Nn−1 + TNn−1)�(c + Nn−1 + n)

=
(

Nn−1∏
i=1

�(c + k + i − 1 + Ti)�(c + i + Ti)

�(c + k + i + Ti)�(c + i − 1 + Ti)

)

× �(c + k + Nn−1 + n)�(c)

�(c + k)�(c + Nn−1 + n)
,

which, using that x�(x) = �(x + 1), easily simplifies to (4.3). �

We use Lemma 4.2 to establish the almost sure behavior of E(Dk,n|T ).

Lemma 4.3. Let π be a probability distribution on the non-negative integers with mean 0 <

μ ≤ ∞, and let τ, τ1, τ2, . . . be a sequence of independent and identically distributed random
variables with distribution π . For i ≥ 1, let Ti = ∑i

j=1 τi , and for n ≥ 0, let Nn = #{i ≥ 1 :
Ti ≤ n}. If either

(a) there is ε > 0 such that Eτ 1+ε < ∞, or
(b) there is ε > 0 such that P[τ > n] ≥ Cn−(1−ε) for n large enough,
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then, for any α > 0 and β > 0, there exists a (possibly random) positive number χ(α,β,π) such
that, almost surely,

n
− αμ

1+μ

n∏
i=1

(
1 + α

β + i + Ni

)
→ χ(α,β,π), as n → ∞. (4.4)

Proof. Case (a). Taking logarithm in (4.4), it is enough to show that

n∑
j=1

log

(
1 + α

β + j + Nj

)
− αμ

1 + μ
logn

converges almost surely to a (possibly random) real number. Since both

log(n) −
n∑

j=1

1

j
and

n∑
j=1

log(1 + xj ) −
n∑

j=1

xj (4.5)

converge, provided

∞∑
j=1

x2
j < ∞, (4.6)

it is enough to consider convergence of

n∑
j=1

(
1

β + j + Nj

− μ

(1 + μ)j

)

=
n∑

j=1

(
1

β + j + Nj

− 1

j + Nj

)
(4.7)

+
n∑

j=1

(
1

j + Nj

− μ

(1 + μ)j

)
.

Now, to prove (4.6) for xj = 1/(β + j + Nj), which justifies the second approximation in (4.5)
and also convergence of the first sum on the right-hand side of (4.7), we observe that, almost
surely,

∞∑
j=1

(
1

β + j + Nj

)2

≤
∞∑

j=1

1

j2
< ∞. (4.8)

In order to prove convergence of the second sum on the right-hand side of (4.7), we need a refined
estimate for the renewal law of large numbers. Assume without loss of generality that ε < 1. Let
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e+
n = n(μ−1 + n−ε/2) and E+

n = 
e+
n �, and observe that{

Nn

n
− 1

μ
≥ n−ε/2

}
= {

Nn ≥ e+
n

}
= {TE+

n
≤ n}

=
{

TE+
n

− μE+
n

E+
n

≤ n − μE+
n

E+
n

}
.

Likewise, with e−
n = n(μ−1 − n−ε/2), E−

n = �e−
n  + 1, and n large enough to ensure E−

n > 0,{
Nn

n
− 1

μ
≤ −n−ε/2

}
= {

Nn ≤ e−
n

}
= {TE−

n
> n}

=
{

TE−
n

− μE−
n

E−
n

>
n − μE−

n

E−
n

}
.

From this and the fact that |n − μE±
n |/E±

n = �(n−ε/2), it is not difficult to see that there is a
constant C > 0 such that

lim sup
n≥1

{∣∣∣∣Nn

n
− 1

μ

∣∣∣∣ ≥ n−ε/2
}

⊂ lim sup
n≥1

{∣∣∣∣Tn

n
− μ

∣∣∣∣ ≥ Cn−ε/2
}

= lim sup
n≥1

{
1

n1−ε/2

∣∣∣∣∣
n∑

i=1

(τi − μ)

∣∣∣∣∣ ≥ C

}
.

(4.9)

It follows from Petrov [31], Theorem 17, p. 274, with an = n1−ε/2, and the fact that Eτ 1+ε < ∞
that the last event in (4.9) has probability zero (alternatively use the Marcinkiewicz–Zygmund
strong law of large numbers). Therefore,

lim sup
n→∞

nε/2
∣∣∣∣Nn

n
− 1

μ

∣∣∣∣ < ∞ (4.10)

almost surely. Since

n∑
j=1

∣∣∣∣ 1

j + Nj

− μ

(1 + μ)j

∣∣∣∣ =
n∑

j=1

∣∣∣∣ 1

(1 + Nj/j)j
− 1

(1 + 1/μ)j

∣∣∣∣
=

n∑
j=1

|Nj/j − 1/μ|
(1 + Nj/j)(1 + 1/μ)j

≤
n∑

j=1

jε/2|Nj/j − 1/μ|
j1+ε/2
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we conclude that, using (4.10) and the fact that
∑

j≥1 j−(1+ε/2) < ∞, the last sum converges
almost surely as n → ∞.

Case (b). Following the proof of the μ finite case (interpreting ∞/(1 + ∞) as 1) up to and
including (4.8), it is sufficient to establish, as in (4.10), that lim supn→∞ nε′ Nn

n
< ∞ almost

surely for some ε′ > 0. Observe that

P
[
Tn ≤ n1+ε

] ≤ P
[
max{τ1, . . . , τn} ≤ n1+ε

]
= (

P
[
τ1 ≤ n1+ε

])n

= (
1 − P

[
τ1 > n1+ε

])n

≤
(

1 − C

n(1−ε)(1+ε)

)n

=
(

1 − C

n1−ε2

)n

≤ exp
(−Cnε2)

.

By Borel–Cantelli,

P

[
lim sup
n→∞

{
1

n1+ε/2
Tn ≤ nε/2

}]
= 0,

so that 1
n1+ε/2 Tn → ∞ almost surely. By the usual relation between Tn and Nn, this implies that,

for ε′ := 1 − 1
1+ε/2 > 0,

lim sup
n→∞

nε′ Nn

n
< ∞

almost surely. �

The next result provides moment bounds for applying dominated convergence to strengthen
the convergence of Lemma 4.3.

Lemma 4.4. Under the assumptions of Lemma 4.3, if either

(a) Eτp < ∞ for some p > 1, and 1 ≤ k < (
p
2 − 1)(μ + 1), or

(b) Eτ = ∞ and k ≥ 1,

then, with Dk,n be as in Proposition 4.1,

lim sup
n→∞

EDk,n

nkμ/(1+μ)
< ∞.
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Proof. Case (a). Using representation given by (4.3), and the fact that �(x + k) ≤ (x + k)k�(x),
we conclude that there is a constant C = C(b,w, k) such that

E(Dk,n|T ) ≤ C(c + k + Nn−1 + n)k
Nn−1∏
j=1

(
1 − k

c + j − 1 + Tj + k

)
, (4.11)

where we write c = b + w to shorten formulas. Let An be the event that |Nn−1 − (n − 1)/μ| ≤
un := (n − 1)/(μ + 1) − 1. We have

EDk,n = E
(
Dk,nI[An]

) +E
(
Dk,nI

[
Ac

n

])
, (4.12)

and we show that both terms on the right-hand side of (4.12) are O(nkμ/(μ+1)). Below it is
important to notice that An is in the sigma-algebra generated by T . Now, for the first term of
(4.12), use the expression (4.11) to find that, under the event An,

E(Dk,n|T )I[An] ≤ C(c + k + n/μ + un + n)k
φn∏

j=1

(
1 − k

c + j − 1 + Tj + k

)
,

where φn = �n−1
μ

− un, and note that 1 ≤ φn = �(n) by our definition of un. Since

(c + k + n/μ + un + n)k = O
(
nk

)
,

it is sufficient to show that

E

φn∏
j=1

(
1 − k

c + j − 1 + Tj + k

)
= O

(
n−k/(1+μ)

)
.

Let 1/2 < α < 1 and set Uα := sup{j ≥ 1 : Tj > jμ + jα} to be the last time that the centered
random walk (Tj − jμ)j≥0 is larger than jα ; note that Uα is almost surely finite by the law of
the iterated logarithm. Defining the empty product to be one, we have

E

φn∏
j=1

(
1 − k

c + j − 1 + Tj + k

)

≤ E

φn∏
j=Uα

(
1 − k

c + j − 1 + Tj + k

)

≤ E

φn∏
j=Uα

(
1 − k

c + j − 1 + jμ + jα + k

)

≤
φn∏

j=1

(
1 − k

c + j − 1 + jμ + jα + k

)
E

Uα∏
j=1

(
1 + k

j + jμ + jα

)
.

(4.13)
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We show the first product of (4.13) is O(n−k/(1+μ)), and the second is bounded. Taking logarithm
in the first product, we claim

φn∑
j=1

log

(
1 − k

c + j − 1 + jμ + jα + k

)
+ k

1 + μ
log(n)

converges as n → ∞. Since log(φn) − log(n) converges, we can replace log(n) with log(φn).
Now, similar to the proof of Lemma 4.3, since

n∑
j=1

log(1 + xj ) −
n∑

j=1

xj

converges provided
∑∞

j=1 x2
j < ∞, it is enough to consider the convergence of

−
φn∑

j=1

1

c + j − 1 + jμ + jα + k
+ 1

1 + μ
log(φn)

=
φn∑

j=1

(
1

j (1 + μ)
− 1

c + j (1 + μ) + jα + k − 1

)
+ O(1)

=
φn∑

j=1

c + jα + k − 1

(1 + μ)j (c + j (1 + μ) + jα + k − 1)
+ O(1)

≤ C

φn∑
j=1

j−2+α + O(1);

here C is some constant and the sum is convergent since α < 1. For the second product of (4.13),
easy variations of the arguments above (or in the proof of Lemma 4.3) show that there is a
constant C (depending on k and μ) such that for any t ≥ 1,

t∏
j=1

(
1 + k

j + jμ + jα

)
≤

t∏
j=1

(
1 + k

j + jμ

)
≤ Ctk/(μ+1).

Substituting t = Uα , it is enough to show that EU
k/(μ+1)
α < ∞. We choose α < 1 close enough

to one to ensure p > ( k
μ+1 + 1)/(α − 1/2) and find

P[Uα ≥ x] = P

[⋃
j≥x

{
Tj > jμ + jα

}]

≤
∑
j≥x

P
[|Tj − jμ| > jα

]
(4.14)
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≤
∑
j≥x

E|Tj − jμ|p
jpα

≤ CpE|τ − μ|p
∑
j≥x

j−p(α−1/2),

where the last inequality follows from Lemma 4.5 below. Using (4.14), we obtain

EUk/(μ+1)
α = k

μ + 1

∫ ∞

0
xk/(μ+1)−1

P[Uα > x]dx

= k

μ + 1

∫ ∞

0
xk/(μ+1)−1

P
[
Uα ≥ �x + 1

]
dx

≤ Cp

kE|τ − μ|p
μ + 1

∫ ∞

0
xk/(μ+1)−1

∑
k≥�x+1

k−p(α−1/2) dx

≤ kCpE|τ − μ|p
(μ + 1)(p(α − 1/2) − 1)

∫ ∞

0
xk/(μ+1)−1�x−p(α−1/2)+1 dx

≤ kCpE|τ − μ|p
(μ + 1)(p(α − 1/2) − 1)

∫ ∞

0
xk/(μ+1)−p(α−1/2) dx < ∞;

the finiteness is by the assumption that p > ( k
μ+1 + 1)/(α − 1/2).

For the second term of (4.12), first note that the term (4.2) is decreasing in the Ni , so the
conditional expectation (without the indicator) is almost surely bounded

E(Dk,n|T ) ≤ �(w + k)

�(w)

n−1∏
j=0

c + k + j

c + j

≤ �(w + k)

�(w)
· �(c)

�(c + k)
· �(c + k + n)

�(c + n)

= O
(
nk

)
.

(4.15)

Now noting that Ac
n is in the sigma-algebra generated by T , it is enough to show that P[Ac

n] =
O(n−k/(μ+1)). Denoting ωn := 
(n − 1)/μ + un� and using the moment bound of Lemma 4.5
below, we have

P
[
Ac

n

] = P
[∣∣Nn−1 − (n − 1)/μ

∣∣ > un

]
≤ P[Tωn < n − 1] + P[Tφn ≥ n − 1]
≤ P[Tωn − μωn < n − 1 − μωn] + P[Tφn − μφn ≥ n − 1 − μφn]

≤ C2k/(μ+1)E|τ − μ|2k/(μ+1)

(
ω

k/(μ+1)
n

(μωn − n − 1)2k/(μ+1)
+ φ

k/(μ+1)
n

(n − 1 − μφn)2k/(μ+1)

)
.
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But since φn = (n − 1)/μ − un − ε1 and ωn = (n − 1)/μ + un + ε2 for some ε1, ε2 ∈ [0,1), the
last expression is O(n−k/(μ+1)), as desired.

Case (b). Since Xn ≤ n + w, then Dk,n ≤ (n + w + k)k , and so EDk,n = O(nk), as re-
quired. �

We now give the proof of Proposition 4.1 and then note that Theorem 1.2 easily follows from
that result.

Proof of Proposition 4.1. Case (a). Lemma 4.3(a) applied to (4.2) of Lemma 4.2 implies that
n−kμ/(μ+1)

E[Dk,n|T ] converges almost surely to a positive random variable χ(k, b + w,π).
Using Lemma 4.4 and dominated convergence (see, for example, Durrett [15], Exercise 3.2.5), it
follows that n−kμ/(μ+1)

EDk,n → Eχ(k, b + w,π).
Case (b). Analogous to Case (a). �

Proof of Theorem 1.2. In both cases (a) and (b), Lemma 4.3 implies that Xn converges to
infinity almost surely. Hence, regular and factorial moments are asymptotically equivalent, and
Theorem 1.2 follows directly from Proposition 4.1 with the same constants mk(b,w,π). �

The following lemma is given in Petrov [31], 16, page 60, where it is attributed to Dharmad-
hikari and Jogdeo [14].

Lemma 4.5. Let Y1, . . . , Yn be independent random variables such that for i = 1, . . . , n, EYi = 0
and E|Y1|p < ∞, and let Sn = ∑n

i=1 Yi . Then

E|Sn|p ≤ Cpnp/2−1
n∑

i=1

E|Yi |p,

where

Cp = 1

2
p(p − 1)max

(
1,2p−3)(1 + 2

p
K

(p−2)/2m

2m

)
,

and the integer m satisfies 2m ≤ p < 2m + 2, and

K2m =
m∑

r=1

r2m−1

(r − 1)! .

5. Proof of Theorem 1.3

We prove the convergence first for b = 1, and then the general case follows easily from an auxil-
iary Pólya urn argument.

Recall that Wn = n−μ/(μ+1)Xn and we want to derive the distributional limit of the se-
quence Wn. The method of proof is to show tightness of the sequence L(Wn), and then use
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the characterizing properties of the limit given by Proposition 2.2 to prove convergence. To sim-
plify notation, for a probability distribution π = (πk)k≥0, let π∗ = (π∗

k )k≥1 be the distribution
defined as π∗

k = πk−1 for k ≥ 1. Moreover, let S(π∗) = {k ≥ 1 : π∗
k > 0} be the support of π∗.

Lemma 5.1. Let (Wn)n≥0 be a sequence of non-negative random variables. Let w > 0, let π =
(πk)k≥0 be a probability distribution, and let (mk)k∈S(π∗) be positive numbers. If

(i) for each k ∈ S(π∗) there is ε > 0 such that lim supn→∞ EWk+ε
n < ∞,

(ii) limn→∞ EWk
n = mk for all k ∈ S(π∗), and

(iii) for each n there is a coupling (Wn,BnW
(π∗)
n ), where W

(π∗)
n has the π∗-power-bias dis-

tribution of Wn defined through (2.1), where Bn ∼ Beta(w,1) is independent of W
(π∗)
n ,

and such that as n → ∞,

L
(
Wn − BnW

(π∗)
n

) → 0,

then L(Wn) → UL(w; (ak)k≥1) as n → ∞, where ak = π∗
k /mk for k ∈ S(π∗) and ak = 0 for

k /∈ S(π∗).

Proof. From (i), we see that lim supn→∞ EWn < ∞, so that the sequence (L(Wn))n≥1 is tight.
Thus, we assume that L(Wn) → L(W) and show that this implies W ∼ UL(w; (ak)k≥1). As per
Proposition 2.2, it is enough to show that

(a) EWk = mk, k ∈ S
(
π∗), and (b) L(W) = L

(
VwW(π∗)), (5.1)

where Vw ∼ Beta(w,1) is independent of W(π∗). Now, (i), (ii) and dominated convergence (see,
for example, Durrett [15], Exercise 3.2.5) imply that EWk = mk for k ∈ S(π∗), which is (a).
Using (iii) and Slutsky’s theorem, we conclude that L(BnW

(π∗)
n ) → L(W). But we also have

that L(BnW
(π∗)
n ) → L(VwW(π∗)). Indeed, first show L(W

(π∗)
n ) → L(W(π∗)): for bounded and

continuous f ,

Ef
(
W(π∗)

n

) =
∑
k≥1

π∗
k

E(Wk
nf (Wn))

EWk
n

≤ ‖f ‖∞, (5.2)

and by (i) and dominated convergence, E(Wk
nf (Wn)) → E(Wkf (W)). So by bounded conver-

gence applied to the sum in (5.2), as n → ∞,

Ef
(
W(π∗)

n

) =
∑
k≥1

π∗
k

E(Wk
nf (Wn))

EWk
n

−→
∑
k≥1

π∗
k

E(Wkf (W))

EWk
= Ef

(
W(π∗)).

Moreover, it’s obvious that L(Bn) → L(Vw), and, using independence of the relevant pairs of
variables, L((Bn,W

(π∗)
n )) → L((Vw,W(π∗))). Now the continuous mapping theorem implies

L(BnW
(π∗)
n ) → L(VwW(π∗)), as desired. Combining these facts, we find that (b) also holds,

and it follows from Proposition 2.2 that W ∼ UL(w; (ak)k≥1). �
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Our strategy to proof Theorem 1.3 is to apply Lemma 5.1 to

Wn = Xn

nμ/(1+μ)
.

Assuming that π has all positive moments finite or infinite mean, and then choosing mk as in
(1.5), we conclude that (i) and (ii) of Lemma 5.1 are satisfied. Thus, it is sufficient to show (iii)
of Lemma 5.1. We develop the coupling of Wn to a variable distributed as Vw,nW

(π∗)
n over a

series of lemmas, working first on W
(π∗)
n . Denote the rising factorial

xk := x(x + 1) · · · (x + k − 1).

Definition 5.2. Let ψ be a probability distribution concentrated on the positive integers, and let
W be a positive random variable such that EWk < ∞, for all k in S(ψ). A random variable W [ψ]
is said to have the ψ -rising-factorial-bias distribution of W if

Ef
(
W [ψ]) =

∑
k∈S(ψ)

ψk

E(Wkf (W))

EWk
(5.3)

for all f for which the expectation on the right-hand side exists. If ψk = 1 for some k ≥ 1, then
we simply write W [k] to denote W [ψ].

The next lemma relates the π∗-rising-factorial-bias distribution of Wn to its π∗-power-bias
distribution.

Lemma 5.3. Let b and w be positive integers, let π be a distribution on the non-negative inte-
gers, let τ ∼ π , and assume that either

(a) Eτp < ∞ for all p ≥ 1, or
(b) there is ε > 0 such that P[τ > n] ≥ Cn−(1−ε) for n large enough.

Let Xn ∼ Pπ (
b
w

;n), and let X
(π∗)
n , respectively X

[π∗]
n , have the π∗-power-bias, respectively the

π∗-rising-factorial-bias distribution of Xn. Then

dTV
(
L

(
X(π∗)

n

)
,L

(
X[π∗]

n

)) → 0 as n → ∞.

Proof. We show that for each fixed k ≥ 1,

dTV
(
L

(
X(k)

n

)
,L

(
X[k]

n

)) → 0, (5.4)

from which the lemma follows by bounded convergence and the fact that in general, for random
variables (X,Y,U) defined on the same probability space,

dTV
(
L(X),L(Y )

) ≤ EdTV
(
L(X|U),L(Y |U)

)
.
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Both X
(k)
n and X

[k]
n have densities with respect to Xn, and so

2dTV
(
L

(
X(k)

n

)
,L

(
X[k]

n

))
=

∑
j≥0

P(Xn = j)

∣∣∣∣ jk

EDk,n

− jk

EXk
n

∣∣∣∣
(5.5)

=
∑
j≥0

P(Xn = j)

EDk,n

∣∣∣∣∣jk

(
1 − EDk,n

EXk
n

)
+

k−1∑
i=0

[
k

i

]
j i

∣∣∣∣∣
≤ EXk

n

EDk,n

∣∣∣∣1 − EDk,n

EXk
n

∣∣∣∣ + 1

EDk,n

k−1∑
i=0

[
k

i

]
EXi

n,

where the
[
k
i

]
are unsigned Stirling numbers of the first kind. But due to the moment or tail as-

sumptions on π , Proposition 4.1 implies that EDi,n = �(niμ/(μ+1)) for all i = 1, . . . . Therefore,
EXi

n must be of the same order, and moreover, EDk,n/EXk
n → 1 as n → ∞. Applying these

facts with (5.5) implies the lemma. �

We use the rising factorial bias distribution because it can be connected back to our (unbiased)
urn models.

Lemma 5.4. Let b and w be positive integers, let π be a distribution on the non-negative inte-
gers, let τ ∼ π , and assume that either (a) or (b) from Proposition 4.1 holds. Let Xn ∼Pπ(

b
w

;n),

and let (Yn(k))k∈S(π∗),n≥0 be a family of random variable such that Yn(k) + k ∼Pπ(
b

w+k
;n). If

X
[π∗]
n has the π∗-rising-factorial-bias distribution of Xn, then

dTV
(
L

(
X[π∗]

n

)
,L

(
Yn

(
τ ∗))) → 0 as n → ∞,

where τ ∗ ∼ π∗ is independent of (Yn(k))k∈S(π∗),n≥0.

Proof. As in the start of the proof of Lemma 5.3, it is sufficient to show that for each k ≥ 1,

dTV
(
L

(
X[k]

n

)
,L

(
Yn(k)

)) → 0. (5.6)

For the remainder of the proof, we keep k ≥ 1 fixed and, thus, drop it from out notation. We
define three urn process, coupled together through the immigration times in the following way.

First, let X = (X0,X1,X2, . . . ) be a realisation of the immigration urn model starting with b

black and w white balls, and with immigration distribution π ; let T = (T1, T2, . . .) be the corre-
sponding sequence of arrival times of immigrating black balls. Second, let X̃ = (X̃1, X̃2, . . . ) be
a sequence of random variables such that, given T ,

P[X̃n = j |T ] = jk
P[Xn = j |T ]
E(Dk,n|T )

; (5.7)
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that is, X̃n has the k-rising-factorial-bias distribution of Xn conditional on T . Third, let Y1, Y2, . . .

be a realisation of the urn model starting with b black and w + k white balls, where the immi-
gration times are also T . We note that, given T , the joint distribution of the three processes is not
going to be relevant.

Applying representation (4.2) from Lemma 4.2 to Yn + k ∼ Pπ (
b

w+k
;n), we obtain that, for

any l ≥ 1,

E

{
l−1∏
j=0

(Yn + k + j)|T
}

= �(w + k + l)

�(w + k)

n−1∏
j=0

b + w + k + l + j + Nj

b + w + k + j + Nj

= �(w)

�(w + k)

n−1∏
j=0

b + w + j + Nj

b + w + k + j + Nj

× �(w + k + l)

�(w)

n−1∏
j=0

b + w + k + l + j + Nj

b + w + j + Nj

= 1

E(Dk,n|T )
×E

{
k+l−1∏
j=0

(Xn + j)|T
}

= 1

E(Dk,n|T )
×E

{
k−1∏
j=0

(Xn + j) ×
l−1∏
j=0

(Xn + k + j)|T
}

= E

{
l−1∏
j=0

(X̃n + k + j)|T
}

.

Taking expectations on both sides of the previous display and using the method of moments,
we deduce that, in fact, L(Yn) = L(X̃n) for all n ≥ 0. Thus, we have reduced the problem to
showing that, as n → ∞,

dTV
(
L

(
X[k]

n

)
,L(X̃n)

) → 0. (5.8)

Using (5.3) and (5.7), we find

2dTV
(
L

(
X[k]

n

)
,L(X̃n)

) =
∑
j≥0

∣∣∣∣E
{

jk
P[Xn = j |T ]
E(Dk,n|T )

− jk
P[Xn = j |T ]
EDk,n

}∣∣∣∣
≤ E

{∣∣∣∣1 − E(Dk,n|T )

EDk,n

∣∣∣∣∑
j≥0

jk
P[Xn = j |T ]
E(Dk,n|T )

}

= E

∣∣∣∣1 − E(Dk,n|T )

EDk,n

∣∣∣∣.

(5.9)
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Now, by Lemma 4.3 and Proposition 4.1, we have that, almost surely,

E(Dk,n|T )

EDk,n

→ 1 as n → ∞.

Moreover, Jensen’s inequality implies E(E(Dk,n|T )2) ≤ ED2
k,n ≤ ED2k,n, and thus, again by

Proposition 4.1,

sup
n≥1

ED2k,n

(EDk,n)2
< ∞.

Hence, by dominated convergence, the right hand side of (5.9) tends to zero, which concludes
the proof. �

The next two lemmas move us from Yn(τ
∗) defined in Lemma 5.4 to a variable that will be

used as a surrogate for W
(π∗)
n .

Lemma 5.5. Let w be a positive integer, let π be a probability distribution on the non-negative
integers. Let (Yn(k))k∈S(π∗) be a family of random variables such that Yn(k) + k ∼ Pπ(

1
w+k

;n)

for k ∈ S(π∗). Moreover, let X̃ = (X̃0, X̃1, . . . ) be a realisation of an immigration urn process
with immigration distribution π , starting with zero black balls and w + 1 white balls, so that
X̃n ∼ Pπ (

0
w+1 ;n). Let τ̃ be time of the first arrival in the urn process X̃, and let Ỹn = X̃n+τ̃ −

τ̃ − 1. Then

L
(
Yn

(
τ ∗)) = L(Ỹn),

where τ ∗ ∼ π∗ is independent of (Yn(k))k≥1.

Proof. Consider the urn process X̃. Since there are no black balls in the urn initially, the first τ̃

draws all come up white and so τ̃ white balls are added to the urn, τ̃ steps elapse, and one black
ball is added. At this point there are w + τ̃ + 1 white balls in the urn and 1 black ball. Thus we
find that Pπ (

0
w+1 ;n + τ̃ ) =Pπ (

1
w+τ̃+1 ;n), which is exactly the statement of the lemma. �

Lemma 5.6. Let w be a positive integer, let π be a probability distribution on the non-negative
integers, let X̃ = (X̃0, X̃1, . . . ), τ̃ and (Ỹn)n≥1 be defined as in Lemma 5.5. Then,

1

nμ/(μ+1)

(
Ỹn − (X̃n − w − 1)

) P−→ 0.

Proof. The only difference between the two variables is the number of steps the process is run,
and the shifts τ̃ and w − 1. Since, at each time step, the number of white balls in the urn increase
by at most one, we have∣∣Ỹn − (X̃n − w − 1)

∣∣ = ∣∣X̃n+τ̃ − τ̃ − 1 − (X̃n − w − 1)
∣∣ ≤ 2τ̃ + w.

Divided by the scaling nμ/(μ+1), the right-hand side tends to zero in probability. �
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The previous lemmas imply we can use n−μ/(μ+1)(X̃n − w − 1) as a surrogate for W
(π∗)
n , and

the next result shows how to relate this variable back to the original Wn using a classical Pólya
urn.

Lemma 5.7. Let w be a positive integer and let π be a probability distribution on the non-
negative integers. Let X̃ = (X̃1, X̃2, . . . ) be as in Lemma 5.5, and let (Qw(n))n≥0 be the number
of white balls in a classical Pólya urn sequence started with 1 black ball and w white balls. Then

Qw(X̃n − w − 1) ∼Pπ

(
1

w
;n

)
.

Proof. Start with an urn having w white balls, 1 gray ball, and 0 black balls. The urn follows
the rules of a classical Pólya urn with three colors, but at the arrival times T1, T2, . . . , driven by
π , a black ball is added to the urn. It is clear that X̃n − w − 1 equals the number of times a
gray or white ball is drawn after n steps in this urn process, and each time a gray or white ball
is drawn, the chance of it being white is proportional to the number of white balls in the urn at
that moment, just as in a classical Pólya urn. So Qw(X̃n −w − 1) is distributed as the number of
white balls in the described urn after n steps, but this distribution is exactly Pπ (

1
w

;n) since the
1 gray ball can now be viewed as a “black” ball. �

To get to the beta variable Vw in the coupling (and to transfer to the general b > 1 case), we
need the result of Peköz et al. [26], Lemma 2.3, which provides a close coupling of a classical
Pólya urn to its beta limit. Denote by P(

b
w

;n) the law of the number of white balls in a classical
Pólya urn started with b black and w white balls after n draws and replacements.

Lemma 5.8. Let β , ω and k be positive integers. There is a coupling (Qβ,ω(n),Vβ,ω) with
Qβ,ω(n) ∼P(

β
ω
;n) and Vβ,ω ∼ Beta(ω,β), such that, almost surely,∣∣Qβ,ω(n) − nVβ,ω

∣∣ < β(4ω + β + 1).

We are now in position to complete the proof of Theorem 1.3.

Proof of Theorem 1.3. We first show the result for b = 1. Let Wn = n−μ/(μ+1)Xn. By (1.5) and
because either (a) or (b) is satisfied, there is a sequence m = (m1,m2, . . .) such that EWk

n → mk .
We want to show that L(Wn) → UL(w; (ak)k≥1), and we do so by showing (i), (ii) and (iii) of
Lemma 5.1. By (1.5), (i), (ii) easily follow. To show (iii), Lemmas 5.3–5.6 imply that we can
couple variables (W

(π∗)
n , n−μ/(μ+1)X̂n), where W

(π∗)
n has the π∗-power-bias distribution of Wn

and X̂n = X̃n − w − 1, such that

(
W(π∗)

n − n−μ/(μ+1)X̂n

) P−→ 0 as n → ∞. (5.10)

Moreover, Lemma 5.7 implies

Ŵn := Qw(X̂n)

nμ/(μ+1)

D= Wn,
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where Qw(n) is defined as in Lemma 5.7. Lemma 5.8 implies that there is a coupling
(Qw(X̂n),VwX̂n) with Vw ∼ Beta(w,1) independent of X̂n and such that

∣∣Qw(X̂n) − VwX̂n

∣∣ < w + 1

almost surely. From these last two displays, we have a coupling (VwW
(π∗)
n , Ŵn) with the appro-

priate marginals satisfying

∣∣VwW(π∗)
n − Ŵn

∣∣ ≤ ∣∣VwW(π∗)
n − n−μ/(μ+1)VwX̂n

∣∣ + ∣∣n−μ/(μ+1)VwX̂n − Ŵn

∣∣
<

∣∣W(π∗)
n − n−μ/(μ+1)X̂n

∣∣ + n−μ/(μ+1)(w + 1),

which according to (5.10) tends to zero in probability, as desired. Finally, the convergence of the
moments of Wn to those of its limit follows since EWk

n → mk < ∞ for all k ≥ 1; this implies
(1.7).

For the general case b > 1, let Xn ∼Pπ (
b
w

;n) and X′
n ∼Pπ(

1
w+b−1 ;n). We show that

L(Xn) =P
(

b − 1

w
;X′

n − (b + w − 1)

)
, (5.11)

and then the result follows easily from Lemma 5.8. To establish (5.11), consider an urn that at
step zero has w white balls, b − 1 gray balls, and 1 black ball. The urn follows the rules of a
classical Pólya urn but at the arrival times T1, T2, . . . , driven by π , a black ball is added to the
urn. It is clear that X′

n − (b + w − 1) is distributed as the number of times a gray or white ball
is drawn after n steps in this urn process, and each time a gray or white ball is drawn, the chance
it is white is proportional to the number of white balls in the urn at that moment, just as in a
classical Pólya urn. So P(

b−1
w

;X′
n − (b +w − 1)) is the distribution of the number of white balls

in the urn process after n steps, and this is exactly Pπ(
b
w

;n) if we now view the b − 1 gray balls
as black. �

6. Some properties of the UL family

In this section, we derive some basic properties of the UL family. First, we record some moment
and tail bounds.

Proposition 6.1 (Moment Bounds). Fix w and (ak)k≥1, let Z ∼ UL(w; (ak)k≥1), and let c be
the normalising constant from (1.2), depending only on w and (ak)k≥1. Then for any positive
integer m,

EZm ≤ inf{
:a
>0}
c




(
wa





)−(w+m)/


�

(
w + m




)
.

Moreover, UL(w; (ak)k≥1) is uniquely determined by its moments.
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Proof. If 
 is such that a
 > 0, we have

EZm = c

∫ ρ

0
xw+m−1e−w

∑
k≥1

ak
k

xk

dx

≤ c

∫ ρ

0
xw+m−1e−w

a




x


dx

≤ c

∫ ∞

0
xw+m−1e−w

a




x


dx

= c




(
wa





)−(w+m)/


�

(
w + m




)
,

which proves the first assertion. For the second, the bound above and Stirling’s approximation
shows that

lim sup
m→∞

(EZm)1/2m

m
< ∞,

and so in particular, Carleman’s condition for the Stieljes moment problem is satisfied. �

Proposition 6.2 (Mills Ratio Tail Bound). Fix w and (ak)k≥1, and let Z ∼ UL(w; (ak)k≥1).
For each α > 0, there is a constant Cα such that for x > α,

P(Z ≥ x) ≤ Cαu(x).

Proof. We show that P(Z≥x)
u(x)

is non-increasing in x, from which the proposition follows with

Cα := P(Z≥α)
u(α)

. Note that u(x) = ce−B(x), where we define

B(x) := −(w − 1) log(x) +
∑
k≥1

ak

k
xk.

Note that B ′′(x) ≥ 0 so B ′ is non-decreasing. Then

d

dx

(
P(Z ≥ x)

u(x)

)
= B ′(x)eB(x)

∫ ρ

x

e−B(y) dy − 1

≤ eB(x)

∫ ρ

x

B ′(y)e−B(y) dy − 1

= 0. �

In Theorem 1.3, we showed that if b > 1, then the limiting distribution of our urn model can
be expressed as UL(w; (ak)k≥1) multiplied by a beta random variable. It is natural to ask if such
distributions are again in the UL family. Our next examples show that this is not true in general,
not even for the limits appearing in Theorem 1.3.
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Example 6.3. If U ∼ Beta(1,1) and X ∼ Exp(1), then L(UX) is not in the UL family. Indeed,
the density of UX for x > 0 is

∫ ∞
x

e−t /t dt , which goes to infinity like − log(x) as x → 0, and
hence is not in the UL class.

Example 6.4. Let π = δ1 be the point mass at 1; as discussed in Section 3.1, the scaled limit of
Pδ1(

1
w

;n) has density proportional to

xw−1 exp
{−Cx2}dx (6.1)

for some constant C. By Theorem 1.3, the scaled limit of Pδ1(
2
1 ;n) has distribution L(BZ),

where Z has density proportional to (6.1) with w = 2, and where B ∼ Beta(1,1) is independent
of Z. Using the density formula for products of independent random variables, we obtain that
BZ has density proportional to ∫ ∞

x

e−Cy2
dy

which, up to scaling and multiplicative constants, is known as the complementary error function
erfc(x). If BZ ∼ UL(v, (a′

k)k≥1) for some positive integer v and positive sequence (a′
k)k≥1, then

since limx→0
∫ ∞
x

e−Cy2
dy > 0, we must have v = 1. In this case, a′

k are just the coefficients in

the Taylor series expansion about zero of − log(
∫ ∞
x

e−Cy2
dy), but since

− ∂4

∂x4
log erfc(x)|x=0 = 32(3 − π)

π2
< 0,

we would have a′
4 = 32(3−π)

4!π2 < 0 in representation (1.2), so that BZ cannot be in the UL family.
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