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Frequentist methods, without the coherence guarantees of fully Bayesian methods, are known to yield
self-contradictory inferences in certain settings. The framework introduced in this paper provides a simple
adjustment to p values and confidence sets to ensure the mutual consistency of all inferences without sac-
rificing frequentist validity. Based on a definition of the compatibility of a composite hypothesis with the
observed data given any parameter restriction and on the requirement of self-consistency, the adjustment
leads to the possibility and necessity measures of possibility theory rather than to the posterior probability
distributions of Bayesian and fiducial inference.
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1. Introduction

A common criticism of frequentist statistical methods is that they lead to contradictory con-
clusions in settings where Bayesian methods cannot. Following Kaplan [24], a method of hy-
pothesis testing or set estimation will be called deductively cogent if it cannot make mutually
contradictory rejections of hypotheses. Minimal requirements for a deductively cogent method
of hypothesis testing are the following:

1. It is restriction-respecting in the sense that it cannot reject every hypothesis that is consis-
tent with the restriction imposed and in that it rejects all hypotheses that are inconsistent
with the restriction.

2. It is coherent in the sense that a hypothesis can only be rejected if every hypothesis implying
it is also rejected (Gabriel [19]).

Standard confidence procedures often fail to meet the first requirement in the presence of param-
eter restrictions, which are often encountered in physics. For example, if the parameter restric-
tion is a bound on the parameter of interest, then inferences should proceed conditional on that
bound. However, confidence intervals can be partially or entirely outside the bound (Mandelkern
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[27], Fraser [18]); cf. Zhang and Woodroofe [52], Marchand and Strawderman [28], Wang [48],
Marchand and Strawderman [29]. Taking the intersection of the parameter restriction set and
the confidence set leads in the former case to truncating the confidence set at the bound, and in
the latter case to an empty confidence set. Since parameter values outside a confidence set are
considered rejected, an empty confidence set is equivalent to rejecting the entire set of possible
parameter values, contradicting the condition that the parameter value lies in that set.

Empty confidence sets also occur for an epidemiological model, a branching process, and
Brownian motion (Ball, Britton and O’Neill [1]). While an empty confidence set is often inter-
preted as an indication of model inadequacy, procedures leading to them also lead to very small
confidence sets, misleadingly indicating accurate knowledge of the parameter value (Ball, Brit-
ton and O’Neill [1]). As a result, such confidence sets do not give the estimates of uncertainty
that are needed in practice (Mandelkern [27], Wang [47]).

For an example of violating coherence, one-sided p values are interpreted as attained confi-
dence levels of composite hypotheses, including those concerning the value of an unbounded
parameter. Since such attained confidence levels can be smaller for a region than for a subset
of that region (Efron and Tibshirani [15], Polansky [36], pp. 224–227), they do not correspond
to coherent hypothesis tests. The fact that frequentist approaches can violate coherence has led
many to develop methods complying with the strong likelihood principle, whether using prior
distributions (e.g., Schervish [40], Lavine and Schervish [26]) or not (e.g., Royall [39], Bickel
[3], Zhang and Zhang [53]).

To render existing frequentist methods deductively cogent, this paper instead presents an al-
ternative framework of hypothesis testing and confidence sets. The framework is based on the
concept of the compatibility between a hypothesis and the observed data rather than on any like-
lihood principle.

That data-compatibility measure is specified and illustrated in Section 2 using the most impor-
tant concepts found in the more theoretical parts of the paper. Additional examples are provided
in Section 3, some of which feature bounded parameter problems. The foundational motivation
is stated in terms of the axioms of Section 4. Section 5 derives properties of the data compat-
ibility of a hypothesis, including the fact that the data compatibility of a point null hypothesis
is the p value divided by the highest p value corresponding to the point null hypotheses in the
parameter space or in the parameter restriction, if any. As a result, the corresponding set esti-
mate is a conservative confidence set. Section 6 introduces the concept of the acceptability of
a hypothesis in order to indicate when to accept the hypothesis, when to reject it, and when to
take neither of those actions. The restriction-respecting and coherence aspects of that procedure
are also proven in the latter section. Finally, Section 7 remarks on the place of the proposed
framework in possibility theory and ranking theory.

2. Methodology of data-hypothesis compatibility

2.1. Hypothesis testing

Let θ denote the parameter of interest restricted to a subset R of the parameter space �, x the
observed sample of data, H0 : θ = θ0 the hypothesis that the value of θ is θ0, and H0 : θ ∈ H0
the hypothesis that the value of θ is in some H0 ⊆ �. The observed p value corresponding
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to H0 : θ = θ0 is p(θ0;x). Here, x �→ p(θ0;x) is a function such that the probability law of
p(θ0;X) weakly converges to U(0,1) as the sample size increases given that X is distributed in
agreement with H0 : θ = θ0, i.e., Pθ0,γ (p(θ0;X) ≤ α) → α as the sample size tends to infinity for
all α ∈ [0,1] and γ ∈ �, where γ is the nuisance parameter, � is the nuisance parameter space
and Pθ0,γ is the probability measure of the data X. For an extensive discussion on p values, we
refer the reader to Cox [9].

The compatibility of H0 : θ = θ0 with x given that θ ∈ R is the c value

c(θ0;x|R) =
⎧⎨
⎩

0 if θ0 /∈ R,

p(θ0;x)

supθ1∈R p(θ1;x)
if θ0 ∈ R.

(1)

More generally, the compatibility of H0 : θ ∈ H0 with x given θ ∈R is the C value

C(H0;x|R) = sup
θ0∈H0

c(θ0;x|R).

It is easy to verify that the compatibility of a hypothesis with the data is 0 whenever they are
logically inconsistent, close to 0 whenever all observed p values corresponding to the hypothesis
are low, and 1, the highest possible value, for at least one hypothesis that is logically consistent
with the parameter restriction.

The absence of a parameter restriction is represented by R = �. Since the degenerate re-
striction that θ ∈ � is necessarily true according to the model, the marginal compatibilities
C(H0;x|�) and c(θ0;x|�) are marginal degrees to which their hypotheses are compatible
with x. They are abbreviated by C(H0;x) and c(θ0;x), respectively.

The first example compares a simple null hypothesis to a simple alternative hypothesis (cf.
Berger [2], Wang [46]) to demonstrate the use of the proposed framework as simply as possible.

Example 1. Comparison of two simple hypotheses, X ∼ N(0,1) and X ∼ N(1,1), on the basis
of a single observation x. In this example, R = {0,1}, � is any set of real numbers such that
R⊆ �, Pθ0 = N(θ0,1) for θ0 ∈ {0,1}, and the two null hypotheses may be restated as θ = 0 and
θ = 1. Thus, the usual two-sided p-value function p(•;x) is given by

p(θ0;x) = 2
(
�(x − θ0) ∧ (

1 − �(x − θ0)
))

,

where ∧ is the minimum and � the standard normal distribution function. Figure 1 displays the
following “significance values” of the hypothesis that θ = 1:

1. The two-sided p value p(1;x) = 2(�(x − 1)∧ (1 −�(x − 1))) appears in solid gray. This
does not depend on the hypothesis that θ = 0.

2. The corresponding compatibility of the hypothesis that θ = 1 with x conditional on θ ∈
{0,1} appears in solid black. According to equation (1), that compatibility is

c
(
1;x|{0,1}) =

⎧⎨
⎩

p(1;x)

p(0;x)
if p(1;x) < p(0;x),

1 if p(1;x) ≥ p(0;x),

where p(0;x) = 2(�(x) ∧ (1 − �(x))) is the p value of the hypothesis that θ = 0.
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Figure 1. The p value p(1;x) in solid gray, the data compatibility c(1;x|{0,1}) in solid black, and the
posterior probability that θ = 1 in dashed black as functions of x, the value of the normal observation.

3. The posterior probability that θ = 1 on the basis of 50% prior probability of each of the
null hypotheses conditional on θ ∈ {0,1} appears in dashed black.

From Figure 1, it can be seen that, given any significance level α ∈ [0,1], the p value would
erroneously lead to the rejection of the better-supported null hypothesis for sufficiently large
x > 1 but that the other two quantities take the other null hypothesis into account. Even when
observing a value as high as x = 3, the c value reasonably indicates no evidence against the null
hypothesis that θ = 1 given the information that θ ∈ {0,1}, information the p value ignores.

Further, for all x > 1/2, there is not any α ∈ [0,1] such that the compatibility conditional on
θ ∈ {0,1} is less than α, with the result that it is impossible to reject the better-supported null
hypothesis, regardless of how high the significance level is. The posterior probability does not
share that feature: being strictly less than 1, it is less than sufficiently high values of α.

In agreement with c(1;x|{0,1}), Chuaqui [7], p. 97 recommended the ratio of p values for
comparing two hypotheses on the basis of the same observation.

2.2. Interval estimation and other set estimation

As there is ambiguity in how formal notation in an English sentence can be understood, a few
clarifying remarks may be helpful. The phrase “The hypothesis that θ ∈H0 is compatible” herein
abbreviates “The hypothesis that θ is a member of H0 is compatible” rather than “The hypothesis
that θ , which is a member of H0, is compatible.” More generally, a hypothesis about a parameter
value, not the parameter value itself, may be compatible with the data, rejected, accepted, etc.
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For the purpose of representing hypotheses, 2� will denote the set of all subsets of �. For any
H0 ∈ 2�, the hypothesis that θ ∈ H0 is simple if H0 has one member and composite if it has
multiple members.

What it means for a hypothesis to be “compatible” with data is defined in analogy with confi-
dence intervals. For any restriction of θ to a set R ∈ 2� \ {∅}, the set

CS(α;x|R) = {
θ0 ∈ R : p(θ0;x) ≥ α

}
(2)

is known as a (1 − α)(100%)-confidence set for any θ0 ∈R since

lim
n→∞Pθ0,γ

(
θ0 ∈ CS(α;X|R)

) = 1 − α

for all α ∈]0,1] and γ ∈ � results from equation (4). It is called exact if its coverage is equal to
1 − α for all n sufficiently large, which requires X to be continuous (Section 4.1).

Definition 1. For any H0,R ∈ 2� \ {∅}, x ∈ X , and α ∈]0,1], the hypothesis that θ ∈ H0 is α-
compatible with the observation that X = x, conditional on the restriction that θ ∈ R, if there is
a θ0 ∈ H0 such that c(θ0;x|R) ≥ α, where c(θ0;x|R) is the c value of the hypothesis that θ = θ0
with the observation that X = x conditional on the restriction that θ ∈ R. The α-compatibility
set given X = x and θ ∈ R is

H(α;x|R) = {
θ0 ∈ � : c(θ0;x|R) ≥ α

}
(3)

for all R ∈ 2� \ {∅}, x ∈ X , and α ∈]0,1].

The definition formally explicates the imprecise idea of whether a hypothesis is compatible
with the data given any restrictions. As will be seen in Section 5.2, c(θ0;x|�) = p(θ0;x) often
holds when there are no restrictions on θ .

3. Additional examples

Like Example 1, the following examples illustrate the c value and support the claim that it is more
suitable than the p value as a measure of the compatibility between a hypothesis and data. The
first example is an idealized version of restricted parameter problem encountered, for example,
in physics (Section 1).

Example 2 (Bounded parameter). Fraser [18] considered a N(θ,1) observable variable X ∼
Pθ = N(θ,1) with observed value x and the parameter restriction θ ≥ 0, and the left-tailed ver-
sion of the two-tailed p value

p(θ0;x) = 2
(
�(x − θ0) ∧ (

1 − �(x − θ0)
))

for every θ0 ≥ 0. Thus, if x ≥ 0, then p(θ0;x) = 1 holds for a value of θ0 ≥ 0, namely, θ0 = x.
In that case, Corollary 2 applies (see Section 5.2), and c(θ0;x|[0,∞[) = p(θ0;x) for all θ0 ≥ 0.
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Figure 2. The p value p(θ0;−1) in gray and the data compatibility c(θ0;−1|[0,∞[) in black as functions
of θ0, the parameter value.

On the other hand, if x < 0, then Corollary 1 (see Section 5.2) instead gives c(θ0;x|[0,∞[) =
p(θ0;x)/ supθ1≥0 p(θ1;x) for all θ0 ≥ 0. This relationship between the compatibility and the
p value is seen in Figure 2 for the observation x = −1. The exact (1 − α)(100%)-confidence
interval is

CI
(
α;x|[0,∞[) = {

θ0 ≥ 0 : p(θ0;x) ≥ α
}

= [
0 ∨ (

x + �−1(α/2)
)
,0 ∨ (

x + �−1(1 − α/2)
)]

,

with �−1 denoting the quantile function. By contrast, equation (3) and Theorem 1 (see Sec-
tion 5.2) give the α-compatibility interval

H
(
α;x|[0,∞[) =

{
θ0 ∈ � : p(θ0;x) ≥ α sup

θ1∈R
p(θ1;x)

}

=
{
θ0 ∈ � : p(θ0;x) ≥ α sup

θ1∈[0,∞[
p(θ1;x)

}

=
[

0 ∨
(

x + �−1
(

αp+(x)

2

))
,0 ∨

(
x + �−1

(
1 − αp+(x)

2

))]
,

where p+(x) = supθ1≥0 p(θ1;x). As required by Theorem 2, H(α;x|[0,∞[) = CI(αp+(x);
x|[0,∞[). For the observation x = −1, the confidence intervals are compared to their compati-
bility counterparts in Figure 3.
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Figure 3. The upper bounds of the α-confidence interval CI(α;−1|[0,∞[) in gray and of the
α-compatibility interval H(α;−1|[0,∞[) in black as functions of α, the threshold applied to the curves
of Figure 2.

If the variance were unknown, the solution would depend on whether the mean is still of
interest or whether the mean-variance pair is the new parameter of interest. In the former case,
the variance would be a nuisance parameter, and the t test could be used to obtain the p values on
which the compatibility values and intervals are based. They would approach the above results
asymptotically. In the latter case, maximization over the mean and variance rather than only over
the mean in equation (1) would lead to very different compatibility values and intervals. Both
cases are discussed in Example 6.

The next three examples involve discrete observations to illustrate cases in which the p value
is not exactly U(0,1) under the null hypothesis.

Example 3. Mandelkern [27] and Fraser, Reid and Wong [17] discussed a restricted parameter
problem for Poisson distributions. In physics, background signal and the event of interest are
typically modeled under an additive structure: the count of background signal plus the count
of the event signal (see van Dyk [45], for an application in the Large Hadron Collider). The
observable count is modeled as a sum of two Poisson processes: X = B + E, with the count
of background signal B ∼ Poisson(b) being independent of the count of the event signal E ∼
Poisson(μ), where b > 0 is known and μ ≥ 0. Then, X ∼ Poisson(θ) ≡ Pθ , where θ ≥ b. Let
X1, . . . ,Xn be an independent and identical distributed random sample of X. The interest is in
testing the null hypothesis H0 : θ = θ0 under the restriction θ ≥ b. The mid-p value is

p(θ0; x̄) = Pθ0

(|X̄ − θ0| > x0
) + 1

2
Pθ0

(|X̄ − θ0| = x0
)
,
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Figure 4. The p value p(θ0;9) in gray and the data compatibility c(θ0;9|[10,∞[) in black as functions of
θ0, the parameter value.

for θ0 ≥ b, where x0 = |x̄ − θ0| and X̄ = 1
n

∑n
i=1 Xi is the sample mean. Under H0, nX̄ ∼

Poisson(nθ0), then the mid-p value is easily calculated by

p(θ0; x̄) = 1 − Pθ0(nθ0 − nx0 ≤ nX̄ ≤ nθ0 + nx0) + 1

2
Pθ0

(
nX̄ ∈ {nθ0 + nx0, nθ0 − nx0}

)
.

By equation (1), c(θ0; x̄|[b,∞[) = p(θ0; x̄)/ supθ≥b p(θ; x̄) for all θ0 ≥ b. The relationship be-
tween the compatibility and the p value is seen in Figure 4 for n = 1, b = 10 and the observed
sample mean x̄ = 9. The approximate (1−α)(100%)-confidence interval and the α-compatibility
interval are computed from the equations (2) and (3).

Example 4. Consider a binomial random variable X ∼ Pθ = Bin(n, θ), where θ ∈]0,1[, with
observed value x. The mid-p value for testing H0 : θ = θ0 is

p(θ0;x) = Pθ0

(|X − nθ0| > x0
) + 1

2
Pθ0

(|X − nθ0| = x0
)
,

where x0 = |x − nθ0| which can be written as

p(θ0;x) = 1 − Pθ0(nθ0 − x0 ≤ X ≤ nθ0 + x0) + 1

2
Pθ0

(
X ∈ {nθ0 − x0,nθ0 + x0}

)
,

By equation (1), c(θ0;x|]0,1[) = p(θ0;x)/ supθ∈]0,1[ p(θ;x) for all θ0 ∈]0,1[. The relationship
between the compatibility and the p value is seen in Figure 5 for n = 1 and the observed value
x = 0. The approximate (1 − α)(100%)-confidence interval and the α-compatibility interval are
computed from the equations (2) and (3).
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Figure 5. The p value p(θ0;0) in gray and the data compatibility c(θ0;0|]0,1[) in black as functions of
θ0, the parameter value.

Example 5. Consider a negative binomial random variable X ∼ Pθ = NBin(n, θ), where
Pθ(X = x) = (

x+n−1
n−1

)
θn(1 − θ)x , with θ ∈]0,1[ and x ∈ {0,1,2, . . .}. The mid-p value for test-

ing H0 : θ = θ0 is

p(θ0;x) = Pθ0

(∣∣X − g(θ0)
∣∣ > x0

) + 1

2
Pθ0

(∣∣X − g(θ0)
∣∣ = x0

)
,

where x0 = |x − g(θ0)| and g(θ0) = nθ−1
0 (1 − θ0) is the expectation of X, under H0. Under H0,

X ∼ NBin(n, θ0), then the mid-p value can be computed by

p(θ0;x) = 1 − Pθ0

(
g(θ0) − x0 ≤ X ≤ g(θ0) + x0

) + 1

2
Pθ0

(
X ∈ {

g(θ0) − x0,g(θ0) + x0
})

.

By equation (1), c(θ0;x|]0,1[) = p(θ0;x)/ supθ∈]0,1[ p(θ;x) for all θ0 ∈]0,1[. The relationship
between the compatibility and the p value is seen in Figure 6 for n = 1 and the observed value
x = 1. The approximate (1 − α)(100%)-confidence interval and the α-compatibility interval are
computed from the equations (2) and (3).

Although Examples 3, 4 and 5 all employ the mid-p value method to compute the c value, they
illustrate that the c values are affected qualitatively by the model specification. In the Poisson
case, when n = 1 and x̄ = 9, the c value has many points of discontinuity (Figure 4). In the
binomial scenario, when n = 1 and x = 0, there is only one point of discontinuity, which is at
θ = 0.5 (Figure 5); in the negative binomial case, when n = 1 and x = 1, there is one point of
discontinuity greater than 0.5 and many smaller than 0.5 (Figure 6).
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Figure 6. The p value p(θ0;1) in gray and the data compatibility c(θ0;1|]0,1[) in black as functions of
θ0, the parameter value.

Example 6. Let X = (X1, . . . ,Xn) be a random sample from a normal distribution with un-
known mean μ and unknown variance σ 2 > 0. We consider the two cases discussed in Example 2
with no restriction on the parameter space, namely, (a) μ and σ 2 are parameters of interest, that is,
θ = (μ,σ 2) and (b) μ is the parameter of interest and σ 2 is the nuisance parameter, that is, θ = μ

and γ = σ 2. For case (a), the p value for testing simple hypothesis H00 : (μ,σ 2) = (μ0, σ
2
0 ) is

given by

p1
((

μ0, σ
2
0

);x) = 2

(
�

(√
n

x̄ − μ0

σ0

)
∧

(
1 − �

(√
n
x̄ − μ0

σ0

)))
.

According to equation (1), the c value under no restriction is precisely the above p value, namely,
c1((μ0, σ

2
0 );x) = p1((μ0, σ

2
0 );x). The hypothesis H00′ : θ ∈ H00′(μ0), where H00′(μ0) =

{(μ0, σ
2) : σ 2 > 0}, is the hypothesis that μ = μ0. The associated C value is

C1
(
H00′(μ0);x

) = sup
σ 2

0 >0

c1
((

μ0, σ
2
0

);x)

= lim
σ 2

0 →∞
p1

((
μ0, σ

2
0

);x)

= 2

(
1

2
∧

(
1 − 1

2

))
= 1

for all −∞ < μ0 < ∞. That is, based on C1, it is not possible to reject the hypothesis that
θ0 ∈ H00′(μ0) for any fixed significance value α ∈]0,1[. Despite this fact, C1 is still useful to
test hypotheses that actually concern both μ and σ 2, for instance H00′′ : μ ≥ 0, σ 2 ≤ 1.
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Figure 7. The C values C1(H00′ (μ0);x) in black and C2(H01′ (μ0);x) in gray as functions of μ0 when
n = 2, x1 = 1 and x2 = 2.

For case (b), the p value for testing simple hypothesis H01 : μ = μ0 is given by

p2(μ0;x) = 2

(
FTn−1

(√
n
x̄ − μ0

sx

)
∧

(
1 − FTn−1

(√
n
x̄ − μ0

sx

)))
,

where FTk
is the cumulative distribution of a Student-t random variable with k degrees-of-

freedom. According to equation (1), the c value under no restriction is c2(μ0;x) = p2(μ0;x).
The hypothesis H01′ : θ ∈ H01′(μ0), where H01′(μ0) = {μ0}, is the hypothesis that μ = μ0. The
associated C value is

C2
(
H01′(μ0);x

) = c2(μ0;x) = p2(μ0;x).

Figure 7 shows the curves C1(H00′(μ0);x) in black and C2(H01′(μ0);x) in gray as functions
of μ0, for n = 2, x1 = 1 and x2 = 2.

4. Axioms of data-hypothesis compatibility

4.1. Preliminary notation

For convenience, we review some notation introduced in Section 2.The unknown values θ and
γ of the parameter of interest and of the nuisance parameter are members of the sets � and �,
respectively. The observed tuple x is a member of some set X of possible observations.

A function p(•; •) : � ×X → [0,1] is a p-value function if

lim
n→∞Pθ0,γ

(
p(θ0;X) < α

) = α (4)
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for all θ0 ∈ �, γ ∈ �, and 0 ≤ α ≤ 1. Each p(θ0;x) is the p value for testing the hypothesis
that θ = θ0 given the observation that X = x. While usual p-value functions are isomorphic to
confidence distributions (Bickel and Padilla [6]; cf. Schweder and Hjort [41], Xie and Singh
[51], Nadarajah, Bityukov and Krasnikov [33]), the concept of the observed confidence level
(Polansky [36]), a belief-type probability according to a confidence distribution, plays no role in
the current paper, in which probability is always of the frequency type (see Hacking [22]).

4.2. Degrees of data-hypothesis compatibility

4.2.1. Axioms of compatibility

The next definition applies the α-compatible concept to composite hypotheses as well as simple
hypotheses. Just as a p value can be defined in terms of whether the null hypothesis is rejected at
a fixed significance level α, the degree of compatibility with data is defined in terms of whether
the null hypothesis is α-compatible with the data at a fixed value of α.

Definition 2. The functions C(•; •|•) : 2� ×X × 2� \ {∅} → [0,1] and C(•; •) = C(•; •|�) :
2� × X → [0,1] are compatibility set functions, and C(H0;x|R) is the compatibility of the
hypothesis that θ ∈ H0 with the observation that X = x conditional on the restriction that θ ∈ R
if these conditions hold for all x ∈X , H0 ∈ 2�, and R ∈ 2� \ {∅}:

• Axiom of minimal compatibility. If H0 ∩R =∅, then C(H0;x|R) = 0.
• Axiom of maximal compatibility. C(�;x|�) = 1.
• Axiom of conditional compatibility. If H0 ∩R �=∅, then

C(H0;x|R) = C(H0 ∩R;x)

C(R;x)
. (5)

• Axiom of compatible hypotheses. With “H0
α|R∼ x” denoting the hypothesis that “θ ∈ H0 is

α-compatible with the observation that X = x, conditional on the restriction that θ ∈R,”

C(H0;x|R) = sup
{
α ∈]0,1] : H0

α|R∼ x
}
. (6)

• Axiom of evidential compatibility. For any θ0, θ1 ∈R,

C({θ0};x|R)

C({θ1};x|R)
= p(θ0;x)

p(θ1;x)
. (7)

The functions c(•; •|•) : � × X × 2� \ {∅} → [0,1] and c(•; •) = c(•; •|�) : � × X → [0,1]
are compatibility point functions if c(θ0;x|R) = C({θ0};x|R) for all θ0 ∈ �, x ∈ X , and R ∈
2� \ {∅}.

The compatibility C(H0;x|R) is the degree to which the hypothesis that θ ∈H0 is compatible
with x under the restriction that θ ∈ R. This definition gives Definition 1 an axiomatic foundation
by connecting the compatibility functions to the p-value function.
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4.2.2. Explanations of the axioms

Each axiom has its own motivation. The first two are simply what Jeffreys [23] calls conventions
since the 0 and 1 could be replaced by any positive numbers as long as the second exceeds
the first. The rationale for the axiom of conditional compatibility will become clear in light of
possibility theory (Section 7).

The basis of the axiom of compatible hypotheses on Definition 1 specifies what is meant by
data-hypothesis compatibility. It makes compatibility similar to a p value in that it is designed
to reject hypotheses of sufficiently low values. Equation (6) says the degree of compatibility of a
hypothesis with data, conditional on the parameter restriction, is the highest level of α such that
the hypothesis remains α-compatible with the data, conditional on the restriction.

The axiom of evidential compatibility might be justified by p-value functions of the form

R � θ ′ �→ p
(
θ ′;x) = Pθ ′,γ

(
τ(X) ≥ τ(x)

)
, (8)

where τ is a function transforming a sample to a real statistic that does not depend on θ ′ or γ such
that the distribution of τ(X) does not depend on γ . This occurs most commonly in practice when
there is no nuisance parameter γ and when τ(X) is a point estimator of θ , implying that τ(x) is
the observed point estimate. Because p(•;x) is a function on � =R according to equation (8), it
can be used to compare the hypothesis that θ = θ0 to the hypothesis that θ = θ1 for any θ0, θ1 ∈ R.
Comparing the two point hypotheses suggests a likelihood-ratio approach to measuring evidence
(Royall [39]). The relevant likelihood ratio involves fθ0 , the probability mass function on {0,1}
that satisfies fθ0(0) = Pθ0,γ (τ (X) < τ(x)) and fθ0(1) = Pθ0,γ (τ (X) ≥ τ(x)). Thus,

p(θ0;x) = Pθ0,γ

(
1[τ(x),∞[

(
τ(X)

) = 1
) = fθ0(1),

and the analogous probability mass function fθ1 satisfies p(θ1;x) = fθ1(1). As a likelihood ratio
based on reduced data, fθ0(1)/fθ1(1) is the strength of the statistical evidence in the observation
that 1[τ(x),∞[(τ (X)) = 1 in favor the hypothesis that θ = θ0 as opposed to the hypothesis that
θ = θ1 (Royall [39]). Requiring the data-compatibility of a hypothesis to be proportional to its
strength of the statistical evidence results in

C({θ0};x|R)

C({θ1};x|R)
= fθ0(1)

fθ1(1)
, (9)

which, with p(θ0;x) = fθ0(1) and p(θ1;x) = fθ1(1), yields equation (7). Equating fθ0(1)/fθ1(1)

with the strength of statistical evidence is in turn justified by noting that fθ0(1)/fθ1(1) is the
Bayes factor in

Prob(θ = θ0|1[τ(x),∞[(τ (X)) = 1, θ ∈ {θ0, θ1})
Prob(θ = θ1|1[τ(x),∞[(τ (X)) = 1, θ ∈ {θ0, θ1}) =

(
fθ0(1)

fθ1(1)

)(
Prob(θ = θ0|θ ∈ {θ0, θ1})
Prob(θ = θ1|θ ∈ {θ0, θ1})

)
,

the equation relating the posterior odds to the prior odds. This follows the general principle that
a measure of support for a hypothesis should agree with Bayes’s theorem when a suitable prior is
available even though the measure is also applicable without a prior (Edwards [14], Bickel [4,5]).
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This rationale is not entirely convincing, for its equation (9) could only be derived in the
special case of equation (8). Further, why should the likelihood ratio be based on the reduction
of X to 1[τ(x),∞[(τ (X)) rather than on X directly, as is more usual when measuring the strength
of evidence (Royall [39])? That such a data reduction is needed to consider a ratio of p values as
a likelihood ratio may shed light on the cryptic comment that the p value is “not very defensible
save as an approximation” (Fisher [16], p. 71; cf. pp. 74–75).

In view of those shortcomings, the axiom of evidential compatibility may be relaxed by re-
placing equation (7) with the requirement that C({θ0};x|R) be a function of p(θ0;x) that is
continuous and strictly increasing but not necessarily linear. This defines a class of alternative
measures of data-hypothesis compatibility. In our opinion, the main appeal of the axiom of evi-
dential compatibility is its practical value in uniquely identifying a simple default. Nonetheless,
the justification based on equation (8) may have some theoretical value in making a connection
to likelihood methods of measuring the strength of evidence.

5. Properties of data-hypothesis compatibility

5.1. Relations between concepts

This lemma connects the concepts of a compatible hypothesis and a compatibility set.

Lemma 1. For any H0 ∈ 2�, R ∈ 2� \ {∅}, x ∈ X , and α ∈]0,1], the hypothesis that θ ∈ H0
is α-compatible with the observation that X = x, conditional on the restriction that θ ∈ R, if
and only if H0 ∩H(α;x|R) �= ∅, where H(α;x|R) is the α-compatibility set given X = x and
θ ∈ R.

Proof. By definition, the hypothesis is α-compatible if and only if ∅ �= {θ0 ∈ H0 : c(θ0;x|R) ≥
α} =H0 ∩ {θ0 ∈ � : c(θ0;x|R) ≥ α}. �

The compatibility of a hypothesis is now seen to be proportional to the p value.

Lemma 2. For any θ0 ∈ � and x ∈ X , the marginal compatibility of the hypothesis that θ = θ0
with the observation that X = x is

c(θ0;x) = κp(θ0;x) (10)

for some κ ∈]0,1].

Proof. The axiom of evidential compatibility (7) and c(θ0;x|R) = C({θ0};x|R) give equation
(10). �

5.2. Deriving data-hypothesis compatibility

The compatibility is easily derived from the p-value function using the simple equations of the
next two results.
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Theorem 1. The compatibility of the hypothesis that θ ∈ H0 with the observation that X = x

conditional on the restriction that θ ∈R is

C(H0;x|R) =

⎧⎪⎨
⎪⎩

0 if H0 ∩R=∅,

supθ0∈H0∩R p(θ0;x)

supθ1∈R p(θ1;x)
if H0 ∩R �=∅

for all x ∈X , H0 ∈ 2�, and R ∈ 2� \ {∅}.

Proof. In the case, that H0 ∩R=∅, the axiom of minimal compatibility gives C(H0;x|R) = 0.
In the H0 ∩R �=∅ case, Definition 1 and equation (6) yield

C(H0;x|R) = sup
{
α ∈]0,1] : θ0 ∈H0, c(θ0;x|R) ≥ α

} = sup
θ0∈H0

c(θ0;x|R). (11)

Thus, the axiom of conditional compatibility (5) gives

C(H0;x|R) = sup
θ0∈H0∩R

c(θ0;x)/C(R;x) = supθ0∈H0∩R c(θ0;x)

supθ1∈R c(θ1;x)
. (12)

Since C(R;x) = C(R;x|�), equation (12) entails that C(R;x) = supθ1∈R c(θ1;x)/C(�;x).
By the axiom of maximal compatibility, C(R;x) = supθ1∈R c(θ1;x). Thus, with Lemma 2, equa-
tion (12) reduces to C(H0;x|R) = supθ0∈H0∩R p(θ0;x)/ supθ1∈R p(θ1;x). �

Corollary 1. For any θ0 ∈ �, x ∈X , and R ∈ 2� \ {∅}, the compatibility of the hypothesis that
θ = θ0 with the observation that X = x conditional on the restriction that θ ∈ R is given by
equation (1).

Proof. By Definition 2, c(θ0;x|R) = C({θ0};x|R) for all θ0 ∈ �. The desired result follows
from Theorem 1. �

In the usual setting of testing the simple hypothesis that θ = θ0, the parameter is relatively
unrestricted, and the compatibility is the p value. That is formally stated as the following direct
result of Theorem 1 and Corollary 1.

Corollary 2. For any x ∈ X , θ0 ∈ R, and R ∈ 2� \ {∅} such that supθ1∈R p(θ1;x) = 1, the
compatibility of the hypothesis that θ = θ0 with the observation that X = x, conditional on the
restriction that θ ∈R, is c(θ0;x|R) = p(θ0;x). Under the same conditions, the compatibility of
the hypothesis that θ ∈ H0 with the observation that X = x conditional on the restriction that
θ ∈R is

C(H0;x|R) = sup
θ0∈H0

p(θ0;x) (13)

for all x ∈X and H0 ∈ 2� such that H0 ⊆R.
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Corollary 2 justifies the practice of maximizing a p value over all the parameter values of
a composite null hypothesis (e.g., Wendell and Schmee [50], Silvapulle and Sen [43], p. 33,
Patriota [34]).

The next corollary highlights ways conditional compatibility is similar to and different from
conditional probability.

Corollary 3. Given some x ∈ X , H0 ∈ 2�, and R ∈ 2� \ {∅}, the compatibility C(H0;x|R) of
the hypothesis that θ ∈ H0 with the observation that X = x conditional on the restriction that
θ ∈ R satisfies C(H0;x|R) = 1 if and only if H0 ∩R �=∅ and

sup
θ1∈R

p(θ1;x) = sup
θ0∈H0∩R

p(θ0;x). (14)

Proof. In the H0 ∩ R = ∅ case, Theorem 1 gives C(H0;x|R) = 0 �= 1. On the other hand, in
the case that H0 ∩ R �= ∅, Theorem 1 implies that equation (14) holds if and only if C(H0;
x|R) = 1. �

5.3. Conservative error rate control and coverage

The following theorem demonstrates that compatibility controls the Type I error rate and that
α-compatibility sets are (1 − α)(100%)-confidence sets that are valid in that their coverage rates
are conservative if not exact.

Theorem 2. For every x ∈ X , R ∈ 2� \ {∅}, and θ0 ∈ R, let p(θ0;x) denote the p value test-
ing θ = θ0 as the null hypothesis, and let c(θ0;x|R) denote the compatibility of the hypothe-
sis that θ = θ0 with the observation that X = x conditional on the restriction that θ ∈ R, let
CS(α;x|R) denote the exact confidence set given by equation (2), and let H(α;x|R) denote the
α-compatibility set given X = x and θ ∈ R for any α ∈]0,1]. For any γ ∈ �, it follows that
c(θ0;x|R) ≥ p(θ0;x), CS(α;x|R) ⊆H(α;x|R), and

H(α;x|R) = CS
(
α sup

θ1∈R
p(θ1;x);x|R

)
, (15)

lim
n→∞Pθ0,γ

(
c(θ0;X|R) < α

) ≤ α, (16)

lim
n→∞Pθ0,γ

(
θ0 ∈H(α;X|R)

) ≥ 1 − α, (17)

with the formulas (16) and (17) holding with exact equality if supθ1∈R p(θ1;x) = 1.

Proof. Since θ0 ∈ R, Corollary 1 entails that c(θ0;x|R) ≥ p(θ0;x) for all x ∈ X , from which
Pθ0,γ (c(θ0;X|R) ≥ p(θ0;X)) = 1 follows, providing

Pθ0,γ

(
c(θ0;X|R) < α

) ≤ Pθ0,γ

(
p(θ0;X) < α

) = α + o(1), (18)
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where o(1) converges to zero as n → ∞, and equation (4) yields formula (16). Applying inequal-
ity (18) to equation (3),

CS(α;x|R) = {
θ0 ∈ � : p(θ0;x) ≥ α

} ⊆H(α;x|R) (19)

for every x ∈X . Hence, by equation (4),

lim
n→∞Pθ0,γ

(
p(θ0;X) ≥ α

) = 1 − α ≤ lim
n→∞Pθ0,γ

(
θ0 ∈ H(α;X|R)

)
,

proving formula (17). Corollary 1 and equation (19) imply that CS(α supθ1∈R p(θ1;x);x|R) =
{θ0 ∈ � : c(θ0;x|R) ≥ α} and thus that equation (15) holds. Finally, if supθ1∈R p(θ1;x) = 1 for
all x ∈ X , then Lemma 1 requires that c(θ0;x) = p(θ0;x) for all θ0 ∈ R and that CS(α;x|R) =
H(α;x|R). In that case, limn→∞ Pθ0,γ (c(θ0;X|R) < α) = α and

lim
n→∞Pθ0,γ

(
θ0 ∈ H(α;X|R)

) = 1 − α

follow from equation (4). �

6. Hypothesis acceptance, rejection, or neither

6.1. Warrant for accepting a hypothesis

While the compatibility of a hypothesis with data does not warrant accepting the hypothesis, a
lack of compatibility justifies rejecting it and accepting its negation under the statistical model.
That idea leads to the following measure of the degree of warrant for accepting a hypothesis.

Definition 3. A function W(•; •|•) : 2�×X ×2�\{∅} → [0,1], called the warrant set function,
is defined as follows. For all x ∈ X , H0 ∈ 2�, and R ∈ 2� \ {∅},

W(H0;x|R) = 1 − C(R \H0;x|R)

is the warrant of the hypothesis that θ ∈H0 given the observation that X = x conditional on the
restriction that θ ∈ R, where C(R \ H0;x|R) is the compatibility of the hypothesis that θ ∈ R
but θ /∈ H0 with the observation that X = x conditional on the restriction that θ ∈ R.

From equation (5),

W(H0;x|R) = 1 − C(R \H0;x|R) = 1 − C((R \H0) ∩R;x)

C(R;x)
= 1 − C(R \H0;x)

C(R;x)
. (20)

For example, if R= �, then W(H0;x|�) = 1 − C(H′
0;x), where H′

0 is the complement of H0,
that is, H′

0 = � \ H0. However, it does not follow that W(H0;x|�) = C(H0;x), as it would if
C(•;x) were a probability measure. That is because C(•;x) is a possibility measure (Section 7),
a special case of an upper probability function, which is not an additive measure.
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The warrant for a hypothesis corresponding to a set estimate H(α;x|R) is important as a
lower bound on the coverage rate of the set estimator H(α;X|R), as formally stated in the next
theorem.

Theorem 3. Let x ∈ X , R ∈ 2� \ {∅}, and θ0 ∈ R, and let W denote a warrant function cor-
responding to H(α;x|R), the α-compatibility set given X = x for every α ∈]0,1]. Assume
c(θ0;x|R) is continuous as a function of θ0. For any α ∈]0,1] and γ ∈ �,

lim
n→∞Pθ0,γ

(
θ0 ∈H(α;X|R)

) ≥ W
(
H(α;x|R);x|R)

, (21)

which holds with exact equality if supθ1∈R p(θ1;x) = 1, where p(θ0;x) is the p value testing
θ = θ0 as the null hypothesis for all θ0 ∈R.

Proof. According to the definitions of warrant and the α-compatibility set,

W
(
H(α;x|R);x|R) = 1 − C

(
R \H(α;x|R);x|R)

= 1 − C
({

θ0 ∈R : c(θ0;x|R) < α
};x|R)

.

Thus, since that C is the relevant compatibility set function,

W
(
H(α;x|R);x|R) = 1 − sup

{
c(θ0;x|R) < α : θ0 ∈ R

} = 1 − α (22)

by the continuity assumption. Formula (21) then results from Theorem 2. The same theorem
says supθ1∈R p(θ1;x) = 1 implies that limn→∞ Pθ0,γ (θ0 ∈ H(α;X|R)) = 1 − α, leading to
limn→∞ Pθ0,γ (θ0 ∈H(α;X|R)) = W(H(α;x|R);x|R) via equation (22). �

Equation (22) interprets the nominal confidence level 1 − α as the degree of warrant for the
hypothesis that the observed confidence set H(α;x|R) contains the target value of the parameter.

6.2. Acceptability of a hypothesis

The information in the data-compatibility and warrant of a hypothesis will be combined into a
single measure of acceptability in this section. Hypotheses of sufficiently high acceptability are
accepted, those with sufficiently negative acceptability are rejected, and the remaining hypothe-
ses are neither accepted nor rejected. What circumstances require an agent to believe a rejected
hypothesis to be false or to believe an accepted hypothesis to be true is a complex question
(Cohen [8]) that cannot be entertained here.

For any x ∈X , H0 ∈ 2�, and R ∈ 2� \ {∅}, recall that C(H0;x|R) denotes the compatibility
of the hypothesis that θ ∈ H0 with the observation that X = x conditional on the restriction that
θ ∈ R.

Definition 4. The acceptability of the hypothesis that θ ∈ H0 given the observation that X = x

and the restriction that θ ∈ R is the extended real number A(H0;x|R) ∈ {−∞,∞} ∪ R such
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that, for all α ∈]0,1],
(
θ1 ∈ H(α;x|R) =⇒ θ1 ∈ H0

) ⇐⇒ A(H0;x|R) > log
1

α
, (23)

(
θ2 ∈ H(α;x|R) =⇒ θ2 ∈ H′

0

) ⇐⇒ A(H0;x|R) < − log
1

α
, (24)

∃θ1, θ2 ∈H(α;x|R); θ1 ∈ H0; θ2 ∈ H′
0 ⇐⇒ ∣∣A(H0;x|R)

∣∣ ≤ log
1

α
, (25)

where H(α;x|R) is the α-compatibility set given X = x and θ ∈R. Here, the base of log might
be 2 for best interpretability but can be any number greater than 1. At level α, the hypothesis that
θ ∈ H0, given the observation that X = x and the restriction that θ ∈ R, is accepted if and only
if A(H0;x|R) > log 1

α
and is rejected if and only if A(H0;x|R) < − log 1

α
. In the absence of a

restriction (R = �), the acceptability A(H0;x|�) is abbreviated as A(H0;x).

In that way, the acceptability of a general hypothesis over its alternative hypothesis is defined
in terms of which values of the parameter of interest are compatible with the observed data and
with the given restrictions according to Section 2.2. Formula (23) says a hypothesis is accepted
at level α if it is consistent with all of the α-compatible parameter values. Likewise, formula
(24) says a hypothesis is rejected at level α if it is not consistent with any of the α-compatible
parameter values. Finally, formula (25) means there is insufficient evidence to accept or reject
the hypothesis at level α if it is consistent with some but not all of the α-compatible parameter
values.

The last case means there is no arbitrary requirement that every hypothesis be either rejected or
accepted. At the same time, the rejection of a null hypothesis for lack of compatibility with other
information necessarily implies acceptance of an alternative hypothesis, as this lemma makes
clear.

Lemma 3. These propositions are equivalent for any H0 ∈ 2�, R ∈ 2� \ {∅}, x ∈ X , and α ∈
]0,1]:

1. A(H0;x|R) < − log 1
α

.
2. The hypothesis that θ ∈ H0, given the observation that X = x and the restriction that θ ∈

R, is rejected at level α.
3. The same hypothesis is not α-compatible with the observation that X = x, conditional on

the restriction that θ ∈ R.
4. A(H′

0;x|R) > log 1
α

.
5. The hypothesis that θ ∈ H′

0, given the observation that X = x and the restriction that θ ∈
R, is accepted at level α.

Proof. Propositions 1 and 2 are equivalent by Definition 4: the hypothesis that θ ∈ H0 is rejected
if and only if A(H0;x|R) < − log 1

α
. Similarly, Propositions 4 and 5 are equivalent. According

to formula (24), Proposition 1 is equivalent to

θ2 ∈H(α;x|R) =⇒ θ2 ∈ H′
0, (26)
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which, by formula (23), holds if and only if A(H′
0;x|R) > log 1

α
, the definition of accepting

the hypothesis that θ ∈ H′
0. That establishes the equivalence of Propositions 1 and 4. Lemma 1

entails that Proposition 3 is equivalent to H0 ∩H(α;x|R) = ∅, and that equivalence makes the
same assertion as formula (26). Therefore, Propositions 2 and 3 are equivalent. �

Thus, whereas the fact that a hypothesis is data-compatible is merely necessary for its ac-
ceptance, the fact that its denial is incompatible is sufficient. Calculating the acceptability is
facilitated by the next theorem.

Theorem 4. For any x ∈ X , H0 ∈ 2�, and R ∈ 2� \ {∅}, the acceptability of the hypothesis that
θ ∈ H0, given the observation that X = x and the restriction that θ ∈R, is

A(H0;x|R) = log
C(H0;x|R)

C(H′
0;x|R)

; (27)

A(H0;x|R) = −∞ if H0 ∩R=∅, A(H0;x|R) = ∞ if H′
0 ∩R =∅, or

A(H0;x|R) = log
supθ0∈H0∩R p(θ0;x)

supθ0∈H′
0∩R p(θ0;x)

(28)

if H0 ∩R �=∅ and H′
0 ∩R �=∅.

Proof. For any H0 ∈ 2�, let

Ã(H0) = log
C(H0;x|R)

C(H′
0;x|R)

, (29)

and let A(H0;x|R) denote the acceptability of the hypothesis that θ ∈H0, given the observation
that X = x and the restriction that θ ∈ R. Assume, contrary to the claim, that A(H0;x|R) �=
Ã(H0). In the case that relation (14) holds, Ã(H0) = log 1

C(H′
0;x|R)

by Corollary 3. From equa-

tion (6) and Lemma 3,

Ã(H0) = log
(
1/ sup

{
α ∈]0,1] : H′

0
α|R∼ x

})
= log

(
1/ sup

(]0,1] \ {
α ∈]0,1] : ¬H′

0
α|R∼ x

}))
= log

(
1/ sup

{
α ∈]0,1] : A(

H′
0;x|R) ≥ − log

1

α

})

= inf

{
log

1

α
≥ 0 : log

1

α
≥ −A

(
H′

0;x|R)}

= −A
(
H′

0;x|R)
= A(H0;x|R),
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the last equality following from the equivalence of Propositions 1 and 4 of Lemma 3. In the case
that relation (14) does not hold, supθ1∈R p(θ1;x) > supθ0∈H0∩R p(θ0;x), yielding

sup
θ1∈R

p(θ1;x) = sup
θ0∈H′

0∩R
p(θ0;x).

Thus, Corollary 3 now gives C(H′
0;x|R) = 1 and Ã(H0) = logC(H0;x|R) by implication.

From equation (6) and Lemma 3,

Ã(H0) = log
(
sup

{
α ∈]0,1] :H0

α|R∼ x
})

= log

(
sup

{
α ∈]0,1] : A(H0;x|R) ≥ − log

1

α

})
= sup

{
logα ≤ 0 : A(H0;x|R) ≥ logα

}
= sup

{
logα ≤ 0 : logα ≤ A(H0;x|R)

}
= A(H0;x|R).

Therefore, Ã(H0) = A(H0;x|R) in both possible cases, contradicting the assumption and estab-
lishing equation (27). The rest of the claims follow from Theorem 1. �

Breaking that into the three major cases sheds light on the interpretation of acceptability.

Corollary 4. For any x ∈X , H0 ∈ 2�, and R ∈ 2� \ {∅} such that H0 ∩R �=∅ and H′
0 ∩R �=

∅, the acceptability of the hypothesis that θ ∈ H0, given the observation that X = x and the
restriction that θ ∈ R, is

A(H0;x|R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− log sup
θ0∈H′

0∩R
c(θ0;x|R)

if H0 ∩ Ĥ(x|R) �=∅,H′
0 ∩ Ĥ(x|R) =∅,

log sup
θ0∈H0∩R

c(θ0;x|R)

if H0 ∩ Ĥ(x|R) =∅,H′
0 ∩ Ĥ(x|R) �=∅,

0

if H0 ∩ Ĥ(x|R) �=∅,H′
0 ∩ Ĥ(x|R) �=∅;

Ĥ(x|R) = {
θ1 ∈ R : ∀θ0 ∈R,p(θ0;x) ≤ p(θ1;x)

}
.

(30)

Proof. Corollary 1 implies that Ĥ(x|R) = {θ0 ∈R : c(θ0;x|R) = 1}. Thus, by equation (28),

A(H0;x|R) = log
supθ0∈H0∩R c(θ0;x|R)

supθ0∈H′
0∩R c(θ0;x|R)

=

⎧⎪⎪⎨
⎪⎪⎩

log
(

1/ sup
θ0∈H′

0∩R
c(θ0;x|R)

)
if H0 ∩ Ĥ(x|R) �=∅,

log
(

sup
θ0∈H0∩R

c(θ0;x|R)/1
)

if H′
0 ∩ Ĥ(x|R) �=∅.
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If both H0 ∩ Ĥ(x|R) �= ∅ and H′
0 ∩ Ĥ(x|R) �= ∅, then − log supθ0∈H′

0∩R c(θ0;x|R) =
log supθ0∈H0∩R c(θ0;x|R), which is only possible if supθ0∈H′

0∩R c(θ0;x|R) = supθ0∈H0∩R c(θ0;
x|R) = 1. �

Remark 1. As A({θ0};x|R) = logp(θ0;x) − log supθ1∈R p(θ1;x), the hypothesis that θ = θ0
cannot be accepted when supθ1∈R p(θ1;x) = 1, since, under this condition, A({θ0};x|R) =
logp(θ0;x) ≤ 0. Thus, in the typical case of testing a simple hypothesis (Corollary 2), its ac-
ceptability cannot be positive. That agrees with the idea commonly held by frequentists that
evidence might be against a simple hypothesis but can never support it.

As stated in Section 1, every deductively cogent statistical procedure is both restriction-
respecting and coherent. Those properties will be proven of the acceptability method (Defini-
tion 4) in the next two subsections.

6.3. Acceptability is restriction-respecting

Recall that a restriction-respecting statistical method does not permit the rejection of all hypothe-
ses that are consistent with the restriction but requires the rejection of all hypotheses that are in-
consistent with the restriction (Section 1). Conditional acceptability is now seen to be restriction-
respecting.

Theorem 5. For any α ∈]0,1], conditional on the restriction that θ ∈R for some R ∈ 2� \ {∅},
the procedure in Definition 4 rejects the hypothesis that θ ∈H0 for every H0 ∈ 2� such that H0 ∩
R =∅ and does not reject every hypothesis that θ ∈ H1 for all H1 ∈ 2� such that H1 ∩R �=∅.

Proof. Theorem 4 says A(H0;x|R) = −∞ for every H0 ∈ 2� such that H0 ∩ R = ∅. Thus,
A(H0;x|R) < − log 1

α
, which means θ ∈ H0 is rejected, for all α ∈]0,1]. To prove the other

claim, it sufficient to show that for at least one H1 ∈ 2� such that H1 ∩R �= ∅ that θ ∈ H1 can-
not be rejected. Let Ĥ(x|R) be defined according to equation (30), and denote its complement
by Ĥ′(x|R) = � \ Ĥ(x|R). If Ĥ(x|R) = R, then Ĥ′(x|R) ∩ R = ∅ and, according to Theo-
rem 4, A(Ĥ(x|R);x|R) = ∞. On the other hand, if Ĥ(x|R) �= R, then Ĥ′(x|R) ∩R �= ∅, and
Theorem 4, with equation (30), yields

A
(
Ĥ(x|R);x|R) = log

supθ0∈Ĥ(x|R) p(θ0;x)

supθ0∈Ĥ′(x|R)∩R p(θ0;x)
≥ 0

since for each θ0 ∈ Ĥ(x|R) and θ1 ∈ Ĥ′(x|R)∩R, p(θ0;x) ≥ p(θ1;x). Thus, since A(Ĥ(x|R);
x|R) ≥ 0 in both cases, there is no α ∈]0,1] such that A(Ĥ(x|R);x|R) < − log 1

α
, which means

θ ∈ Ĥ(x|R) cannot be rejected. �

6.4. Acceptability is coherent

In the context of multiple comparisons, Gabriel [19] called a statistical procedure “coherent” if,
for every hypothesis that it rejects, it also rejects all of the hypotheses that imply the truth of
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the rejected hypothesis (Section 1). Thus, for every H0 ∈ 2�, any rejection-coherent procedure
rejects the hypothesis that θ ∈ H1 for every H1 ∈ 2� such that H1 ⊆ H0 if it rejects the hypoth-
esis that θ ∈ H0. Likewise, for every H1 ∈ 2�, any acceptance-coherent procedure accepts the
hypothesis that θ ∈ H0 for every H0 ∈ 2� such that H1 ⊆ H0 if it accepts the hypothesis that
θ ∈H1.

The concepts are applied to compatibility and acceptability in the next two results.

Lemma 4. Conditional on the restriction that θ ∈ R for some R ∈ 2� \ {∅}, the compatibility
of the hypothesis that θ ∈H1 with the observation that X = x is at most the compatibility of any
hypothesis that it implies with the same observation, that is,

C(H1;x|R) ≤ C(H0;x|R)

for every H0,H1 ∈ 2� such that H1 ⊆H0.

Proof. According to Theorem 1, either C(H1;x|R) = 0, in which case C(H1;x|R) ≤
C(H0;x|R), or C(H1;x|R) > 0, in which case H1 ∩ R �= ∅. Thus, since H1 ⊆ H0, it follows
from H1 ∩R �=∅ that H0 ∩R �=∅ and, by Theorem 1, that

C(H0;x|R)

C(H1;x|R)
= supθ0∈H0∩R p(θ0;x)

supθ0∈H1∩R p(θ0;x)
.

That ratio satisfies C(H0;x|R)/C(H1;x|R) ≥ 1 given that H1 ∩R ⊆H0 ∩R. �

Theorem 6. Conditional on the restriction that θ ∈ R for some R ∈ 2� \ {∅}, the procedure
in Definition 4 is both rejection-coherent and acceptance-coherent for any α ∈]0,1], and the
acceptability of the hypothesis that θ ∈ H1 is at most the acceptability of any hypothesis that it
implies, that is,

A(H1;x|R) ≤ A(H0;x|R) (31)

for every H0,H1 ∈ 2� such that H1 ⊆H0.

Proof. The following statements hold for any α ∈]0,1]. According to Definition 4, the hypothe-
sis that θ ∈ H0, given the observation that X = x and the restriction that θ ∈R is rejected at level
α if and only if A(H0;x|R) < − log 1

α
. That requires that A(H0;x|R) < 0, which only obtains

when either H0 ∩R =∅, in which case A(H0;x|R) = −∞ by Theorem 4, or

A(H0;x|R) = log sup
θ0∈H0∩R

c(θ0;x|R) = − log
1

C(H0;x|R)
(32)

by Corollary 4 and Theorem 1. If, on the other hand A(H0;x|R) > 0, as required for acceptance
(A(H0;x|R) > log 1

α
) then either H′

0 ∩R=∅, in which case A(H0;x|R) = ∞ by Theorem 4,
or

A(H0;x|R) = − log sup
θ0∈H′

0∩R
c(θ0;x|R) = log

1

C(H′
0;x|R)

(33)



70 D.R. Bickel and A.G. Patriota

by Corollary 4 and Theorem 1. Whether equation (32) or equation (33) applies, equation (31)
follows from Lemma 4. Both rejection coherence and acceptance coherence are immediate con-
sequences of equation (31). �

7. Connections with possibility theory

In agreement with the classical idea of inference to the best explanation (Peirce [35], p. 234),
the acceptability A(H0;x|R) may be understood as the degree to which the data would evoke
surprise were the hypothesis that θ ∈ H0 is known to be false. While that should not be confused
with Shackle’s degree of potential surprise in the revealed truth of a hypothesis (Shackle [42]),
the concepts share many properties at the mathematical level.

Those relationships may be succinctly expressed in terms of possibility theory and ranking
theory, the successors of the the theory of potential surprise:

1. Possibility theory. A function Poss : 2� → [0,1] is a possibility measure on 2� if
Poss(∅) = 0, Poss(�) = 1, and Poss(

⋃
j∈J H0j ) = supj∈J Poss(H0j ) for any index

set J such that
⋃

j∈J H0j ∈ 2� and H0j ∈ 2� for all j ∈ J (Wang and Klir [49],
Section 4.6). Further, a function π : � → [0,1] such that Poss(H) = supθ∈� π(θ) is
called a possibility profile, and a function Nec : 2� → [0,1] is a necessity measure
on 2� if Nec(H) = 1 − Poss(H′) for all H ∈ 2� (Wang and Klir [49], Section 4.6).
Thus, C(H0;x|R) = supθ0∈H0∩R c(θ0;x|R) as a function of H0 is a possibility mea-
sure corresponding to the possibility profile c(•;x|R). Similarly, in view of Definition 3,
W(H0;x|R) as a function of H0 is a necessity measure.

2. Ranking theory. If Poss is a possibility measure, then − log Poss(H0) as a function of H0
is a negative ranking function (Spohn [44], Section 11.8). It follows that

Rank(H0) = log
Poss(H0)

Poss(H′
0)

as a function of H0 is a two-sided ranking function (Spohn [44], Section 5.2). Both
− logC(H0;x|R) and the potential surprise of H0 (Shackle [42]) as functions of H0 are
negative ranking functions. While − logC(H0;x|R) does not measure the potential sur-
prise of learning that θ ∈ H0, it might be seen as the level of surprise of observing that
X = x were it known that θ ∈ H0, in accordance with the comments on surprise in Sec-
tion 7. Since C(•;x|R) is a possibility measure and since

A(H0;x|R) = log
C(H0;x|R)

C(H′
0;x|R)

by equation (27), A(•;x|R) qualifies mathematically as a conditional two-sided ranking
function. However, the interpretation encoded in Definition 4 differs from that of Spohn
[44], who developed ranking theory to model degrees of belief.

The definition of conditional possibility used in the axiom of conditional compatibility (5) is
not the only notion of conditional possibility, but it has desirable properties when possibility
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has quantitative information beyond mere ordering (e.g., Dubois and Prade [13], De Baets, Tsi-
porkova and Mesiar [10], Lapointe and Bobée [25], Marchioni [30]). In that case, it is meaning-
ful to say that a hypothesis of possibility value 0.9 is in some sense nine times as possible as
a hypothesis of possibility value 0.1. By contrast, when possibility only indicates ordering, the
two possibility values compared to each other indicates nothing more than that the hypothesis
of possibility value 0.9 is more possible than the hypothesis of possibility value 0.1. Thus, the
axiom of conditional compatibility enables us to say a hypothesis that has a data-compatibility
value of 0.9 is nine times as compatible with the data observed as is a hypothesis that has a
data-compatibility value of 0.1. That enables the use of data-hypothesis compatibility thresholds
for hypothesis testing and interval estimation. That lack of quantitative information would ren-
der compatibility useless in hypothesis testing and set estimation. Equation (5) also ensures that
conditional compatibility is a conditional idempotent probability, a powerful tool in the theory
of large deviations (Puhalskii [37], Puhalskii [38]).

As precursors to this transformation of the compatibility function of a parameter into a possi-
bility measure, the p-value function of a parameter and the likelihood function had been trans-
formed into possibility measures. When supθ1∈� p(θ1;x) = 1, possibility theory provides useful
interpretations of p values and confidence levels. First, Corollary 2 interprets the p value as the
level of compatibility of the null hypothesis with the data or how possible the null hypothesis is
in light of the data. Second, Theorem 3 interprets the confidence level as the degree of warrant for
the hypothesis or how necessary its logical truth is given the data and the model. These interpre-
tations in terms of possibility and necessity measures are related to previous work. Under broad
conditions, the confidence-based methods of Mauris, Lasserre and Foulloy [32], Section 2.2,
Dubois et al. [11], Masson and Denœux [31], and Ghasemi Hamed, Serrurier and Durand [20]
likewise lead to interpreting p values as possibility values. Dubois, Moral and Prade [12] and
Giang and Shenoy [21] instead used the likelihood function in place of the p-value function
p(•;x) for the special case in which � is countable. Patriota [34] defines the s value, a large-
sample possibility measure that uses both likelihood and confidence concepts. For confidence
regions based on the likelihood ratio statistic, the proposed c value is equivalent to the s value
under no restrictions over the parameter space.
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