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Schools with the highest average student performance are often the smallest schools; localities with the
highest rates of some cancers are frequently small; and the effects observed in clinical trials are likely to
be largest for the smallest numbers of subjects. Informal explanations of this “small-schools phenomenon”
point to the fact that the sample means of smaller samples have higher variances. But this cannot be a
complete explanation: If we draw two samples from a diffuse distribution that is symmetric about some
point, then the chance that the smaller sample has larger mean is 50%. A particular consequence of results
proved below is that if one draws three or more samples of different sizes from the same normal distribution,
then the sample mean of the smallest sample is most likely to be highest, the sample mean of the second
smallest sample is second most likely to be highest, and so on; this is true even though for any pair of
samples, each one of the pair is equally likely to have the larger sample mean. The same effect explains why
heteroscedasticity can result in misleadingly small nominal p-values in nonparametric tests of association.

Our conclusions are relevant to certain stochastic choice models, including the following generalization
of Thurstone’s Law of Comparative Judgment. There are n items. Item i is preferred to item j if Zi < Zj ,
where Z is a random n-vector of preference scores. Suppose P{Zi = Zj } = 0 for i �= j , so there are no ties.
Item k is the favorite if Zk < mini �=k Zi . Let pi denote the chance that item i is the favorite. We characterize
a large class of distributions for Z for which p1 > p2 > · · · > pn. Our results are most surprising when
P{Zi < Zj } = P{Zi > Zj } = 1

2 for i �= j , so neither of any two items is likely to be preferred over the
other in a pairwise comparison. Then, under suitable assumptions, p1 > p2 > · · · > pn when the variability
of Zi decreases with i in an appropriate sense. Our conclusions echo the proverb “Fortune favors the bold.”

Keywords: coupling; discrete choice models; extreme value; maximum (or minimum) of random variables;
most dangerous equation; order statistic; preference scores; small schools phenomenon; stochastic
domination; test of association; Thurstone; winning probability

1. Introduction

When an achievement test is administered to all students of a particular age in a U.S. state, it
is typically observed that there is a disproportionate number of small schools among those with
the highest average scores [26]. This “small-schools phenomenon” is to be expected even if the
scores of individual students at small schools come from the same population as those at other
schools: the standard deviation of the average score at a school with n students is proportional to

1√
n

; averages at small schools will thus be more variable than those at larger schools; and hence
small schools are likely to be disproportionately represented among the highest performing (and
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lowest performing) schools. Wainer [26] lists several more examples of this effect such as small
communities having what seem to be unusually high rates of kidney cancer and small cities
appearing to be safer than larger ones.

The results we establish here bear on how the probability that a school has the highest av-
erage depends on its size under the assumption that student performances are drawn from a
common population. Suppose that the n ≥ 3 schools are listed in order of increasing size and
Z1,Z2, . . . ,Zn are the average test scores. Assume that the Zk are independent and symmetri-
cally distributed around a common mean μ and that |Zi − μ| stochastically dominates |Zj − μ|
when i < j (for example, this will hold approximately when each Zk is approximately Gaussian
because then Zk is approximately of the form σ√

Nk
Yk , where σ is the standard deviation for an

individual student’s score, Nk is the number of students at the kth school, and Y1, Y2, . . . , Yn

are independent standard normal random variables). It follows from the results we establish that
P{Zk is the largest of Z1, . . . ,Zn} is decreasing in k – the smaller a school is the more likely it
is to have the highest average test score – even though no school has an advantage over any other
in a “head-to-head” competition (P{Zi > Zj } = P{Zj > Zi} for any pair i �= j ).

We can describe this conclusion a little more picturesquely. Consider a group of n ≥ 3 in-
dependent individuals with equal skill, in the sense that each individual’s performance is sym-
metrically distributed about some common mean, so that in a head-to-head contest between any
two there is an equal chance that either will win. For each individual k, let Prk(x) be the chance
that the absolute value of the difference between his or her performance and the shared expected
performance exceeds x. Suppose the individuals are well ordered by these probabilities: for all
x > 0, Pr1(x) > Pr2(x) > · · · > Prn(x). Under these assumptions, individual 1 has the highest
probability of having the best performance, individual 2 has the second-highest, and so on. If
a greater chance of extreme performance results from deliberate risk-taking, then individual 1
is the “boldest” and the most likely to perform best. In this sense, fortune favors the bold. (Of
course, symmetry dictates that individual 1 is also most likely to perform worst!)

To make our results mathematically precise and to connect them to the literature on stochastic
models for ranking and ordering, we require the following notation and terminology. Label the n

items with the set of integers [n] := {1,2, . . . , n}. An individual’s preferences can be represented
in two related ways: either we report the order vector (w(1),w(2), . . . ,w(n)), where w(1) ∈ [n]
is the label of the most favored item, w(2) is the label of the second-most favored item, etc., or
we report the corresponding rank vector (y(1), y(2), . . . , y(n)), where w(y(i)) = i for i ∈ [n].

The order vector and rank vector are permutations of the set [n]. There is a huge literature on
models of random permutations, much of which attempts to capture features of how individuals
actually go about assigning orders or rankings using whatever information they have at their
disposal. The standard reference is Marden [15], with Diaconis [7]; Fligner and Verducci [9] as
useful adjuncts.

The earliest model for assigning orders is due to Thurstone [24,25]. In Thurstone’s model,
the item labeled i is associated with a (real-valued) random variable Zi , where the random vec-
tor Z = (Z1, . . . ,Zn) is such that P{Zi = Zj } = 0 for i �= j , and the resulting order vector
is (i1, i2, . . . , in) if Zi1 < Zi2 < · · · < Zin . One may interpret −Zi as the desirability of item
i measured on a one-dimensional scale, so that items are ordered in decreasing order of their
desirability.



28 S.N. Evans, R.L. Rivest and P.B. Stark

In many applications, it is more natural to consider Zi rather than −Zi to be the desirability.
For example, one might model an election by letting Zi be the number of voters who will vote for
candidate i (see, for example, Laslier [13]). The candidate who garners the most votes wins the
election. As another example, consider Thompson Sampling for the multi-armed bandit problem
in machine learning. The random variable Zi models the benefit resulting from pulling arm i. The
Zi are sampled and the arm with maximum Zi is pulled [1,23]. Nonetheless, we shall continue
here to follow the tradition of Thurstone, and let −Zi model the desirability of item i.

Let Z∗ denote min{Zi : 1 ≤ i ≤ n}, the smallest Zi value, and let I∗ denote arg min{Zi : 1 ≤
i ≤ n}, the index of the minimum Zi value. Let pi denote the probability that the rank of item i

is 1 (i.e., that i = I∗).
Given a specification of Z, there are three closely-related problems to consider:

1. Finding the distribution of Z∗. See Gumbel [11]; Kotz and Nadarajah [12]; de Haan and
Ferreira [6]; Resnick [18] for a sample of the extensive body of work in this area.

2. Determining which i is most likely to be I∗.
3. Given i, deriving an expression for pi .

We do not consider problem 1 here; our focus is on problem 2, particularly when, as is usually
the case, solving 2 by solving 3 seems intractable. Most generally, we are concerned with finding
conditions that imply that p1 > p2 > · · · > pn.

We briefly survey various distributional assumptions on Z = (Z1, . . . ,Zn) that have been con-
sidered in this context.

Thurstone proposed taking Z = (Z1, . . . ,Zn) to have a non-degenerate Gaussian distribution.
Despite its conceptual simplicity, this model is rather daunting computationally. Here pi is the
probability that Z falls in the region R := {z ∈R

n : zi < zj , j �= i}, an intersection of half-spaces⋂
j �=i{z ∈ R

n : zi − zj < 0}. We can write Z = μ + X�
1
2 , where μ is the mean vector of Z, �

is the variance-covariance matrix of Z, �
1
2 is the positive definite symmetric square root of �,

and X is a vector with independent standard normal entries. We are therefore interested in the

probability that X falls in the polyhedral region (R −μ)�− 1
2 . It is usually not possible to express

such probabilities in a simple closed form, but there is a large literature on approximating them
numerically using various ingenious recursive schemes – see, for example, Gassmann et al. [10];
Miwa et al. [16]; Craig [4].

Appendix A shows that when {Zi}ni=1 are independent Gaussian random variables, computing
the probabilities {pi}ni=1 explicitly is somewhat complex even when n = 3. Appendix B shows
that this is also true when {Zi}ni=1 is a vector of independent random variables with bilateral
exponential distributions. However, if all one cares about is the the ordering of the pi ’s, then the
results of the present paper may apply to cases where explicitly computing {pi} is intractable.

Daniels [5] suggested taking the random vector Z in Thurstone’s general model to be of the
form (θ1 + X1, . . . , θn + Xn), where θ1, . . . , θn are real-valued parameters and X1, . . . ,Xn are
independent and identically distributed (IID) random variables. Equivalently (by exponentiating),
one can take Z to be of the form (γ1Y1, . . . , γnYn), where γ1, . . . , γn are positive parameters
and Y1, . . . , Yn are IID positive random variables. It is a consequence of our results here that if
θi < θj (or γi < γj ), then i is at least as likely as j to have rank 1, and this inequality is strict
under mild conditions. Savage [20] provides a number of other results about the dependence on
the parameters of various other probabilities related to the order and rank vectors.
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A particularly tractable example of the multiplicative version of Daniels’ type of Thurstonian
model is when (Z1, . . . ,Zn) = (γ1Y1, . . . , γnYn) with Y1, . . . , Yn IID exponential random vari-
ables. In this case the probability of a given order vector (i1, . . . , in) can be computed explicitly:
it is

λi1∑
j λj

λi2∑
j �=i1

λj

λi3∑
j �=i1,i2

λj

· · · ,

where λi := γ −1
i for 1 ≤ i ≤ n. This model is due to Plackett [17] and Luce [14], and was

studied in Silverberg [21,22] as the vase model: if we imagine a vase containing n types of balls
with balls of type i being in proportion λi/(

∑
j λj ) and we remove balls one-by-one uniformly

without replacement, then the order in which the n types first appear is given by this model.
The Plackett and Luce model is the only Thurstonian model of the Daniels type that satisfies the
axioms laid out in Luce [14] for a rational choice procedure – see Yellott [29] for a discussion.

The Plackett and Luce model is also the stationary distribution of a discrete-time Markov chain
that is sometimes called the Tsetlin library process or the move-to-the-front self-organizing list.
Here the items are pictured as books and an order vector (i1, . . . , in) corresponds to a stack with
the book labeled in on the bottom and the book labeled i1 on top. In each step of the chain, book i

is chosen with probability proportional to λi , removed from its current position in the stack, and
placed on top of the stack. See, for example, Rivest [19] for early work on this process, and Fill
[8] for a detailed analysis of this Markov chain and an extensive review of the related literature.

Thurstonian models based on random vectors with much more complex structure are discussed
in Böckenholt [2,3].

Section 5.1 presents a third, more involved, example that illustrates a model of a more complex
type that is not built from IID random variables, but where the assumptions of our main result,
Theorem 3.1, giving the ordering of {pi}, still applies. This example is cast in terms of the
times taken by three workers to complete three randomly assigned tasks. The expected time for
a worker to complete a task is the same for every (worker, task) pair, but the performance of the
first worker is more variable than that of the second, which is in turn more variable than that
of the third. Again, computing {pi} is tedious and complex, but Theorem 3.1 easily allows one
to find their ordering without explicit computation and to conclude that the first worker has the
highest probability of finishing first and the second worker has the second highest probability of
finishing first.

This paper investigates how to determine, in Thurstonian models, the ordering of the probabil-
ities that each of the given items will be the most preferred, without having to explicitly compute
these probabilities.

In other words, we study the distribution of the first entry in the order vector or, equivalently,
the distribution of the label of the item with rank one, and we seek conditions on the distribution
of the random vector (Z1, . . . ,Zn) such that if pi is the probability that the item labeled i has
rank one, then p1 > p2 > · · · > pn or at least p1 ≥ p2 ≥ · · · ≥ pn. As we have already remarked,
we show that the chain of weak inequalities holds in the Daniels model if θ1 < θ2 < · · · < θn in
the additive case and γ1 < γ2 < · · · < γn in the multiplicative case.

The strict inequalities also hold under suitable assumptions. To see that extra assumptions
are necessary, suppose we are in the additive case with n = 3 and the common distribution of
X1,X2,X3 is uniform on the interval [0,1], with θ1 = 0 < θ2 = 1 < θ3 = 2. Then p1 = 1 >
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p2 = 0 = p3, so only weak and not strict inequalities hold in general. The conclusion p1 >

p2 > · · · > pn can be verified by direct computation for the Plackett and Luce model, where
pi = λi/(λ1 + · · · + λn) with λi = γ −1

i .
The plan of the remainder of the paper is as follows. In Section 2 we consider a Thursto-

nian model with (Z1, . . . ,Zn) = (σ1X1, . . . , σnXn), where the σi are positive constants and
(X1, . . . ,Xn) is a random vector with IID standard Gaussian entries. Of course, if n = 2, then
p1 = p2 = 1

2 by the symmetry of the Gaussian distribution, but we show in Section 2 that if n ≥ 3
and σ1 > σ2 > · · · > σn, then p1 > p2 > · · · > pn. In Appendix A we compute {p1,p2,p3} for
n = 3 to emphasize the difficulty of establishing by direct computation that such an ordering
holds for general n.

One way to think about this result is that a choice is being made among n individuals based
on their responses to a set of stimuli. The IID random variables {|X1|, . . . , |Xn|} represent the
random stimuli given to the individuals. The response of individual k to the stimulus |Xk| is
Skηk(|Xk|), where ηk(y) = σky and Sk is the sign of Xk , a {−1,+1}-valued random variable that
is independent of |Xk| and equally likely to be −1 or +1. For each k, the function ηk happens
to be increasing – but as we shall see, that is irrelevant for a conclusion like that above. What is
important is that ηi(y) > ηj (y) for all y and 1 ≤ i < j ≤ n, so that if individuals i and j receive
the same stimulus, the response of individual i will be more extreme than that of individual
j . The expected responses E[Zk], 1 ≤ k ≤ n, are all zero and P{Zi > Zj } = P{Zi < Zj } = 1

2 ,
1 ≤ i �= j ≤ n, so that individual i has no advantage over individual j in a head-to-head contest,
and yet p1 > p2 > · · · > pn.

These observations suggest that a similar result might hold if

(Z1, . . . ,Zn) = (
S1η1(Y1), . . . , Snηn(Yn)

)
,

where (S1, . . . , Sn) is a suitable exchangeable {−1,+1}n-valued random vector (recall that a
random vector is exchangeable if its joint distribution is unchanged by any permutation of the
coordinates), (Y1, . . . , Yn) is an exchangeable En-valued random vector for some measurable
space E, and the functions ηk : E → R+ have the property that ηi(y) > ηj (y) for all y ∈ E and
1 ≤ i < j ≤ n (so that the response Zi is “bolder” than the response Zj ). We show in Section 3
that this conclusion is indeed valid under appropriate assumptions (e.g., the ordering of the pk

would not hold if Sk = +1 with probability one for all k; to rule this sort of situation out, we
require

P
{
#
{
k ∈ [n] : Sk = −1

} = 2
} ≥

(
n

2

)
P
{
#
{
k ∈ [n] : Sk = −1

} = 0
}
,

which holds, for example, when {Sk} are IID with individual probability at least 1
2 of taking the

value −1).
In Section 4, we look at the special case in which {Y1, . . . , Yn} and {S1, . . . , Sn} are both IID.
We give two applications of our results in Section 5. In Section 5.1, we consider a model for

randomized experiments where n treatments are assigned uniformly at random to n individuals.
The distribution of the response of individual j to treatment i is symmetrically distributed about
zero. For a fixed individual j the distribution of the magnitude of the effect of treatment i is
stochastically nonincreasing in i: Lower numbered treatments are more likely to have larger
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magnitude effects than higher numbered ones. We will show that treatment 1 is most likely to
have the greatest effect, treatment 2 is second most likely to have the greatest effect, and so on,
even though no treatment causes any systematic benefit or harm to any individual.

In Section 5.2, we use our results to show that heteroscedasticity can distort the p-value of a
permutation-based test for association between two series to make it appear that there is positive
or negative association between the two series when there is no such systematic relationship.

Appendix C sketches an approach for removing the “small-school bias” in a way that is both
fair (equally likely to choose as best any school, when the schools have the same effect on student
scores) and valid (most likely to choose as best the school that increases student scores the most).

2. Motivating Gaussian example

Our interest in the general topic of this paper was piqued by the following observation about a
Gaussian version of the Thurstone model we mentioned in the Introduction.

Proposition 2.1. Suppose n ≥ 3 and (Z1, . . . ,Zn) = (σ1X1, . . . , σnXn), where σi > 0 for 1 ≤
i ≤ n and the entries of the random vector (X1, . . . ,Xn) are independent standard Gaussian
random variables. If σ1 > σ2 > · · · > σn, then p1 > p2 > · · · > pn.

Proof. Let
∧{·} denote the minimum of a set of real numbers and

∨{·} denote the maximum.
Note that

pi = P{σiXi < σkXk, k �= i}

= P

{
σiXi <

∧
k �=i

σkXk

}
(1)

= P

{∨
k �=i

(σiXi − σkXk) < 0

}
,

for 1 ≤ i ≤ n.
Let φ and 	 denote the standard Gaussian probability density function and cumulative dis-

tribution function, respectively. Then (by conditioning on Xi in the first integral, integrating by
parts in the second, and applying the chain rule in the third),

pi =
∫ ∞

−∞

∏
j �=i

(
1 − 	

(
x

σj

))
∂

∂x
	

(
x

σi

)
dx

= −
∫ ∞

−∞
	

(
x

σi

)
∂

∂x

∏
j �=i

(
1 − 	

(
x

σj

))
dx (2)

= −
∫ ∞

−∞
	

(
x

σi

)∑
j �=i

φ

(
x

σj

)
1

σj

∏
k �=i,j

(
1 − 	

(
x

σk

))
dx,
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and so

∂pi

∂σi

= −
∑
j �=i

∫ ∞

−∞
φ

(
x

σi

)(
− x

σ 2
i

)
φ

(
x

σj

)
1

σj

∏
k �=i,j

(
1 − 	

(
x

σk

))
dx

=
∑
j �=i

∫ ∞

0
φ

(
x

σi

)(
x

σ 2
i

)
φ

(
x

σj

)
1

σj

(3)

×
[ ∏

k �=i,j

(
1 − 	

(
x

σk

))
−

∏
k �=i,j

(
1 − 	

(−x

σk

))]
dx

> 0,

where we used the facts that φ(z) = φ(−z) for all z ∈ R and that the function 	 is increasing.
It follows that pi is an increasing function of σi , and, because pi = pj when σi = σj , it is clear
that if σ1 > σ2 > · · · > σn, then p1 > p2 > · · · > pn. �

Remark 2.2. We show in Appendix A that when n = 3

p1 = 1

2π
arccos

(
− σ 2

1√
(σ 2

2 + σ 2
1 )(σ 2

3 + σ 2
1 )

)

> p2 = 1

2π
arccos

(
− σ 2

2√
(σ 2

1 + σ 2
2 )(σ 2

3 + σ 2
2 )

)
(4)

> p3 = 1

2π
arccos

(
− σ 2

3√
(σ 2

1 + σ 2
3 )(σ 2

2 + σ 2
3 )

)
,

but finding such explicit expressions for the pi and establishing the ordering claimed in Proposi-
tion 2.1 becomes increasingly complex for larger values of n. Moreover, Proposition 2.1 holds,
with essentially the same proof, if the common distribution of X1, . . . ,Xn is an arbitrary sym-
metric distribution possessing a density, whereas it is typically impossible to find explicit closed
form expressions for the pi in this case. We observe in Appendix B that even for a symmetric
distribution as tractable as the bilateral exponential, the formulae for the pi are already somewhat
formidable for n = 3 and establishing an ordering analogous to that claimed in Proposition 2.1
requires a certain amount of algebraic manipulation.

3. Main theorem

This section presents our main theorem, giving the most general conditions we have found so far
that imply p1 ≥ p2 ≥ · · · ≥ pn.

Theorem 3.1. Let (Z1, . . . ,Zn) be an R
n-valued random vector given by Zk = Skηk(Yk), 1 ≤

k ≤ n, where:
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• (Y1, . . . , Yn) is an exchangeable En-valued random vector for some measurable space
(E,E);

• η1, . . . , ηn are measurable functions from E to R+ with the property that ηi(y) ≥ ηj (y) for
all y ∈ E and 1 ≤ i < j ≤ n;

• (S1, . . . , Sn) is an exchangeable {−1,+1}n-valued random vector;
• (Y1, . . . , Yn) and (S1, . . . , Sn) are independent;
• P{S1 = · · · = Sn−2 = +1;Sn−1 = −1} ≥ P{S1 = · · · = Sn−1 = +1}.

Define

pk := P

{
Zk <

∧
��=k

Z�

}
.

Then, p1 ≥ p2 ≥ · · · ≥ pn.

Proof. Let (T1, . . . , Tn) be a vector of independent random variables that is independent of the
pair of random vectors (Y1, . . . , Yn) and (S1, . . . , Sn) and such that each random variable Tk has
an exponential distribution with mean 1. Set Zε

k = Sk(ηk(Yk) + εTk) for 1 ≤ k ≤ n and ε > 0. It
is clear that pk is the limit as ε ↓ 0 of

pε
k := P

{
Zε

k <
∧
��=k

Zε
�

}

for 1 ≤ k ≤ n, so it suffices to show that pε
1 ≥ pε

2 ≥ · · · ≥ pε
n.

Set

q(m) :=
{
P{S1 = · · · = Sm = +1;Sm+1 = −1}, 0 ≤ m < n − 1,

P{S1 = · · · = Sn−1 = +1}, m = n − 1.

By the assumptions of the theorem, for 0 ≤ m < n − 1,

q(m) = P{Sk1 = · · · = Skm = +1;Skm+1 = −1}
for any subset {k1, . . . , km+1} ⊆ [n] of cardinality m + 1, and

q(n − 1) = P{Sk1 = · · · = Skn−1 = +1}
for any subset {k1, . . . , kn−1} ⊆ [n] of cardinality n− 1. Thus, q(0) ≥ q(1) ≥ · · · ≥ q(n− 2) and,
by assumption, q(n − 2) ≥ q(n − 1).

Suppose that a1, . . . , an ∈ R+ are distinct. If ak �= ∧
� a�, then

P

{
Skak <

∧
��=k

S�a�

}
= P

({Sk = −1} ∩ {S� = +1, ∀� �= k such that a� > ak}
);

whereas if ak = ∧
� a�, then

P

{
Skak <

∧
��=k

S�a�

}
= P{S� = +1, � �= k}.
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In either case,

P

{
Skak <

∨
��=k

S�a�

}
= q

(
#{1 ≤ � ≤ n : a� > ak}

)
.

The values of |Zε
1|, . . . , |Zε

n| are almost surely distinct. For 1 ≤ k ≤ n set

Mk := #
{
1 ≤ � ≤ n : ∣∣Zε

�

∣∣ >
∣∣Zε

k

∣∣}.
We must show that

E
[
q(Mi)

] ≥ E
[
q(Mj )

]
for 1 ≤ i < j ≤ n; or, equivalently after summing by parts, that

q(0)P{Mi ≥ 0} +
n−2∑
m=0

[
q(m + 1) − q(m)

]
P{Mi ≥ m + 1}

≥ q(0)P{Mj ≥ 0} +
n−2∑
m=0

[
q(m + 1) − q(m)

]
P{Mj ≥ m + 1}.

Since P{Mi ≥ 0} = P{Mj ≥ 0} = 1 and q(0) ≥ q(1) ≥ · · · ≥ q(n − 1), it suffices to show that

P{Mi ≥ m} ≤ P{Mj ≥ m}
for 1 ≤ m ≤ n − 1.

Fix 1 ≤ i < j ≤ n. Note that

P{Mi ≥ m} = P
{∃k1, . . . , km �= i : ∣∣Zε

kh

∣∣ >
∣∣Zε

i

∣∣,1 ≤ h ≤ m
}

and P{Mj ≥ m} is given by a similar expression. Define functions η̃k , 1 ≤ k ≤ n, by η̃i = ηj ,
η̃j = ηi , and η̃k = ηk , k /∈ {i, j}. Observe that{∃k1, . . . , km �= i : ∣∣Zε

kh

∣∣ >
∣∣Zε

i

∣∣,1 ≤ h ≤ m
}

= {∃k1, . . . , km �= i : ηkh
(Ykh

) + εTkh
> ηi(Yi) + εTi,1 ≤ h ≤ m

}
⊆ {∃k1, . . . , km �= i : η̃kh

(Ykh
) + εTkh

> η̃i(Yi) + εTi,1 ≤ h ≤ m
}

because η̃i (y) = ηj (y) ≤ ηi(y) and η̃k(y) ≥ ηk(y) for k �= i (with equality unless k = j ). Define
random variables Ỹk , 1 ≤ k ≤ n, by Ỹi = Yj , Ỹj = Yi , and Ỹk = Yk , k /∈ {i, j}. Define T̃k , 1 ≤
k ≤ n, similarly. By exchangeability, (Y1, . . . , Yn) and (Ỹ1, . . . , Ỹn) have the same distribution.
Of course, (T1, . . . , Tn) and (T̃1, . . . , T̃n) have the same distribution. Therefore,

P
{∃k1, . . . , km �= i : η̃kh

(Ykh
) + εTkh

> η̃i(Yi) + εTi,1 ≤ h ≤ m
}

= P
{∃k1, . . . , km �= i : η̃kh

(Ỹkh
) + εT̃kh

> η̃i(Ỹi) + εT̃i ,1 ≤ h ≤ m
}
.
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Now {∃k1, . . . , km �= i : η̃kh
(Ỹkh

) + εT̃kh
> η̃i(Ỹi) + εT̃i ,1 ≤ h ≤ m

}
= {∃k1, . . . , km �= j : ηkh

(Ykh
) + εTkh

> ηj (Yj ) + εTj ,1 ≤ h ≤ m
}

= {Mj ≥ m}.
Putting the above together gives P{Mi ≥ m} ≤ P{Mj ≥ m} as required. �

Remark 3.2. Assume the hypotheses of Theorem 3.1. Note that

P{S1 = · · · = Sn−2 = +1;Sn−1 = −1}
= P{S1 = · · · = Sn−2 = +1;Sn−1 = −1;Sn = +1} (5)

+ P{S1 = · · · = Sn−2 = +1;Sn−1 = −1;Sn = −1}
and

P{S1 = · · · = Sn−1 = +1}
= P{S1 = · · · = Sn−1 = +1;Sn = +1}

+ P{S1 = · · · = Sn−1 = +1;Sn = −1} (6)

= P{S1 = · · · = Sn−1 = +1;Sn = +1}
+ P{S1 = · · · = Sn−2 = +1;Sn−1 = −1;Sn = +1},

by the exchangeability hypothesis, so the hypothesis that

P{S1 = · · · = Sn−2 = +1;Sn−1 = −1} ≥ P{S1 = · · · = Sn−1 = +1}
is equivalent to the hypothesis that

P{S1 = · · · = Sn−2 = +1;Sn−1 = Sn = −1} ≥ P{S1 = · · · = Sn = +1}.
Again using exchangeability, the latter is equivalent to

1(
n
2

)P{
#
{
k ∈ [n] : Sk = −1

} = 2
} ≥ P

{
#
{
k ∈ [n] : Sk = −1

} = 0
}
.

Remark 3.3. Suppose in addition to the hypothesis of Theorem 3.1 that P{Si = Sj = +1} =
P{Si = Sj = −1} for i �= j . Then, by exchangeability,

P{Zi < Zj } = P
{
ηi(Yi) < ηj (Yj )

}
P{Si = Sj = +1}

+ P
{
ηi(Yi) > ηj (Yj )

}
P{Si = Sj = −1}

+ P{Si = −1;Sj = +1} (7)
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= P
{
ηi(Yi) < ηj (Yj )

}
P{Si = Sj = −1}

+ P
{
ηi(Yi) > ηj (Yj )

}
P{Si = Sj = +1}

+ P{Si = +1;Sj = −1}
= P{Zi > Zj }.

Theorem 3.1 is especially interesting in this case, because then Zi is not systematically smaller
than Zj for i < j , and yet p1 ≥ p2 ≥ · · · ≥ pn.

Remark 3.4. Theorem 3.1 gives a sufficient condition for the weak inequalities p1 ≥ p2 ≥ · · · ≥
pn but not the strict inequalities p1 > p2 > · · · > pn. Examining the proof indicates how the
hypotheses can be strengthened to yield the latter conclusion. Suppose that P{Zi = Zj } = 0 for
1 ≤ i �= j ≤ n. It is clear from the proof of the theorem that pi > pj for a given pair 1 ≤ i < j ≤ n

if and only if there exists 0 ≤ m ≤ n − 2 such that q(m + 1) < q(m) and

P
{∃k1, . . . , km+1 �= i : ηkh

(Ykh
) > ηi(Yi),1 ≤ h ≤ m + 1

}
< P

{∃k1, . . . , km+1 �= j : ηkh
(Ykh

) > ηj (Yj ),1 ≤ h ≤ m + 1
}

for that m. For example, if n ≥ 3 and q(0) = P{S1 = −1} > P{S1 = +1;S2 = −1} = q(1), then
it suffices that P{∃k �= i : ηk(Yk) > ηi(Yi)} < P{∃k �= j : ηk(Yk) > ηj (Yj )} or, equivalently by
exchangeability,

P

{ ∨
k /∈{i,j}

ηk(Yk) ∨ ηj (Yj ) > ηi(Yi)

}
< P

{ ∨
k /∈{i,j}

ηk(Yk) ∨ ηi(Yi) > ηj (Yj )

}

= P

{ ∨
k /∈{i,j}

ηk(Yk) ∨ ηi(Yj ) > ηj (Yi)

}
.

Because ηj (Yj ) ≤ ηi(Yj ) and ηi(Yi) ≥ ηj (Yi) it further suffices to have

0 < P

{ ∨
k /∈{i,j}

ηk(Yk) ∨ ηi(Yj ) > ηj (Yi),
∨

k /∈{i,j}
ηk(Yk) ∨ ηj (Yj ) ≤ ηi(Yi)

}
. (8)

4. Independent random variables

Theorem 3.1 has the following consequence when the entries of (Z1, . . . ,Zn) are independent.

Corollary 4.1. Suppose that n ≥ 3. Let (Z1, . . . ,Zn) be an R
n-valued random vector given by

Zk = SkWk , 1 ≤ k ≤ n, where:

• W1, . . . ,Wn are independent R-valued random variables;
• Wi stochastically dominates Wj for 1 ≤ i < j ≤ n (that is, P{Wi > w} ≥ P{Wj > w} for

all w ∈ R+);
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• S1, . . . , Sn are IID {−1,+1}-valued random variables with P{Sk = +1} ≤ P{Sk = −1};
• (W1, . . . ,Wn) and (S1, . . . , Sn) are independent.

Define

pk := P

{
Zk <

∧
��=k

Z�

}
.

Then, p1 ≥ p2 ≥ · · · ≥ pn.

Proof. It is possible to write Wk = ηk(Yk), where Y1, . . . , Yn are IID random variables that each
have the uniform distribution on the interval [0,1] and

ηk(y) := inf
{
w ∈ R+ : P{Wk ≤ w} ≥ y

}
, y ∈ [0,1].

It follows from the stochastic ordering assumption on W1, . . . ,Wn that ηi(y) ≥ ηj (y) for y ∈
[0,1] and 1 ≤ i < j ≤ n.

Also, if we write p for the common value of P{Sk = +1}, then

P{S1 = · · · = Sn−2 = +1;Sn−1 = −1} = pn−2(1 − p)
(9)

≥ pn−1 = P{S1 = · · · = Sn−1 = +1}.
The result now follows from Theorem 3.1. �

Remark 4.2. A simple consequence of Corollary 4.1 is that if n ≥ 3, V1, . . . , Vn are IID random
variables that are symmetrically distributed (that is, the common distribution of Vk is the same
as that of −Vk) and c1 ≥ c2 ≥ · · · ≥ cn > 0 are nonnegative constants, then

P

{
ciVi <

∧
k �=i

ckVk

}
≥ P

{
cjVj <

∧
k �=j

ckVk

}
(10)

for 1 ≤ i < j ≤ n.
The discussion in Remark 3.4 addresses when inequality in (10) will be strict. Assume that

n ≥ 3 and c1 > c2 > · · · > cn > 0. Writing Vk = Sk|Vk|, 1 ≤ k ≤ n, where (S1, . . . , Sn) is IID
{−1,+1}-valued random variables that are independent of (|V1|, . . . , |Vn|) with P{Sk = ±1} =
1
2 , we have

P{S1 = −1} = 1

2
>

1

4
= P{S1 = +1;S2 = −1}.

Suppose that the common distribution of Vk , 1 ≤ k ≤ n, is diffuse and that 0 is in the support of
this distribution. Then

P

{ ∨
k /∈{i,j}

ck|Vk| ∨ ci |Vj | > cj |Vi |,
∨

k /∈{i,j}
ck|Vk| ∨ cj |Vj | ≤ ci |Vi |

}
> 0 (11)
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for 1 ≤ i < j ≤ n, which is the special case in the present setting of the sufficient condition (8)
for strict inequality. To see this, note first that for all ε > 0 sufficiently small we have

P
{
ci |Vj | > cj |Vi |, cj |Vj | ≤ ci |Vi |, ci |Vj | > cj |Vj | > ε

}
= P

{
cj

ci

<
|Vj |
|Vi | ≤ ci

cj

, ci |Vj | > cj |Vj | > ε

}
> 0

whereas

P

{ ∨
k /∈{i,j}

ck|Vk| ≤ ε

}
> 0

for all ε > 0. In particular, we recover Proposition 2.1
It is worth noting that (10) doesn’t hold with a strict inequality under just the assumption that

V1, . . . , Vn are IID random variables with a diffuse, symmetric common distribution. For exam-
ple, assume that n = 3 and c1 > c2 > c3 > 0 are given. Suppose that the common distribution of
|Vk|, 1 ≤ k ≤ 3, is supported on an interval [a, b] where the intervals c1[a, b], c2[a, b], c3[a, b]
are pairwise disjoint. Then

P{c1V1 < c2V2 ∧ c2V3} = P{V1 < 0} = 1

2
,

P{c2V2 < c1V1 ∧ c3V3} = P{V1 > 0,V2 < 0} = 1

4
,

and

P{c3V3 < c1V1 ∧ c2V2} = P{V1 > 0,V2 > 0} = 1

4
.

5. Applications

5.1. Randomized experiments

Suppose we are interested in comparing n treatments. We will test each treatment on one of n

individuals, which might be people, families, banks, local or national economies, or plots of land,
for instance. Treatments are assigned uniformly at random to individuals: All n! assignments are
equally likely. The distribution of the response of individual j to treatment i is a distribution Pij

that is symmetric about zero, so that no treatment causes any systematic benefit or harm to any
individual. Suppose for each fixed j ∈ [n] and all y > 0 that Pij {x ∈ R : |x| > y} is nonincreas-
ing in i, so that the magnitude of the responses of a fixed individual to the various treatments are
stochastically nonincreasing in the treatment number (i.e., low numbered treatments are more
likely to have effects with a large magnitude than high numbered treatments). Suppose further
that given the assignment of treatments to individuals the responses of the individuals are condi-
tionally independent.



Fortune favors the bold 39

Table 1. Time for each of three workers to complete each of three tasks

Worker A Worker B Worker C

Task 1 T ± A T ± B T ± C

Task 2 T ± a T ± b T ± c

Task 3 T ± α T ± β T ± γ

We can represent the response to treatment i as Zi = Siηi(�i,Ui), where S1, . . . , Sn are IID
{−1,+1}-valued random variables with P{Si = −1} = P{Si = +1} = 1

2 ; (�1, . . . ,�n) is a uni-
form random permutation of [n]; U1, . . . ,Un are IID random variables with a uniform distribu-
tion on the interval [0,1]; and ηi(j, ·) is the inverse of the function y �→ Pij {x ∈ R : |x| > y},
that is,

ηi(j, u) := sup
{
y ≥ 0 : Pij

{
x ∈ R : |x| ≤ y

}
< u

}
.

By assumption, η1(j, u) ≥ · · · ≥ ηn(j,u), and it follows from Theorem 3.1 that p1 ≥ p2 ≥ · · · ≥
pn. Hence, if we think of low values of the response as desirable, then low numbered treatments
are likely to appear to be the most desirable in a single instance of the experiment, even though
they are also likely to appear to be the least desirable.

In order to give a simple, concrete example of this phenomenon, consider a situation in which
there are three tasks of comparable difficulty that have to be completed and three workers avail-
able to do them. In terms of the setting above, the tasks are the “individuals” and the workers are
the “treatments.”

Number the tasks 1, 2 and 3, and designate the workers by the letters A, B and C. The tasks
are assigned to the workers at random, with the 3! = 6 possible allocations being equally likely.
On average, the workers are equally rapid at completing a given task, but the performance of
Worker A is more variable than that of Worker B, which is more variable than that of Worker C.

We model this very simply by assuming that the time taken to perform Task 1 by Worker A
(respectively, Workers B and C) is either T − A or T + A (respectively, T − B or T + B , and
T − C or T + C) with equal probability, where A,B,C are positive constants. Similarly, the
respective times taken by the three workers to perform Tasks 2 and 3 are T ± a, T ± b, T ± c

and T ± α, T ± β , T ± γ , with the two alternatives in each case always being equally likely.
We assume that the times taken by the workers are conditionally independent given the random
allocation of tasks (that is, all 23 = 8 possible choices of sign are equally likely for any particular
allocation).

The relative variability of the workers’ performance is modeled by taking A > B > C, a >

b > c, and α > β > γ . The ordering among these nine quantities is otherwise arbitrary. We thus
have an instance of the general situation considered above with the inconsequential difference
that the responses are symmetric about T rather than 0. We will explore how the probability that
a particular worker finishes first depends on the ordering in detail.

Suppose the ordering is A > B > C > a > b > c > α > β > γ > 0. Then worker A finishes
first in the following scenarios:

1. All signs are negative and A is assigned task 1 (2 of 48)
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2. Only the first and second signs are negative and A is assigned task 1, or A is assigned
task 2 and B is assigned task 3 (3 of 48)

3. Only the first and third signs are negative and A is assigned task 1, or A is assigned task 2
and C is assigned task 3 (3 of 48)

4. Only the first sign is negative (6 of 48)
5. All signs are positive and A is assigned task 3 (2 of 48)

These comprise 16/48 = 1/3 of the equally likely possibilities, so the chance that A finishes first
is 1/3. Similarly, worker B finishes first in the following scenarios:

1. All signs are negative and B is assigned task 1 (2 of 48)
2. Only the first and second signs are negative and B is assigned task 1, or B is assigned task 2

and A is assigned task 3 (3 of 48)
3. Only the second and third signs are negative and B is assigned task 1, or B is assigned

task 2 and C is assigned task 3 (3 of 48)
4. Only the third sign is negative (6 of 48)
5. All signs are positive and B is assigned task 3 (2 of 48)

Again, these comprise 1/3 of the possibilities, so the chance that B finishes first is 1/3; the same
is true for C.

However, if the ordering is A > a > α > B > b > β > C > c > γ > 0, then A finishes first if
and only if the first sign is negative, which has chance 1/2. For this ordering, B finishes first if
the first sign is positive and the second is negative, which has chance 1/4. Worker C finishes first
if the first two signs are positive, which also has chance 1/4.

It is possible to consider the various other possibilities that are not the same as one of these
two after a relabeling of the tasks; for example, if A > a > b > c > B > α > β > γ > C > 0,
then the probability that Worker A finishes first is 5

12 , whereas the probabilities that Workers B
and C finish first are both 7

24 . We do not present an exhaustive list of the results.

5.2. Heteroscedasticity and nonparametric tests of association

The null hypothesis for standard nonparametric (permutation-based) tests for association be-
tween two series, such as the Spearman rank correlation test, amounts to the hypothesis that
one series is conditionally exchangeable given the other. Heteroscedasticity can make that null
hypothesis false, even when there is no positive (resp. negative) association between the series,
where by positive (resp. negative) association we mean that, in some sense, larger values of one
variable tend to occur in conjunction with larger (resp. smaller) values of the other. Our results
show qualitatively that this can distort the apparent p-value of permutation tests for association.

Consider a decreasing deterministic sequence x = (x1, . . . , xn) and a sequence Z = (Z1, . . . ,

Zn) whose components are independent and symmetrically distributed, but such that |Zi |
stochastically dominates |Zj | for 1 ≤ i < j ≤ n. We haven’t given a rigorous definition of asso-
ciation, but x and Z are not associated in any intuitively reasonable sense of the term. However,
Corollary 4.1 shows that the first component of Z is most likely to be the largest; when that
occurs, the rank of the largest component of Z is aligned with the rank of the largest component
of x. The full distributional details are complicated, but one might expect that an extension of this
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phenomenon will tend to make the Spearman rank correlation coefficient rS take more extreme
values than it would be if the null hypothesis of exchangeability held.

The following simple example from Walther [27,28] shows that the quantitative difference in
probabilities can be quite striking. Let x = (4,3,2,1) and

Z = (σ1Y1, σ2Y2, σ3Y3, σ4Y4),

where {Yi} are IID standard Gaussian variables, σ1 = 2, and σ2 = σ3 = σ4 = 1. The chance that
rS = 1 is the chance that Z1 > Z2 > Z3 > Z4. If {Zj } were exchangeable, then that chance would
be 1/24 ≈ 4.17%. Simulation shows that in the heteroscedastic (non-exchangeable) model,

P
{
rS(X,Y ) = 1

} ≈ 7%,

about 68% higher. Calibrating the Spearman rank correlation test using the null hypothesis of
exchangeability is misleading, because heteroscedasticity alone makes the components of Z tend
to be closer to ordered than they would be under random permutations.

We can illustrate the phenomenon even more concretely with the three workers and three tasks
example from Section 5.1. Note that if A > a > α > B > b > β > C > c > γ > 0, then the
distribution of the order in which the workers A,B,C finish is uniform over the four possibilities
(A,B,C), (A,C,B), (B,C,A), (C,B,A) and the distribution of the Spearman rank correlation
rS between the vector of finish times for the three workers and the vector (1,2,3) is

P{rS = −1} = P

{
rS = −1

2

}
= P

{
rS = +1

2

}
= P{rS = +1} = 1

4
,

whereas if the random vector of finish times were exchangeable (that is, if we were in the usual
null situation for the Spearman rank correlation test), then the distribution of rS would be

P{rS = −1} = 1

6
, P

{
rS = −1

2

}
= P

{
rS = +1

2

}
= 1

3
, P{rS = +1} = 1

6
,

so performing a Spearman rank correlation test would be likely to result in the conclusion that
there is a positive (or negative) association between a worker’s label and the worker’s finish time.

Our results do not predict the magnitude of the distortion of the null distribution of rS , but they
do suggest that there will be such a distortion quite generally when one sequence is heteroscedas-
tic with an ordering of the degree of dispersion that matches the ordering of magnitudes of the
other, even when the components of the first sequence are independent and have equal means.

6. Discussion and conclusions

We have presented general conditions on a random vector (Z1,Z2, . . . ,Zn) that guarantee that
the probabilities pi := P{Zi <

∧
j �=i Zj } satisfy p1 ≥ p2 ≥ · · · ≥ pn; that is, that the probability

the ith coordinate is the smallest is decreasing in i. Analogous results hold for the the probability
that the ith coordinate is the largest. The general conclusion is that “Fortune favors the bold,” and
that even if P{Zi > Zj } = P{Zi < Zj } for 1 ≤ i �= j ≤ n, so that no coordinate is systematically
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larger than another, we can still have situations in which such an ordering will occur because the
variability of Zi decreases with i. Our results give technical precision to the intuition embodied
by the proverb. We emphasize that our results do not require the explicit computation of the
probability that Zi is extreme.

Presumably, even more general conditions that determine the ranks of the probabilities that
each random variable will be extremal could be derived. Similarly, we have considered inequal-
ities among the probabilities that different items will be most favored, but it should also be
possible to derive inequalities among the probabilities that various subsets of the items will have
various subsets of the ranks, not just the chances that each individual item is best. These remain
open problems.

Appendix A: Three independent Gaussians

Suppose that X, Y , Z are independent zero mean Gaussian random vectors with variances α2 >

β2 > γ 2 > 0. Observe that P{X < Y ∧ Z} = P{(Y − X,Z − X) ∈ Q}, where Q is the positive
quadrant {(s, t) ∈ R

2 : s > 0, t > 0}. The variance-covariance matrix of the pair (Y − X,Z − X)

is

� :=
(

β2 + α2 α2

α2 γ 2 + α2

)
.

We can write

(Y − X,Z − X) = (V ,W)�
1
2 ,

where �
1
2 is the positive definite square root of the matrix � and (U,V ) is a pair of independent

standard Gaussian random variables. The image of the quadrant Q under the linear map defined

by �− 1
2 is a wedge with boundary given by the images of the two positive coordinate axes. Some

algebra shows that

((1,0)�− 1
2 ) · ((0,1)�− 1

2 )√
((1,0)�− 1

2 ) · ((1,0)�− 1
2 )

√
((0,1)�− 1

2 ) · ((0,1)�− 1
2 )

(12)

= − α2√
(β2 + α2)(γ 2 + α2)

,

where we use a · b to denote the usual inner product of two vectors a and b.
It follows from the rotational symmetry of the distribution of (U,V ) that

P{X < Y ∧ Z} = 1

2π
arccos

(
− α2√

(β2 + α2)(γ 2 + α2)

)
.

A similar formula holds for P{Y < X ∧ Z} (resp. P{Z < X ∧ Y }) by interchanging the roles of
α2 and β2 (resp. α2 and γ 2).
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Some more algebra shows that

α4

(β2 + α2)(γ 2 + α2)
− β4

(α2 + β2)(γ 2 + β2)
= (α2 − β2)(α2β2 + β2γ 2 + α2γ 2)

(α2 + β2)(α2 + γ 2)(β2 + γ 2)
> 0,

and so

P{X < Y ∧ Z} > P{Y < X ∧ Z}.
Similarly,

P{Y < X ∧ Z} > P{Z < X ∧ Y }.

Appendix B: The minimum of three bilateral exponentials

Given a dispersion parameter θ > 0, write fθ (x) := 1
2θ

e− |x|
θ for the density of the corresponding

bilateral exponential distribution. Note that

∫ ∞

x

fθ (t) dt =

⎧⎪⎨
⎪⎩

1

2

(
1 − e− |x|

θ
) + 1

2
, x < 0,

1

2
e− |x|

θ , x ≥ 0.

Suppose that X, Y , Z are independent real-valued random variables with respective bilateral
exponential densities fa , fb , fc, where the parameters satisfy a > b > c > 0, so that X is more
dispersed than Y , which is more dispersed than Z.

An explicit integration shows that

P{X < Y ∧ Z} =
∫ ∞

−∞
P{Y > x}P{Z > x}P{X ∈ dx}

= 2a3b + a2b2 + 2a3c + 5a2bc + 2ab2c + a2c2 + 2abc2 + b2c2

4(a + b)(a + c)(ab + bc + ac)
. (13)

A similar expression for P{Y < X ∧ Z} (resp. P{Z < X ∧ Y }) follows by interchanging the roles
of a and b (resp. a and c).

It follows that

P{X < Y ∧ Z} − P{Y < X ∧ Z} = (a − b)(b2c2 + a2(b + c)2 + abc(2b + 3c))

4(a + b)(a + c)(b + c)(ab + bc + ac)
> 0

and

P{Y < X ∧ Z} − P{Z < X ∧ Y } = (b − c)(b2c2 + 2abc(b + c) + a2(b2 + 3bc + c2))

4(a + b)(a + c)(b + c)(ab + bc + ac)
> 0,

so

P{X < Y ∧ Z} > P{Y < X ∧ Z} > P{Z < X ∧ Y }.
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Appendix C: Avoiding small-school bias

We consider how one might correct for small-school bias in a model problem involving standard-
ized testing.

There are n schools of different sizes. The schools draw their students at random, indepen-
dently, from the same infinite population. At the beginning of the school year, the scores students
would get on the standardized test are modeled as IID. Attending school i for the year increases
the expected value of a student’s test score by si , i = 1, . . . , n. Let Sij be the score of the j th
student at school i at the end of the year. In this model, {Sij − si} are IID.

We wish to award a “best school” prize to exactly one school, based on student scores on the
standardized test. We want the scheme to be fair, in that if s1 = s2 = · · · = sn, then all schools
are equally likely to win.

We want the scheme to be valid in the sense that if if si > sj , then school i is more likely to
be picked as “best school” than sj .

The proposed solution (suggested to us by Alex Rivest) is both fair and valid.
Let m be the smallest school size. The summary score for school i is the average test score of

a random sample of m students at school i. The prize is awarded to the school with the highest
summary score.

The method is fair, since the summary score for each school is determined by a random size-m
set of students: If {si} are equal, the summary scores of the n schools are IID, and every school
is equally likely to rank first. The method is valid, since the score of school i is stochastically
larger than the score for school j if si > sj .

While this method is fair and valid, it relies on a subsample, so it might not maximize the
probability that the prize is awarded to the school with the largest si among all far and valid
methods. Finding a better method that is both fair and valid is an open problem.
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