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This paper proposes a novel test for simultaneous jumps in a bivariate Itô semimartingale when observation
times are asynchronous and irregular. Inference is built on a realized correlation coefficient for the squared
jumps of the two processes which is estimated using bivariate power variations of Hayashi–Yoshida type
without an additional synchronization step. An associated central limit theorem is shown whose asymptotic
distribution is assessed using a bootstrap procedure. Simulations show that the test works remarkably well
in comparison with the much simpler case of regular observations.
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1. Introduction

Understanding the jump behaviour of a continuous time process is of importance in economet-
rics, as many decisions in finance are based on knowledge of the path properties of the underlying
asset prices. For this reason, a large amount of research over the last decade was concerned with
the estimation of certain jump characteristics or with the construction of tests regarding the ex-
istence and the nature of the jumps in the respective processes. Quite naturally, the focus was
on the univariate setting for most cases, and we refer to the recent monographs [14] and [2]
as well as to the references cited therein for an overview on statistical methods for (univariate)
semimartingales observed in discrete time.

On the other hand, when it comes to portfolio management and diversification issues there is
a clear need for statistical methods which help deciding whether jumps in a specific asset are
of idiosyncratic nature or are accompanied by jumps in other assets as well. Starting with [3],
authors therefore have developed tests for simultaneous jumps in a multivariate framework, but
these tests are typically based on the assumption that all components of the multivariate process
can be observed synchronously and in a regular fashion. See, for example, [16], [18] and [19].

A remarkable exception is the test for co-jumps from [5] which is designed for observations
including additional noise and works in more general sampling schemes than just regular ones.
The authors have shown that the effect of microstructure noise asymptotically dominates asyn-
chronicity, whereas our focus will be on irregular observation schemes and their specific con-
tribution to the asymptotic theory when jumps are the quantities of interest. Allowing for such
models is much more realistic when it comes to practical applications, as even in the univariate
setting observations do not come at equidistant times, and in the case of multivariate processes
it is typically the case that not any observation of one component coincides with observations of
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all the others. For this reason, there has always been some interest in the generalization of meth-
ods for regular sampling schemes to more realistic frameworks. This includes in particular the
(simpler) case of continuous Itô semimartingales. See, for example, [7] or [20] for the asymptotic
properties of power variations in the univariate setting, or [8] and [9] on estimation of covariation
for bivariate processes.

Even more complicated is the situation when the underlying processes contain jumps. In this
case, the (few) existing results involving irregular observations have mostly focused on the uni-
variate situation. Consistency results for certain power variations can be found in Chapter 3 of
[14], but associated central limit theorems are only given in the case where jumps do not play a
role asymptotically. See also [19] for consistency of a truncated Hayashi–Yoshida type estimator
for integrated covariation. On the other hand, [4] provide a central limit theorem which involves
non-trivial parts related to jumps, but only in the relatively simple case of realized volatility.

The aim of the present work therefore is twofold: First, we extend results from [16], provid-
ing a feasible test for simultaneous jumps of a bivariate process X = (X(1),X(2)) over [0, T ],
when observation times are asynchronous and irregular. As they discriminate between joint and
disjoint jumps by estimating an empirical correlation coefficient for the squares of the two jump
processes, namely

�
(d)
T =

∑
s≤T (�X

(1)
s )2(�X

(2)
s )2√∑

s≤T (�X
(1)
s )4

√∑
s≤T (�X

(2)
s )4

, (1.1)

we need an extension of the results from [4] to a multidimensional framework in order to estimate
�

(d)
T from irregular sampling schemes as well. Our technique here utilizes the heuristics behind

the standard Hayashi–Yoshida estimator for realized covariation in order to identify joint jumps,
and we believe that our results are of independent interest as quantities such as �

(d)
T also play a

central role in various other situations related to inference on jump processes.
Second, under the null hypothesis of no joint jumps we provide an associated central limit

theorem for our estimator of �
(d)
T . As the limiting variable, not only depends in a complicated

way on the characteristics of X, but also on unknown variables which are due to the fine structure
of the sampling scheme, we provide a bootstrap procedure in order to estimate critical values of
our final test statistic. An extensive simulation study shows that our test has a similar finite
sample behaviour as the standard test by [16] when the (random) number of observations in both
components equals on average the fixed number of observations in the simple regular case. This
is remarkable when it comes to practical applications, as no additional synchronization step is
necessary which inevitably causes a loss of data and therefore leads to a loss in efficiency.

The remainder of the paper is organized as follows: Section 2 deals with the formal setting in
this work, and we introduce our estimator for �

(d)
T as well as minor assumptions under which

consistency holds. In Section 3, we need stronger conditions, as we are interested in the associ-
ated central limit theorem. The bootstrap procedure leading to the final test statistic is introduced
in Section 4, while its finite sample properties are investigated in Section 5. All proofs are gath-
ered in the Appendix.
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2. Setting and test statistic

Our goal in the sequel is to derive a statistical test based on high-frequency observations which
allows to decide whether two processes do jump at a common time or not. We consider the
following model for the process and the observation times: Let X = (X(1),X(2))∗ be a two-
dimensional Itô semimartingale on (�,F,P) of the form

Xt = X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs +

∫ t

0

∫
R2

δ(s, z)1{‖δ(s,z)‖≤1}(μ − ν)(ds, dz)

(2.1)

+
∫ t

0

∫
R2

δ(s, z)1{‖δ(s,z)‖>1}μ(ds, dz),

where W = (W(1),W(2))∗ is a two-dimensional standard Brownian motion, μ is a Poisson ran-
dom measure on R

+ ×R
2, and its predictable compensator satisfies ν(ds, dz) = ds ⊗ λ(dz) for

some σ -finite measure λ on R
2 endowed with the Borelian σ -algebra. b is a two-dimensional

adapted process,

σs =
(

σ (1)
s 0

ρsσ
(2)
s

√
1 − ρ2

s σ (2)
s

)

is a (2×2)-dimensional process and δ is a two-dimensional predictable process on �×R
+ ×R

2.
σ

(1)
s , σ

(2)
s and ρs ∈ [−1,1] are all univariate adapted. We write �Xs = Xs − Xs− with Xs− =

limt↗s Xt for a possible jump of X in s.
The observation times are given by

πn = {(
t
(1)
i,n

)
i∈N0

,
(
t
(2)
i,n

)
i∈N0

}
, n ∈ N,

where (t
(l)
i,n)i∈N0, l = 1,2, are increasing sequences of stopping times with t

(l)
0,n = 0. By

|πn|T = sup
{
t
(l)
i,n ∧ T − t

(l)
i−1,n ∧ T |i ≥ 1, l = 1,2

}
we denote the mesh of the observation times up to T . See Figure 1 for an illustration. Throughout
the paper, we use n as an unobservable variable governing the observations and the asymptotics
which does not appear in the statistics used later on.

We introduce the following subsets of � to formalize the hypotheses:

�
(d)
T = {

ω ∈ � : ∃s1, s2 ∈ [0, T ] with �X(1)
s1

�= 0 and �X(2)
s2

�= 0,

but �X(1)
s �X(2)

s = 0 ∀s ∈ [0, T ]},
�

(j)
T = {

ω ∈ � : ∃s ∈ [0, T ] with �X(1)
s �X(2)

s �= 0
}
,

�
(c)
T = {

ω ∈ � : �X(1)
s = 0 ∀s ∈ [0, T ] or �X(2)

s = 0 ∀s ∈ [0, T ]}.
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Figure 1. A realization of the observation scheme πn restricted to [0, T ].

Hence, �
(d)
T is the set where X(1) and X(2) are both discontinuous on [0, T ] but do not jump

together, �
(j)
T is the set where X(1) and X(2) have at least one common jump in [0, T ], and �

(c)
T

is the set where at least one of the processes X(1) or X(2) is continuous on [0, T ]. Our goal in
this paper is to find a testing procedure for deciding whether an observation is from �

(d)
T or from

�
(j)
T . This means in particular that we focus on a specific path of X, and it might be that the

underlying model allows for joint jumps but none of them occurs on the observed path up to
time T . In such a case the hypothesis of joint jumps should be rejected. Also, it is reasonable to
apply a test for jumps in any of the processes (like the one from [1]) prior to the analysis, as one
does not know a priori whether ω ∈ �

(c)
T or not.

All our test statistics are based on the increments

�
(l)
i,nX = X

(l)

t
(l)
i,n

− X
(l)

t
(l)
i−1,n

, i ≥ 1, l = 1,2,

and we denote by I(l)
i,n = (t

(l)
i−1,n, t

(l)
i,n], l = 1,2, the corresponding observation intervals. For a

function f : R2 → R we set

V (f,πn)T =
∑

i,j :t (1)
i,n ∧t

(2)
j,n≤T

f
(
�

(1)
i,nX,�

(2)
j,nX

)
1{I(1)

i,n ∩I(2)
j,n �=∅}

in the style of the Hayashi–Yoshida estimator for the quadratic covariation ([8]), and for a func-
tion g : R→R we define

V (l)(g,πn)T =
∑

i:t (l)i,n≤T

g
(
�

(l)
i,nX

)
, l = 1,2.



3526 O. Martin and M. Vetter

In particular, as we are interested in estimating �
(d)
T from (1.1), we consider these expressions

for the functions f (x) = (x1x2)
2 and g(x) = x4. Then our main statistic becomes

�̃
(d)
n,T = V (f,πn)T√

V (1)(g,πn)T V (2)(g,πn)T
,

whose asymptotics we are going to study and which will be used to construct an asymptotic test.
In order to describe the asymptotics of �̃

(d)
n,T we set

BT =
∑
s≤T

(
�X(1)

s

)2(
�X(2)

s

)2
, B

(l)
T =

∑
s≤T

(
�X(l)

s

)4 for l = 1,2,

so that

�
(d)
T = BT√

B
(1)
T B

(2)
T

.

Obviously, �
(d)
T is well-defined on the complement of �

(c)
T only, and in this case it can be inter-

preted as the correlation between the squared jumps of X(1) and X(2): �
(d)
T is always in [0,1],

and it is equal to 0 if and only if there are no common jumps and equal to 1 if and only if there
exists a constant c > 0 with (�X

(1)
s )2 = c(�X

(2)
s )2 for all s ≤ T . Note that working with the cor-

relation of squared jumps is convenient as the corresponding power variations in the definition
of �̃

(d)
n,T have limits which do not include the volatility. This is in general not the case for smaller

powers.
In order to derive results on the asymptotic behaviour of �̃

(d)
n,T , we require the following as-

sumptions on the process X and the observation scheme πn.

Condition 2.1. The process bs is locally bounded and the processes σ
(1)
s , σ

(2)
s , ρs are càdlàg.

Furthermore, there exists a locally bounded process �s with ‖δ(ω, s, z)‖ ≤ �s(ω)γ (z) for some
deterministic bounded function γ which satisfies

∫
(γ (z)2 ∧ 1)λ(dz) < ∞. The sequence of ob-

servation schemes (πn)n fulfills

|πn|T P−→ 0.

The assumption on the components of X is close to condition (H) in earlier work of Jacod
(compare Assumption (H) in [16] or Assumption 4.4.2 in [14]) and not very restrictive, as it
covers a variety of models studied in financial mathematics. In fact, we are able to incorporate
various dependencies between the price process Xt and the stochastic volatility process σt as well
as dependence between jumps in the price and in the volatility process. Assuming additionally
that σ

(1)
s , σ

(2)
s , ρs have continuous paths as in [4] would simplify the structure of the asymptotics

and the proofs. However, there is empirical evidence that volatility jumps do exist and that they
even occur at common times with jumps in the price (see, e.g., [17] or [23]). This is why we
construct a statistical test that works also within this setting.
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Regarding the observation scheme, we are able to work in the general setting of increasing
stopping times with vanishing mesh in order to derive consistency of the estimator �̃

(d)
n,T . This

is a minimal condition since we consider properties like the presence of jumps in the observed
path which depend on knowledge of the entire path in continuous time. The result itself might be
of its own interest, as it generalizes results from Section 3 of [14] to the case of asynchronicity.
However, for the construction of a central limit theorem in Section 3 we are not able to work
within this general setting. Although in practice a theory for endogeneous observation times
might be desirable, previous research shows that even in simple situations it is difficult to derive
central limit theorems (see [6] or [24]). For this reason, we restrict ourselves in Section 3 to
exogeneous observation times which still cover a lot of random and irregular sampling schemes.
We will see that already in this setting the asymptotic theory becomes significantly more difficult
compared to the framework of equidistant observations.

Speaking of consistency only, we are able to prove

V (f,πn)T
P−→ BT , (2.2)

V (l)(g,πn)T
P−→ B

(l)
T , l = 1,2, (2.3)

whenever Condition 2.1 holds. Note that (2.3) already follows from Theorem 3.3.1 in [14] while
the first statement (2.2) needs a generalization of this theorem to the setting of asynchronous
observations.

Theorem 2.2. Let X be an Itô semimartingale of the form (2.1) and (πn)n be a sequence of
observation schemes such that Condition 2.1 is fulfilled. Then we have

�̃
(d)
n,T

P−→ �
(d)
T

on the complement of �
(c)
T .

Theorem 2.2 states that �̃
(d)
n,T converges to 0 on the set �

(d)
T and to a strictly positive limit on

�
(j)
T . So a natural test for the null ω ∈ �

(d)
T against ω ∈ �

(j)
T makes use of a critical region of the

form

Cn = {
�̃

(d)
n,T > cn

}
(2.4)

for a suitable, possibly random sequence (cn)n∈N. In order to choose cn such that the test has a
certain level α we need knowledge of the asymptotic behaviour of �̃

(d)
n,T on �

(d)
T , which will be

developed in form of a central limit theorem in the next section.

3. Central limit theorem

In order to derive a central limit theorem, we first have to specify the asymptotics of the observa-
tion scheme. The methodology and hence the notation in this section are inspired by the results
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in Section 4 of [4]. We start by defining the following two functions for n ∈ N

Gn(t) = n
∑

i,j :t (1)
i,n ∧t

(2)
j,n≤t

∣∣I(1)
i,n ∩ I(2)

j,n

∣∣2,
Hn(t) = n

∑
i,j :t (1)

i,n ∧t
(2)
j,n≤t

∣∣I(1)
i,n

∣∣∣∣I(2)
j,n

∣∣1{I(1)
i,n ∩I(2)

j,n �=∅}.

Here, |A| denote the Lebesgue measure of a Borel set A.
Let i

(l)
n (s) denote the index of the observation interval of X(l) containing s, that is, i

(l)
n (s) is

defined via

s ∈ I(l)

i
(l)
n (s),n

.

Set Wt = (W
(1)
t , ρtW

(1)
t +

√
1 − ρ2

t W
(2)
t )∗ such that W

(l)
is the Brownian motion driving the

process X(l) for l = 1,2. We denote

η
(l)
n,−(s) =

∑
j :I(l)

j,n≤T

(
�

(l)
j,nW

)21{I(l)
j,n∩I(3−l)

i
(3−l)
n (s),n

�=∅∧j<i
(l)
n (s)},

η
(l)
n,+(s) =

∑
j :I(l)

j,n≤T

(
�

(l)
j,nW

)21{I(l)
j,n∩I(3−l)

i
(3−l)
n (s),n

�=∅∧j>i
(l)
n (s)},

(3.1)

for l = 1,2. Following [4], we denote by

τ
(l)
n,−(s) = sup

{
t
(l)
i,n|t (l)i,n < s

}
, τ

(l)
n,+(s) = inf

{
t
(l)
i,n|t (l)i,n ≥ s

}
, l = 1,2,

the observation times immediately before and after time s. Using this notation, we set

δ
(l)
n,−(s) = s − τ

(l)
n,−(s), δ

(l)
n,+(s) = τ

(l)
n,+(s) − s, l = 1,2.

Then we have the identity∑
j :I(l)

j,n∩I(3−l)

i
(3−l)
n (s),n

�=∅

(
�

(l)
j,nW

)2

= η
(l)
n,−(s) + [(

δ
(l)
n,−(s)

)1/2((
W

(l)

s − W
(l)

τ
(l)
n,−(s)

)
/
(
δ
(l)
n,−(s)

)1/2)
(3.2)

+ (
δ
(l)
n,+(s)

)1/2((
W

(l)

τ
(l)
n,+(s)

− W
(l)

s

)
/
(
δ
(l)
n,+(s)

)1/2)]2 + η
(l)
n,+(s)

for the sum over the squared increments of the Brownian motions driving the processes X(l),
l = 1,2, over intervals I(l)

j,n which overlap with the observation interval I(3−l)
in(s),n containing s. See
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η
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n,+(s) = 0Intervals for η
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�
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i
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s
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Figure 2. Illustration of Z
(1)
n (s) at a time s where X(2) jumps.

Figure 2 for an illustration. We distinguish between increments of W
(l)

before and after s to
allow for different volatilities immediately before and after s due to a volatility jump at time s,
and we write

Z(l)
n (s) = (

nη
(l)
n,−(s), nη

(l)
n,+(s), nδ

(l)
n,−(s), nδ

(l)
n,+(s)

)∗
to shorten notation. Even though the driving Brownian motions W

(l)
are in general dependent,

we will see that the limiting variables of Z
(1)
n (s) and Z

(2)
n (s) can be chosen to be independent, as

under the null hypothesis both variables never occur at the same time in the limit.
The following condition comprises the assumptions on the asymptotics of the sequence of

observation schemes (πn)n which are needed for the derivation of a central limit theorem. While
the first one is a rather mild assumption on the mesh of the sampling scheme, the other two
conditions ensure a kind of local regularity which is needed to deduce convergence both of the
purely continuous part and the cross part in the limit. Analogous conditions are needed in [4]
to derive a central limit theorem for the Hayashi–Yoshida estimator for the covariation process
with jumps, and assumptions similar to Condition 3.1(i) and (ii) have also occurred in [10] when
deriving the asymptotics of the Hayashi–Yoshida estimator for the covariation process without
jumps.

Condition 3.1. The process X and the sequence of observation schemes (πn)n fulfill Condi-
tion 2.1, and the observation times are exogenous, that is, independent of the process X and its
components.

(i) It holds

E
[(|πn|T

)2] = o
(
n−1).

(ii) The functions Gn(t) and Hn(t) converge pointwise on [0, T ] in probability to strictly
increasing continuous functions G,H : [0,∞) → [0,∞).
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(iii) For all integers k1, k2 and all bounded continuous functions g : Rk1+k2 → R and h
(l)
p :

R
4 →R, p = 1, . . . , kl , l = 1,2, the integral∫

[0,T ]k1+k2
g
(
x1, . . . , xk1, x

′
1, . . . , x

′
k2

)
E

[
k1∏

p=1

h(1)
p

(
Z(1)

n (xp)
)

(3.3)

×
k2∏

p=1

h(2)
p

(
Z(2)

n

(
x′
p

))]
dxk1 · · · dx1 dx′

k2
· · · dx′

1

converges to∫
[0,T ]k1+k2

g
(
x1, . . . , xk1, x

′
1, . . . , x

′
k2

) k1∏
p=1

∫
R

h(1)
p (y)�(1)(xp, dy)

(3.4)

×
k2∏

p=1

∫
R

h(2)
p

(
y′)�(2)

(
x′
p, dy′)dxk1 · · · dx1 dx′

k2
· · · dx′

1

as n → ∞. Here, �(l)(·, dy), l = 1,2, are families of probability measures on [0,∞)2 ×
(0,∞)2 such that the first moments are uniformly bounded.

Because of the exogeneity of the observation times we may assume in the following that the
probability space has the form

(�,F ,P) = (�X × �S ,X ⊗ S,PX ⊗ PS),

where X denotes the σ -algebra generated by X and its components and S denotes the σ -algebra
generated by the observation schemes (πn)n.

As usual when power variations for orders higher than two are considered, the limiting term
in the central limit theorem will be comprised of a continuous term and a cross term which con-
tains the continuous part of one process and the jumps of the other process. The term originating
from the continuous part is given by

C̃T =
∫ T

0
2
(
ρsσ

(1)
s σ (2)

s

)2
dG(s) +

∫ T

0

(
σ (1)

s σ (2)
s

)2
dH(s),

where the integrals are well defined as Lebesgue–Stieltjes integrals because G, H are increasing
(as Gn, Hn are increasing) and continuous and hence define measures on (R,B(R)). Here, the
differentials dG and dH are a measure for the asymptotic density of observation times in a
given time interval. Two different functions are needed because the products of increments over
overlapping and non-overlapping observation intervals have different variances.

The limiting quantity originating from the cross terms of the continuous part and the jumps is
given by

D̃T =
∑

p:Sp≤T

((
�X

(1)
Sp

)2
R(2)(Sp) + (

�X
(2)
Sp

)2
R(1)(Sp)

)
,
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where (Sp)p≥0 is an enumeration of the jump times of X. Here R(l)(s) is given by

R(l)(s) = (
σ

(2)
s−

)2
η

(l)
− (s) + (

σ
(l)
s−
(
δ
(l)
− (s)

)1/2
U

(l)
− (s) + σ (l)

s

(
δ
(l)
+ (s)

)1/2
U

(l)
+ (s)

)2

(3.5)
+ (

σ (2)
s

)2
η

(l)
+ (s), s ∈ [0, T ], l = 1,2,

where Z(l)(s) = (η
(l)
− (s), η

(l)
+ (s), δ

(l)
− (s), δ

(l)
+ (s))∗ are random variables defined on an extended

probability space (�̃, F̃, P̃). Their distribution is given by

P̃
Z(l)(x)(dy) = �(l)(x, dy),

where the U
(l)
− (s), U

(l)
+ (s) are i.i.d. N (0,1) random variables defined on (�̃, F̃, P̃) as well. The

Z(l)(s) and U
(l)
− (s), U

(l)
+ (s) are independent of each other and independent of the process X

and its components. It is worth mentioning that we do not consider common jumps, since we
derive the central limit theorem under the null hypothesis of no common jumps. This leads to
independent Z(l)(s) which simplifies the structure of the limiting variables compared to [4]. On
the other hand, the form of the limiting object becomes more complex due to adding volatility
jumps.

Using the above notation, we derive the following central limit theorem on �
(d)
T .

Theorem 3.2. If Condition 3.1 is fulfilled, we have the X -stable convergence

n�̃
(d)
n,T

L−s−→ �̃T = C̃T + D̃T√
B1

T B2
T

(3.6)

on the set �
(d)
T .

The central limit theorem states that n�̃
(d)
n,T converges X -stably in law on the set �

(d)
T to a

random variable �̃T on an extended probability space (�̃, F̃, P̃) which means that we have

E
[
g
(
n�̃

(d)
n,T

)
Y1

�
(d)
T

] → Ẽ
[
g(�̃T )Y1

�
(d)
T

]
for all bounded and continuous functions g and all X -measurable bounded random variables Y .
For more background information on stable convergence in law, we refer to [14], [15] and [21].

Example 3.3. Let us discuss the standard setting of equidistant and synchronous observations
times. In this case, t (l)i,n = i/n, so we have |πn|T = n−1. Hence Condition 2.1 and Condition 3.1(i)
are trivially fulfilled. Furthermore,

Hn(t) = Gn(t) = n

�t/n�∑
i=1

(1/n)2 → t,
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which yields Condition 3.1(ii). We also have η
(l)
n,−(s) = η

(l)
n,+(s) = 0 and δ

(l)
n,−(s) + δ

(l)
n,+(s) = 1

for all s ∈ [0, T ], l = 1,2.
Note that the outer integral in (3.3) can be interpreted as the expectation with regard to

k1 + k2 independent uniformly distributed random variables Sp on [0, T ]. Then, as the variables

(nδ
(l)
n,−(Sp), nδ

(l)
n,+(Sp)) are distributed like (κ,1 − κ) with κ ∼ U [0,1], we obtain the limiting

distribution as Z(l)(x) ∼ (0,0, κ(l)(x),1 − κ(l)(x)) for independent κ(l)(x) ∼ U [0,1]. Standard

arguments further show that Z
(l)
n (Sp) and Z

(l′)
n (Sp′) are asymptotically independent for p �= p′.

Hence, Condition 3.1(iii) is satisfied and we have (3.6) with

C̃T =
∫ T

0

(
2
(
ρsσ

(1)
s σ (2)

s

)2 + (
σ (1)

s σ (2)
s

)2)
ds,

D̃T =
∑

p:Sp≤T

((
�X

(1)
Sp

)2(
σ

(2)
Sp−

(
κ(2)
p

)1/2
U

(2)
p,− + σ

(2)
Sp

(
1 − κ(2)

p

)1/2
U

(2)
p,+

)2

+ (
�X

(2)
Sp

)2(
σ

(1)
Sp−

(
κ(1)
p

)1/2
U

(1)
p,− + σ

(1)
Sp

(
1 − κ(1)

p

)1/2
U

(1)
p,+

)2)
,

for independent standard normal distributed random variables U
(l)
p,−, U

(l)
p,+ and independent

U [0,1] random variables κ(l), l = 1,2. Of course, these terms are identical to the corresponding
terms CT and D̃T in (3.12) and (3.14) of [16], and Theorem 3.2 becomes Theorem 4.1(a) of [16]
in this setting.

In order to illustrate the theory laid out above, we also want to discuss a truly irregular and
random setting. Specifically, we consider observation times which are given by the jump times
of Poisson processes, but our conditions cover various other sampling schemes as well. Note
that Poisson sampling has been discussed frequently in the literature; see, for example, [4] and
[9].

Example 3.4. Let the observation times of X(1) and X(2) be given by the jump times of inde-
pendent Poisson processes with intensities nλ1 and nλ2. Lemma 8 from [9] states

E
[(|πn|T

)q]= o
(
n−α

)
(3.7)

for any 0 ≤ α < q , so both Condition 2.1 and Condition 3.1(i) are satisfied. In addition,
Proposition 1 in [9] gives Condition 3.1(ii) via

Gn(t)
P−→ 2

λ1 + λ2
t,

Hn(t)
P−→

(
2

λ1
+ 2

λ2

)
t.

Finally, we show that Condition 3.1(iii) is satisfied. Note first that the distributions of the sam-
pling scheme π1 and the rescaled nπn are identical. Therefore, the distributions of Z

(l)
n (s) and
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Z
(l)
1 (ns) are identical, and the distribution of the latter only depends on s through the fact that

the backward waiting times for the previous observations are bounded by ns. This effect be-
comes asymptotically irrevelant as n grows, thus Z

(l)
n (s) converges. Note also that the Z

(l)
n (s)

are asymptotically independent because the Wiener process W and the Poisson processes have
independent increments and the Z

(l)
n (Sp) overlap asymptotically with diminishing probability.

Therefore the factorization of the expectations in (3.4) holds.
By symmetry, we focus on Z(1)(s) only which can be constructed from elementary distribu-

tions. Let E
(1)
k,−,E

(1)
k,+ ∼ Exp(λ1), k ∈ N, and E

(2)
− ,E

(2)
+ ∼ Exp(λ2) be independent exponen-

tially distributed random variables. Then, after rescaling, the lengths of the intervals around
s are by the memorylessness of the exponential distribution asymptotically distributed like
E

(1)
1,− + E

(1)
1,+ and E

(2)
− + E

(2)
+ while the other intervals in η

(1)
− (s) and η

(1)
+ (s) are Exp(λ1)-

distributed. Then, if (Uk,−)k∈N, (Uk,+)k∈N are i.i.d. N (0,1) random variables, it is easy to de-
duce that

Z(1)(s)
L= (

η
(1)
− (s), η

(1)
+ (s),E

(1)
1,−,E

(1)
1,+

)∗ (3.8)

holds, where we set

η
(1)
− (s) =

∞∑
k=2

E
(1)
k,−(Uk,−)21{∑k−1

j=1 E
(1)
k,−<E2−},

η
(1)
+ (s) =

∞∑
k=2

E
(1)
k,+(Uk,+)21{∑k−1

j=1 E
(1)
k,+<E2+}.

4. Testing for disjoint jumps

We will introduce a test which makes use of a critical region of the form (2.4). In Section 3, we
have derived a central limit theorem for �̃

(d)
n,T . However, this result can not directly be applied

for determining cn, since the law of the limiting variable in Theorem 3.2 is itself random and not
known to the statistician. Hence, in order to develop a statistical test we need to estimate the law
of the limiting variable �̃T .

Estimating the continuous term C̃T in �̃T boils down to estimating the continuous part of X.
This can be done using truncated increments as, for example, in (4.5) of [16]. With β > 0 and
� ∈ (0,1/2) we set

An,T = n
∑

i,j :t (1)
i,n ∧t

(2)
j,n≤T

(
�

(1)
i,nX(1)

)2(
�

(2)
j,nX

(2)
)2

× 1{|�(1)
i,nX(1)|≤β|I(1)

i,n |� ∧|�(2)
j,nX(2)|≤β|I(2)

j,n|� }1{I(1)
i,n ∩I(2)

j,n �=∅}.

In order to estimate the law of D̃T in �̃T we need to estimate the law of the Z(l)(s) first, which
is not known in practice unless one imposes knowledge on the nature of the sampling scheme.
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In principle, we would like to introduce a Monte Carlo approach and simulate the quantiles of
D̃T , and a first approach obviously is to replace the increments of the Brownian motion in (3.1)
and (3.2) by appropriately scaled realizations of standard normal random variables. However, we
have to scale by the lengths of the observation intervals which follow an unknown distribution.
Also the distribution of nδ

(l)
n,−(s), nδ

(l)
n,+(s) (and therefore of δ

(l)
− (s), δ

(l)
+ (s)) is unknown. To

circumvent this issue we use a bootstrap method and estimate the distribution of the observation
intervals as well. The idea here is to estimate their distribution around time s by using Z

(l)
n (u) for

u close to s. In order for this procedure to work, we will introduce a local homogeneity condition
later, in the sense that Z

(l)
n (s) and Z

(l)
n (s′) have similar distributions for small values of |s − s′|

but remain asymptotically independent.
To formalize, let (Kn)n and (Mn)n denote deterministic sequences of integers which tend to

infinity. Here, 2Kn + 1 equals the number of intervals I(3−l)

i
(3−l)
n (s)+k,n

, |k| ≤ Kn, from which we

pick u to bootstrap Mn realizations of Z
(l)
n (s). For any s ∈ (0, T ) we define the random variables

η̂
(l)
n,m,−(s) = n

∑
i:I(l)

i,n≤T

∣∣I(l)
i,n

∣∣(U(l)
n,i,m

)21{I(l)
i,n∩I(3−l)

i
(3−l)
n (s)+V

(l,3−l)
n,m (s),n

�=∅∧i<i
(l)
n (s)+V

(l,l)
n,m (s)},

η̂
(l)
n,m,+(s) = n

∑
i:I(l)

i,n≤T

∣∣I(l)
i,n

∣∣(U(l)
n,i,m

)21{I(l)
i,n∩I(3−l)

i
(3−l)
n (s)+V

(l,3−l)
n,m (s),n

�=∅∧i>i
(l)
n (s)+V

(l,l)
n,m (s)},

δ̂
(l)
n,m,−(s) = n

(
κ(l)
n,m(s)

∣∣I(l)

i
(l)
n (s)+V

(l,l)
n,m (s),n

∩ I(3−l)

i
(3−l)
n (s)+V

(l,3−l)
n,m (s),n

∣∣
+ (

t
(3−l)

i
(3−l)
n (s)+V

(l,3−l)
n,m (s)−1,n

− t
(l)

i
(l)
n (s)+V

(l,l)
n,m (s)−1,n

)+)
,

δ̂
(l)
n,m,+(s) = n

∣∣I(l)

V
(l,l)
n,m (s),n

∣∣− δ̂
(l)
n,m,−(s),

l = 1,2. The U
(l)
n,i,m are i.i.d. N (0,1), the κ

(l)
n,m(s) are i.i.d. U [0,1] random variables and the

V
(l,l)
n,m (s), V

(l,3−l)
n,m (s) are distributed according to

P̃
((

V (l,l)
n,m (s),V (l,3−l)

n,m (s)
) = (k1, k2)|S

)
= ∣∣I(l)

i
(l)
n (s)+k1,n

∩ I(3−l)

i
(3−l)
n (s)+k2,n

∣∣
×
( ∑

j1∈Z,|j2|≤Kn

∣∣I(l)

i
(l)
n (s)+j1,n

∩ I(3−l)

i
(3−l)
n (s)+j2,n

∣∣)−1

, (k1, k2) ∈ Z× {−Kn, . . . ,Kn},

where the (V
(l,l)
n,m (s),V

(l,3−l)
n,m (s)) are S-conditionally independent as m = 1, . . . ,Mn varies. All

newly introduced random variables are defined on (�̃, F̃, P̃) as well. By construction,

Ẑ(l)
n,m(s) = (

η̂
(l)
n,m,−(s), η̂

(l)
n,m,+(s), δ̂

(l)
n,m,−(s), δ̂

(l)
n,m,+(s)

)∗
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(�)

s

Intervals for η̂
(l)
n,m,−(s) Intervals for η̂

(l)
n,m,+(s)δ̂

(l)
n,m,−(s) δ̂

(l)
n,m,+(s)

|I(l)

i
(l)
n (s)−2,n

∩ I(3−l)

i
(3−l)
n (s)−1,n

|

X(l)

X(3−l)

(�) = t
(l)

i
(l)
n (s)−2−1,n

∨ t
(3−l)

i
(3−l)
n (s)−1−1,n

+ κ
(l)
n,m(s)|I(l)

i
(l)
n (s)−2,n

∩ I(3−l)

i
(3−l)
n (s)−1,n

|

Figure 3. Realization of Ẑ
(l)
n,m(s) for V

(l,l)
n,m = −2, V

(l,3−l)
n,m (s) = −1.

then equals a mixture of the Z
(l)
n (u) for u ∈ [t (3−l)

i
(3−l)
n (s)−Kn−1,n

, t
(3−l)

i
(3−l)
n (s)+Kn,n

] where in η
(l)
n,−(u),

η
(l)
n,+(u) the rescaled increments of the Brownian motion are replaced by independent nor-

mally distributed random variables. By the choice of the distribution for (V
(l,l)
n,m (s),V

(l,3−l)
n,m (s))

and κ
(l)
n,m(s) we obtain further that u in the mixture is chosen uniformly from the interval

[t (3−l)

i
(3−l)
n (s)−Kn−1,n

, t
(3−l)

i
(3−l)
n (s)+Kn,n

]. This makes sense intuitively, as the jump times of an Itô semi-

martingale (2.1) are also uniformly distributed in time. An example can be found in Figure 3.
Consistent estimators for the jumps �X

(l)
s , the volatility (σ

(l)
s )2 and for (σ

(l)
s−)2, l = 1,2, are

given by

�̂nX
(l)(s) = (

�
(l)

i
(l)
n (s),n

X
)
1{|�(l)

i
(l)
n (s),n

X|>β|I(l)

i
(l)
n (s),n

|� },

(
σ̂ (l)

n (s,+)
)2 = 1

bn

∑
i:t (l)i−1,n∈[s,s+bn]

(
�

(l)
i,nX

)2
,

(
σ̂ (l)

n (s,−)
)2 = 1

bn

∑
i:t (l)i,n∈[s−bn,s)

(
�

(l)
i,nX

)2
,

(4.1)

where β > 0 and � ∈ (0,1/2), and bn is a sequence with bn → 0 and |πn|T /bn
P−→ 0.

Using these estimators, we define

D̂T ,n,m =
∑
l=1,2

∑
i:t (l)i,n≤T

(
�

(l)
i,nX

)21{|�(l)
i,nX|>β|I(l)

i,n|� }R̂
(3−l)
n,m

(
t
(l)
i,n

)
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with

R̂(l)
n,m(s) = (

σ̂ (l)
n (s,−)

)2
η̂

(l)
n,m,−(s) + (

σ̂ (l)
n (s,−)

(
δ̂
(l)
n,m,−(s)

)1/2
U

(l)
n,m,−(s)

+ σ̂ (l)
n (s,+)

(
δ̂
(l)
n,m,+(s)

)1/2
U

(l)
n,m,+(s)

)2

+ (
σ̂ (l)

n (s,+)
)2

η̂
(l)
n,m,+, s ∈ [0, T ], l = 1,2,

and for α ∈ [0,1] we set

Q̂n,T (α) = Q̂α

({D̂T ,n,m|m = 1, . . . ,Mn}
)
,

where Q̂α(B) denotes the �αN�th largest element of a set B with N ∈ N elements. We will see
that these expressions consistently estimate the X -conditional α quantile of D̃T on �

(d)
T which

is defined as the X -measurable random variable Q(α) ∈ [0,∞] fulfilling

P
(
D̃T ≤ Q(α)|X )

(ω) = α for almost all ω ∈ �
(d)
T (4.2)

and we set (Q(α))(ω) = 0 for ω ∈ (�
(d)
T )C . Note that Q(α) is well defined for α ∈ [0,1] as the

X -conditional distribution of D̃T restricted to �
(d)
T is continuous and has strictly positive density

on [0,∞) by Condition 3.1(iii) and Condition 4.1.
The following condition summarizes all additional assumptions we need in order to ob-

tain an asymptotic test. It ensures in particular that the volatility does not vanish, which
yields D̃T > 0 almost surely, and by (4.3) that the empirical distribution of the Ẑ

(l)
n,m(s) =

(η̂
(l)
n,m,−(s), η

(l)
n,m,+(s), δ

(l)
n,m,−(s), δ

(l)
n,m,+(s))∗ for m = 1, . . . ,Mn converges to the non-degenerate

distribution of Z(l)(s) which is essential for the bootstrap method to work.

Condition 4.1. The process X and the sequence of observation schemes (πn)n satisfy Condi-

tion 3.1, and {s ∈ [0, T ] : σ
(1)
s σ

(2)
s = 0} is a Lebesgue null set. (bn)n fulfills |πn|T /bn

P−→ 0,

(Kn)n and (Mn)n are sequences of integers converging to infinity, and |πn|T Kn
P−→ 0. Addi-

tionally,

P̃
(|̃P(Ẑ(lj )

n,1 (sj ) ≤ xj , j = 1, . . . , J
∣∣S)− P̃

(
Z(lj )(sj ) ≤ xj , j = 1, . . . , J

)∣∣> ε
)→ 0 (4.3)

as n → ∞, for all ε > 0, J ∈ N, x = (x1, . . . , xJ ) ∈ R
J×4, lj ∈ {1,2} and sj ∈ (0, T ),

j = 1, . . . , J , with si �= sj for i �= j .

Theorem 4.2. If Condition 4.1 is satisfied, the test defined in (2.4) with

cn = An,T + Q̂n,T (1 − α)

n
√

V (1)(g,πn)T V (2)(g,πn)T
, α ∈ [0,1],

has asymptotic level α in the sense that we have

P̃
(
�̃

(d)
n,T > cn|F (d)

)→ α (4.4)
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for all F (d) ⊂ �
(d)
T with P(F (d)) > 0. Because of

P̃
(
�̃

(d)
n,T > cn|F (j)

)→ 1 (4.5)

for all F (j) ⊂ �
(j)
T with P(F (j)) > 0 it is consistent as well.

Although n appears in the definition of cn it is not used for the computation of cn as it also
occurs linearly in An,T and Q̂n,T (1 − α). It enters indirectly through the choice of bn, Kn, Mn,
however, for which usually just a rough idea of the magnitude of n is needed.

Example 4.3. If the sampling scheme is deterministic, then (4.3) holds in all situations where a
minimal local regularity is assumed. This is in particular the case for the setting of synchronous
equidistant observation times as in Example 3.3 where our estimator Q̂n,T (1 − α) equals the
estimator Z

(d)
n (α) defined in (5.10) of [16] for Nn = Mn and any choice of Kn (not necessarily

converging to infinity).

Example 4.4. Regarding the Poisson setting from Example 3.4, |πn|T /bn
P−→ 0 follows from

(3.7) for every bn = O(n−α) with α ∈ (0,1). Showing that (4.3) holds, however, is rather tedious
and postponed to Section 5.

5. Simulation results

We conduct a simulation study to verify the finite sample properties of the introduced methods.
Our benchmark model is the one from Section 6 of [16], as we use the same configuration as
in their paper to compare our approach to the case of equidistant and synchronous observations.
The model for X is given by

dX
(1)
t = X

(1)
t σ1 dW

(1)
t + α1

∫
R

X
(1)
t− x1μ1(dt, dx1) + α3

∫
R

X
(1)
t− x3μ3(dt, dx3),

dX
(2)
t = X

(2)
t σ2 dW

(2)
t + α2

∫
R

X
(2)
t− x2μ2(dt, dx2) + α3

∫
R

X
(2)
t− x3μ3(dt, dx3),

where [W(1),W(2)]t = ρt and the Poisson measures μi are independent of each other and have
predictable compensators νi of the form

νi(dt, dxi) = κi

1[−hi ,−li ]∪[li ,hi ](xi)

2(hi − li )
dt dxi,

where 0 < li < hi for i = 1,2,3, and the initial values are X0 = (1,1)T . We consider the same
twelve parameter settings which were discussed in [16] of which six allow for common jumps
and six do not. In the case where common jumps are possible, we only use the simulated paths
which contain common jumps. For the parameters we set σ 2

1 = σ 2
2 = 8 × 10−5 in all scenarios

and choose the parameters for the Poisson measures such that the contribution of the jumps to
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Table 1. Parameter settings for the simulation

Parameters

Case ρ α1 κ1 l1 h1 α2 κ2 l1 h1 α3 κ3 l3 h3

I-j 0.0 0.00 • • • 0.00 • • • 0.01 1 0.05 0.7484
II-j 0.0 0.00 • • • 0.00 • • • 0.01 5 0.05 0.3187
III-j 0.0 0.00 • • • 0.00 • • • 0.01 25 0.05 0.1238
I-m 0.5 0.01 1 0.05 0.7484 0.01 1 0.05 0.7484 0.01 1 0.05 0.7484
II-m 0.5 0.01 5 0.05 0.3187 0.01 5 0.05 0.3187 0.01 5 0.05 0.3187
III-m 0.5 0.01 25 0.05 0.1238 0.01 25 0.05 0.1238 0.01 25 0.05 0.1238
I-d0 0.0 0.01 1 0.05 0.7484 0.01 1 0.05 0.7484 • • • •
II-d0 0.0 0.01 5 0.05 0.3187 0.01 5 0.05 0.3187 • • • •
III-d0 0.0 0.01 25 0.05 0.1238 0.01 25 0.05 0.1238 • • • •
I-d1 1.0 0.01 1 0.05 0.7484 0.01 1 0.05 0.7484 • • • •
II-d1 1.0 0.01 5 0.05 0.3187 0.01 5 0.05 0.3187 • • • •
III-d1 1.0 0.01 25 0.05 0.1238 0.01 25 0.05 0.1238 • • • •

the total variation remains approximately constant and matches estimations from real financial
data (see [11]). The parameter settings are summarized in Table 1 (compare Table 1 in [16]).

To model the observation times, we use the Poisson setting discussed in Examples 3.4 and 4.4
for λ1 = λ2 = 1, and set T = 1 which amounts on average to n observations of each X(1) and
X(2). We choose n = 100, n = 400 and n = 1600 for the simulation. In a trading day of 6.5 hours,
this corresponds to observing X(1) and X(2) on average every 4 minutes, every 1 minute and every
15 seconds. We set β = 0.03 and � = 0.49 for all occurring truncations. We use bn = 1/

√
n for

the local interval in the estimation of σ
(l)
s and Kn = �ln(n)�, Mn = n in the simulation of the

Ẑ
(l)
n,m(s). As discussed in Remark 5.5 of [16] the choice of the parameters β , � specifying the

truncation level is critical because it determines which increments are considered to be mostly
driven by jumps and which are not. We choose here the same values as in [16] and thereby follow
their recommendation to pick � close to 1/2 and β to be about 3 to 4 times the magnitude of
σ (which in general is unknown but can be easily estimated from the data). This choice for β is
reasonable as increments �

(l)
i,nX ≈ �

(l)
i,nC where the jump part is negligible are roughly normally

distributed with variance σ 2|I(l)
i,n|. Thereby these increments are filtered out with high probability

as a normal distributed random variable rarely exceeds 3 standard deviations. bn = 1/
√

n is
chosen in the center of the allowed range between a constant bn and bn = O(log(n)/n) which
balances the benefits from choosing bn small (smaller bias in the estimation of σ if σ is not flat)
and bn large (less variance in the estimation of σ ). This choice is also close to the optimal one
in the sense of Theorem 13.3.3 in [14] on the estimation of spot volatility. Kn is chosen rather
small to keep the computation time low, Mn is chosen to be large enough to justify a reasonable
approximation to the theoretical quantiles. In the simulation study the results were very robust to
the choice of bn, Kn, Mn.
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Figure 4. Empirical rejection curves from the Monte Carlo simulation for the test derived from Theo-
rem 4.2. The dotted line represents the results for n = 100, the dashed line for n = 400 and the solid line
for n = 1600. In each case, N = 10 000 paths were simulated.

In Figure 4, we display the results from the simulation. The plots are constructed as follows:
First for different values of α the critical values are simulated according to Theorem 4.2. Then
we plot the observed rejection frequencies against α.

The six plots on the left show the results for the cases where the alternative of common jumps
is true. In the cases I-j, II-j and III-j there exist only joint jumps and the Brownian motions W(1)

and W(2) are uncorrelated. In the cases I-m, II-m and III-m we have a mixed model which allows
for disjoint and joint jumps and also the Brownian motions are positively correlated. The prefixes
I, II and III indicate an increasing number of jumps present in the observed paths. Since our
choice of parameters is such that the overall contribution of the jumps to the quadratic variation
is roughly the same in all parameter settings, this corresponds to a decreasing size of the jumps.
Hence, in the cases I-* we have few big jumps while in the cases III-* we have many small
jumps.
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We see that the test has very good power against the alternative of common jumps. The power
is greater for small n if there are less and bigger jumps as can be seen from the dotted lines for
the cases I-j and I-m, because the bigger jumps are detected more easily. On the other hand the
power is greater for large n if there are more and smaller jumps which can be seen from the solid
lines for III-j and III-m, because then it is more probable that at least one of the common jumps
is detected and one small detected common jump is sufficient for rejecting the null.

The six plots on the right in Figure 4 show the results for the cases where the null hypothe-
sis is true. While in the cases *-d0 the Brownian motions W(1) and W(2) are uncorrelated, the
Brownian motions are perfectly correlated in the cases *-d1. The prefixes I, II and III stand for
an increasing number and a decreasing size of the jumps as in the first six cases.

Under the null of disjoint jumps, we see that the observed rejection frequencies match the
predicted asymptotic rejection probabilities from Theorem 4.2 very well in all six cases. There
are slight deviations for a higher number of jumps. This is due to the fact that disjoint jumps
whenever they lie close together, sometimes cannot be distinguished based on the observations
which leads to over-rejection under the null hypothesis. In the cases *-d1 where the Brownian
motions are perfectly correlated the rejection frequencies are systematically too high for large n.
The results are worse than in the cases *-d0.

In general, the results from the Monte Carlo are very similar to the results displayed in Figure 5
(note that the values for n there are 100, 1600 and 25 600) from [16]. On a closer look we observe
that the power of our test in the asynchronous setting is slightly worse than the power of the test
in the equidistant and synchronous setting while under the null hypothesis the rejection levels
match the asymptotic levels more closely than in [16]. The loss in power is most pronounced for
the smallest observation frequency n = 100 and in the range of at most a few percentage points
for the more relevant frequency n = 1600. Our results in the cases *-d1 are better than in [16]
because the effect of a high correlation in the Brownian motions has less influence on the test
statistic due to the asynchronicity.

All in all we conclude that there is no significant backdraw of working with asynchronous
observations instead of synchronous observations when testing for disjoint jumps in a bivariate
process. This is of great importance, as these results demonstrate that it is possible to construct a
test for disjoint jumps which works efficiently in the case of asynchronous and random observa-
tions without having to synchronize data first. Such procedures are well known in the literature,
but lead inevitably to a loss of data and, thus, power. Also, our methods are applicable in a quite
universal setting without additional knowledge on the underlying observation scheme.

Appendix: Proofs

A.1. Preliminaries

Throughout the proofs, we will assume that the processes bs , σ
(1)
s , σ

(2)
s , ρs and �s are bounded

on [0, T ]. They are all locally bounded by Condition 2.1. A localization procedure then shows
that the results for bounded processes can be carried over to the case of locally bounded processes
(see e.g. Section 4.4.1 in [14]).
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We introduce the decomposition Xt = X0 + B(q)t + Ct + M(q)t + N(q)t of the Itô semi-
martingale (2.1) with

B(q)t =
∫ t

0

(
bs −

∫ (
δ(s, z)1{‖δ(s,z)‖≤1} − δ(s, z)1{γ (z)≤1/q}

)
λ(dz)

)
ds,

Ct =
∫ t

0
σs dWs,

M(q)t =
∫ t

0

∫
δ(s, z)1{γ (z)≤1/q}(μ − ν)(ds, dz),

N(q)t =
∫ t

0

∫
δ(s, z)1{γ (z)>1/q}μ(ds, dz).

Here q is a parameter which controls whether jumps are classified as small jumps or big jumps.
We will make repeatedly use of the following estimates (compare Section 2.1.5 in [14]). Through-
out the proofs K and Kq will denote generic constants, the latter dependent on q , to simplify
notation.

Lemma A.1. There exist constants K,Kp,Kq, eq ≥ 0 such that∥∥B(q)s+t − B(q)s
∥∥2 ≤ Kqt2, (A.1)

E
[‖Cs+t − Cs‖p|Fs

] ≤ Kptp/2, (A.2)

E
[∥∥M(q)s+t − M(q)s

∥∥2|Fs

] ≤ Kteq, (A.3)

E
[∥∥N(q)s+t − N(q)s

∥∥2|Fs

] ≤ Kqt, (A.4)

for all s, t ≥ 0, q > 0, p ≥ 1. Here, eq can be chosen such that eq → 0 for q → ∞.

A.2. Proof of the consistency result

Proof of (2.2). We will show

lim
q→∞ lim sup

n→∞
P

(∣∣∣∣ ∑
i,j :t (1)

i,n ∧t
(2)
j,n≤T

(
�

(1)
i,nN(q)�

(2)
j,nN(q)

)2
1{I(1)

i,n ∩I(2)
j,n �=∅} − BT

∣∣∣∣> δ

)
→ 0 (A.5)

and

lim
q→∞ lim sup

n→∞
P

(∣∣∣∣V (f,πn)T −
∑

i,j :t (1)
i,n ∧t

(2)
j,n≤T

(
�

(1)
i,nN(q)�

(2)
j,nN(q)

)21{I(1)
i,n ∩I(2)

j,n �=∅}

∣∣∣∣> δ

)

→ 0

(A.6)
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for all δ > 0 from which (2.2) follows. This strategy, namely to artificially introduce auxiliary
parameters such as q which eventually converge as well, will be typical for the entire section on
proofs. In particular, we might even add further additional parameters.

For proving (A.5), we denote by �(n,q) the set on which two different jumps of N(q) are
further apart than 2|πn|T . On �(n,q) we have∑

i,j :t (1)
i,n ∧t

(2)
j,n≤T

(
�

(1)
i,nN(q)�

(2)
j,nN(q)

)21{I(1)
i,n ∩I(2)

j,n �=∅} =
∑
s≤T

(
�N(1)(q)s

)2(
�N(2)(q)s

)2
. (A.7)

Note that the right-hand side of (A.7) converges to BT almost surely as q → ∞. Thus, (A.5)
follows since P(�(n, q)) → 1 for n → ∞.

For proving (A.6), we introduce the elementary inequality∣∣(a1 + b1 + c1 + d1)
2(a2 + b2 + c2 + d2)

2 − d1
2d2

2
∣∣

(A.8)
≤ cρ

∑
l=1,2

(
a3−l

2 + b3−l
2 + c3−l

2)(al
2 + bl

2 + cl
2 + dl

2)+ 3ρd1
2d2

2

which can be proven using Cauchy–Schwarz inequality after introducing appropriate weights
and which holds for real numbers al, bl, cl, dl ∈ R, l = 1,2, and ρ ∈ (0,1) by setting cρ = 9(1 +
ρ)2/ρ2. As we are interested in the sum of the product of the squared increments of X(1) and
X(2), we can simplify each summand by applying (A.8), that is, we set al = �

(l)
i,nB(q), bl =

�
(l)
i,nC, cl = �

(l)
i,nM(q), dl = �

(l)
i,nN(q).

Note that

3ρ
∑

i,j :t (1)
i,n ∧t

(2)
j,n≤T

(
�

(1)
i,nN(q)�

(2)
j,nN(q)

)21{I(1)
i,n ∩I(2)

j,n �=∅} → 3ρ
[
N(1)(q),N(2)(q)

]
T
,

where the right-hand side is bounded in q by 3ρ[X,X]t which tends to zero for ρ → 0. Further-
more, for any l = 1,2,

cρ

∑
i,j :t (3−l)

i,n ∧t
(l)
j,n≤T

((
�

(3−l)
i,n B(q)

)2 + (
�

(3−l)
i,n M(q)

)2)× 1{I(3−l)
i,n ∩I(l)

j,n �=∅}

× ((
�

(l)
j,nB(q)

)2 + (
�

(l)
j,nC

)2 + (
�

(l)
j,nM(q)

)2 + (
�

(l)
j,nN(q)

)2)
≤ cρ

( ∑
i:t (3−l)

i,n ≤T

((
�

(3−l)
i,n B(q)

)2 + (
�

(3−l)
i,n M(q)

)2))

× (
∑

j :t (l)i,n≤T

((
�

(l)
j,nB(q)

)2 + (
�

(l)
j,nC

)2 + (
�

(l)
j,nM(q)

)2 + (
�

(l)
j,nN(q)

)2)
P−→ cρ

([
B(3−l)(q),B(3−l)(q)

]
T

+ [
M(3−l)(q),M(3−l)(q)

]
T

)[
X(l),X(l)

]
T
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which tends to zero for q → ∞ and any fixed ρ. For the remaining terms, we set

Kn,T (l, ε) = sup
m,m′∈N,m≤m′,|t (l)

m′,n−t
(l)
m−1,n|≤ε,t

(l)

m′,n≤T

m′∑
k=m

(
C

(l)

t
(l)
k,n

− C
(l)

t
(l)
k−1,n

)2
, l = 1,2.

We have

lim
ε→0

lim sup
n→∞

P
(
Kn,T (l, ε) > δ

)= 0 (A.9)

for any δ > 0 due to the ucp convergence of realized volatility to the quadratic variation (see
Theorem II.23 in [22]). In fact, on the set {Kn,T (l, ε) > δ} we have

sup
0≤s≤T

∣∣∣∣∣
∞∑
i=1

(
C

(l)

t
(l)
i,n∧s

− C
(l)

t
(l)
i−1,n∧s

)2 −
∫ s

0

(
σ (l)

u

)2
du

∣∣∣∣∣1{Kn,T (l,ε)>δ} ≥ δ − K2ε

2

with ‖σs‖ ≤ K .
Using the fact that the total length of the observation intervals of one process which overlap

with a specific observation interval of the other process is at most 3|πn|T , we get on the set
{3|πn|T ≤ ε}

cρ

∑
i,j :t (3−l)

i,n ∧t
(l)
j,n≤T

(
�

(3−l)
i,n C(3−l)

)2((
�

(l)
j,nC

(l)
)2 + (

�
(l)
j,nN

(l)(q)
)2)1{I(3−l)

i,n ∩I(l)
j,n �=∅}1{|πn|T ≤ε/3}

≤ cρKn,T (3 − l, ε)
∑

j :t (l)j,n≤T

((
�

(l)
j,nC

(l)
)2 + (

�
(l)
j,nN

(l)(q)
)2)1{|πn|T ≤ε/3}.

As the latter sum converges to the quadratic variation of C(l) +N(l)(q) as n → ∞, which remains
bounded in q , we obtain that these terms vanish by (A.9) and because of P(|πn|T ≤ ε) → 1 as
n → ∞ for any fixed ε > 0. �

Proof of Theorem 2.2. This is a direct consequence of (2.2), (2.3) and the continuous mapping
theorem for convergence in probability. �

A.3. Proof of the central limit theorem

We will prove the central limit theorem in three parts: We will begin with the convergence of the
mixed Brownian increments to the continuous term in the limit (Proposition A.2), followed by
the convergence of the mixed term of large jumps and Brownian increments to the mixed term
in the limit (Proposition A.3), and we end with the convergence of the remaining terms to zero
(Proposition A.5).
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Proposition A.2. If Condition 2.1 and Condition 3.1(i)–(ii) are fulfilled, we have

n
∑

i,j :t (1)
i,n ∧t

(2)
j,n≤T

((
�

(1)
i,nC

)2(
�

(2)
j,nC

)2)1{I(1)
i,n ∩I(2)

j,n �=∅}

P−→
∫ T

0
2
(
ρsσ

(1)
s σ (2)

s

)2
dG(s) +

∫ T

0

(
σ (1)

s σ (2)
s

)2
dH(s).

Proof. We use a discretization of σ given via σ(r)s = σ(k−1)T /2r for s ∈ [(k − 1)T /2r , kT /2r ),
and we denote the integral of σ(r) with respect to the Brownian motion W from (2.1) by C(r).
Setting

Yn = n
∑

i,j :t (1)
i,n ∧t

(2)
j,n≤T

((
�

(1)
i,nC

)2(
�

(2)
j,nC

)2)1{I(1)
i,n ∩I(2)

i,n �=∅},

Y =
∫ T

0
2
(
ρsσ

(1)
s σ (2)

s

)2
dG(s) +

∫ T

0

(
σ (1)

s σ (2)
s

)2
dH(s),

Yn(r) = n
∑

i,j :t (1)
i,n ∧t

(2)
j,n≤T

((
�

(1)
i,nC(r)

)2(
�

(2)
j,nC(r)

)2)1{I(1)
i,n ∩I(2)

i,n �=∅},

Y (r) =
∫ T

0
2
(
ρ(r)sσ

(1)(r)sσ
(2)(r)s

)2
dG(s) +

∫ T

0

(
σ (1)(r)sσ

(2)(r)s
)2

dH(s),

we will prove

lim
r→∞ lim sup

n→∞
P
(∣∣Y − Y(r)

∣∣+ ∣∣Y(r) − Yn(r)
∣∣+ ∣∣Yn(r) − Yn

∣∣> ε
)= 0 ∀ε > 0.

It holds σ(r)s → σs− as r → ∞ for all s ∈ [0, T ], where σs− is well defined as σ is càdlàg.
Dominated convergence then yields

Y(r) →
∫ T

0
2
(
ρs−σ

(1)
s− σ

(2)
s−

)2
dG(s) +

∫ T

0

(
σ

(1)
s− σ

(2)
s−

)2
dH(s),

where the right-hand side equals Y as G, H are continuous by Condition 3.1(ii).

In order to prove |Y(r) − Yn(r)| P−→ 0 as n → ∞ we apply Lemma 2.2.12 from [14] with

ξn
k = n

∑
(i,j)∈L(n,k,T )

((
�

(1)
i,nC(r)

)2(
�

(2)
j,nC(r)

)2)1{I(1)
i,n ∩I(2)

j,n �=∅},

L(n, k, T ) = {(i, j) : t
(1)
i−1,n ∨ t

(2)
j−1,n ∈ [(k − 1)T /2rn , kT /2rn)}, k = 1,2, . . . ,2rn , and Gn

k =
σ(F(k−1)T /2rn ∪ S). Here, rn is a sequence of real numbers with rn ≥ r , rn → ∞ and

2rn sup
s∈[0,T ]

∣∣G(s) − Gn(s)
∣∣ = oP(1),
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2rn sup
s∈[0,T ]

∣∣H(s) − Hn(s)
∣∣ = oP(1), (A.10)

2rnn
(|πn|T

)2 = oP(1).

Such a sequence exists, because Gn, Hn and hence G, H are nondecreasing functions and G,
H are continuous such that the pointwise convergence from Condition 3.1(ii) implies uniform
convergence on [0, T ] and because of n(|πn|T )2 = oP(1) by Condition 3.1(i). Elementary com-
putations then reveal

E
[
ξn
k |Gn

k−1

] = 2
(
ρ(r)(k−1)T /2rn σ (1)(r)(k−1)T /2rn σ (2)(r)(k−1)T /2rn

)2

× (
Gn

(
kT /2rn

)− Gn

(
(k − 1)T /2rn

))
+ (

σ (1)(r)(k−1)T /2rn σ (2)(r)(k−1)T /2rn

)2(
Hn

(
kT /2rn

)− Hn

(
(k − 1)T /2rn

))
+ OP

(
n
(|πn|T

)2)
.

In combination with the boundedness of σ the previous display implies∣∣∣∣∣Y(r) −
2rn∑
k=1

E
[
ξn
k |Gn

k−1

]∣∣∣∣∣
≤ K2rn

(
sup

s∈[0,T ]
∣∣G(s) − Gn(s)

∣∣+ sup
s∈[0,T ]

∣∣H(s) − Hn(s)
∣∣)+ OP

(
2rnn

(|πn|T
)2)

,

where the right-hand side is oP(1) by (A.10). Hence the sum over the E[ξn
k |Gn

k−1] converges to
Y(r).

Using the Cauchy–Schwarz inequality, the definition of Hn and telescoping sums we also get

2rn∑
k=1

E
[∣∣ξn

k

∣∣2|Gn
k−1

] ≤ K

2rn∑
k=1

(
n

∑
(i,j)∈L(n,k,T )

∣∣I(1)
i,n

∣∣∣∣I(2)
j,n

∣∣1{I(1)
i,n ∩I(2)

i,n �=∅}

)2

≤ KHn(T ) sup
u,s∈[0,T ],|u−s|≤T 2−rn+|πn|T

∣∣Hn(u) − Hn(s)
∣∣,

where the right-hand side converges to zero in probability, since Hn converges uniformly to H

which is uniformly continuous on [0, T ]. Together with

2rn∑
k=1

E
[
ξn
k |Gn

k−1

] P−→ Y(r)

we obtain

Yn(r) =
2rn∑
k=1

ξn
k

P−→ Y(r)

by Lemma 2.2.12 from [14].
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Finally, we prove

lim
r→∞ lim sup

n→∞
P
(∣∣Yn(r) − Yn

∣∣> ε
)→ 0. (A.11)

First, consider the estimate∣∣Yn(r) − Yn

∣∣ ≤ n
∑

i,j :t (1)
i,n ∧t

(2)
j,n≤T

(∣∣�(1)
i,n

(
C − C(r)

)∣∣∣∣�(1)
i,n

(
C + C(r)

)∣∣∣∣�(2)
j,nC

∣∣2
+ ∣∣�(2)

j,n

(
C − C(r)

)∣∣∣∣�(2)
j,n

(
C + C(r)

)∣∣∣∣�(1)
i,nC(r)

∣∣2)1{I(1)
i,n ∩I(2)

i,n �=∅}.

Once we take conditional expectations with respect to S and apply Cauchy–Schwarz inequality,
(A.2) and (2.1.34) from [14], we obtain

E
[∣∣Yn(r) − Yn

∣∣|S]
≤ Kn

∑
i,j :t (1)

i,n ∧t
(2)
j,n≤T

((
E

[∫ t
(1)
i,n

t
(1)
i−1,n

∥∥σs − σ(r)s
∥∥2

ds|S
])1/2∣∣I(1)

i,n

∣∣1/2∣∣I(2)
j,n

∣∣

+
(
E

[∫ t
(2)
j,n

t
(2)
j−1,n

∥∥σs − σ(r)s
∥∥2

ds|S
])1/2∣∣I(2)

j,n

∣∣1/2∣∣I(1)
i,n

∣∣)1{I(1)
i,n ∩I(2)

i,n �=∅} (A.12)

≤ KεHn(T )

+ K

ε
n
∑
l=1,2

E

[ ∑
i,j :t (l)i,n∧t

(3−l)
j,n ≤T

∫ t
(l)
i,n

t
(l)
i−1,n

∥∥σs − σ(r)s
∥∥2

ds
∣∣I(3−l)

j,n

∣∣1{I(l)
i,n∩I(3−l)

i,n �=∅}|S
]

for any ε > 0 where we used
√

ab ≤ aε + b/ε for a, b, ε > 0 for the second inequality.
As we have Hn(T ) → H(T ) for n → ∞ and as ε can be chosen to be arbitrarily small
it suffices for proving (A.11) that the last sum in (A.12) vanishes as r, n → ∞. Consider
the set �(δ,N,K ′, r) on which there are at most N jump times S1, . . . , SN ∈ [0, T ] with
‖�σSi

‖ > δ, sups∈[0,T ] ‖�σs‖ ≤ K ′ and it holds ‖σs − σ(r)s‖ ≤ 2δ for all s ∈ [0, T ] \⋃N
j=1(�SjT /2r�2r/T ,Sj ] and ‖σs − σ(r)s‖ ≤ K ′ + δ for all s ∈ ⋃N

j=1(�SjT /2r�2r/T ,Sj ].
On this set we obtain the following bound

n
∑
l=1,2

E

[ ∑
i,j :t (l)i,n∧t

(3−l)
j,n ≤T

∫ t
(l)
i,n

t
(l)
i−1,n

∥∥σs − σ(r)s
∥∥2

ds
∣∣I(3−l)

j,n

∣∣1{I(l)
i,n∩I(3−l)

i,n �=∅}1�(δ,N,K ′,r)|S
]

(A.13)
≤ 4δ2Hn(T ) + 2N

(
K ′ + δ

)2 sup
u,s∈[0,T ],|u−s|≤T 2−r+4|πn|T

∣∣Hn(u) − Hn(s)
∣∣
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which converges to 4δ2H(T ) as n → ∞. Further it holds

n
∑
l=1,2

E

[ ∑
i,j :t (l)i,n∧t

(3−l)
j,n ≤T

∫ t
(l)
i,n

t
(l)
i−1,n

∥∥σs − σ(r)s
∥∥2

ds
∣∣I(3−l)

j,n

∣∣1{I(l)
i,n∩I(3−l)

i,n �=∅}1�(δ,N,K ′,r)C |S
]

≤ KHn(T )P
(
�
(
δ,N,K ′, r

)C |S)= KHn(T )P
(
�
(
δ,N,K ′, r

)C)
which vanishes as r, n → ∞ for any δ > 0 because of P(�(δ,N,K ′, r)) → 1 for N , K ′, r → ∞
and any δ > 0 since σ is càdlàg. Combining this with (A.13), then yields that the last sum in
(A.12) vanishes as r, n → ∞ because δ can be chosen arbitrarily small. �

Proposition A.3. If Condition 3.1 is fulfilled, we have on �
(d)
T the X -stable convergence

n
∑

t
(1)
i,n ∧t

(2)
j,n≤T

(
�

(1)
i,nN(q)

)2(
�

(2)
j,nC

)2 + ((
�

(1)
i,nC

)2(
�

(2)
j,nN(q)

)2)1{I(1)
i,n ∩I(2)

j,n �=∅}

L−s−→
∑

p:Sp≤T

((
�X

(1)
Sp

)2
R(1)(Sp) + (

�X
(2)
Sp

)2
R(2)(Sp)

)
as n → ∞ and then q → ∞. Here, the R(l)(Sp), l = 1,2, are as defined in (3.5).

Proof. Step 1. Denote by P
(l)
T (q) the number of jumps of N(l)(q) in [0, T ], by (S

(l)
q,p)

p≤P
(l)
T (q)

the jump times of N(l)(q) in [0, T ] ordered by the size of ‖ ∫R2 zμ(S
(l)
q,p, dz)‖ and set

Y (l)
n (s) = ((

Z(l)
n (s)

)∗
,U

(l)
n,−(s),U

(l)
n,+(s)

)∗
, Y (l)(s) = ((

Z(l)(s)
)∗

,U
(l)
− (s),U

(l)
+ (s)

)∗
,

with U
(l)
n,−(s) = (W

(l)

s − W
(l)

τ
(l)
n,−

)/(δ
(l)
n,−(s))1/2, U

(l)
n,+(s) = (W

(l)

τ
(l)
n,−

− W
(l)

s )/(δ
(l)
n,+(s))1/2.

We begin by showing that Condition 3.1(iii) yields the X -stable convergence of all the
Y

(l)
n (S

(3−l)
q,p ) to the respective Y (l)(S

(3−l)
q,p ) on �

(d)
T , that is, we have to show

E
[
�f

((
Y (2)

n

(
S(1)

q,p

))
p≤P

(1)
T (q)

,
(
Y (1)

n

(
S(2)

q,p

))
p≤P

(2)
T (q)

)
1

�
(d)
T

]
(A.14)

→ Ẽ
[
�f

((
Y (2)

(
S(1)

q,p

))
p≤P

(1)
T (q)

,
(
Y (1)

(
S(2)

q,p

))
p≤P

(2)
T (q)

)
1

�
(d)
T

]
for all X -measurable bounded random variables � and all bounded Lipschitz functions f . We
will use the same techniques to prove this as were used in [4] for example, in the proof of
Proposition 3. Similar arguments can also be found in [13] (Lemma 6.2) and [12] (Lemma 5.8).

Denote by �(q,m,n) the subset of �
(d)
T on which 2|πn|T < 1/m and where two different

jumps S
(l1)
q,p1 , S

(l2)
q,p2 ≤ T are further apart than 2|πn|T . As �(q,m,n) → �

(d)
T for n → ∞ it suf-

fices to prove (A.14) with the indicator 1�(q,m,n) added in both expectations. Further, we set (see
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the paragraph above (3.1) for the definition of W )

B(l)(m) =
⋃

S
(l)
q,p≤T

(
max

{
S(l)

q,p − 1/m,0
}
,min

{
S(l)

q,p + 1/m,T
}]

,

W
(l)

(m)t =
∫ t

0
1B(l)(m)(s) dW

(l)
(s).

Let G(m) denote the σ -algebra generated by W(m) and the jump times S
(l)
q,p ≤ T . By condition-

ing on σ(G(m) ∪ S) we see that for proving (A.14) with the indicator 1�(q,m,n) added in both
expectations it is sufficient to consider only G(m)-measurable �′, as restricted to �(q,m,n) the
Y

(l)
n (Sp) are σ(G(m) ∪ S)-measurable. By Lemma 2.1 in [13], we may in particular choose �′

of the form

�′ = γ
(
W(m)

)
κ
((

S(1)
q,p

)
p≤P

(1)
T (q)

,
(
S(2)

q,p

)
p≤P

(2)
T (q)

)
. (A.15)

As W
(l)

(m) converges to 0 in L1 as m → ∞ and because γ , κ , f are bounded we obtain

lim
m→∞ lim sup

n→∞
∣∣E[γ (0)κ

((
S(1)

q,p

)
p≤P

(1)
T (q)

,
(
S(2)

q,p

)
p≤P

(2)
T (q)

)
×f

(((
Y (l)

n

(
S(3−l)

q,p

))
p≤P

(3−l)
T (q)

)
l=1,2

)
1

�
(d)
T

]
−E

[
γ
(
W(m)

)
κ
((

S(1)
q,p

)
≤P

(1)
T (q)

,
(
S(2)

q,p

)
≤P

(2)
T (q)

)
×f

(((
Y (l)

n

(
S(3−l)

q,p

))
≤P

(3−l)
T (q)

)
l=1,2

)
1

�
(d)
T

1�(q,m,n)

]∣∣ = 0

and the analogous result for Y
(l)
n (S

(3−l)
q,p ) replaced with Y (l)(S

(3−l)
q,p ). Hence, it remains to prove

E
[
κ
((

S(1)
q,p

)
p≤P

(1)
T (q)

,
(
S(2)

q,p

)
p≤P

(2)
T (q)

)
f
(((

Y (l)
n

(
S(3−l)

q,p

))
p≤P

(3−l)
T (q)

)
l=1,2

)
1

�
(d)
T

]
(A.16)

→ Ẽ
[
κ
((

S(1)
q,p

)
p≤P

(1)
T (q)

,
(
S(2)

q,p

)
p≤P

(2)
T (q)

)
f
(((

Y (l)
(
S(3−l)

q,p

))
p≤P

(3−l)
T (q)

)
l=1,2

)
1

�
(d)
T

]
for all bounded Lipschitz functions κ , f .

Further note that by another density argument it suffices to consider functions f of the form

f
(((

Y (l)
n

(
S(3−l)

q,p

))
p≤P

(3−l)
T (q)

)
l=1,2

)
=

∏
l=1,2

∏
p:S(3−l)

q,p ≤T

f (l)
p

(
Z(l)

n

(
S(3−l)

q,p

))
f̃ (l)

p

(
U

(l)
n,−

(
S(3−l)

q,p

)
,U

(l)
n,+

(
S(3−l)

q,p

))
.
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Then because the U
(l)
n,−(S

(3−l)
q,p ), U

(l)
n,+(S

(3−l)
q,p ), U

(l)
− (S

(3−l)
q,p ), U

(l)
+ (S

(3−l)
q,p ) are i.i.d. N (0,1) dis-

tributed and independent of μ and Z
(l)
n (S

(3−l)
q,p ), respectively Z(l)(S

(3−l)
q,p ), (A.16) becomes

E

[
κ
((

S(1)
q,p

)
p≤P

(1)
T (q)

,
(
S(2)

q,p

)
p≤P

(2)
T (q)

) ∏
l=1,2

∏
p≤P

(3−l)
T (q)

f (l)
p

(
Z(l)

n

(
S(3−l)

q,p

))
1

�
(d)
T

]

→ Ẽ

[
κ
((

S(1)
q,p

)
p≤P

(1)
T (q)

,
(
S(2)

q,p

)
p≤P

(3−l)
T (q)

) ∏
l=1,2

∏
p:S(3−l)

q,p ≤T

f (l)
p

(
Z(l)

(
S(3−l)

q,p

))
1

�
(d)
T

]
.

This is exactly Condition 3.1(iii) as conditional on the event that there are kl jumps of N(l)(q),
l = 1,2, in [0, T ] all the S

(l)
q,p are independent uniformly distributed on [0, T ]. Note that the

second expectation can be written in the form (3.4) as the Z(l)(s) are independent of the S
(l)
q,p and

of each other. Hence, we have shown(((
Y (l)

n

(
S(3−l)

q,p

))
p≤P

(3−l)
T (q)

)
l=1,2

) L−s−→ (((
Y (l)

(
S(3−l)

q,p

))
p≤P

(3−l)
T (q)

)
l=1,2

)
. (A.17)

Step 2. We reconsider the discretized volatility process σ(r) from the proof of Proposition A.2
and set

σ̃ (r)s =
{

σ
S

(l)
q,p

if s ∈ [
S(l)

q,p,
⌈
S(l)

q,p/2r
⌉
/2r

)
σ(r)s otherwise

, C̃(r)t =
∫ t

0
σ̃ (r)s ds.

Denote by �(q, r, n) the subset of �
(d)
T where two different jumps S

(l1)
q,p1 �= S

(l2)
q,p2 are further apart

than 2|πn|T and the jump times S
(l)
q,p are further away than 2|πn|T from the discontinuities k/2r

of σ(r). On this set we get

n
∑
l=1,2

∑
i,j :t (l)i,n∧t

(3−l)
j,n ≤T

(
�

(l)
i,nN(q)

)2(
�

(3−l)
j,n C̃(r)

)21{I(l)
i,n∩I(3−l)

i,n �=∅}1�(q,r,n)

(A.18)
=

∑
l=1,2

∑
p≤P

(l)
T (q)

(
�N(l)(q)

S
(l)
q,p

)2
R̃(3−l)

n

(
S(l)

q,p, r
)
1�(q,r,n),

where

R̃(l)
n (s, r) = (

σ̃
(l)
s−(r)

)2
η

(l)
n,−(s) + (

σ̃
(l)
s−(r)

(
δ
(l)
n,−(s)

)1/2
U

(l)
n,−(s)

+ σ̃ (l)
s (r)

(
δ
(l)
n,+(s)

)1/2
U

(l)
n,+(s)

)2 + (
σ̃ (l)

s (r)
)2

η
(l)
n,+(s), s ∈ [0, T ], l = 1,2.

From (A.17) and Proposition 2.2 in [21], we get(
N(q), σ̃ (r),

((
S(l)

q,p

)
p≤P

(l)
T (q)

)
l=1,2,

((
Y (l)

n

(
S(3−l)

q,p

))
p≤P

(3−l)
T (q)

)
l=1,2

)
L−s−→ (

N(q), σ̃ (r),
((

S(l)
q,p

)
p≤P

(l)
T (q)

)
l=1,2,

((
Y (l)

(
S(3−l)

q,p

))
p≤P

(3−l)
T (q)

)
l=1,2

)
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which yields, using the continuous mapping theorem,∑
l=1,2

∑
p≤P

(l)
T (q)

(
�N(l)(q)

S
(l)
q,p

)2
R̃(3−l)

n

(
S(l)

q,p, r
)
1

�
(d)
T

(A.19)
L−s−→

∑
l=1,2

∑
p≤P

(l)
T (q)

(
�N(l)(q)

S
(l)
q,p

)2
R̃(3−l)

(
S(l)

q,p, r
)
1

�
(d)
T

,

where R̃(l)(s, r) is defined as R(l)(s) (see (3.5)) with σ replaced by σ̃ (r). Note that we may
replace the left-hand side of (A.19) by (A.18), since �(q, r, n) → �

(d)
T as n → ∞.

But the convergence in (A.19) is even preserved if we replace σ̃ (r) by σ , because we get
convergence in probability for both sides as r → ∞: For the left-hand side of (A.18) we use that
the number of jumps of N(q) and their size is bounded in probability and a similar argument
as for the last step in the proof of Proposition A.2. For the right-hand side of (A.19) we use in
addition that the first moments of the Z(l)(s) are uniformly bounded.

Step 3. We have∑
p:Sp≤T

∑
l=1,2

(
�X

(3−l)
Sp

)2
R(l)(Sp) −

∑
l=1,2

∑
p:S(l)

q,p≤T

(
�N(3−l)(q)

S
(l)
q,p

)2
R(l)

(
S(l)

q,p

)
(A.20)

=
∑

p:Sp≤T

∑
l=1,2

(
�M(3−l)(q)Sp

)2
R(l)(Sp).

Computing the X -conditional expectation first and applying dominated convergence afterwards,
it is easy to see that the right-hand side of (A.20) converges to zero in probability as q → ∞.
This finishes the proof of Proposition A.3. �

The following lemma is needed for the proof of Proposition A.5.

Lemma A.4. Let Condition 2.1 be satisfied. Then there exists a constant K which is independent
of (i, j) such that

E
[(

�
(l)
i,nC

)2(
�

(3−l)
j,n M(q)

)2|S]≤ Keq

∣∣I(l)
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∣∣, l = 1,2.

On the set �
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T we further have

E
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∣∣∣∣I(2)
j,n

∣∣. (A.21)

Proof. If I(l)
i,n ∩ I(3−l)

j,n = ∅ we use iterated expectations and Lemma A.1. If the intervals do
overlap, we use iterated expectations for the non-overlapping parts to obtain

E
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�
(l)
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)2(
�
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and an analogous result for (A.21). The claim now follows from Lemma 8.2 in [16] which is
basically Lemma A.4 for I(l)

i,n = I(3−l)
j,n . The generalization to q �= q ′ here does not complicate

the proof. �

Proposition A.5. If Condition 3.1 is fulfilled, we have

lim
q→∞ lim sup

n→∞
P
({∣∣nV (f,πn)T − R(n,q)T

∣∣ > ε
}∩ �

(d)
T

)= 0 ∀ε > 0

with

R(n,q)T = n
∑
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)2(
�

(2)
j,nN(q)

)2)1{I(1)
i,n ∩I(2)

i,n �=∅}.

Proof. Since γ is bounded by Condition 2.1 we can write

X = X0 + B
(
q ′)+ C + M

(
q ′)

on [0, T ] for some positive number q ′ (not necessarily an integer) which yields

N(q) = B
(
q ′)− B(q) + M

(
q ′)− M(q). (A.22)

We apply inequality (A.8) with

al = 0, bl = �
(l)
i,nB(q), cl = �

(l)
i,nM(q), dl = �

(l)
i,nC + �

(l)
i,nN(q).

Then, we have
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)2) (A.23)

× 1{I(1)
i,n ∩I(2)

i,n �=∅},

and the latter term is bounded in probability by Propositions A.2 and A.3. Hence, it converges to
zero for ρ → 0.

We also get for l = 1,2 using (A.22), Lemma A.1 and Lemma A.4,
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× 1{I(3−l)
i,n ∩I(l)
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|S
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≤ cρn
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(
n
(|πn|T

)2))
,

where the latter bound converges to zero for n → ∞ and then q → ∞. Therefore, inequality
(A.8) shows that only the terms as in (A.23) remain in the limit. On �

(d)
T , the terms that occur in

(A.23) but not in R(n,q)T are of the form
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(A.24)
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j,n C

)(
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1{I(l)
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j,n �=∅}, l = 1,2.

From similar arguments as before, we obtain that the sum over terms containing the product
(�
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i,nN(q))(�

(3−l)
j,n N(q)) converges to zero because we are on �
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T .

For the remaining terms, we obtain

n
∑

i,j :t (l)i,n∧t
(3−l)
j,n ≤T

(
�

(l)
i,nC

)2(
�

(3−l)
j,n C

)(
�

(3−l)
j,n N(q)

)
1{I(l)

i,n∩I(3−l)
j,n �=∅}

≤
(

sup
j :t (3−l)

j,n ≤T

�
(3−l)
j,n C

)
n

∑
i,j :t (l)i,n∧t

(3−l)
j,n ≤T

(
�

(l)
i,nC

)2(
�

(3−l)
j,n N(q)

)
1{I(l)

i,n∩I(3−l)
j,n �=∅},

where the right-hand side tends to zero as n → ∞ for all q > 0 because the supremum vanishes
as C is continuous and because the sum converges stably in law on �

(d)
T to∑

S
(3−l)
p,q ≤T

�N(3−l)(q)
S

(3−l)
p,q

R(l)
(
S(3−l)

p,q

)
,

where (S
(3−l)
p,q )p∈N denotes an enumeration of the jump times of N(3−l)(q). The stable conver-

gence can be proven similarly as Proposition A.5 and follows from Condition 3.1(iii). �

Proof of Theorem 3.2. This is a direct consequence of Propositions A.2, A.3 and A.5 as well as
(2.3). �
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A.4. Proof for the testing procedure

Proof of Theorem 4.2. For proving (4.4), we will show

P̃
(
nV (f,πn)T > An,T + Q̂n,T (1 − α)|F (d)

)→ α, (A.25)

for all F (d) ⊂ �
(d)
T with P(F (d)) > 0. To this end, we will prove in the sequel that Condition 3.1

ensures

An,T
P−→ C̃T , (A.26)

as well as

Q̂n,T (α)1
�

(d)
T

P̃−→ Q(α)1
�

(d)
T

(A.27)

for each α ∈ [0,1], where Q(α) denotes the X -conditional α quantile of D̃T on �
(d)
T defined in

(4.2).
Then, Theorem 3.2 and (A.26) yield the X -stable convergence

nV (f,πn)T − An,T
L−s−→ D̃T

on �
(d)
T from which we obtain together with (A.27)

(
nV (f,πn)T − An,T , Q̂n,T (1 − α)

)
1

�
(d)
T

L−s−→ (
D̃T ,Q(1 − α)

)
1

�
(d)
T

by Proposition 2.5(i) in [21]. Then, finally,

P̃
({

nV (f,πn)T > An,T + Q̂n,T (1 − α)
}∩ F (d)

)
→ P̃

({
D̃T > Q(1 − α)

}∩ F (d)
)= αP

(
F (d)

)
,

where the last equality follows from the definition of Q(α). This implies (A.25) and hence (4.4).
The consistency claim (4.5) follows from the fact that �̃

(d)
n,T converges to a strictly positive

limit on �
(j)
T by Theorem 2.2 while cn = OP̃(n−1). �

Proof of (A.26). Looking at the proof of Proposition A.5, it is enough to show that

n
∑

i,j :t (1)
i,n ∧t

(2)
j,n≤T

(
�

(1)
i,nC + �

(1)
i,nN(q)

)2(
�

(2)
j,nC + �

(2)
j,nN(q)

)2

(A.28)
× 1{|�(1)

i,nX|≤β|I(1)
i,n |� ∧|�(2)

j,nX|≤β|I(2)
j,n|� }1{I(1)

i,n ∩I(2)
j,n �=∅}

converges to C̃T .
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We first deal with the terms involving big jumps. Let S
(l)
q,p , p = 1, . . . ,P

(l)
T (q), denote the

(finitely many) jump times of N(l)(q) in [0, T ]. It then holds∣∣∣∣n ∑
l=1,2

∑
i,j :t (l)i,n∧t

(3−l)
j,n ≤T

�
(l)
i,nN(q)

(
�

(l)
i,nC + �

(l)
i,nN(q)

)(
�

(3−l)
j,n C + �

(3−l)
j,n N(q)

)2

× 1{|�(l)
i,nX|≤β|I(l)

i,n|� ∧|�(3−l)
j,n X|≤β|I(3−l)

j,n |� }1{I(l)
i,n∩I(3−l)

j,n �=∅}

∣∣∣∣1�(n,q,T )

(A.29)

≤ n
∑
l=1,2

P
(l)
T (q)∑
p=1

∣∣�N(l)(q)
S

(l)
q,p

∣∣1{|�(l)

i
(l)
n (S

(l)
q,p),n

X|≤β|I(l)

i
(l)
n (S

(l)
q,p),n

|� }

× ∣∣�(l)

i
(l)
n (S

(l)
q,p),n

(
C + N(q)

)∣∣ ∑
j :t (3−l)

j,n ≤T

(
�

(3−l)
j,n C + �

(3−l)
j,n N(q)

)21�(n,q,T ),

where �(n,q,T ) denotes the set where two jumps of N(q) in [0, T ] are further apart than
2|πn|T . (A.29) converges in probability to zero as n → ∞ because of

∣∣�(l)

i
(l)
n (S

(l)
q,p),n

X
∣∣ PX−→ ∣∣�N(l)(q)

S
(l)
q,p

∣∣> 0,
∣∣I(l)

i
(l)
n (S

(l)
q,p),n

∣∣ PX−→ 0,

where PX denotes convergence in X -conditional probabilities. P(�(n, q,T )) → 1 as n → ∞
then yields that the terms involving big jumps in (A.28) vanish asymptotically. Hence only the
terms involving squared increments of C(1), C(2) contribute in the limit.

Using Proposition A.2, it remains to show

L̃T = n
∑

i,j :t (1)
i,n ∧t

(2)
j,n≤T

(
�

(1)
i,nC

)2(
�

(2)
j,nC

)2

(A.30)
× 1{|�(1)

i,nX|>β|I(1)
i,n |� ∨|�(2)

j,nX|>β|I(2)
j,n|� }1{I(1)

i,n ∩I(2)
j,n �=∅}

P−→ 0.

The conditional Markov inequality plus an application of Lemma A.1 give

P
(∣∣�(l)

i,nX
∣∣> β

∣∣I(l)
i,n

∣∣� |S)≤ K
∣∣I(l)

i,n

∣∣1−2�
. (A.31)

Using

L̃T ≤ n
∑

i1,i2:t (1)
i1,n∧t

(2)
i2,n≤T

(
�

(1)
i1,n

C
)2(

�
(2)
i2,n

C
)2

×
∑
l=1,2

1{|�(l)
il ,n

X>β|I(l)
il ,n

|� }1{I(1)
i1,n∩I(2)

i2,n �=∅}
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and the generalized Hölder inequality, as well as Lemma A.1 and (A.31), we get

E[L̃T |S] ≤ Kn
∑

i1,i2:t (1)
i1,n∧t

(2)
i2,n≤T

∣∣I(1)
i1,n

∣∣∣∣I(2)
i2,n

∣∣ ∑
l=1,2

∣∣I(l)
il ,n

∣∣(1−2�)/p′
1{I(1)

i,n ∩I(2)
j,n �=∅}

(A.32)

≤ K
(|πn|T

)(1−2�)/p′
Hn(T )

for any p′ > 1, which tends to zero by Condition 2.1 and Condition 3.1(ii). This yields
(A.30). �

For the proof of (A.27), we need a few preliminary results which yield that the convergence of
the empirical X -conditional distribution on the D̂T ,n,m, m = 1, . . . ,Mn restricted to �

(d)
T to the

X -conditional distribution of D̃T restricted to �
(d)
T follows from the convergence of the common

empirical distribution of the Ẑ
(lj )
n,m(sj ) to the common distribution of the Z(lj )(sj ) provided in

Condition 4.1. These results are proved in Lemma A.6 and Proposition A.7.

Lemma A.6. Suppose that An,j
P̃−→ Aj for F -measurable An,j ∈R

d , X -measurable Aj ∈R
d ,

and let Sj ∈ [0, T ], j = 1, . . . , J , be almost surely distinct X -measurable random variables.
Then, under Condition 4.1, it holds

P̃

(∣∣∣∣∣ 1

Mn

Mn∑
m=1

1{ϕ((An,j ,Ŷ
(lj )

n,m (Sj ))j=1,...,J )≤ϒ} − P̃
(
ϕ
((

Aj ,Y
(lj )(Sj )

)
j=1,...,J

)≤ ϒ |X )∣∣∣∣∣> ε

)
→ 0

for any X -measurable random variable ϒ , any ε > 0 and any continuous function ϕ :
R

(d+6)×J → R such that the X -conditional distribution of ϕ((Aj ,Y
(lj )(Sj ))j=1,...,J ) is almost

surely continuous. Here,

Ŷ
(lj )
n,m(Sj ) = ((

Ẑ
(lj )
n,m(Sj )

)∗
,U

(lj )

n,m,−(Sj ),U
(lj )

n,m,+(Sj )
)∗

,

and Y (lj )(Sj ) is defined as in the proof of Proposition A.3.

Proof. First, note that Condition 4.1 implies that

P̃

(∣∣∣∣∣ 1

Mn

Mn∑
m=1

1{Ŷ (lj )

n,m (sj )≤xj ,j=1,...,J } − P̃
(
Y (lj )(sj ) ≤ xj , j = 1, . . . , J

)∣∣∣∣∣> ε

)

≤ P̃

(∣∣∣∣∣ 1

Mn

Mn∑
m=1

1{Ŷ (lj )

n,m (sj )≤xj ,j=1,...,J } − P̃
(
Ŷ

(lj )

n,1 (sj ) ≤ xj , j = 1, . . . , J |S)∣∣∣∣∣> ε

2

)
(A.33)

+ P̃

(∣∣̃P(Ŷ (lj )

n,1 (sj ) ≤ xj , j = 1, . . . , J |S)− P̃
(
Y(sj ) ≤ xj , j = 1, . . . , J

)∣∣> ε

2

)
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converges to zero as n → ∞ for any sj , xj , j = 1, . . . , J . In fact, the (Ŷ
(lj )
n,m(sj ))j=1,...,J are

conditionally on S independent and identically distributed as m varies. Therefore, Mn → ∞, the
conditional Chebyshev inequality and dominated convergence ensure that the first term vanishes
asymptotically. In the second term, we may factorize probabilities as the U ’s are all independent
of the Z’s. Then the second term converges to zero by (4.3) and the fact that the U ’s are all
normally distributed.

To shorten notation, we set

ζn = 1

Mn

Mn∑
m=1

1{ϕ((An,j ,Ŷ
(lj )

n,m (Sj ))j=1,...,J )≤ϒ}, ζ = P̃
(
ϕ
((

Aj ,Y
(lj )(Sj )

)
j=1,...,J

)≤ ϒ |X )
.

The idea for the following steps is to approximate the function ϕ by piecewise constant functions,
use (A.33) to prove the claim for those piecewise constant functions and to show that the con-
vergence is preserved if we take limits. To formalize this approach, let K > 0, set �k(K, r) =
{x ∈ R

6×J |xi,j ∈ ((ki,j − 1)2−rK, ki,j 2−rK], i ≤ 6, j ≤ J }, k = (k1, . . . , kJ ) ∈ Z
6×J , r ∈ N,

and define

ζn(K, r) = 1

Mn

Mn∑
m=1

1{∑
k∈{−2r ,...,2r }6×J ϕ((Aj ,kj 2−rK)j≤J )1

{(Ŷ (lj )

n,m (Sj ))j≤J )∈�k(K,r)}
≤ϒ}

=
∑

k∈{−2r ,...,2r }6×J

1{ϕ((Aj ,kj 2−rK)j≤J )≤ϒ}
1

Mn

Mn∑
m=1

1{(Ŷ (lj )

n,m (Sj ))j≤J )∈�k(K,r)},

ζ(K, r) =
∑

k∈{−2r ,...,2r }6×J

1{ϕ((Aj ,kj 2−rK)j≤J )≤ϒ}P̃
((

Y (lj )(Sj )
)
j≤J

∈ �k(K, r)|X )
,

where ϕ((Aj , kj 2−rK)j≤J ) equals ϕ((Aj , ·)j=1,...,J ) evaluated at the rightmost vertex of
�k(K, r).

Using this notation it remains to show

lim
K→∞ lim sup

r→∞
lim sup
n→∞

P̃
(∣∣ζn − ζn(K, r)

∣∣ > ε
)= 0 ∀ε > 0, (A.34)

lim
n→∞ P̃

(∣∣ζn(K, r) − ζ(K, r)
∣∣ > ε

)= 0 ∀K,ε > 0 ∀r ∈ N, (A.35)

lim
K→∞ lim sup

r→∞
P̃
(∣∣ζ(K, r) − ζ

∣∣> ε
)= 0 ∀ε > 0. (A.36)

Step 1. We start by showing (A.35). It holds

P̃
(∣∣ζn(K, r) − ζ(K, r)

∣∣ > ε
)

≤
∑

k∈{−2r ,...,2r }6×J

Ẽ

[
P̃

(∣∣∣∣∣ 1

Mn

Mn∑
m=1

1{(Ŷ (lj )

n,m (Sj ))j=1,...,J )∈�k(K,r)}

− P̃
((

Y (lj )(Sj )
)
j=1,...,J

∈�k(K, r)|X )

∣∣∣∣∣ > ε/
(
2r+1 + 1

)6J
∣∣∣X)]

,
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where each conditional probability vanishes almost surely as n → ∞ by (A.33) because the
events {(

Ŷ
(lj )
n,m(Sj )

)
j=1,...,J

∈�k(K, r)
}
,

{(
Y (lj )(Sj )

)
j=1,...,J

∈�k(K, r)
}

may be written as unions/differences of events of the form

{
Ŷ

(lj )
n,m(Sj ))j=1,...,J ≤ vk,i(K, r)

}
,

{
Y (lj )(Sj ))j=1,...,J ≤ vk,i(K, r)

}
,

where (vk,i(K, r))i denotes the vertices of the cuboid �k(K, r). Note that conditioning on X
here simply has the effect of fixing the Sj . (A.35) then follows by dominated convergence.

Step 2. Next, we show (A.34). It holds∣∣ζn − ζn(K, r)
∣∣

≤ 1

Mn

Mn∑
m=1

1{(Ŷ (lj )

n,m (Sj ))j=1,...,J /∈[−K,K]6×J ∨(Aj )j=1,...,J /∈[−K,K]d×J }
(A.37)

+
∑

k∈{−2r ,...,2r }6×J

|1{ϕ((An,j ,Ŷ
(lj )

n,m (Sj ))j=1,...,J )≤ϒ} − 1{ϕ((Aj ,kj 2−rK)j=1,...,J )≤ϒ}|

× 1

Mn

Mn∑
m=1

1{(Ŷ (lj )

n,m (Sj ))j=1,...,J ∈�k(K,r)}1{(Aj )j=1,...,J ∈[−K,K]d×J }.

The first term in (A.37) becomes arbitrarily small, because for n → ∞, we obtain from (A.33)

1

Mn

Mn∑
m=1

1{(Ŷ (lj )

n,m (Sj ))j=1,...,J /∈[−K,K]6×J }
P̃−→ P̃

((
Y (lj )(Sj )

)
j=1,...,J

/∈ [−K,K]6×J |X )
as in Step 1, where the right-hand side afterwards vanishes as K → ∞.

Denote the second term in (A.37) by ζ ′
n(K, r). Then it holds for δ > 0

ζ ′
n(K, r) ≤ 1{‖(An,j −Aj )j=1,...,J ‖≥δ} + 1

Mn

Mn∑
m=1

1{(Ŷ (lj )

n,m (Sj ))j=1,...,J ∈[−K,K]6×J }
(A.38)

× 1{|ϕ((Aj ,Ŷ
(lj )

n,m (Sj ))j=1,...,J )−ϒ |≤ρ(K+δ,δ,2−rK)}1{(Aj )j=1,...,J ∈[−K,K]d×J },

where

ρ(K,a, b)

= sup
(x,y),(x′,y′)∈[−K,K](d+6)×J :‖x−x′‖<a,‖y−y′‖∞≤b

∣∣ϕ((xj , yj )j=1,...,J

)− ϕ
((

x′
j , y

′
j

)
j=1,...,J

)∣∣.
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The first summand in (A.38) vanishes as n → ∞ for all δ > 0 since An,j
P−→ Aj . Denoting the

second summand in (A.38) by ζ ′′
n (K, r, δ), we obtain further

ζ ′′
n (K, r, δ) ≤ 1

Mn

Mn∑
m=1

∑
k∈{−2r ,...,2r }6×J

1{minx∈�k(K,r) |ϕ((Aj ,xj )j=1,...,J )−ϒ |≤ρ(K+δ,δ,2−rK)}

× 1{(Ŷ (lj )

n,m (Sj ))j=1,...,J ∈�k(K,r)}1{(Aj )j=1,...,J ∈[−K,K]d×J }

≤
∑

k∈{−2r ,...,2r }6×J

∣∣∣∣∣ 1

Mn

Mn∑
m=1

1{(Ŷ (lj )

n,m (Sj ))j=1,...,J ∈�k(K,r)}
(A.39)

− P̃
((

Y (lj )(Sj )
)
j=1,...,J

∈�k(K, r)|X )∣∣∣∣∣
+

∑
k∈{−2r ,...,2r }6×J

1{minx∈�k(K,r) |ϕ((Aj ,xj )j=1,...,J )−ϒ |≤ρ(K+δ,δ,2−rK)}

× P̃
((

Y (lj )(Sj )
)
j=1,...,J

∈�k(K, r)|X )
1{(Aj )j=1,...,J ∈[−K,K]d×J },

where the first sum vanishes for n → ∞ as shown in Step 1. Denote the second sum in (A.39)
by ζ ′′′

n (K, r, δ). Then we finally obtain

ζ ′′′
n (K, r, δ) ≤ P̃

(∣∣ϕ((Aj ,Y
(lj )(Sj )

)
j=1,...,J

)− ϒ
∣∣≤ 2ρ

(
K + δ, δ,2−rK

)|X )
which converges to zero because ϕ((Aj ,Y

(lj )(Sj ))j=1,...,J ) possesses almost surely a continuous
X -conditional distribution by assumption and because of

lim
δ→0

lim sup
r→∞

ρ
(
K + δ, δ,2−rK

)= 0

for all K > 0 as ϕ is continuous. Hence, altogether we have shown

lim
K→∞ lim sup

δ→0
lim sup
r→∞

lim sup
n→∞

P̃
(∣∣ζ ′

n(K, r)
∣∣ > ε

)
for all ε > 0 which yields (A.34).

Step 3. It holds

ζ(K, r) = P̃

( ∑
k∈{−2r ,...,2r }6×J

ϕ
((

Aj , kj 2−rK
)
j≤J

)
1{(Y (lj )

(Sj ))j=1,...,J ∈�k(K,r)} ≤ ϒ |X
)

.

Hence, ∣∣ζ(K, r) − ζ
∣∣ ≤ P̃

((
Y (lj )(Sj )

)
j=1,...,J

/∈ [−K,K]6×J |X )

(A.40)
+ P̃

(∣∣ϕ((Aj , xj )j=1,...,J

)− ϒ
∣∣≤ ρ̃

(
K,r, (Aj )j=1,...,J

)|X )
,
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where

ρ̃
(
K,r, (Aj )j=1,...J

)= sup
y,y′∈[−K,K]6×J :‖y−y′‖≤2−rK

∣∣ϕ((Aj , yj )j=1,...,J

)− ϕ
((

Aj ,y
′
j

)
j=1,...,J

)∣∣.
The first term on the right-hand side of (A.40) vanishes almost surely as K → ∞. Further it

holds

lim
r→∞ ρ̃

(
K,r, (Aj )j=1,...,J

)= 0 almost surely

because y �→ ϕ((Aj , yj )j=1,...,J ) is uniformly continuous on [−K,K]6×J for fixed ω. Using this
result the second term in (A.40) vanishes almost surely as r → ∞ for any K > 0 because the X -
conditional distribution of ϕ((Aj ,Y

(lj )(Sj ))j=1,...,J ) is almost surely continuous by assumption.
(A.36) then follows by dominated convergence. �

Proposition A.7. Suppose that Condition 4.1 is satisfied. Then

P̃

({∣∣∣∣∣ 1

Mn

Mn∑
m=1

1{D̂T ,n,m≤ϒ} − P̃(D̃T ≤ ϒ |X )

∣∣∣∣∣> ε

}
∩ �

(d)
T

)
→ 0 (A.41)

for any X -measurable random variable ϒ and all ε > 0.

Proof. Step 1. We use Sj , j = 1, . . . , J , to denote the jump times of the J largest jumps of X in

[0, T ] with respect to a fixed norm on R. Recall that on �
(d)
T only one component of X jumps at

Sj , and we use lj as the index of the component involving the j th jump. Therefore, setting

An,j = (
�̂nX

(lj )(Sj ), σ̂
(3−lj )
n (Sj ,−), σ̂

(3−lj )
n (Sj ,+)

)
,

Aj = (
�X

(lj )

Sj
, σ

(3−lj )

Sj − , σ
(3−lj )

Sj

)
,

where the (consistent) estimators have been defined in (4.1), and defining ϕ via

ϕ
((

Aj ,Y
(lj )(Sj )

)
j=1,...,J

)=
J∑

j=1

(
�X

(lj )

Sj

)2
R(3−lj )(Sj ),

Lemma A.6 proves

P̃

({∣∣∣∣∣ 1

Mn

Mn∑
m=1

1{Y (J,n,m)≤ϒ} − P̃
(
Y(J ) ≤ ϒ |X )∣∣∣∣∣> ε

}
∩ �

(d)
T

)
→ 0 (A.42)

as the X -conditional distribution of
∑J

j=1(�X
(lj )

Sj
)2R(3−lj )(Sj ) is continuous on �

(d)
T . In (A.42),

we have used the notation

Y(J,n,m) =
J∑

j=1

(
�̂nX

(lj )(Sj )
)2

R̂
(3−lj )
n,m (Sj ), Y (J ) =

J∑
j=1

(
�X

(lj )

Sj

)2
R(3−lj )(Sj ).
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Step 2. We prove

lim
J→∞ lim sup

n→∞
1

Mn

Mn∑
m=1

P̃
(∣∣Y(J,n,m) − D̂T ,n,m

∣∣> ε
)→ 0 (A.43)

for all ε > 0. Denote by �(q,J,n) the set on which the jumps of N(q) are among the J largest
jumps and two different jumps of N(q) are further apart than |πn|T . Obviously, P(�(q, J,n)) →
1 for J,n → ∞ and any q > 0. On the set �(q,J,n) we have∣∣Y(J,n,m) − D̂T ,n,m

∣∣
≤

∑
l=1,2

∑
t
(l)
i,n≤T ,�j :Sj ∈I(l)

i,n

(
�

(l)
i,nB(q) + �

(l)
i,nC + �

(l)
i,nM(q)

)21{|�(l)
i,nX(l)|>β|I(l)

i,n|� }

× R̂
(3−lj )
n,m

(
t
(l)
i,n

)
(A.44)

≤ 2
∑
l=1,2

∑
t
(l)
i,n≤T

(
�

(l)
i,nB(q) + �

(l)
i,nC + �

(l)
i,nM(q)

)21{|�(l)
i,nX(l)|>β|I(l)

i,n|� }

×
(

1

bn

∑
j :|t (3−l)

j,n −t
(l)
i,n|≤bn

(
�

(3−l)
j,n X

)2
)

η̂(3−l)
n,m

(
t
(l)
i,n

)
,

where

η̂(3−l)
n,m

(
t
(l)
i,n

)= η̂
(3−l)
n,m,−(s) + δ̂

(3−l)
n,m,−(s)U

(3−l)
n,m,−(s)2 + δ̂

(3−l)
n,m,+(s)U

(3−l)
n,m,+(s)2 + η̂

(3−l)
n,m,+(s).

We first consider the increments over the overlapping observation intervals in the right-hand side
of (A.44). The F -conditional mean of their sum is bounded by

3|πn|T
bn

n
∑
l=1,2

∑
t
(l)
i,n,t

(3−l)
j,n ≤T

(
�

(l)
i,nB(q) + �

(l)
i,nC + �

(l)
i,nM(q)

)21{|�(l)
i,nX(l)|>β|I(l)

i,n|� }

(A.45)
× (

�
(3−l)
j,n X

)21{I(l)
i,n∩I(3−l)

j,n �=∅},

since with M(l)
n (s) =∑

i:t (l)i,n≤T
|I(l)

i,n|1{I(l)
i,n∩I(3−l)

i
(3−l)
n (s),n

�=∅} we get

E
[
η̂(3−l)

n,m

(
t
(l)
i,n

)|F] = n
∑

k1∈Z,|k2|≤Kn

∣∣I(3−l)
k1

∩ I(l)
i+k2

∣∣
×
( ∑

j1∈Z,|j2|≤Kn

∣∣I(3−l)
j1,n

∩ I(l)
i+j2,n

∣∣)−1

M(3−l)
n

(
t
(l)
i+k2,n

)
(A.46)
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= n

Kn∑
k2=−Kn

∣∣I(l)
i+k2

∣∣( Kn∑
j2=−Kn

|I(l)
i+j2,n

|
)−1

M(3−l)
n

(
t
(l)
i+k2,n

)
≤ sup

k=−Kn,...,Kn

nM(3−l)
n

(
t
(l)
i+k,n

)≤ 3n|πn|T .

Because of Theorem 3.2, the sum in (A.45) is of order 1/n, while |πn|T /bn
P−→ 0 for n → ∞

by Condition 4.1. Hence, (A.45) vanishes.
Next, we deal with the increments over non-overlapping observation intervals in the right-hand

side of (A.44). An upper bound is obtained by taking iterated S-conditional expectations using
Lemma A.1, the Hölder inequality as in (A.32) and (A.46), and it is given by∑

l=1,2

∑
t
(l)
i,n≤T

(
Kq

∣∣I(l)
i,n

∣∣2 + K
∣∣I(l)

i,n

∣∣(p′+1−2�)/p′ + Keq

∣∣I(l)
i,n

∣∣)2K(bn + |πn|T )

bn

× n

Kn∑
k2=−Kn

∣∣I(l)
i+k2

∣∣( Kn∑
j2=−Kn

∣∣I(l)
i+j2,n

∣∣)−1

M(3−l)
n

(
t
(l)
i+k2,n

)
≤ K

(
Kq |πn|T + (|πn|T

)(1−2�)/p′ + eq

)
OP(1)

∑
l=1,2

∑
t
(l)
i,n≤T

∣∣I(l)
i,n

∣∣

× n

Kn∑
k2=−Kn

∣∣I(l)
i+k2

∣∣( Kn∑
j2=−Kn

∣∣I(l)
i+j2,n

∣∣)−1

M(3−l)
n

(
t
(l)
i+k2,n

)
.

Now (A.43) follows from Condition 3.1(ii) because of

n
∑
l=1,2

∑
t
(l)
i,n≤T

∣∣I(l)
i,n

∣∣ Kn∑
k=−Kn

∣∣I(l)
i+k

∣∣( Kn∑
j=−Kn

∣∣I(l)
i+j,n

∣∣)−1

M(3−l)
n

(
t
(l)
i+k,n

)

= n
∑
l=1,2

∑
i,j :t (l)i,n,t

(3−l)
j,n ≤T

∣∣I(l)
i,n

∣∣∣∣I(3−l)
j,n

∣∣1{I(l)
i,n∩I(3−l)

j,n �=0}
Kn∑

k=−Kn

∣∣I(l)
i+k,n

∣∣( Kn∑
m=−Kn

∣∣I(l)
i+k+m,n
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≤ n
∑
l=1,2

∑
t
(l)
i,n,t

(3−l)
j,n ≤T

∣∣I(l)
i,n

∣∣∣∣I(3−l)
j,n

∣∣1{I(l)
i,n∩I(3−l)

j,n �=0}

×
(

0∑
k=−Kn

∣∣I(l)
i+k,n

∣∣( 0∑
m=−Kn

∣∣I(l)
i+m,n

∣∣)−1

+
Kn∑
k=0

∣∣I(l)
i+k,n

∣∣( Kn∑
m=0

∣∣I(l)
i+m,n

∣∣)−1)

≤ 2Hn(T )

and q → ∞ afterwards.
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Step 3. Using dominated convergence, Y(J )
P̃−→ D̃T as J → ∞. Also, as the X -conditional

distribution of D̃T is continuous on �
(d)
T by Condition 3.1(iii) and Condition 4.1, for any choice

of ε, η > 0 there exists δ > 0 such that

P̃
({∣∣̃P(D̃T ≤ ϒ |X ) − P̃(D̃T ± δ ≤ ϒ |X )

∣∣> η
}∩ �

(d)
T

)
< ε.

Then it is easy to deduce that

P̃
(
Y(J ) ≤ ϒ |X )

1
�

(d)
T

P̃−→ P̃(D̃T ≤ ϒ |X )1
�

(d)
T

(A.47)

holds for J → ∞.
Step 4. For any ε > 0, we have

Ẽ

[∣∣∣∣∣ 1

Mn

Mn∑
m=1

1{Y (J,n,m)≤ϒ} − 1

Mn

Mn∑
m=1

1{D̂T ,n,m≤ϒ}

∣∣∣∣∣1�
(d)
T

]

≤ Ẽ

[
1

Mn

Mn∑
m=1

1{|Y (J,n,m)−D̂T ,n,m|≥|Y (J,n,m)−ϒ |}1�
(d)
T

]

≤ Ẽ

[
1

Mn

Mn∑
m=1

(1{|Y (J,n,m)−D̂T ,n,m|>ε} + 1{|Y (J,n,m)−ϒ |≤ε})1�
(d)
T

]
.

By (A.42) and dominated convergence we obtain

Ẽ

[
1

Mn

Mn∑
m=1

1{|Y (J,n,m)−ϒ |≤ε}1�
(d)
T

]
→ P̃

({∣∣Y(J ) − ϒ
∣∣≤ ε

}∩ �
(d)
T

)
, (A.48)

where the right hand side tends to zero as ε → 0 using dominated convergence again, because
the X -conditional distribution of Y(J ) is continuous while ϒ is X -measurable. By (A.43), we
also have

lim
J→∞ lim sup

n→∞
Ẽ

[
1

Mn

Mn∑
m=1

1{|Y (J,n,m)−D̂T ,n,m|>ε}

]
→ 0 (A.49)

for all ε > 0. Thus, using (A.48) and (A.49), we obtain

lim
J→∞ lim sup

n→∞
P̃

({∣∣∣∣∣ 1

Mn

Mn∑
m=1

(1{Y (J,n,m)≤ϒ} − 1{D̂T ,n,m≤ϒ})
∣∣∣∣∣> ε

}
∩ �

(d)
T

)
= 0 (A.50)

for all ε > 0.
Step 5. The claim follows from (A.42), (A.47) and (A.50). �



Testing for simultaneous jumps 3563

Proof of (A.27). We have for arbitrary ε > 0

P̃
({

Q̂n,T (α) > Q(α) + ε
}∩ �

(d)
T

)
= P̃

({
1

Mn

Mn∑
m=1

1{D̂T ,n,m>Q(α)+ε} >
Mn − (�αMn� − 1)

Mn

}
∩ �

(d)
T

)

≤ P̃

({
1

Mn

Mn∑
m=1

1{D̂T ,n,m>Q(α)+ε} − ϒ(α, ε) > (1 − α) − ϒ(α, ε)

}
∩ �

(d)
T

)

with ϒ(α, ε) = P̃(D̃T > Q(α) + ε|X ). Because the X -conditional distribution of D̃T is contin-
uous on �

(d)
T with a strictly positive density on [0,∞) by Condition 3.1(iii) and Condition 4.1,

we have ϒ(α, ε) < 1 − α almost surely on �
(d)
T . Then it is easy to deduce

P̃
({

Q̂n,T (α) > Q(α) + ε
}∩ �

(d)
T

)→ 0

using Proposition A.7. Analogously, we get P̃(Q̂n,T (α) < Q(α) − ε) → 0. �

A.5. Proof of (4.3) for Example 4.4

First, note that Ẑ
(li )
n,m(si) and Ẑ

(lj )
n,m(sj ) are S-conditionally independent if we are on the set

�(n, si, sj ) on which Ẑ
(li )
n,m(si) and Ẑ

(lj )
n,m(sj ) contain no common observation intervals. With-

out loss of generality let si < sj . Using the Markov inequality, we get

P
(
�(n, si, sj )

c
) ≤ P

(
τ

(li )
n,+

(
t
(3−li )

i
(3−li )
n (si )+Kn,n

)≥ si + (sj − si)/2
)

+ P
(
τ

(lj )

n,−
(
t
(3−lj )

i
(3−lj )

n (sj )−Kn−1,n

)≤ si + (sj − si)/2
)

(A.51)

≤ 2Kλ1,λ2

Kn/n

(sj − si)/2

for a generic constant Kλ1,λ2 . The latter tends to zero as n → ∞ because of |πn|T Kn
P−→ 0 and

since the stochastic order of |πn|T dominates 1/n as n → ∞. Hence, we may assume Ẑ
(li )
n,m(si)

and Ẑ
(lj )
n,m(sj ) to be S-conditionally independent, and it remains to prove (4.3) for J = 1. Also,

we have seen in Example 3.4 that Z(l)(s) follows a continuous distribution. If we establish weak
convergence of the S-conditional distribution of Ẑ

(l)
n,1(s) to the (unconditional) one of Z(l)(s),

then (4.3) follows from the Portmanteau theorem and dominated convergence.
By construction it holds

Ẑ
(l)
n,1(s)

LS= Z(l)
n

(
U

(l)
n,Kn

(s)
)
,U(l)

n,m(s) ∼ U
[
t
(3−l)

i
(3−l)
n (s)−m−1,n

, t
(3−l)

i
(3−l)
n (s)+m,n

]
,
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where LS denotes equality of the S-conditional distribution. Hence it remains to show

Z
(l)
n (U

(l)
n,Kn

(s))
LS−→ Z(l)(s) which is equivalent to

Z
(l)
1

(
U

(l)
1,Kn

(ns)
) LS−→ Z(l)(s). (A.52)

In Example 3.4 the law of Z(l)(s) was obtained as the limit of the laws of Z
(l)
1 (ns) for n →

∞. Hence, (A.52) can be interpreted in the following way: If we take a fixed realization of
the Poisson processes and shift this realization according to an independent uniform random
variable on an interval around ns whose diameter increases with n, then this shifted realization
has asymptotically the same distribution as Z

(l)
1 (ns). Hence, observing a fixed realization of these

Poisson processes around a uniformly distributed random time is due to the stationarity of the
Poisson processes asymptotically the same as observing the random Poisson processes at a fixed
time.

Lets give a formal proof of (A.52). First, define for l = 1,2

t̃
(l)
0,n(s) = U

(l)
1,Kn

(ns),

t̃
(l)
k,n(s) = inf

{
t
(l)
i,1 |t (l)i,1 > t̃

(l)
k−1,n(s)

}
, k ≥ 1,

t̃
(l)
k,n(s) = sup

{
t
(l)
i,1 |t (l)i,1 < t̃

(l)
k+1,n(s)

}
, k ≤ −1.

Since the number of increments occurring in Z
(l)
1 (U

(l)
1,Kn

(ns)) is bounded in probability and the
number of exponentially distributed random variables used in Example 3.4 for the construction
of Z(l)(s) is also bounded in probability it suffices to prove((

t̃
(l)
k,n(s) − t̃

(l)
k−1,n(s)

)
k=−K+1,...,K

,
(
t̃
(3−l)
k,n (s) − t̃

(3−l)
k−1,n(s)

)
k=−K+1,...,K

)
(A.53)

LS−→ ((
E

(l)
k

)
k=−K+1,...,K

,
(
E

(3−l)
k

)
k=−K+1,...,K

)
for all K ∈ N where E

(1)
k , E

(2)
k are i.i.d. exponentially distributed random variables with param-

eters λ1, λ2, respectively.
We first show (

t̃
(l)
k,n(s) − t̃

(l)
k−1,n(s)

)
k=−K+1,...,K

LS−→ (
E

(l)
k

)
k=−K+1,...,K

. (A.54)

To prove this, we consider the S-conditional characteristic function

E

[
exp

(
i

K∑
k=−K+1

vk

(
t̃
(l)
k,n(s) − t̃

(l)
k−1,n(s)

))∣∣∣∣∣S
]

= OP
(
K

−1/2
n

)+
K∗

n (l)∑
j=−K∗

n (l)

∣∣I(l)

i
(l)
1 (ns)+j,1

∣∣( K∗
n (l)∑

j ′=−K∗
n (l)

∣∣I(l)

i
(l)
1 (ns)+j ′,1

∣∣)−1
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× exp

(
i

K−1∑
k=1

(
v−k

∣∣I(l)

i
(l)
1 (ns)+j−k,1

∣∣+ vk+1
∣∣I(l)

i
(l)
1 (ns)+j+k,1

∣∣)) (A.55)

×E
[
exp

(
iv0

(
U1(ns) − t

(l)

i
(l)
1 (ns)+j−1,1

(s)
)

+ iv1
(
t
(l)

i
(l)
1 (ns)+j,1

(s) − U1(ns)
))|S,U1(ns) ∈ I(l)

i
(l)
1 (ns)+j,1

]
,

where the number of observations of X(l) in the interval [t (3−l)

i
(3−l)
n (s)−Kn−1,n

, t
(3−l)

i
(3−l)
n (s)+Kn,n

] equals

(2K∗
n(l) + 1) + OP(K

1/2
n ) with K∗

n(l) = �Knλl/λ3−l�. With a random variable κ ∼ U [0,1] in-
dependent of S the conditional expectation in the last line equals

E
[
exp

(
iv0κ

∣∣I(l)

i
(l)
1 (ns)+j,1

∣∣+ iv1(1 − κ)
∣∣I(l)

i
(l)
1 (ns)+j,1

∣∣)|S]

=
exp(iv0|I(l)

i
(l)
1 (ns)+j,1

|) − exp(iv1|I(l)

i
(l)
1 (ns)+j,1

|)
i(v0 − v1)|I(l)

i
(l)
1 (ns)+j,1

|
.

Except for j = 0 the length of each observation interval I(l)

i
(l)
1 (ns)+j,1

is exponentially distributed,

up to asymptotically negligible boundary effects, with parameter λl . It follows easily that (A.55)
has asymptotically the same distribution as

( K∗
n (l)∑

j=−K∗
n (l)

Ẽj

)−1 K∗
n (l)∑

j=−K∗
n (l)

Ẽj exp

(
i

K−1∑
k=1

(v−kẼj−k + vk+1Ẽj+k)

)
exp(iv0Ẽj ) − exp(iv1Ẽj )

i(v0 − v1)Ẽj

for i.i.d. exponentials Ẽj , j ∈ N, with parameter λl . Expanding by (2K∗
n + 1)−1 and using the

law of large numbers (note that the summands are independent for |j − j ′| > 2K + 1), this
expression converges almost surely to

E

[
λlẼ0 exp

(
i

K−1∑
k=1

(v−kẼj−k + vk+1Ẽj+k)

)(
i(v0 − v1)Ẽ0

)−1(exp(iv0Ẽ0) − exp(iv1Ẽ0)
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= E

[
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(
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(A.56)

×
∫ ∞

0
λlx

exp(iv0x) − exp(iv1x)

i(v0 − v1)x
λle

−λlx dx

= E

[
exp

(
i

K−1∑
k=1

(v−kẼj−k + vk+1Ẽj+k)

)]
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λl
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which is the characteristic function of a vector of 2K independent Exp(λl)-distributed random
variables. This yields (A.54).

Analogously to (A.54) we obtain(
t̃
(3−l)
k,n (s) − t̃

(3−l)
k−1,n(s)

)
k=−K+1,...,K

LS−→ (
E

(3−l)
k

)
k=−K+1,...,K

, (A.57)

and finally (A.54) and (A.57) yield (A.53), because by the stationarity of the Poisson process and
the independence of the two processes we have that t̃

(l)
k,n(s) − t̃

(l)
k−1,n(s) and t̃

(3−l)

k′,n (s) − t̃
(3−l)

k′−1,n
(s)

are asymptotically independent, because dependency only occurs in the OP(K
−1/2
n )-term of

(A.55) which is asymptotically negligible.
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