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We provide a general methodology for unbiased estimation for intractable stochastic models. We consider
situations where the target distribution can be written as an appropriate limit of distributions, and where
conventional approaches require truncation of such a representation leading to a systematic bias. For exam-
ple, the target distribution might be representable as the L2-limit of a basis expansion in a suitable Hilbert
space; or alternatively the distribution of interest might be representable as the weak limit of a sequence of
random variables, as in MCMC. Our main motivation comes from infinite-dimensional models which can
be parameterised in terms of a series expansion of basis functions (such as that given by a Karhunen–Loeve
expansion). We introduce and analyse schemes for direct unbiased estimation along such an expansion.
However, a substantial component of our paper is devoted to the study of MCMC schemes which, due
to their infinite dimensionality, cannot be directly implemented, but which can be effectively estimated
unbiasedly. For all our methods we give theory to justify the numerical stability for robust Monte Carlo im-
plementation, and in some cases we illustrate using simulations. Interestingly the computational efficiency
of our methods is usually comparable to simpler methods which are biased. Crucial to the effectiveness of
our proposed methodology is the construction of appropriate couplings, many of which resonate strongly
with the Monte Carlo constructions used in the coupling from the past algorithm.

Keywords: Bayesian inverse problems; coupling; Markov chain Monte Carlo in infinite dimensions;
unbiased estimation

1. Introduction

Bayesian analyses of complex models often lead to posterior distributions which are only avail-
able indirectly as an appropriate limit of a sequence of probability measures. A classical example
of this is Markov Chain Monte Carlo (MCMC), which constructs an algorithm to access the pos-
terior distribution which involves creating Markov chains with the required limiting distribution.
Rather different examples come from infinite-dimensional models, for example arising in infer-
ence for continuous-time stochastic processes, and in inverse problems where the quantity to be
inferred is naturally expressed as a function in an appropriate Hilbert space. In these examples,
the exact representation of the posterior distribution is via an infinite sum (perhaps representing a
basis expansion) or the limit of a sequence of approximations perhaps derived from time discreti-
sations. Thus, in these contexts we have an indirect representation of the posterior distribution.

The conventional approach to such an indirect representation is to truncate:
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• to run the MCMC for long enough;
• to choose a fixed fine time-discretisation;
• or to take sufficiently many terms in the series expansion.

The main problem with this general approach is that the accuracy of the approximation produced
is highly application-specific and very difficult to analyse.

It is a common misconception that exact methods, which avoid truncation approximations en-
tirely, are either impossible or prohibitively computationally expensive (see [23] for some exam-
ples involving simulation of SDEs). Although stochastic simulation directly from the posterior
distribution is generally not feasible, it turns out to be very commonly feasible and practical to
obtain unbiased estimates for any arbitrary posterior expected functional of interest. This is the
focus of the present paper, which builds on the contributions of [26].

Fundamental to the success of these methods is the construction of suitable couplings to ensure
our estimators have finite variances. Much of these constructions resonate with the huge body of
literature inspired by the coupling from the past algorithm of Propp and Wilson [25], although
crucially our methods are substantially more general as we do not require the strong coalescent
couplings needed for coupling from the past.

Although we shall state most of our results quite generally, our main applications will be in
the area of Bayesian inverse problems. We construct unbiased estimators in four settings:

• for chains with exactly computable transitions, which posses a simulatable contracting cou-
pling between runs started at different positions (Section 2 – bias due to using finite time
distributions);

• for linear Gaussian conjugate infinite dimensional Bayesian inverse problems (Section 3 –
bias due to discretisation);

• for non-linear infinite dimensional inverse problems with uniform series priors using the
independence sampler (Section 4 – bias due to discretisation of the states and finite time);

• for measures with log-Lipschitz densities with respect to infinite dimensional Gaussians
using the pCN algorithm (Section 5 – bias due to discretisation of the states and finite time).

There are many operational choices in our procedures, and we have only just begun exploring
all the options. Optimisation of our procedures is therefore an important and difficult question
which leads on from our work here. From the examples, we have considered here, we have
however been surprised by the apparent efficiency of essentially ad-hoc choices for algorithm
parameters. Thus, our methods seem very promising as practical and general approaches which
circumvent the systematic error of existing approaches.

Although our work is significantly more technical in nature than [26], we see our main con-
tributions here as methodological rather than mathematical, and in this light have tried to keep
technicalities to a minimum, particularly in the main body of the paper. For instance, we refrain
from expressing or proving our results for the most general Hilbert space-valued functions, even
though a generalisation to this context is completely straightforward.

1.1. Overview of existing results

We now briefly outline the recent results by Chang-han Rhee and Peter Glynn [26,27], which
we extend in the following sections (see also work by Don McLeish [20]). The objective is to
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efficiently simulate an unbiased estimator of the expectation of a real valued random variable Y .
We consider settings in which the exact simulation of Y is impossible due to the infinite cost
associated with generating an exact sample, thus in order to perform a Monte Carlo simulation
one needs to use approximations Yi of Y . This introduces a bias in the Monte Carlo estimator
of the expectation, which in turn results in suboptimal rates of convergence with respect to the
computational budget c. In particular, instead of the optimal O(c−1/2) rate of convergence, we
get slower rates. In the aforementioned works, the goal is twofold: first to construct unbiased
estimators of the expectation of interest using an appropriate combination of biased ones, and
second to find conditions which secure that the variance and the computational cost of the con-
structed estimator are such that the optimal rate of convergence with respect to the budget c is
achieved.

The starting point is a neat randomisation idea for unbiased estimation of infinite sums, which
traces back to John von Neumann and Stanislaw Ulam in the context of matrix inversion [12,33].
The idea was more recently employed by Peter Glynn in the setting of time integral estimation
[14]. Assume that the approximations Yi satisfy E(Yi)→ E(Y ) as i →∞. Then one can express
the expectation of Y as a telescoping sum

E(Y )=
∞∑
i=0

E(Yi − Yi−1),

where Y−1 = 0 by convention. Provided the approximations are good enough so that Fubini’s
theorem applies, this suggests that an unbiased estimator for E(Y ) is the sum

∑∞
i=0(Yi − Yi−1).

However, this estimator cannot be generated in finite time, so the idea is to use a random trun-
cation point N and correct for the introduced bias. Indeed, let N be an integer-valued random
variable which is independent of the random approximations Yi and is such that P(N ≥ i) > 0
for all i ∈N. Then, letting �i = Yi −Yi−1, and again assuming that the approximations are good
enough so that we can interchange expectation with summation, we have that

E

[
N∑

i=0

�i

P (N ≥ i)

]
= E

[ ∞∑
i=0

1{N≥i}�i

P (N ≥ i)

]
=

∞∑
i=0

E(�i)= E(Y ),

so that the estimator

Z :=
N∑

i=0

�i

P (N ≥ i)
(1.1)

is unbiased.
In order for the estimator Z to be practical, we need to also have that its variance, var(Z), as

well as the expected work required to generate a copy of it, E(τ ), are finite. Letting ti be the
expected incremental effort required to calculate Yi , we have that

E(τ )= E

(
N∑

i=0

ti

)
=

∞∑
i=0

tiP (N ≥ i), (1.2)
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while in [26,27] it is shown that

var(Z)=
∞∑
i=0

βi

P (N ≥ i)
,

where βi =O(E[(Y − Yi)
2]). It is hence apparent that there is a competition between P(N ≥ i)

decaying fast enough so that the expected work required to generate Z is finite, but not too fast
so that var(Z) is also finite. In order to obtain that both the expected work and the variance of
the estimator are finite, the rate of convergence of E[(Y − Yi)

2] needs to be faster than the rate
at which the expected incremental effort ti goes to ∞.

The following proposition is proved in [26] and is very useful for verifying the unbiasedness
and finite variance of the proposed estimator. Here and elsewhere, we use the notation ‖h‖2 :=
(E[h2]) 1

2 .

Proposition 1.1 (Proposition 6, [26]). Suppose that (�i : i ≥ 0) is a sequence of real-valued
random variables and let N be an integer-valued random variable which is independent of the
�i ’s and satisfies P(N ≥ i) > 0 for all i ≥ 0. Assume that

∑
i≤l

‖�i‖2‖�l‖2

P(N ≥ i)
<∞.

Then Yn :=∑n
i=0 �i converges in L2 to a limit Y :=∑∞

i=0 �i as n →∞. Let α = EY(=
limn→∞EYn) and suppose that for all i, �̃i is a copy of �i such that {�̃i} are mutually in-

dependent. Then Z̃ :=∑N
i=0

�̃i

P(N≥i)
is an unbiased estimator for α with finite second moment

EZ̃2 =
∞∑
i=0

ν̃i

P(N ≥ i)
,

where ν̃i = var(�i)+ (α −EYi−1)
2 − (α −EYi)

2.

Remark 1.2. In Proposition C.1 in the Supplementary Material [3], we generalise Proposi-
tion 1.1 to cover estimation of expectations of Hilbert space-valued random variables Y . Nev-
ertheless, in order to avoid overcomplicating our presentation, we state and prove our results
for real-valued random variables Y and only comment on their applicability in the more general
Hilbert space setting.

Under the assumption that both var(Z) and E(τ ) are finite, Glynn and Whitt’s results on gen-
eral estimators imply that a central limit theorem holds

c1/2(α̂(c)−E(Y )
)⇒√E(τ )var(Z)N(0,1), (1.3)

where α̂(c) is the Monte Carlo estimator produced from independent replicates of Z that can
be generated after c units of computer time [15]. This immediately gives that the estimator con-
verges at the optimal square root rate. Furthermore, the above central limit theorem supports
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theoretically the intuition that the product of the variance and the expected work is a good mea-
sure of efficiency of the estimator and consequently suggests that the choice of distribution for
N can be optimised by minimising this product.

In the work of Rhee and Glynn [26,27], this programme has been developed and carried out in
two general settings. The first setting is simulation of SDEs, in which these ideas are directly ap-
plicable to many of the available discretisation schemes. An important observation in this setting
is that for lower order schemes, like the Euler–Maruyama discretisation, this methodology does
not work since the convergence of E[(Y − Yi)

2] is not quick enough compared to the increase
in the cost of producing Yi . On the other hand, with respect to the bias aspect of the problem,
there is no need to use discretisation schemes of particularly high order, since for example, the
Millstein scheme is already enough to secure the optimal square root convergence rate of the
Monte Carlo estimator. The second setting is the study of ergodic Markov chains, where the aim
is to estimate expectations with respect to the invariant measure and the finite-time distributions
are used to define the approximations Yi . In this setting, the theory is not immediately applica-
ble, since although the finite-time distributions converge to the invariant measure, in general the
random variables Yn defined through the outcome of the Markov chain, may not converge in the
L2 sense. For this reason, one needs to construct an appropriate coupling to enable the sequence
of approximations to converge in L2 and thus to permit the application of Proposition 1.1. In
[26], such couplings are constructed for uniformly ergodic, contracting and Harris chains (see
Section 1.2 below).

In infinite-dimensional contexts (such as those arising in Bayesian inverse problems) it is usu-
ally impossible to implement the infinite-dimensional MCMC algorithms required to sample
from the target distribution (though see [5], for an example where it can be done).

A rather different application of the ideas of unbiasing by taking random differences, has been
introduced by [9,16,19], which build on the Multilevel Monte Carlo (MLMC) method of Mike
Giles [13]. This method makes substantial progress in the construction of algorithms which un-
biasedly estimate chosen finite-dimensional summaries from infinite-dimensional MCMC meth-
ods. However, these methods do not avoid bias due to Markov chain burn-in. In the present
paper, we will provide practical unbiasing methods which circumvent bias, either from the need
for finite-dimensional approximation, or from Markov chain burn in.

1.2. Glynn and Rhee’s results for exact estimation in the context of ergodic
Markov chains

Before moving on with the presentation of our results, we briefly recall the methodology of
[26] for constructing an appropriate coupling in the setting of uniformly ergodic Markov chains;
we will build our extension to the MCMC in function space setting on this methodology. Let
X = {Xn}n∈N be a Markov chain in a state space X , with transition probabilities P(x,A) and
invariant distribution π . A uniformly recurrent Markov chain is one for which there exists a
probability measure ν on X , a constant λ > 0 and an integer m≥ 1, such that

P m(x,B)≥ λν(B),
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for any x ∈ X and any measurable B ⊂ X . In other words, this condition says that the whole
space X is “small”, see [22], Section 5.2, which by [22], Theorem 16.0.2, is one of the conditions
that are equivalent to the uniform ergodicity of the Markov chain. In particular, the Markov chain
converges to its invariant distribution, however this does not guarantee that X converges in L2.
In order to find a coupling of Xn and Xn+1 such that they come closer in L2 as n increases, the
authors of [26] define the random functions

ϕn(·) := Inξn + (1− In)φn(·),
where In are independent and identically distributed Bernoulli random variables with success
probability λ, ξn are independent random variables drawn according to ν, and φn are random
functions representing the transition Q(x,B)= P(x,B)−λν(B)

1−λ
, that is, P(φn(x) ∈ B)=Q(x,B).

They then recursively express the chain Xn as Xn+1 = ϕn(Xn), where X0 = x. Since ϕn(x) are
independent and identically distributed according to P(x, ·), one can then define X̃n to be the
backwards process

X̃n+1 := ϕ0 ◦ · · · ◦ ϕn(x)

L= ϕn ◦ · · · ◦ ϕ0(x) (1.4)

= Xn+1.

Note that ϕn is constant with positive probability λ, so that with probability 1− (1−λ)n, at least
one of the ϕk , k ∈ {1, . . . , n}, is a constant (random) function. The advantage of working with the
backwards process is that contrary to the forward process, if ϕn is a constant function then all
X̃k for k > n are equal to the same constant. We hence have that as n increases, with probability
which goes to 1, X̃n = X̃n+1.

This is particularly useful for estimating the expectation of a bounded function f : X → R

with respect to the equilibrium distribution π , Eπ [f ]. An obvious choice of approximating se-
quence in this setting is the sequence of the images under f of the chain after a finite number of
steps, hence we let Yi = f (Xi). Then

E
[
(Yi − Yi−1)

2]= E
[(

f (X̃i)− f (X̃i−1)
)2]

≤ ‖f ‖2∞P(ϕj is not constant for all j ≤ i)

≤ ‖f ‖2∞(1− λ)i .

We thus have that the Yi converge in L2 and the unbiasing programme described in the previous
subsection can be applied.

1.3. Implementation of the backwards construction

At a high level, Rhee and Glynn’s general approach is to represent the chain using random func-
tions ϕ(x,W), where W represents all the randomness needed to simulate the transition. Then
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the evolution of the chain is written as Xn = ϕn ◦ · · · ◦ ϕ0(x), where ϕi(·) = ϕ(·,Wi) for some
independent identically distributed sequence Wi . As described above, the backwards technique

consists in considering the chain X̃n = ϕ0 ◦ · · · ◦ ϕn(x)
L= Xn. Under appropriate assumptions

(contraction or uniform ergodicity) this technique turns the weak convergence of the chain Xn

to its equilibrium distribution, to almost sure convergence of X̃n to a limiting random variable
X̃. The chain X̃ is then used to obtain the approximations Yi = f (X̃i), and hence the differences
�i = Yi − Yi−1 = f (X̃i)− f (X̃i−1) which are used for generating the unbiased estimator Z. It
is important to observe, that completely independent copies of �i at different levels i are used
both for the algorithm and the analysis, see Proposition 1.1.

We remark that the above described coupling is also used as the fundamental idea in the cou-
pling from the past algorithm for sampling perfectly from the invariant distribution of a Markov
chain [25]. Furthermore, note that the backwards technique in the above described form, has the
disadvantage that in order to pass from X̃n to X̃n+1 we need to recompute the whole chain. This
means that in order to compute �i , we first need to produce Yi−1 and then start from scratch to
produce Yi (this discussion does not apply for producing �i and �i+1 since they are assumed
to be independent). For the benefit of the reader and since no implementation details are given
in [26], we now describe a reasonable implementation. This implementation is easier than the
coupling from the past algorithm, however the probabilistic construction is very similar. We will
later generalise this construction to cover sampling from infinite dimensional target measures,
using the finite-time distributions of a hierarchy of Markov chains with state spaces of increasing
dimension (see Sections 4 and 5).

We start by noticing that it is not necessary to construct Yi ’s that have the correct distribution,
but rather it suffices to generate �i ’s which have the correct expectation (this is silently observed
in [26] but the authors do not seem to exploit it). We present this in a more general setting, and
in particular we consider approximation levels i that correspond to ai time steps, where {ai}i∈N
is a strictly increasing sequence of positive integer numbers. We will show later in Section 6 that
the choice of ai has a huge impact on the efficiency of the estimator.

The random variables X̃ai
and X̃ai−1 needed to generate �i when using the backwards tech-

nique, are given as

X̃ai
= ϕ
(
ϕ
(
. . . ϕ
(
ϕ(x0,Wai

),Wai−1
)
. . . ,W2

)
,W1
)
,

X̃ai−1 = ϕ
(
ϕ
(
. . . ϕ
(
ϕ(x0,Wai−1),Wai−1−1

)
. . . ,W2

)
,W1
)
.

The same set of random variables, can be generated sequentially as the algorithm progresses. To
do this, we introduce the chains T i ,Bi corresponding to the “top” and “bottom” approximation
levels, respectively, which appear in the definition of �i . We set

T i−ai
= x0,

and to get T i−ai−1
we simulate until −ai−1 , that is we set

T i−ai−1
= ϕ
(
. . . ϕ
(
ϕ(x0,Wai

),Wai−1
)
. . . ,Wai−1+1

)
. (1.5)
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We then set Bi−ai−1
= x0, and simulate T i and Bi jointly up to time 0, hence obtaining

T i
0 = ϕ

(
ϕ
(
. . . ϕ
(
ϕ
(
T i−ai−1

,Wai−1

)
,Wai−1−1

)
. . . ,W2

)
,W1
)
,

(1.6)
Bi

0 = ϕ
(
ϕ
(
. . . ϕ
(
ϕ(x0,Wai−1),Wai−1−1

)
. . . ,W2

)
,W1
)
.

Thus we have Bi
0 = X̃ai−1 and T i

0 = X̃ai
, and can define �i = f (T i

0 ) − f (Bi
0). Furthermore,

observe that the direction of enumeration of the W ’s does not matter in this construction, since
the ai ’s are a priori fixed and can hence be generated as the algorithm progresses.

Alternatively, one can think of this construction in terms of couplings. Let

P(x, ·)= L
(
ϕ(x,W)

)
be the transition kernel of Xi . Moreover,

K
(
(x, y), ·) := L

(
ϕ(x,W),ϕ(y,W)

)
is a coupling of P(x, ·) and P(y, ·). This coupling allows us to write (1.5) and (1.6) as

1. T i−ai
= x0, then simulate according to P up to T i−ai−1

;

2. set Bi−ai−1
= x0, then simulate (T i ,Bi ) jointly according to K up to (T i

0 ,Bi
0).

Under the assumption that ∑
i≤l

‖�i‖2‖�l‖2

P(N ≥ i)
<∞, (1.7)

which has to be verified for different classes of Markov chains, we can define retrospectively the
approximations Yi :=∑i

k=0 �k , and apply Proposition 1.1 and more generally the programme
developed by Rhee and Glynn, to get an unbiased estimator of Eπ [f ] with optimal cost.

1.4. Notation

We always denote the state space by X , although we work under assumptions on the state space

which differ between sections. As stated earlier, we use the notation ‖h‖2 = (E[h2]) 1
2 . We use

f to denote the function whose expectations we want to estimate and denote by Eπ [f ] the
expectation of f under a probability measure π . For two sequences kj and hj of positive real

numbers, kj � hj means that
kj

hj
is bounded away from zero and infinity as j →∞, kj � hj

means that
kj

hj
is bounded as j →∞, and kj ∼ hj means that

kj

hj
→ 1 as j →∞.

1.5. Organisation of the paper

In Section 2, we consider unbiased estimation of expectations with respect to the limiting dis-
tribution of an ergodic Markov chain in a state space in which we assume that transitions can
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be computed exactly. The source of the bias is then only the use of finite time distributions to
approximate the limiting distribution (burn-in). Compared to the contracting chain setting of
[26], we work under the weaker assumption that there exists a simulatable contracting coupling
between runs of the chain started at different states (see Remark 2.9).

In Section 3, we consider unbiased estimation of posterior expectations in Gaussian-conjugate
Bayesian linear inverse problems in a separable Hilbert space. Since in this setting the posterior
is also Gaussian, the source of the bias is only the discretisation.

In Section 4, we consider estimation of posterior expectations in a nonlinear Bayesian in-
verse problem setting in function space, with uniform series priors and under assumptions which
ensure the uniform ergodicity of the independence sampler at any fixed discretisation level of
the state space. In this case the bias is both due to discretisation of the state and burn-in. We
achieve unbiased estimation by constructing a hierarchy of coupled independence samplers in
state spaces of increasing dimension.

In Section 5, we consider target measures which are absolutely continuous with respect to a
Hilbert space Gaussian reference measure, under assumptions on the log-density which secure
the existence of a simulatable contracting coupling of the pCN algorithm at any fixed discretisa-
tion level of the state space. In this case, the bias is again due to both discretisation and burn-in.
We achieve unbiased estimation by constructing a hierarchy of coupled pCN algorithms in state
spaces of increasing dimension.

In Section 6, we present a comparison between the performance of the ergodic average of an
MCMC run and the performance of the Monte Carlo estimator constructed using the unbiasing
procedure. This is first done in a 1-dimensional Gaussian autoregression setting and then for a
Bayesian logistic regression model.

The main body of the paper ends with concluding remarks in Section 7. The proofs of the
results in Sections 2, 4 and 5, as well as the statements and proofs of some necessary intermediate
results are contained in Section 8. The proofs of the results in Section 3 are straightforward
calculations and are included in the Supplementary Material [3]. Also in the Supplementary
Material we provide some further considerations in the context of Section 3, the generalisation
of Proposition 1.1 to Hilbert space-valued random variables, and an elliptic inverse problem
example which satisfies the assumptions of Section 4.

2. Wasserstein convergence of Markov chains and unbiased
estimators of equilibrium expectations

In this section, we consider the problem of constructing unbiased estimators for expectations with
respect to limiting distributions of Markov chains. As discussed in Section 1.1, the techniques
developed in [27], have been applied in [26] in this setting and in particular for uniformly recur-
rent, contracting and Harris chains. The approximation is achieved by considering the finite-time
distributions, and then the challenge is to construct a coupling which guarantees that the chain
comes close in L2 as time increases. In general, the approach taken in [26], is to use intelli-
gent techniques that turn convergence in distribution to almost sure convergence (for example,
the backwards process technique described in Section 1.1). We now show that this is not neces-
sary, but instead a simulatable coupling between chains started at different positions is sufficient,
provided this coupling drives the two chains towards each other quickly enough in expectations.
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Let X be a general state space. Throughout this section, d denotes a distance-like function,
that is a function d : X ×X → R

+ which is symmetric, lower semi-continuous and which van-
ishes when the two arguments are equal. Let X = {Xn}n∈N be a Markov chain with transition
probabilities P(x, .) and invariant distribution π . Our aim is to find an unbiased estimate for the
expectation EY := Eπ [f ], where f :X →R is an s-Hölder continuous function with respect to
d for some s ∈ (0,1], that is

‖f ‖s := sup
x =y

|f (x)− f (x)|
ds(x, y)

<∞.

Assumption 2.1. We work under the following assumptions on the chain X in terms of the
distance-like function d :

i. there exists a simulatable coupling K((x, y), (dx′, dy′)) between the transition probabili-
ties P(x, dx′) and P(y, dy′), which satisfies

Knd2s ≤ crnd2s for some r < 1; (2.1)

ii. there exists a point x0 ∈X such that

sup
n

P nd(x0, ·) <∞. (2.2)

Remark 2.2. We comment the following about Assumptions 2.1.

1. Assumption 2.1.i. is more general than the contracting chains case considered in Chap-
ter 3.4 in [26], since the coupling is allowed to depend on both x and y; for more details, see
Remark 2.9 below.

2. Assumption 2.1.i. is related to the s-Wasserstein distance-like function ds associated with
d , which is given by

ds(ν1, ν2) =
(

inf
π∈�(ν1,ν2)

∫
X×X

ds(x, y)π(dx, dy)

) 1
s

,

with �(ν1, ν2) being the set of couplings of ν1 and ν2 (all measures on X ×X with marginals ν1
and ν2). Since K constitutes a particular coupling, it follows that

d2s
2s

(
P n(x, ·),P n(y, ·))≤Knd2s .

That is, our assumption is stronger than the corresponding assumption on the transition proba-
bilities in terms of ds because we need K to be simulatable.

3. Finally, observe that Assumption 2.1.ii. can be established by picking a distance d that is
bounded or compatible with a Lyapunov function of the underlying Markov chain.

As discussed in Section 1.3, we generate the differences �i directly and through them define the
approximations Yi . Let {ai} be an increasing sequence of integers. We generate �i as specified
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Algorithm 1 Coupled contraction for unbiased estimation
Fix starting point x0 ∈X once and for all. For i = 0

• set T 0−a0
= x0 and run the chain until T 0

0 ;
• set �0 = f (T 0

0 ).

For i ≥ 1 do

• set T i−ai
= x0 and run the chain until T i−ai−1

;

• set Bi−ai−1
= x0;

• evolve Bi
k and T i

k jointly according to K up to time 0;
• set �i = f (T i

0 )− f (Bi
0).

in Algorithm 1 and where x0 is defined in Assumption 2.1.ii. We denote by T i
k and Bi

k the chains
coupled through the kernel K for k =−ai−1 + 1, . . . ,0.

In order to follow the general idea of the unbiasing technique as outlined in Section 1.1, we
now make an assumption about the computing time of generating �i .

Assumption 2.3. The expected computing time ti of generating �i satisfies

ti � ai.

This seems a reasonable assumption as �i can be produced using ai steps following K . We
have the following result on the estimator Z defined in equation (1.1).

Theorem 2.4. Suppose Assumption 2.1 (existence of contracting coupling) and Assumption 2.3
are satisfied, and that f : X → R is s-Hölder continuous with respect to d , for some s ∈ (0,1].
Then there exist choices for ai and P(N ≥ i), such that

Z =
N∑

i=0

�i

P(N ≥ i)

is an unbiased estimator of Eπ [f ] with finite variance and finite expected computing time. In
particular, an example of such choices is ai � r(2ε−1)i and P(N ≥ i)∝ r(1−ε)i for any 0 < ε < 1

2 .

Note that the exponential convergence in Assumption 2.1.i. makes the calculations easier,
however the same argument works for sufficiently fast sub-exponential convergence.

Assumption 2.5. There exists a simulatable coupling K((x, y), (dx′, dy′)) between the transi-
tion probabilities P(x, dx′) and P(y, dy′), which satisfies

Knd2s ≤Cn−2rd2s , (2.3)

where r > 1
2 .
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Theorem 2.6. Suppose Assumption 2.5, Assumption 2.1.ii. and Assumption 2.3 are satisfied, and
that f : X → R is s-Hölder continuous with respect to d , for some s ∈ (0,1]. Then there exist
choices for ai and P(N ≥ i), such that

Z =
N∑

i=0

�i

P(N ≥ i)

is an unbiased estimator of Eπ [f ] with finite variance and finite expected computing time. In
particular, an example of such choices is ai � ik and P(N ≥ i) ∝ i−2rk+2+ε for k > 3

2s−1 and
any 0 < ε <−3− (1− 2s)k.

Remark 2.7. The Assumption 2.5 can be verified using drift conditions and coupling sets which
are provided in the article [10]. Note that in this case it is not even clear that the ergodic average
of the underlying Markov chain satisfies a central limit theorem, while the construction above
remains valid. For r ≤ 1

2 , the decay of ‖�i‖2 is not fast enough to allow for Z to have both finite
variance and finite expected computing time.

Remark 2.8. Using Proposition C.1 in the Supplementary Material [3] which generalises Propo-
sition 1.1, it is straightforward to check that Theorems 2.4 and 2.6 can be extended to hold for
estimating expectations with respect to π of functions f : X →H which are s-Hölder continu-
ous with respect to d , where (H, 〈·, ·〉H ,‖ · ‖H ) is a Hilbert space.

Remark 2.9. This section is a genuine generalisation of Section 3.4 of [26]. In this reference,
the authors consider Markov chains that can be represented through iterated random functions
which satisfy

Xn+1 = ϕn(Xn)= ϕ(Xn, ξn),

with ξn independent and identically distributed, without loss of generality, U[0,1] random vari-
ables. Under the assumption that

sup
x =y

E

(
d(ϕ(x),ϕ(y))

d(x, y)

)2γ

= r < 1, (2.4)

for some r < 1 the general procedure can be applied to �i = f (X̃i)− f (X̃i−1) where X̃i is the
backwards chain discussed in Section 1.2. In the language of the present section, the coupling in
[26], Section 3.4, is specified through the random function, that is we can use

K
(
(x, y), (dx̃, dỹ)

)= L
(
ϕ(x, ξ), ϕ(y, ξ)

)
which turns (2.4) into (2.1). We now show an example of a coupling of a Markov chain that leads
to a faster contraction in (2.1) than any representation of the Markov chain through a random
function. In particular, the coupling cannot be represented by a random function. Consequently,
this section indeed genuinely generalises the results of [26].
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Example 2.10. Consider the Markov chain given by

Xn+1 ∼ (Xn +U) mod 2π, (2.5)

where U ∼ U[−2,2]. We denote the corresponding transition kernel by P(x, ·) and note that it
is of the form P(x, ·)=U(Ax) where Ax ⊂ [0,2π ]. It is easy to check that |Ax ∩Ax̃ | ≥ 8− 2π

for any x, x̃ ∈ [0,2π ], so that we have coupling probability for the 1-step maximal coupling at
least 8−2π

4 = 2− π
2 > 1

3 . More precisely, this maximal coupling can be written as

Q(x1, x2)= L
(
(Y,Y )1[0,

|Ax1∩Ax2 |
4 ](U)+ (Y1, Y2)

(
1

(
|Ax1∩Ax2 |

4 ,1](U)
))

,

where Yi ∼ U(Axi
\ Ax1 ∩ Ax2), Y ∼ U(Ax1 ∩ Ax2) and U ∼ U[0,1] are independent random

variables. Note that this coupling clearly satisfies Assumption 2.1 with

Qd ≤
(

1− 8− 2π

4

)
d,

for d the discrete metric.
In contrast, suppose there is a random function ϕ(·, ξ) such that P(x, ·)= L(ϕ(x, ξ)) and

Ed
(
ϕ(x, ξ), ϕ(y, ξ)

)
<

2

3
d(x, y), (2.6)

for every x, y ∈ [0,2π ]. Then consider the three points: x1 = 0, x2 = 2π
3 , x3 = 4π

3 . It is easy to
check that the minorisation measures between P(x1, ·) and P(x2, ·), P(x2, ·) and P(x3, ·), and
P(x1, ·) and P(x3, ·), necessarily lie in the intervals [0, 2π

3 ], [ 2π
3 , 4π

3 ] and [ 4π
3 ,2π ], respectively

(that is, Ax1 ∩Ax2 ⊂ [0, 2π
3 ], Ax2 ∩Ax3 ⊂ [ 2π

3 , 4π
3 ] and Ax1 ∩Ax3 ⊂ [ 4π

3 ,2π ]). This observation
implies that the sets {

ξ | ϕ(x1, ξ)= ϕ(x2, ξ)
}
,{

ξ | ϕ(x1, ξ)= ϕ(x3, ξ)
}

and{
ξ | ϕ(x2, ξ)= ϕ(x3, ξ)

}
are pairwise disjoint. Since d is the discrete metric, for (2.6) to hold each of the above sets needs
to have probability exceeding 1

3 . This is a contradiction.

3. Unbiased estimation for Bayesian linear inverse problems

In this section, we consider the problem of estimating expectations with respect to the posterior
distribution arising in Bayesian linear inverse problems in function space. We assume Gaussian
prior and noise distributions, hence the posterior is available analytically and the only source of
bias is the discretisation. We show that Glynn and Rhee’s programme can directly be adapted in
this setting to perform unbiased estimation of posterior expectations.
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3.1. Setup

We work in a separable Hilbert space (X , 〈·, ·〉,‖ · ‖) and consider the inverse problem of finding
an unknown function u ∈ X from a blurred, noisy observation y. In particular, we consider the
data model

y =Ku+ ξ,

where ξ ∼ N (0, I ) is additive Gaussian white noise and K is the forward operator which is
assumed to be linear and bounded. We put a Gaussian prior μ0 =N (0,C0) on the unknown u,
where C0 is a positive definite, selfadjoint and trace class linear operator. We make the following
assumption on the operators K and C0.

Assumption 3.1. The linear operators K and C0 commute with each other and K∗K and C0 are
mutually diagonalizable with common complete orthonormal basis {e�}�∈N in X . In particular,
there exist p ≥ 0, a > 1

2 such that the eigenvalues of K∗K and C0 decay as �−4p and �−2a ,
respectively.

In this diagonal setting, it is straightforward to check that the posterior, denoted by μy , is
also Gaussian almost surely with respect to the joint distribution of (u, y), [2]. We hence have
μy =N (m,C), where the mean and precision operator (inverse covariance) are given by

C−1 = C−1
0 +K∗K, (3.1)

C−1m=K∗y. (3.2)

We make the following assumption concerning the observed data.

Assumption 3.2. We have a fixed realisation of the data, y, which has the regularity of the noise,
that is, there exist c−, c+ > 0 such that for all � ∈N, y� = 〈y, e�〉 ∈ (c−, c+).

This assumption is reasonable, since given that u ∈X , in order to have that the inverse problem
is ill-posed and hence worthy of consideration, the noise needs to be outside of the range of K .
This means that the noise needs to be the roughest part of the data.

Gaussianity suggests that we can in theory draw exactly from u|y ∼ N (m,C), however in
practice this is impossible to achieve in finite time due to the infinite-dimensionality of the pos-
terior. In the present setting, the approximation is achieved by considering truncations of the
Karhunen–Loeve expansion of N (m,C). Let x ∼N (μ,�) be a Gaussian random variable in X ,
where μ ∈ X and � : X → X is a selfadjoint, positive definite and trace class linear operator
in X . Then the operator � possesses a set of eigenvalue-eigenfuction pairs {σ�,ψ�}�∈N, where
σ� > 0, � ∈N are summable and {ψ�}�∈N forms a complete orthonormal basis in X . We can then
write x =∑∞

�=1(μ� +√σ�γ�)ψ�, where μ� = 〈μ,ψ�〉 and {γ�}�∈N are independent and identi-
cally distributed standard Gaussian random variables in R; this is the Karhunen–Loeve expansion
of x, [1].
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In particular, the Gaussian random variable u|y ∼N (m,C) can be written as

u|y =
∞∑

�=1

(m� +√c�ζ�)e�,

where c� are the eigenvalues of C (which is also diagonalizable in the basis {e�}�∈N), ζ� are
independent and identically distributed standard normal random variables and m� = 〈m,e�〉. One
can then define the approximations ui |yi of u|y at level i ∈N, by truncating its Karhunen–Loeve
expansion to the first ji terms,

ui |yi :=
ji∑

�=1

(m� +√c�ζ�)e�,

where {ji}i∈N is an increasing sequence of positive integers. Using equations (3.2) and (3.1),
together with Assumption 3.1, we get that

ui |yi =
ji∑

�=1

�−2py�

�2a + �−4p
e� +

ji∑
�=1

ζ�

(�2a + �−4p)
1
2

e�. (3.3)

Approximating expectations with respect to the posterior μy , by expectations with respect
to the laws μ

y
j of the truncated Karhunen–Loeve expansion, introduces a bias. In the next sub-

section, we demonstrate how Glynn and Rhee’s unbiased estimation programme for SDE’s (see
Section 1.1), can be applied directly in the setting of linear inverse problems to obtain unbiased
estimates of expectations with respect to the posterior μy .

3.2. Main result

Suppose that we want to estimate Eμy [f ] = E[Y ], where Y := f (u|y) and f : X → R is s-
Hölder continuous for some s ∈ (0,1]. We define the approximations Yi = f (ui |yi) for i ∈ N

and as in Section 1.1 the differences �i = Yi − Yi−1, where Y−1 := 0. We make the following
assumption which will be needed for controlling the expected computing time of the proposed
estimator.

Assumption 3.3. The expected computing time ti for generating �i satisfies

ti � ji .

This is a reasonable assumption, since we require ji Gaussian draws to produce ui |yi . We have
the following result on the estimator Z defined in equation (1.1), which holds under Assumptions
3.1, 3.2, 3.3:

Theorem 3.4. Let f : X → R be s-Hölder continuous for some s ∈ (0,1] and assume a >
1+s
2s

, that is, that the eigenvalues of the prior covariance decay sufficiently fast. Then, there exist
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choices of ji and P(N ≥ i), such that

Z̃ =
N∑

i=0

�̃i

P(N ≥ i)

is an unbiased estimator of Eμy [f ] with finite variance and finite expected computing time. Here,
as in Proposition 1.1, each �̃i is an independent copy of �i as defined above. In particular, two
examples of such choices are:

(i) ji = 2i and P(N ≥ i)∝ 2
(2−ε)s(1−2a)i

2 , for any ε ∈ (0, 2+2s−4as
s(1−2a)

);

(ii) ji � iq , and P(N ≥ i) ∝ is(q−1−2aq)+2+ε , for q > s−3
1+s−2as

and for any ε ∈ (0, s − 3 −
q(1+ s − 2as)).

The assumption on the regularity of the prior, a > 1+s
2s

, in Theorem 3.4, is more severe than
the usual a > 1

2 which is required for the formulation of the Bayesian linear inverse problem. In
Section A in the Supplementary Material [3], we show how to modify the estimator Z in order
to relax this assumption, in the case that f is a linear functional hence Lipschitz continuous.

Remark 3.5. Using Proposition C.1 in the Supplementary Material [3] which generalises Propo-
sition 1.1, it is straightforward to check that Theorem 3.4 can be extended to hold for esti-
mating posterior expectations of functions f : X → H which are s-Hölder continuous where
(H, 〈·, ·〉H ,‖ · ‖H ) is a Hilbert space. In particular, the theorem holds for unbiased estimation of
the posterior mean.

4. Unbiased estimation for Bayesian inverse problems with
uniform priors, using the independence sampler

In this section, we consider infinite dimensional state spaces and extend the considerations of
Glynn and Rhee on unbiased estimation of expectations with respect to the limiting distribution
of a Markov chain, to remove not only the bias introduced due to the use of the finite-time dis-
tributions as approximations of the target distribution, but also the bias introduced due to the
necessity to discretise. For expository reasons, we do this in an idealised nonlinear Bayesian
inverse problem setting, and present an unbiased version of the independence sampler to approx-
imate expectations with respect to the posterior. Later on in Section 5, we extend our results to
more elaborate settings and present an unbiased version of the preconditioned Crank–Nicholson
algorithm.

4.1. Setup

We consider the inverse problem of finding an unknown function u from noisy indirect observa-
tions y ∈R

d . We assume the data model

y =G(u)+ η,
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where G :X →R
d is the observation operator and η∼N(0, I ) is the observational noise. A typ-

ical example in the inverse problems literature, is the situation that G maps the diffusion coeffi-
cient u of an elliptic partial differential equation, to the solution evaluated at a set of finite points
[8], Section 3.4. Henceforward, we identify the function u with a sequence u= {uk}k∈N ∈ R

∞,
which represents the coefficients of the unknown function in some series expansion.

Let u�
k ↓ 0 and consider the sequence of j -dimensional state spaces

Xj =
j∏

k=1

[−u�
k, u

�
k

]
,

assumed to be embedded in the infinite dimensional state space X :=∏∞
k=1[−u�

k, u
�
k]. We denote

by �j the projection onto Xj ⊂X , �j :X →Xj , �ju= (u1, . . . , uj ,0, . . . ). The reader should
think of an element u ∈ X as the collection of coefficients (for example Fourier) of a function
which decay at a prescribed rate. Depending on the particular expansion used, the decay of the
coefficients translates to smoothness of the corresponding function. We put a uniform prior on
u ∈X ,

μ0 =
∞⊗

k=1

(λ |[−u∗k ,u∗k ]), (4.1)

where λ denotes the Lebesque measure, treating all components as uniformly distributed over
the range and independent of all the other components. Such priors have been used in the inverse
problem setting in [30]; see again [8], Section 3.4, for a less technical version. In particular, in
these references it is shown that under certain conditions on the basis used in the series expansion
and on the continuity and boundedness of the forward operator G, the posterior distribution μy

of u|y is well defined and given by

dμy

dμ0
(u)∝ exp

(−∥∥y −G(u)
∥∥2
Rd

)
.

However, in general μy is not available in closed form and on the contrary it can be a very
complicated infinite dimensional probability measure. In order to probe the posterior, one needs
to discretise and sample. We discuss how to do this naively using an independence sampler
in Section 4.2, while in Section 4.3 we modify the independence sampler to achieve unbiased
estimation of expectations with respect to μy .

4.2. Approximations to the forward problem and a naive independence
sampler

In the assumed inverse problem setting, it is natural to discretise u in Xj and to approximate the
observation operator G by Gj : X →R

d which depends on u only through the projection �ju,
that is

Gj(u)=Gj(�ju). (4.2)
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We use the notation G∞ =G and work under the following assumption.

Assumption 4.1. There exists some β > 1, such that the observation operator and its approxi-
mations satisfy

sup
u∈X

∥∥Gj(u)−G(u)
∥∥
Rd � j−β,

sup
u∈X

∥∥G(u)
∥∥
Rd <∞.

Notice that Assumption 4.1 implies

sup
u∈X

∥∥Gj(u)−G
j̃
(u)
∥∥
Rd � (j ∧ j̃ )−β. (4.3)

For a concrete example of G and the relevant discretisations, which satisfies Assumption 4.1 see
Section D in the Supplementary Material [3].

We define the projected priors μ0,j =�j�μ0 on Xj , which combined with the approximation
of the observation operator give rise to the approximate posteriors

dμ
y
j

dμ0,j

(u)∝ exp

(
−1

2

∥∥y −Gj(u)
∥∥2
Rd

)
.

Approximating an expectation with respect to μy by an expectation with respect to μ
y
j , results

in a discretisation error which is quantified in [7,19] and [8]. Moreover, the expectations with
respect to μ

y
j are not available analytically but they are amenable to approximation using Markov

chain Monte Carlo algorithms. Again for illustration, we consider the (regular) independence
sampler, the Metropolis–Hastings algorithm arising from the state-independent proposal μ0,j ,

see Algorithm 2. We denote the resulting Markov chain by X
j· and its transition kernel by Pj .

Algorithm 2 Independence sampler

Generate X
j

0 . Iterate the following steps for k = 1, . . . ,Kmax:

1. ξj ∼ μ0,j

2. set X
j

k+1 = ξj with probability

αj

(
X

j
k , ξ j
)= 1∧ exp

(
1

2

∥∥y −Gj

(
X

j
k

)∥∥2
Rd − 1

2

∥∥y −Gj

(
ξj
)∥∥2

Rd

)
(4.4)

and X
j

k+1 =X
j
k otherwise.
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It is shown in [32], that the boundedness of Gj , implies a deterministic lower bound on the
acceptance probability

αj ≥ α� > 0. (4.5)

In this case, the Monte Carlo error can be controlled explicitly because the Markov chain X
j· is

uniformly ergodic due to (4.5), [19]. The overall error in the approximation

Eμy [f ] ≈ Eμ
y
j
[f ] ≈ 1

Kmax

Kmax∑
k=1

f
(
X

j
k

)

has two contributions, the Monte Carlo error and the discretisation error. In particular, the dis-
cretisation error is chosen at the beginning of the MCMC computation and can only be reduced
by restarting the computations from scratch. In the next subsection, we formulate the modified
independence sampler which leads to unbiased estimation of posterior expectations.

4.3. Unbiased estimation using the independence sampler

We now present a version of the independence sampler which leads to the removal of both the
bias due to the use of the finite-time distributions and the bias due to the discretisation of the
posterior.

We use the unbiasing programme of Glynn and Rhee as introduced in Sections 1.1 and 1.3,
in order to construct an unbiased estimator Z of the posterior expectation Eμy [f ], for some
function f : X → R. For two increasing sequences of integers ai and ji , representing the time-
step and the discretisation level respectively, we would like to set �i = f (X

ji
ai

)−f (X
ji−1
ai−1) in the

definition of Z in Proposition 1.1, where the chains X
ji· and X

ji−1· are the (regular) independence
sampler chains introduced in the previous subsection following the transition kernels Pji

and
Pji−1 , respectively. For the unbiasing technique to work, we need to construct an appropriate
coupling between the two chains, so that ‖�i‖2 decays sufficiently quickly for Proposition 1.1 to
apply, and the expected computing time is finite. In order to achieve this, we generate �i using
a “top” level chain in Xji

and a “bottom” level chain in Xji−1 , which we denote by T i· and Bi· ,
and which perform ai and ai−1 steps, respectively. According to Proposition 1.1, we need �i to
be independent for different i, hence the two chains T i· and Bi+1· both following the transition
kernel Pji

in Xji
, are constructed independently. Nevertheless, the chains at different levels are

coupled as follows:

1. T i· is coupled to Bi· which follows the transition kernel Pji−1 on Xji−1 ;
2. Bi+1· is coupled to T i+1· which follows the transition kernel Pji+1 on Xji+1 .
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The following diagram illustrates the construction of the �i :

x0 = T 0−a0
. . . T 0

0 }�0 = f
(
T 0

0

)
x0 = B1−a0

. . . B1
0

| | | }�1 = f
(
T 1

0

)− f
(
B1

0

)
x0 = T 1−a1

. . . T 1−a0
. . . T 1

0
x0 = B2−a1

. . . B2−a0
. . . B2

0
| | | | | }�2 = f

(
T 2

0

)− f
(
B2

0

)
x0 = T 2−a2

. . . T 2−a1
. . . . . . T 2

0
x0 = B3−a2

. . . B3−a1
. . . . . . B3

0

Here | indicates coupling between two chains. We would like to point out a connection to Mul-
tilevel Markov Chain Monte Carlo (MLMCMC) [9,16,19]. Both the present method and MLM-
CMC couple Markov chains in different dimensions. However, the method presented in this
section can be seen as taking a diagonal approach between the unbiasing approach of [26] and
the MLMCMC idea; this also applies for our method of coupling pCN algorithms presented in
the next section. More precisely, we couple Markov chains in different dimensions performing a
different number of steps. In this way, we remove the bias due to both discretisation and the finite
number of iterations. In contrast in MLMCMC both contributions to the bias remain, however
it achieves an efficient distribution of computations between discretisation levels, which reduces
the cost of producing estimators with a certain error level compared to standard MCMC.

The couplings above arise form the minorisation due to the lower bound on the acceptance
probability. They can be represented using the random functions ϕi

T and ϕi
B , defined as:

ϕi
T
(
x,Wi

) = 1[0,α�]
(
Ui

1

)
ξ i

1

+ 1(α�,1]
(
Ui

1

)(
1
[0,

αji
(x,ξ i

2)−α�

1−α�
]
(
Ui

2

)
ξ i

2 + 1
(

αji
(x,ξ i

2)−α�

1−α�
,1]
(
Ui

2

)
x
)
,

(4.6)
ϕi
B
(
x,Wi

) = 1[0,α�]
(
Ui

1

)
�ji−1ξ

i
1

+ 1(α�,1]
(
Ui

1

)(
1
[0,

αji−1
(x,�ji−1

ξi
2)−α�

1−α�
]
(
Ui

2

)
�ji−1ξ

i
2 + 1

(
αji−1

(x,�ji−1
ξi
2)−α�

1−α�
,1]
(
Ui

2

)
x
)
,

where Wi = (Ui
1,U

i
2, ξ

i
1, ξ

i
2), for Ui

l ∼U[0,1] and ξ i
l ∼ μ

ji

0 , l = 1,2, which are all independent
of each other.

The functions ϕi
T and ϕi

B are constructed by minorising the transition kernels Pji
and Pji−1 ,

using the proposal distributions μ
ji

0 and μ
ji−1
0 , respectively. The uniform random variable Ui

1
is used to construct the “coin” for switching between the minorising measure and the residual
kernel. The residual kernel is still a Metropolis–Hastings kernel with a corrected acceptance
probability and Ui

2 is used for acceptance and rejection. The coupling between the “top” and
“bottom” chains used to construct �i , will be achieved through the use of the same random
seeds in the random functions ϕi

T and ϕi
B .

The construction of �i is given in detail in Algorithm 3. In Lemma 8.1, we derive bounds on
the decay of ‖�i‖2 which are sufficient for the unbiasing programme to work. In order to achieve
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Algorithm 3 Coupled independence samplers for unbiased estimation
Fix a starting point x0 ∈Xj0 once and for all. For i = 0, generate �0 as follows:

1. set T 0−a0
= x0 on Xj0 and simulate according to Algorithm 2 up to T 0

0 ;
2. set �0 = f (T 0

0 ).

For i ≥ 1, generate �i as follows:

1. set T i−ai
= x0 and simulate according to Algorithm 2 upto T i−ai−1

in dimension ji ;

2. set Bi−ai−1
= x0;

3. for k = −ai−1 + 1, . . . ,0 simulate T i
k and Bi

k as coupled independence samplers as de-
scribed below:

(a) draw Ui
l

i.i.d.∼ U[0,1] and ξ i
l

i.i.d.∼ μ
ji

0 for l = 1,2 independently from everything else and
set Wi = (Ui

1,U
i
2, ξ

i
1, ξ

i
2) as the collection of all random input to do the kth step;

(b) set

T i
k = ϕi

T
(
T i

k−1,W
i
)
,

Bi
k = ϕi

B
(
Bi

k−1,W
i
); (4.7)

4. set �i = f (T i
0 )− f (Bi

0).

this, we use the decomposition

‖�i‖2
2 ≤ 2

∥∥f (Bi
0

)− f
(
�ji−1T i

0

)∥∥2
2 + 2

∥∥f (T i
0

)− f
(
�ji−1T i

0

)∥∥2
2

(4.8)
:= 2(E1 +E2).

The first term E1 measures the difference in the lower level of the two coupled chains T i· and Bi·
used to generate �i , while E2 has to do with the dependence of the function f on higher modes.
By the definition of the couplings, see (4.6), it is clear that in order to control E1 it suffices to
make sure that the two chains have the same acceptance behaviour with high probability; we use
Assumption 4.1 and the implied uniform ergodicity to show this. On the other hand, to control
E2 we make the following assumption on f :

Assumption 4.2. We assume that f :X →R satisfies

sup
x∈X

∣∣f (�jx)− f (�
j̃
x)
∣∣� (j ∧ j̃ )−

κ
2 ,

for some κ > 1.

Note that for specific examples of the function f , the last assumption is essentially an as-
sumption on the decay of the sequence defining the space X , u�

k . Under our assumptions, in
Lemma 8.1, we derive bounds on the decay of ‖�i‖2 which are sufficient for the unbiasing
procedure to work.
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In order to control the expected computing time of the estimator Z, we make the following
assumption on the cost of generating �i .

Assumption 4.3. Let r := β ∧κ , where β,κ > 1 are defined in Assumptions 4.1 and 4.2, respec-
tively. We assume that the computational cost of one step of the chain at level ji is

si � jθ
i ,

with θ < r . Therefore, since we need ai steps of the chain to generate �i , the expected computing
time ti of �i satisfies

ti � aij
θ
i .

Remark 4.4. The simultaneous validity of Assumptions 4.1, 4.2 and 4.3 depends on a relation-
ship between the properties of G, the regularity of f and, most importantly, the smoothness of
the space X as expressed by the decay of the sequence u�

k . Making this explicit in full gener-
ality is beyond the scope of this paper, however we do provide an example in Section D of the
Supplementary Material [3].

We have the following result on the estimator Z defined in equation (1.1):

Theorem 4.5. Suppose that the forward model satisfies Assumption 4.1 with β > 1 and the
observable f :X →R satisfies Assumption 4.2 with κ > 1 and let r := β ∧ κ > 1. Furthermore,
assume that the computational cost of one step of the chain satisfies Assumption 4.3 with θ < r .
Then there is a choice of ai , ji and P(N ≥ i), such that

Z =
N∑

i=0

�i

P(N ≥ i)

is an unbiased estimator of Eμy [f ] with finite variance and finite expected computing time. For
example this works for the choice ji = iq , ai ∼ qβ

c�
log(i), for c� = − log(1 − α�) and P(N ≥

i)∝ i−t where q > 3
r−θ

and t ∈ (1+ θq, rq − 2). Note that under our assumptions the choices
of q and t are simultaneously admissible.

Remark 4.6. Using Proposition C.1 in the Supplementary Material [3] which generalises Propo-
sition 1.1, it is straightforward to check that Theorem 4.5 can be extended to hold for estimating
expectations with respect to μy of functions f :X →H which satisfy an assumption of the type
of Assumption 4.2.

5. Unbiased estimation for Gaussian-based target measures,
using coupled pCN algorithms

In Section 4, we showed that it is possible to couple the independence sampler in order to achieve
unbiased estimation for an idealised Bayesian inverse problem setting in function space. Our cou-
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pling construction relied on assumptions on the inverse problem, which secured that the indepen-
dence sampler is uniformly ergodic. However, for many measures of interest the independence
sampler is not uniformly ergodic; in fact, if there exist areas of positive target measure, in which
the density of the proposal with respect to the target vanishes, the independence sampler is not
even geometrically ergodic [21].

In this section, we extend the methodology of the last section, and couple the preconditioned
Crank–Nicholson (pCN) algorithm in order to perform unbiased estimation in more difficult situ-
ations. The pCN algorithm first appeared in [6] as the PIA algorithm, and recently has received a
lot of interest from the Bayesian inverse problem community due to the fact that it is well defined
in the function space setting. In particular, it was shown in [18] that pCN achieves a dimension-
independent geometric rate of convergence for Gaussian-based target measures, that is, measures
that have density with respect to a Gaussian measure. Below we also consider Gaussian-based
target measures, and although we do not have uniform ergodicity of the pCN algorithm, we show
that it is possible to perform unbiased estimation, by extending known contraction results for the
pCN algorithm and using a combination of the techniques applied in Sections 2 and 4.

5.1. Setup

We work in a separable Hilbert space (X , 〈·, ·〉,‖ · ‖), and consider target mesaures μ which can
be expressed as log-Lipschitz changes of measure from a Gaussian reference measure μ0. In
particular, let μ0 be a Gaussian measure in X with Karhunen–Loeve expansion (see Section 3)
of the form

μ0 = L
( ∞∑

�=0

√
λ�γ�e�

)
, γ�

i.i.d.∼ N (0,1), λ� � �−2a, (5.1)

where {e�}�∈N is a complete orthonormal basis in X and a > 1
2 is a regularity parameter. We

consider the target measure μ, given as

dμ

dμ0
(x)∝ exp

(−g(x)
)
, (5.2)

where g :X →R is Lipschitz continuous.
We define the approximate reference measures μ0,j through the truncated Karhunen–Loeve

expansion

μ0,j = L
(

j∑
l=0

√
λ�γ�e�

)
.

The measures μ0,j are then supported on the j -dimensional space Xj := span{e1, . . . , ej } ⊂ X .
In the following, we identify the spaces Xj with the corresponding subsets of X and denote by
�j the projection onto Xj . We consider the sequence of truncated target measures μj defined
through

dμj

dμ0,j

(x)∝ exp
(−g(x)

)
. (5.3)
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Algorithm 4 pCN algorithm

Fix ρ ∈ (0,1). Generate X
j

0 . Iterate the following steps for k = 1, . . . ,Kmax:

1. ξj ∼ μ0,j ;

2. set X̂
j

k+1 = ρX
j
k +
√

1− ρ2ξj ;

3. set X
j

k+1 = X̂
j

k+1 with probability

α
(
X

j
k , ξ j
)= 1∧ exp

(
g
(
X

j
k

)− g
(
X̂

j

k+1

))
and X

j

k+1 =X
j
k otherwise.

Approximating an expectation with respect to μ by an expectation with respect to μj , results
in a discretisation error which is quantified in [7,19] and [8]. Furthermore, the expectations with
respect to μj are in general not available analytically but they are amenable to approximation
using Markov chain Monte Carlo algorithms. In particular, we consider the Markov chains corre-
sponding to the pCN algorithms applied to μj , see Algorithm 4. We denote the resulting Markov
chain by X

j· and the corresponding Metropolis–Hastings Markov kernel by Pj . In a similar way
to Section 4, in the next subsection we use appropriately coupled pCN algorithms to achieve the
removal of both the discretisation bias as well as the bias introduced by the use of finite time
distributions.

5.2. Unbiased estimation using the pCN algorithm

Our aim is to obtain an unbiased estimator of Eμ[f ], for some function f : X → R. As
in Section 4, for two increasing sequences of integers ai and ji we would like to set �i =
f (X

ji
ai

)− f (X
ji−1
ai−1) in the definition of Z in Proposition 1.1, where the chains X

ji· and X
ji−1· are

the (regular) pCN chains introduced in the previous subsection following the transition kernels
Pji

and Pji−1 , respectively. For the unbiasing technique to work, we need to construct an appro-
priate coupling between the two chains, so that ‖�i‖2 decays sufficiently quickly for Proposition
1.1 to apply, and the expected computing time is finite. In order to achieve this, we again gener-
ate �i using a “top” level chain in Xji

and a “bottom” level chain in Xji−1 , which we denote by
T i· and Bi· , and which perform ai and ai−1 steps, respectively. According to Proposition 1.1, we
need �i to be independent for different i, hence the two chains T i· and Bi+1· both following the
transition kernel Pji

in Xji
, are constructed independently. Nevertheless, the chains at different

levels are coupled as follows:

1. T i· is coupled to Bi· which follows the transition kernel Pji−1 on Xji−1 ;
2. Bi+1· is coupled to T i+1· which follows the transition kernel Pji+1 on Xji+1 .
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The following diagram illustrates the construction of the �i :

x0 = T 0−a0
. . . T 0

0 }�0 = f
(
T 0

0

)
x0 = B1−a0

. . . B1
0

| | | }�1 = f
(
T 1

0

)− f
(
B1

0

)
x0 = T 1−a1

. . . T 1−a0
. . . T 1

0
x0 = B2−a1

. . . B2−a0
. . . B2

0
| | | | | }�2 = f

(
T 2

0

)− f
(
B2

0

)
x0 = T 2−a2

. . . T 2−a1
. . . . . . T 2

0
x0 = B3−a2

. . . B3−a1
. . . . . . B3

0

where | indicates coupling between two chains. The coupling is achieved by using the same
random seed ξ i ∼ μ0,i in the pCN proposal for T i· and Bi· , as well as the same uniform variable
Ui for acceptance or rejection. The random variables ξ i and Ui are taken to be independent of
each other, as well as independent of ξj and Uj for j = i. We use the random functions ϕi

T̂
, ϕi

B̂
to denote the pCN proposals T̂ i· and B̂i· for the chains T i· and Bi· , respectively, where

ϕi

T̂
(
x, ξ i
) := ρx + (1− ρ2) 1

2 ξ i,

ϕi

B̂
(
x, ξ i
) := ρx + (1− ρ2) 1

2 �ji−1ξ
i .

Furthermore, we use the random functions ϕi
T , ϕi

B to represent the chains T i· and Bi· , respec-
tively, where

ϕi
T
(
T i

k−1,W
i
k

) := 1[0,α(T i
k−1,T̂ i

k )]
(
Ui

k

)
T̂ i

k + 1
(α(T i

k−1,T̂ i
k ),1]
(
Ui

k

)
T i

k−1,

ϕi
B
(
Bi

k−1,W
i
k

) := 1[0,α(Bi
k−1,B̂i

k)]
(
Ui

k

)
B̂i

k + 1
(α(Bi

k−1,B̂i
k),1]
(
Ui

k

)
Bi

k−1.

The construction of �i is given in detail in Algorithm 5.
For W ∼ μ0,ji

⊗U[0,1], we define

K
ji

ji−1

(
(x1, x2), ·

) := L
(
ϕi
B(x2,W),ϕi

T (x1,W)
)
, (5.4)

K
ji

ji

(
(x1, x2), ·

) := L
(
ϕi
T (x1,W),ϕi

T (x2,W)
)
, (5.5)

that is, K
ji

ji−1
and K

ji

ji
are the couplings between Pji−1(x1, ·) and Pji

(x2, ·) and Pji
(x1, ·) and

Pji
(x2, ·), respectively. In order to simplify the notation we will write Ki for K

ji

ji
.

In contrast to Section 4, in the present setting we do not have uniform ergodicity, thus we
can only rely on the contracting property of the pCN algorithm in some distance (or distance-like
function) d , in order to get the required decay of ‖�i‖2 for the unbiasing programme to work. We
stress here, that the readily available results in the literature concern the contraction of the pCN
algorithm at a fixed dimension ji , and in particular the contraction of the coupling Ki in certain
distances; see the results of Durmus and Moulines [10], Durmus et al. [11] and Hairer et al. [18].
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Algorithm 5 Coupled pCN algorithms for unbiased estimation
Fix a starting point x0 ∈Xj0 once and for all. For i = 0, generate �0 as follows:

1. set T 0−a0
= x0 on Xj0 and simulate according to Pj0 up to T 0

0 ;
2. set �0 = f (T 0

0 ).

For, i ≥ 1, generate �i as follows: We generate �i for i ≥ 1 as follows:

1. set T i−ai
= x0 and run the chain until T i−ai−1

according to Pji
;

2. set Bi−ai−1
= x0;

3. for k =−ai−1 + 1, . . . ,0 run T i· and Bi· as coupled pCN algorithms, as described below:

(a) draw ξ i
k ∼ μ0,ji

and Ui
k ∼ U[0,1] independently from everything else and set Wi

k =
(ξ i

k,U
i
k) as the collection of all random inputs for the kth step;

(b) propose

T̂ i
k = ϕi

T̂
(
T i

k−1, ξ
i
k

)= ρT i
k−1 +

(
1− ρ2) 1

2 ξ i
k,

B̂i
k = ϕi

B̂
(
Bi

k−1, ξ
i
k

)= ρBi
k−1 +

(
1− ρ2) 1

2 �ji−1ξ
i
k;

(c) set

T i
k = ϕi

T
(
T i

k−1,W
i
k

)= 1[0,α(T i
k−1,T̂ i

k )]
(
Ui

k

)
T̂ i

k + 1
(α(T i

k−1,T̂ i
k ),1]
(
Ui

k

)
T i

k−1,

Bi
k = ϕi

B
(
Bi

k−1,W
i
k

)= 1[0,α(Bi
k−1,B̂i

k)]
(
Ui

k

)
B̂i

k + 1
(α(Bi

k−1,B̂i
k),1]
(
Ui

k

)
Bi

k−1;

4. Set �i = f (T i
0 )− f (Bi

0).

Instead, we need to work harder in order to show a form of contraction of the transdimensional
coupling K

ji

ji−1
in the same distances, which happens asymptotically as i →∞. We achieve this

by using the triangle inequality to combine the existing contraction results at a fixed level i, with
estimates on the large i behaviour of the transdimensional coupling when the two chains are
started from the same initial condition. Once we get the appropriate behaviour of K

ji

ji−1
in d , it

is straightforward to obtain estimates of the decay of ‖�i‖2 in a similar way to Section 2, which
hold for functions f having sufficient Hölder regularity in the same distance d .

We work under the following assumption on the log-change of measure g, which ensures the
contraction of the pCN algorithm in a fixed state space (see Section 8.3.2 for details).

Assumption 5.1. The function g :X →R is globally Lipschitz and there exist positive constants
C, R1, R2, such that for x ∈X with ‖x‖ ≥R1

inf
z∈B(ρx,R2)

exp
(
g(x)− g(z)

)
> C, (5.6)

where ρ is as in the definition of the pCN algorithm.
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Figure 1. Estimates of E‖T i−ai−1+k
− Bi−ai−1+k

‖ based on 10 000 runs, plotted against k. Here
g(x)= ‖x‖, ρ = 0.7, ji−1 = 15, ji = 17 and ai − ai−1 = 8.

We first consider the distance dτ = 1∧ ‖x−y‖
τ

. In Lemma 8.2, we derive results of the form

Edτ

(
T i

0 ,Bi
0

)≤ Crai−1 +Cji−1,ji
, (5.7)

where Cji−1,ji
is a constant only depending on ji−1 < ji , such that

Cji−1,ji
→ 0 as i →∞.

Explicit bounds on C and r can be obtained as outlined in Section 8.3.2. We note here, that the
bound in (5.7) agrees with the qualitative behaviour that we observe in simulations, see Figure 1.

We consider unbiased estimation of Eμ[f ], where f is s-Hölder for s ∈ [ 1
2 ,1] with respect to

the distance dτ . We note that this class of functions f does not depend on the choice of τ > 0.
For such a function f , the boundedness of the distance dτ implies the bound

‖�i‖2
2 ≤ ‖f ‖2

sEdτ

(
T i

0 ,Bi
0

)2s ≤ ‖f ‖2
sEdτ

(
T i

0 ,Bi
0

)
. (5.8)

Balancing the two terms on the right-hand side of (5.7), gives rise to sufficiently sharp bounds
on ‖�i‖2, see Lemma 8.2 again.

In order to follow the unbiasing programme, we pose the following assumption on the expected
computing time.

Assumption 5.2. The expected computing time to simulate K
ji

ji−1
satisfies

si � jθ
i

with θ ≥ 1. Therefore, since we need ai steps of the chain to generate �i , the expected computing
time ti of �i satisfies

ti � aij
θ
i .
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We have the following result on the estimator Z defined in (1.1).

Theorem 5.3. Assume that the target measure μ is given as in (5.1), where g satisfies Assumption
5.1. Suppose that Assumption 5.2 is satisfied for θ ≥ 1 and let f :X →R be s-Hölder continuous
with respect to dτ , for some s ∈ [ 1

2 ,1]. Assume that a > θ + 1
2 , where a represents the regularity

of the reference measure, see (5.1). Then there are choices of ai , ji and P(N ≥ i), such that

Z =
N∑

i=0

�i

P(N ≥ i)

is an unbiased estimate of Eμ[f ] with finite variance and finite expected computing time. For

example, for any m ∈ N, this works if we choose ai = mi, ji ∼ r
2mi

1−2a and P(N ≥ i) ∝ r(m−ε)i ,
where ε ∈ (0, 2θm

1−2a
+m).

Note that the choice of m does not affect the finiteness of the variance or the expected com-
puting time of Z. However, our intuition from the numerical experiments presented in Section 6
for problems of fixed dimension, suggests that a good choice of m has a large impact on the
efficiency of the algorithm (see Figure 3). We expect this to be the case in the transdimensional
setting too, and for this reason choose to allow this flexibility in the formulation of the theorem.

The last result shows that the unbiasing procedure can be applied for estimating posterior ex-
pectations with respect to functions that are Hölder continuous with respect to the bounded dis-
tance dτ . In particular, f needs to be bounded which does not allow the estimation of the mean or
the second moment. We now show that it is possible to obtain unbiased estimates for unbounded
functions, under a stronger assumption on the regularity of the reference measure μ0. This is
achieved by considering the distance-like function d̃(x, y) := √dτ (x, y)(1+ V (x)+ V (y)) with
V (x)= exp(‖x‖).

Indeed, in Lemma 8.3 we obtain bounds of the form

Ed̃
(
T i

0 ,Bi
0

)
� rai−1 +C

1
2
ji−1,ji

, (5.9)

where C
ji

ji−1
is the same constant as in (5.7) and r ∈ (0,1). Since d̃ is unbounded, a bound of

the type of (5.8) is not possible for general s ≥ 1
2 , and so we need to restrict ourselves to the

estimation of Eμ[f ] where f is 1
2 -Hölder continuous in d̃ . In this case, we immediately have

‖�i‖2
2 ≤ ‖f ‖2

1
2
Ed̃
(
T i

0 ,Bi
0

)
, (5.10)

and as before, we can balance the two terms on the right-hand side of (5.9) to get sufficiently
sharp bounds on ‖�i‖2, see Lemma 8.3. Note that the square root on C

ji

ji−1
is the source of the

stronger assumption on the regularity of the reference measure μ0. We get the following result.

Theorem 5.4. Assume that the target measure μ is given as in (5.1), where g satisfies Assump-
tion 5.1. Suppose that Assumption 5.2 is satisfied for θ ≥ 1 and let f : X → R be 1

2 -Hölder
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continuous with respect to d̃ . Assume that a > 2θ + 1
2 , where a represents the regularity of the

reference measure, see (5.1). Then there are choices of ai , ji and P(N ≥ i), such that

Z =
N∑

i=0

�i

P(N ≥ i)

is an unbiased estimate of Eμ[f ] with finite variance and finite expected computing time. For

example, for any m ∈ N, this works if we choose ai = mi, ji ∼ r
4mi

1−2a and P(N ≥ i) ∝ r(m−ε)i ,
where ε ∈ (0, 4θm

1−2a
+m).

Remark 5.5. Let (H, 〈·, ·〉H ,‖ · ‖H ) be another Hilbert space. Using Proposition C.1 in the
Supplementary Material [3] which generalises Proposition 1.1, it is straightforward to check that
Theorems 5.3 and 5.4 can be extended to the estimation of expectations of functions f : X →
H which are Hölder continuous. In particular, using Theorem 5.4, we can perform unbiased
estimation of all moments of μ.

Indeed, observe that all functions f : X → H satisfying ‖f (x) − f (y)‖H ≤ C‖x −
y‖ 1

4 exp( 1
8 (‖x‖ ∨ ‖y‖)) are 1

2 -Hölder continuous with respect to d̃ ; this follows by separate

inspection of the cases ‖x−y‖
τ

≤ 1 and ‖x−y‖
τ

> 1. In the former

∥∥f (x)− f (y)
∥∥

H ≤ Cτ
1
4 ‖x − y‖ 1

4

τ
1
4

(
exp

(
1

2

(‖x‖ ∨ ‖y‖))) 1
4 ≤Cτ

1
4 d̃(x, y)

1
2 ,

while in the latter

∥∥f (x)− f (y)
∥∥

H
≤ C
(‖x‖ 1

4 ∨ ‖y‖ 1
4
)

exp

(
1

8

(‖x‖ ∨ ‖y‖))

≤ C̃ exp

(
1

4

(‖x‖ ∨ ‖y‖))≤ (exp
(‖x‖ ∨ ‖y‖)) 1

4

≤ C̃d̃(x, y)
1
2 .

Using this observation, it is straightforward to check that we can apply the unbiasing procedure
to f (x) = x and f (x) = x ⊗ x (or to the finite dimensional approximations f (x) = �jx and
f (x)=�jx(�jx)t ) to obtain unbiased estimates of the mean and the second moment, respec-
tively.

Remark 5.6. In this section, we focused on the discretisation of the input of g, x. However, in
most practical scenarios like those arising in Bayesian inverse problems, g is based on a solution
operator to a Partial Differential Equation and hence g itself needs to be discretised, say by gl . We
provide an example of how it is possible to do this in the setting for uniformly ergodic Markov
chains in Section D of the Supplementary Material [3]. In order to make possible the unbiased
estimation using the pCN algorithm in practical problems, the analysis in this section needs to
be adapted accordingly. This is beyond the scope of the present paper, but it will be the topic of
follow-up work.
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6. Comparison of the unbiasing procedure and the ergodic
average

In Section 2, we have shown how the unbiasing procedure can be applied to the estimation
of expectations with respect to the invariant distribution π of a Markov chain that exhibits a
simulatable contracting coupling. The existence of such a coupling implies that the Markov chain
is ergodic, thus, the ergodic average constitutes a consistent estimator of Eπ [f ], for sufficiently
nice functions f . In this section, we investigate how estimators constructed by averaging over
independent runs of the unbiasing procedure perform compared to the ergodic average.

We compare the two methods using the Mean Square Error – work product (MSE-work prod-
uct)

MSE×E(computing time), (6.1)

which has also been used as a performance measure in [27], in the setting of unbiased estimation
of expectations with respect to diffusions. For estimators constructed by averaging over unbiased
estimators, the MSE-work product has the attractive property that it does not depend on the
number of instances L that are averaged over. The reason for this is that the variance is scaled
by 1

L
whereas the expected computing time is multiplied by L. Using Proposition 1.1 and the

expression (1.2), we see that the MSE-work product for the unbiasing procedure studied in the
present paper is (∑

i

νi

F̄i

− (Eπ [f ]
)2)(∑

i

F̄i ti

)
. (6.2)

Here ti denotes the expected computing time to generate �i , F̄i = P(N ≥ i) and

νi = ‖�i‖2
2 + 2E�i(EY −EYi)=Var(�i)+ (EY −EYi−1)

2 − (EY −EYi)
2, (6.3)

where Y ∼ f�π and Yi =∑i
k=0 �k .

There are (uncountably) many choices of the number of time steps ai used to construct �i in
Algorithm 1, and the probabilities F̄i , that yield unbiased estimators with finite variance and finite
expected computing time. For a fair comparison with the ergodic average, we need to optimise
the MSE-work product with respect to ai and F̄i . Since this is difficult in general, we consider
the example of 1-dimensional contracting normals in Section 6.1. We note that this example is
also covered by the theory in [26], however we use it to

• compare the performance of the ergodic average of the Markov chain with the average of
unbiased estimators of the type presented in Section 2;

• show that the added flexibility of choosing ai , is crucial for optimizing the performance of
the unbiased estimator (note that in [26] ai is restricted to be equal to i);

• illustrate that we do not need sharp bounds on the properties of the coupling in order to tune
the unbiased estimator;

• show numerical results suggesting that in a parallel setting the unbiasing procedure can be
superior.
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In Section 6.2, we consider posterior inference for a Bayesian logistic regression model and
get the same findings as for contracting normals. Even though we cannot verify the contracting
assumption of Section 2, we demonstrate that even a naive implementation of the unbiasing
procedure leads to a competitive algorithm.

6.1. Contracting normals

We consider the example of 1-dimensional contracting normals, that is, the Markov chain defined
by

Xn+1 = ρXn +
√

1− ρ2ξn+1, (6.4)

for ρ ∈ (0,1) and ξn
i.i.d.∼ N (0,1). This Markov chain is ergodic with the standard normal distri-

bution as invariant distribution, that is π =N (0,1). The construction of the unbiased estimator
Z follows from Section 2, by considering the coupling

K
(
(x, y),

(
dx′, dy′

))= L
(
ρx +

√
1− ρ2ξ,ρy +

√
1− ρ2ξ

)
,

where ξ ∼N (0,1). It is straightforward to check that this coupling satisfies Assumption 2.1.i.
with geometric rate of contraction r = ρ, for the distance d(x, y)= |x − y|. The corresponding
“top” and “bottom” chains have the form

T i
k+1 = ρT i

k +
√

1− ρ2ξ i
k+1,

Bi
k+1 = ρBi

k +
√

1− ρ2ξ i
k+1,

where ξ i
k

i.i.d.∼ N (0,1). The expected computing time is ti = Tstep×ai , where Tstep is the expected
computing time to simulate one step of the chain, while the νi can be bounded using the bounds
on ‖�i‖2.

For this chain, there are analytic expressions for νi if we consider the estimation of Eπ [f ] for f

being a polynomial. In the following we consider the simple function f (x)= x, which is trivially
Lipschitz in d so that Theorem 2.4 applies. In this case, we simply have that �i = T i

0 −Bi
0.

In Section 6.1.1, we find an explicit asymptotic expression for the MSE-work product for the
ergodic average. We discuss the problem of finding good choices of ai and F̄i for the unbias-
ing procedure in Section 6.1.2. Even though we are not able to give a satisfying answer to the
optimisation problem, we show in Section 6.1.3 that informed choices of ai and F̄i lead to a com-
petitive performance of the unbiased estimator compared to the ergodic average, as measured by
the MSE-work product. Such informed choices require precise knowledge of νi , which in prac-
tice is not available. In Section 6.1.4, we investigate the effect on the optimisation over F̄i for
fixed ai , of using the exact values νi for i ≤ i0 and only upper bounds for i > i0. We demonstrate
that this already leads to a considerable improvement over using upper bounds for all i. Finally,
in Section 6.1.5, we present a comparison of the unbiasing procedure and the ergodic average in
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terms of computing time in the parallel computing setting. This comparison is not exhaustive but
suggests future investigation.

6.1.1. The MSE-work product for the ergodic average

The MSE-work product of the ergodic average for f (x) = x for contracting normals can be
calculated explicitly. Indeed, we first iterate (6.4) to obtain

n∑
i=0

Xi = 1− ρn+1

1− ρ
X0 +

n∑
i=1

ξi

n−i∑
j=0

ρj

√
1− ρ2.

Using this formula, we obtain an expression for the MSE as follows

E

(
1

n

n∑
i=0

Xi − 0

)2

= EX2
0

n2

(
1− ρn+1

1− ρ

)2

+ (1− ρ2)

n2

n∑
i=1

(
1− ρn−i+1

1− ρ

)2

= 1

n2

(
1− ρn+1

1− ρ

)2

EX2
0 +

1

n

1+ ρ

1− ρ

1

n

n∑
i=1

(
1− ρn−i+1)2.

This allows us to calculate the asymptotic performance as n→∞

lim
n→∞MSE×E (computing time)= 1+ ρ

1− ρ
Tstep. (6.5)

It is important to note that non-asymptotic effects such as burn-in lead to a worse MSE-work
product for finite n.

For general Markov chains the expression in (6.5) generalises to

Varπ (f )
1+ ρ

1− ρ
Tstep

which is an asymptotic upper bound on the MSE-work product if ρ denotes the L2-spectral gap.
This result can be found in [29].

6.1.2. The MSE-work product for estimators based on the unbiasing procedure

For contracting normals the expressions for νi can be derived analytically using (6.3). For sim-
plicity we consider X0 = 0 (so that in Algorithm 1, we set x0 = 0) for which we obtain

ν0 =
(
1− ρ2a0

)
,

νi = ρ2ai−1
(
1− ρ2(ai−ai−1)

)
. (6.6)

Thus, the optimisation of the MSE-work product is similar to the one encountered in [27]
for unbiased estimation of expectations based on diffusions. More precisely, the authors of [27]
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consider the optimisation problem

min
F̄

(∑
n

νn

F̄n

)(∑
n

F̄ntn

)

subject to F̄i ≥ F̄i+1
(6.7)

F̄i > 0

F̄0 = 1.

They show using the Cauchy–Schwarz inequality, that the choice

P(N ≥ i)= F̄i =
√

νi

ti√
ν0
t0

, (6.8)

gives rise to the lower bound (∑
n

√
νntn

)2

. (6.9)

Therefore the minimum is attained by this choice of F̄i provided that it is feasible, that is, pro-
vided νi/ti is decreasing.

In the setting of (6.6), we have the following explicit optimisation problem

min

( ∞∑
i=1

ρ2ai−1(1− ρ2(ai−ai−1))

F̄i

+ 1− ρ2a0

) ∞∑
i=0

F̄iai

subject to F̄0 = 1≥ F̄1 ≥ F̄2 ≥ · · ·
F̄i > 0 (6.10)

0 < a0 < a1 < · · ·
ai ∈N.

In contrast to [27], we want to optimise the MSE-work product with respect to both F̄i and ai .
However, even in this simple case we do not know the solution, but instead present a comparison
based on informed choices of ai and F̄i in the next subsection.

6.1.3. Initial results based on informed parameter choices

The minimisation over both ai and F̄i could be achieved by first minimising over F̄i for fixed ai

and then minimising the resulting expression over ai . If for ai the choice of F̄i given in (6.8) is
feasible, then the minimum is given by (6.9). If it is not feasible the minimisation over F̄i is not
clear.
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Even though we cannot optimise explicitly over all choices of ai , we do so over the sub class
ai = mi + m for m ∈ N. The expected computing time of �i , ti = Tstepai , is monotonically
increasing. Moreover, it is straight forward to check for this choice of ai , that νi is decreasing
such that the choice of F̄i in (6.8) is feasible. As a result, this choice of F̄i gives rise to the optimal
MSE-work product of the unbiased estimator for any fixed m, and the corresponding (optimal)
MSE-work product can be obtained using (6.9) as follows

( ∞∑
i=1

√
ρ2mi
(
1− ρ2m

)
Tstep m(i + 1)+

√
Tstepm

(
1− ρ2m

))2

= Tstep

(√
m
(
1− ρ2m

) ∞∑
j=1

ρm(j−1)
√

j

)2

= Tstep
(
ρ−m
√

m
(
1− ρ2m

)
Li− 1

2
ρm
)2

,

where Li denotes the polylogarithm function. Subsequently, we assume that Tstep = 1 since it is
only a multiplicative constant of the minimum and it does not change the optimal choice of F̄i in
(6.8).

We compare the MSE-work product of the ergodic average, given in (6.5), to the optimal
MSE-work product of the unbiased estimator for a fixed m. Again, we would like to stress that
this comparison is advantageous for the ergodic average because we disregard non-asymptotic
effects such as burn-in. In Figure 2, we plot the MSE-work product of the ergodic average, the

Figure 2. MSE-work products for the ergodic average and the unbiasing procedure for ai = 4i + 4 and F̄i

chosen optimally, plotted against ρ, in the contracting normals example. In different scale we plot the ratio
of the MSE-work product of the unbiased estimator over the MSE-work product of the ergodic average.
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Figure 3. MSE-work products for the unbiasing procedure with ai =mi+m and F̄i chosen optimally, for
ρ = 0.8, 0.9 and 0.95, plotted against m, in the contracting normals example. The markers correspond to
the choice m= � w

logρ
� with w =−1.632.

optimal MSE-work product of the unbiased estimator for m= 4, and their ratio, as functions of ρ.
We observe that as ρ increases towards 1 the ratio of the MSE-work product of the unbiasing
procedure over the one of the ergodic average explodes.

In an effort to improve the performance of the unbiased estimator, we allow m to depend on ρ.
In order to illustrate the impact of m, we plot the MSE-work product as a function of m for
different values of ρ in Figure 3. We observe that for small values of m the MSE-work product
is very large, however for the optimal choice of m the value of MSE-work product is relatively
small. As ρ → 1, the optimal value of m increases.

We next try to roughly find the optimal value of m for a given ρ, and to do this we make the
ansatz that m should be of the form � w

logρ
� for w < 0. The reason for this choice is that it at

least keeps the values of νi roughly at the same magnitude as ρ → 1, even though the value of ti
increases. This choice will be justified further subsequently. Let’s suppose for the moment that m

is a continuous variable and we set it to w
logρ

. In this case, we consider the ratio of the MSE-work
product of the unbiasing procedure over the one of the ergodic average, given by

rMSE-work=
(ρ−m

√
m(1− ρ2m)Li− 1

2
ρm)2

1+ρ
1−ρ

= (e−w
√

1− e2wLi− 1
2

(
ew
)√

w
)2( 1− ρ

(1+ ρ) log(ρ)

)
.

It is clear, that minimisation of this ratio over w does not depend on ρ. Optimisation of the first
parenthesis gives that it attains its minimum at w = −1.632. This choice of w gives rise to the
circular markers in Figure 3 which are clearly close to the optimal values of m for all the plotted
values of ρ.
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Figure 4. MSE-work products for the ergodic average and the unbiasing procedure for
ai = � w

logρ
�i + � w

logρ
� with w = −1.632 and F̄i chosen optimally, plotted against ρ, in the con-

tracting normals example. In different scale we plot the ratio of the MSE-work product of the unbiased
estimator over the MSE-work product of the ergodic average.

In Figure 4, we plot again the MSE-work product of the ergodic average, the (optimised over
F̄i ) MSE-work product of the unbiased estimator for m = � w

logρ
� and w = −1.632, and their

ratio. In this case, we observe that the ratio stays bounded above by 1.5 as ρ → 1, that is even
as the convergence of the underlying chain deteriorates. Notice that the oscillation of the ratio
comes from the use of the ceiling function.

6.1.4. Tuning

At first sight, it seems necessary to have a very precise knowledge of the coupling, in terms of
for example tight bounds on νi , in order to tune the unbiased estimator. In this subsection, we
show that if we only have good estimates νi ≈ ν̂i for i ≤ i0 and use a crude bound on νi for
i > i0, then the performance of the unbiased estimator remains close to the optimal behaviour.
More precisely, instead of the optimisation problem (6.7), we consider

min

(
i0∑

i=0

ν̂i

F̄i

+
∞∑

i=i0+1

ν�
i

F̄i

)( ∞∑
i=0

aiF̄i

)

subject to F̄0 = 1≥ F̄1 ≥ · · · (6.11)

F̄i > 0.

In order to illustrate this, we again consider the behaviour of the unbiased estimator with the
fixed choice ai = 4i+4. We fix ρ = 0.5 and suppose that ν�

i = νi(ρ̃) for i > i0 = 3 are our upper
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bounds on νi(ρ) for some ρ̃ ≥ 0.5. Moreover, we use the exact value of νi for i ≤ 3. We then
optimise F̄ �

i in the parametric family Cρ̃ai−1 for i > i0 leading to the following optimisation
problem:

min

(
i0∑

i=0

ν̂i

F̄i

+
î∑

i=i0+1

ν�
i

F̄ �
i (C)

)(
i0∑

i=0

aiF̄i +
i0∑

i=0

aiF̄
�
i (C)

)

with respect to F̄1, . . . , F̄i0,C
(6.12)

subject to F̄0 = 1≥ F̄1 ≥ · · · ≥ F̄i0 ≥ F̄ �
i (C)

F̄i > 0.

A numerical solution to this optimization problem using Mathematica results in a significant
improvement in the performance of the unbiased estimator as shown in Figure 5. We see that
having good estimates of νi even for just the first three levels and using crude bounds for the
higher levels, greatly improves the performance of the unbiasing procedure. Naturally, as the
bounds for the higher levels get worse (that is, as ρ̃ increases), the performance deteriorates.

Figure 5. MSE-work products in the contracting normals example, plotted against ρ, for unbiased proce-
dures based on knowledge of true νi for ρ = 0.5 (black), only an upper bound on νi using νi(ρ̃) for ρ̃ ≥ 0.5
(dashed) and numerical optimisation of F̄i using the exact values of νi for i = 1,2,3 and upper bounds
νi(ρ̃) for i > 3 (grey). More precisely, we optimise F̄i for i = 1, . . . ,3 and C in F̄ �

i
(C)= Cρ̃ai−1 subject

to the constraint that F̄3 > F̄4.
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6.1.5. Comparison in the parallel setting

We compare the ergodic average to the unbiasing procedure by measuring CPU time. We con-
sider ρ = 0.8. To make the comparison fair after each step of the Markov chain the algorithm
sleeps for 1 millisecond. In this way, the generation of N has negligible effect on the comparison
as it should do for most large scale inference procedures and the computing time is determined
by the distribution of N and the number of steps performed. Subsequently, we describe the pro-
cedure both for the ergodic average and the unbiasing procedure in a 10 core parallel setting.

1. For the ergodic average, we draw a random number M between 10 and 10 000. Each core
performs M steps and we measure the time it takes to do these steps. We average over the chains
and the steps of each chain. We plot the squared error versus the time, which gives rise to one
black dot in the left panel of Figure 6.

2. We draw a random time uniformly distributed on a log-scale between 0.1 and 10 seconds
and let each core produce unbiased estimates. When the time is up we average over the obtained
unbiased estimates and plot the squared error of the resulting unbiased estimator against time,
giving rise to the grey dots in the left panel Figure 6.

In the right panel of Figure 6, we smooth the results of the above simulation procedure and
produce 95% confidence tubes for the MSE for the ergodic average (black) and the unbiased
estimator (white). In this particular setting, it seems that the unbiasing method is competitive.
Whereas this result is in no way conclusive, it suggests further investigation.

6.2. Logistic regression

We apply the findings of Section 2 on unbiased estimators based on contracting couplings to
posterior inference for a Bayesian logistic regression model. Even though we cannot verify the
assumption of Section 2 and we cannot tune the unbiasing procedure, we demonstrate in this
section that a hands-on application of the unbiasing procedure leads to a competitive algorithm.

We assume the data yi ∈ {−1,1} for i = 1, . . . ,M is modelled by

p(yi |Ti, β)= h
(
yiβ

tTi

)
, (6.13)

where h(z) = 1
1+exp(−z)

∈ [0,1]. We put a Gaussian prior N (0, I ) on the regression coefficient

β ∈R
d and consider a fixed design matrix T ∈R

M×d which we specify later on. By Bayes’ rule,
the posterior π satisfies

π(β)∝ exp

(
−1

2
‖β‖2

) N∏
i=1

h
(
yiβ

tTi

)
.

Thus, the target measure has a density with respect to a centred Gaussian distribution, which is
such that the pCN algorithm satisfies the Assumption 2.1 of Section 2 as shown in [18] and [10].
We provide a brief summary of the relevant results to the contraction of the pCN algorithm in
Section 8.3.2.
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Figure 6. (a) Measurements of squared errors and running times for the ergodic average and unbiasing
procedure for independent runs, in a 10-core parallel setting (left panel) and (b) 95% confidence tube for the
MSE based on the data on the left panel using a generalised additive model (right panel), in the contracting
normals example with ρ = 0.8.

For the problem at hand, the prior mean is 0 and the posterior mean is typically far from 0. The
proposal of the pCN algorithm only takes into account the prior and pushes towards 0. Further-
more, the covariance matrix changes from prior to posterior as well. This has to be corrected by
the rejection step of the Metropolis–Hastings algorithm. The result is that the coupling of the cor-
responding pCN algorithm with the same random input and different initial states has a contrac-
tion rate close to 1. For this reason, the unbiasing procedure is difficult to apply for this coupling.
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A solution to this difficulty is to modify the pCN algorithm as in [24], and in particular to
consider the Metropolis–Hastings algorithm with proposal given by

β ′ = c+ ρ(β − c)+
√

1− ρ2ξ, with ξ ∼N (0,C). (6.14)

The resulting Markov chain preserves the non-centered Gaussian distribution N (c,C). Reason-
able choices for c and C are:

1. posterior mean and posterior covariance as estimated by a MCMC run;
2. Laplace approximation based on a maximum a posteriori estimator;
3. the minimiser of the Kullback–Leibler divergence of π from ν =N (c,C)

DKL(ν‖π)=
∫

log

(
dν

dπ

)
dν,

as suggested in [24].

For simplicity, we take the first approach using 106 steps of the random walk Metropolis (RWM)
algorithm to estimate the values of the posterior mean and covariance. We consider d = 3 and
N = 100 data points and choose the design matrix to be

T =

⎛
⎜⎜⎜⎝

T1,1 T1,2 1
T2,1 T2,2 1
...

...
...

T100,1 T100,2 1

⎞
⎟⎟⎟⎠ ,

for a fixed sample of Ti,j
i.i.d.∼ N (0,1) for i = 1, . . . ,100 and j = 1,2.

We now consider the estimation of the mean of the third component under the posterior. We
apply the unbiasing procedure to the coupling arising from using the same ξ ∼N (0,C) in the
proposal (6.14), and the same uniform random variable for the accept and reject step of the
corresponding Metropolis–Hastings algorithm. The contraction property of this coupling has
not been established, however, we estimate the contraction factor by fitting a line with slope
s ≈ 0.75 to the log-plot of the averaged distance, see Figure 7. This suggests that Assumption
2.1 is satisfied with r = exp(s). We take a more conservative approach and set r := exp( 1

2 s). We
choose ai =mi +m with m= �−1.632

log r
� and F̄i = rm·i which closely resembles our “optimised”

choice for the contracting normals chain with ρ = r in Section 6.1.
In the following, we compare the MSE-work product for

1. the ergodic average of the modified pCN algorithm over 10 000 steps started at c;
2. the average of 100 independent realisations of the unbiased estimator, as described in Sec-

tion 2 and for x0 = c.

For both algorithms, we record the squared error and the CPU time it took to generate the es-
timator. Because we are using CPU-time it actually matters how many unbiased estimators, we
average over. This is in contrast to the idealised properties of the MSE-work error described at
the beginning of Section 6. This is the reason for averaging over 100 independent realisations of
the unbiased estimator, rather than just taking one sample as we did in Section 6.
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Figure 7. Empirical contraction property of the modified pCN algorithm based on simulations of the cou-
pling and averaging over independent runs, in the logistic regression example. The contraction factor is
estimated using a least squares fit.

We repeat this 10 000 times and visualise the results using box plots in Figure 8. Notice that the
distribution of the squared error for the unbiased estimator is much more heavy-tailed compared
to that of the modified pCN algorithm. This becomes more apparent in the histograms in Figure 9,
where we can see that there exist outliers with large squared error for the unbiasing procedure. We
use this data to estimate the ratio of MSE work products to be 4.15 and obtain a 95%-confidence
interval (3.86,4.55) for the ratio using the pivotal bootstrap method.

In conclusion, we again see that the unbiasing procedure has competitive performance com-
pared to the ergodic average, even with a crude choice of parameters and without using paralleli-
sation.

7. Conclusion and future directions

We considered unbiased estimation in intractable and/or infinite dimensional settings. In particu-
lar, we showed how to unbiasedly estimate expectations with respect to the limiting distributions
of Markov chains in possibly infinite dimensional state spaces. To do this, we generalised the
methodology developed in [26] for removing the bias due to the burn-in time of the Markov
chain, to cover the case that only a simulatable contracting coupling between runs of the chain
started at different states is available (see Section 2). We then used a hierarchy of coupled Markov
chains in state spaces of increasing dimension, to remove the bias due to the discretisation of the
infinite-dimensional state space (see Sections 4 and 5).

Our focus has been on the methodological aspect, to show what it is possible to achieve,
rather than to produce fully optimised results. It is crucial for the performance of the unbiasing
procedure to have good couplings between runs of the chain started at different states. There
is a great body of literature on couplings which can be potentially exploited in order to on the
one hand improve the results presented in the present paper and on the other hand extend the
application of the unbiasing procedure to other algorithms.
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Figure 8. Estimation of the mean of the third component under the posterior in the logistic regression
example. Box plots based on 10 000 independent simulations of the simulation time and the squared error
for the ergodic average (10 000 steps) and the unbiasing procedure (average over 100 instances).

Furthermore, as we demonstrated in Section 6, the tuning of the parameters appearing in the
unbiasing procedure, namely the distribution F̄i of the random truncation point N , the number
of steps performed at each approximation level ai and the dimension of each approximation
level ji , has a huge impact on the performance. It is thus very important to develop an efficient
algorithm that adapts the choice of these parameters and improves the simulation on the fly. This
is particularly crucial for the transdimensional framework, since the cost of producing samples
in high dimensions rapidly increases and hence the best possible management of the available
resources is crucial.

One of the big advantages of the unbiasing methodology, is that it is very easily parallelis-
able. On the one hand, we can use multiple cores to produce multiple copies of the unbiased
estimator Z, while on the other hand the generation of the differences �i is also readily paral-
lelisable since we assume that they are mutually independent across different levels. Moreover,
it is straightforward to manage heterogeneous computer architectures, by generating �i ’s at low
levels using slower CPU’s and GPU’s and reserving the faster processors for higher levels.
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Figure 9. Histograms of the squared error for the ergodic average (top) and the unbiasing procedure (bot-
tom), in the logistic regression example. The outliers for the unbiasing procedure illustrate the heavy tails
of the distribution of the squared error.

Since the submission of this paper, [31] has appeared which on the one hand uses stratification
to construct unbiased estimators with reduced variance, and on the other hand compares the
performance of various unbiasing schemes to MLMC. Numerical simulations are provided in
the context of estimating expectations with respect to solutions of SDE’s, which suggest that the
unbiasing schemes asymptotically match the performance of MLMC while avoiding the concern
of bias.

In the context of estimation of expectations with respect to the limiting distribution of a
Markov chain, we provided a range of initial results on the performance of the unbiasing pro-
cedure against the ergodic average (see Section 6). It is clear from these results, which are not
optimally tuned and do not make full use of parallel computing, that the unbiasing method is
competitive. We are hence very much looking forward to further simulations and comparisons in
problems of higher computational complexity which are closer to real-life applications.

8. Proofs

We now present the proofs of the results contained in Sections 2, 4 and 5. The proofs of the
results in Section 3 are provided in Section B of the Supplementary Material [3].
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8.1. Proofs of the results in Section 2

Proof of Theorem 2.4. We first use Proposition 1.1 which gives conditions securing unbiased-
ness and finite variance of Z and then make sure that these conditions are compatible with a finite
expected computing time. Let Fk = σ({T i

� ,Bi
�|�≤ k}). We bound

‖�i‖2
2 ≤ ‖f ‖2

sEd2s
(
T i

0 ,Bi
0

)
≤ ‖f ‖2

sEE
(
d2s
(
T i

0 ,Bi
0

)|F−ai−1

)
≤ ‖f ‖2

sE
(
Kai−1d2s

(
T i−ai−1

, x0
))

(8.1)

≤ c‖f ‖2
s r

ai−1Ed2s
(
T i−ai−1

, x0
)

≤ crai−1 ,

where the last step follows from (2.2) and where we use c as a positive constant which maybe
different from occurrence to occurrence.

By the considerations at the end of Section 1.3, it suffices to verify (1.7) to get the unbiasedness
and finite variance of Z. Using (8.1), we have

∑
i≤l

‖�i‖2‖�l‖2

P(N ≥ i)
=

∞∑
i=0

‖�i‖2

P(N ≥ i)

∞∑
l=i

‖�l‖2 ≤ c

∞∑
i=0

‖�i‖2

P(N ≥ i)

r
1
2 i

1− r
1
2

(8.2)

≤ c

∞∑
i=0

ri

P(N ≥ i)
,

where we used that r < 1 and ai ≥ i. It is hence sufficient to choose the distribution of N such
that
∑

i
ri

P(N≥i)
< ∞ in order to have finite variance of the estimator Z; a valid choice is for

example P(N ≥ i)∝ r(1−ε)i for ε > 0 which can be arbitrarily small.
Regarding the expected computing time of Z, we have that it is equal to

∑∞
i=0 tiP(N ≥ i),

where ti is the expected time to generate �i . By Assumption 2.3, we have a mild condition on
the growth of ai . For example, ai � r(2ε−1)i works provided ε < 1

2 so that we have ai ≥ i as
required. �

Proof of Theorem 2.6. The proof is very similar to the proof of Theorem 2.4, where the estimate
(8.1) is replaced by

‖�i‖2
2 ≤ ca−2r

i−1 . (8.3)

For example choose ai = ik . Then we have that

∑
i≤l

‖�i‖2‖�l‖2

P(N ≥ i)
≤ c

∞∑
i=0

i−2rk+1

P(N ≥ i)
,
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where c a positive constant which may change between different occurrences. The right-hand
side is finite, if for example we choose P(N ≥ i)∝ i−2rk+2+ε for ε > 0 which can be arbitrarily
small. Under this choice, the expected computing time

E(τ )=
∞∑
i=0

ikP(N ≥ i)= c

∞∑
i=0

ik−2rk+2+ε .

For the last sum to be finite, we need to choose 0 < ε <−3−(1−2r)k and this choice is possible
only if k > 3

2s−1 . �

8.2. Proofs of the results in Section 4

We first state and prove a crucial lemma which establishes that the �i decay sufficiently quickly
for the unbiasing programme to work. Then we provide the proof of Theorem 4.5.

Lemma 8.1. Suppose Assumptions 4.1 and 4.2 are satisfied for some β,κ > 1, respectively. Then
for ai ∼ β

c �
log(ji), where c� =− log(1− α�), we have

‖�i‖2
2 � j

−(β∧κ)

i−1 .

Proof. In order to bound E1, we need to be able to control the different behaviour of the inde-
pendence sampler in dimension ji−1 and ji if driven by the same underlying randomness W . For
this reason, we introduce the random functions bi

T , bi
B below, taking values in {1,2,3},

bi
T (x,W) = 1 · 1[0,α�]

(
Ui

1

)+ 2 · 1(α�,1]
(
Ui

1

)
1
[0,

αji
(x,ξ i

2)−α�

1−α�
]
(
Ui

2

)
+ 3 · 1(α�,1]

(
Ui

1

)
1

(
αji

(x,ξ i
2)−α�

1−α�
,1]
(
Ui

2

)
,

bi
B(x,W) = 1 · 1[0,α�]

(
Ui

1

)+ 2 · 1(α�,1]
(
Ui

1

)
1
[0,

αji−1
(x,�ji−1

ξi
2)−α�

1−α�
]
(
Ui

2

)
+ 3 · 1(α�,1]

(
Ui

1

)
1

(
αji−1

(x,�ji−1
ξi
2)−α�

1−α�
,1]
(
Ui

2

)
,

such that bi
T (T i

k−1,W
i
k) and bi

B(Bi
k−1,W

i
k) denotes the branch of the random functions ϕi

T and
ϕi
B that was taken to go from T i

k−1 to T i
k and from Bi

k−1 to Bi
k , respectively. More precisely,

1. if bi
T (T i

k−1,W
i
k)= 1 then T i

k = ξ i
1,k ;

2. if bi
T (T i

k−1,W
i
k)= 2 then T i

k = ξ i
2,k ;

3. if bi
T (T i

k−1,W
i
k)= 3 then T i

k = T i
k−1

and the analogous statement for bi
B(Bi

k−1,W
i
k) and Bi

k . For economy of notation, we define
bi
T ,k

:= bi
T (T i

k−1,W
i
k) and similarly for bi

B,k
. Note that bi

T ,k
= 1 if and only if bi

B,k
= 1 such
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that this leads to synchronisation because in this case Bi
k =�ji−1ξ

i
1,k =�ji−1T i

k . Notice that this

synchronisation property is preserved to l > k as long as bi

B,k̃
= bi

T ,k̃
for k̃ = k+ 1, . . . , l.

This notation allows us to bound E1 as follows:

E1 ≤ ‖f ‖2∞P
(¬{∃k ≤ 0 s.t. bi

T ,k = 1 and ∀l > k bi
T ,l = bi

B,l

})
,

because f (�ji−1T i
0 ) − f (Bi

0) = 0 on the event {∃k ≤ 0 bi
T ,k

= 1 and ∀l > k bi
T ,l

= bi
B,l
}. In

order to bound the above we introduce the filtration Fk = σ({Wi
m}m≤k) and notice that τ =

inf{k : bi
T ,k

= 1} is a stopping time with respect to {Fk}. We have

E1 ≤ ‖f ‖2∞P
({τ > 0} ∪ {τ ≤ 0 and ∃0≥ l > τ : bi

T ,l = bi
B,l

})
≤ ‖f ‖2∞

(
P
({τ > 0})+ P

({
τ ≤ 0 and ∃0≥ l > τ : bi

T ,l = bi
B,l

}))
≤ ‖f ‖2∞

(
(1− α�)

ai−1 + P
({

τ ≤ 0 and ∃0≥ l > τ : bi
T ,l = bi

B,l

}))
.

Notice that for A= {τ ≤ 0 and ∃0≥ l > τ : bi
T ,l

= bi
B,l
}, we have

P(A)= E(1τ≤01{∃0≥l>τ bi
T ,l

=bi
B,l
})

= E
(
1τ≤0E(1{∃0≥l>τ bi

T ,l
=bi

B,l
} | τ)
)

= E
(
1τ≤0P(T i

τ ,Bi
τ )

(∃− τ ≥ l > 0 : bi
T ,l = bi

B,l

))
≤ P(τ ≤ 0) sup

�j (T i
0 )=Bi

0

P(T i
0 ,Bi

0)

(∃− τ ≥ l > 0 : bi
T ,l = bi

B,l

)
,

where in the third identity we made use of the strong Markov property. In order to bound the
supremum on the right-hand side above, we introduce

δi := sup
�j (xT )=xB

P
(
bT i (xT ,W) = bi

B(xB,W)
)
,

where xT and xB live in Xji
and Xji−1 , respectively. We have

δi ≤ sup
�j (xT )=xB

E
∣∣αji

(
xT , ξ i

2

)− αji−1

(
xB,�ji−1ξ

i
2

)∣∣
= sup

�j (xT )=xB
E

∣∣∣∣1∧ exp

(
1

2

∥∥y −Gji
(xT )
∥∥2
Rd − 1

2

∥∥y −Gji

(
ξ i

2

)∥∥2
Rd

)

− 1∧ exp

(
1

2

∥∥y −Gji−1(xB)
∥∥2
Rd − 1

2

∥∥y −Gji−1

(
�ji−1ξ

i
2

)∥∥2
Rd

)∣∣∣∣
� sup

�j (xT )=xB

∣∣∥∥y −Gji
(xT )
∥∥2
Rd −

∥∥y −Gji−1(xB)
∥∥2
Rd

∣∣
+E
∣∣∥∥y −Gji

(
ξ i

2

)∥∥2
Rd −

∥∥y −Gji−1

(
�ji−1ξ

i
2

)∥∥2
Rd

∣∣.
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Using Assumption 4.1, we get∣∣∥∥y −Gji
(xT )
∥∥2
Rd −

∥∥y −Gji−1(xB)
∥∥2
Rd

∣∣
= ∣∣〈2y −Gji

(xT )−Gji−1(xB),Gji
(xT )−Gji−1(xB)

〉∣∣
≤ ∥∥2y −Gji

(xT )−Gji−1(xB)
∥∥
Rd

∥∥Gji
(xT )−Gji−1(xB)

∥∥
Rd

� j
−β

i−1

and similarly ∣∣∥∥y −Gji

(
ξ i

2

)∥∥2
Rd −

∥∥y −Gji−1

(
�ji−1ξ

i
2

)∥∥2
Rd

∣∣� j
−β

i−1.

Combining, we obtain

δi � j
−β

i−1.

We next introduce the σ -algebra

Sl = σ
({

bl
T ,k = bi

B,k | k = 1, . . . , l
})

with the convention that S0 = {0,�} and let �ji−1T i
0 = Bi

0 be arbitrary. Then we calculate

P(T i
0 ,Bi

0)

(∃− τ ≥ l > 0 : bi
T ,l = bi

B,l

)
= 1− P(T i

0 ,Bi
0)

(∀l <−τbi
T ,l = bi

B,l

)

= 1−
−τ∏
l=1

P(T i
0 ,Bi

0)

(
bi
T ,l = bi

B,l |Sl−1
)

= 1−
−τ∏
l=1

(
1− P(T i

0 ,Bi
0)

(
bi
T ,l = bi

B,l |Sl−1
))

= 1−
−τ∏
l=1

(
1−E

(
P(T i

0 ,Bi
0)

(
bi
T ,l = bi

B,l |Fl−1 ∨ Sl−1
)|Sl−1

))
,

where the last step follows by the tower property of conditional expectation. The Markov prop-
erty and Bernulli’s inequality yield

P(T i
0 ,Bi

0)

(∃− τ ≥ l > 0 : bi
T ,l = bi

B,l

)

= 1−
−τ∏
l=1

(
1−E

(
P(T i

l−1,Bi
l−1)

(
bi
T ,1 = bi

B,1

)|Sl−1
))

≤ 1−
−τ∏
l=1

(1− δi)= 1− (1− δi)
−τ ≤ 1− (1− δi)

ai−1 ≤ ai−1δji−1ji
.
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Hence, we have

P(A)≤ ai−1δi,

and putting things together, we obtain that

E1 ≤ ‖f ‖2∞
(
(1− α�)

ai−1 + ai−1δi

)
.

We thus have

E1 ≤ ‖f ‖2∞
(
exp(−c�ai−1)+ ai−1j

−β

i−1

)
,

where c� = − log(1− α�). In order to optimise the right-hand side and since the first term de-
creases while the second term increases with ai , we need to balance the two terms by choosing ai

as an appropriate function of ji . Indeed, using [4], Lemma 4.5, we have that for ai ∼ β
c�

log(ji)

the two terms are asymptotically balanced as i →∞ so that for this choice E1 � j
−β

i−1 (check
that this is true).

Now we treat the second term E2, which by Assumption 4.2 satisfies

E2 = E
(
f
(
T ji

ai

)− f
(
�ji−1T

ji
ai

))2 � j−κ
i−1.

Finally, combining the bounds for E1 and E2 yields

‖�i‖2
2 ≤ 2(E1 +E2) � j

−(β∧κ)

i−1 . �

Proof of Theorem 4.5. In order for the unbiasing procedure to work, we need to have both
finite computing time and finite variance of the estimator Z. By the considerations at the end of
Section 1.3, it suffices to verify (1.7) to get the unbiasedness and finite variance of Z. Below, we
use c as a generic positive constant which may be change between occurrences.

Using Lemma 8.1 and according to the stated choices of the relevant parameters, we have

∑
i≤l

‖�i‖2‖�l‖2

P(N ≥ i)
=

∞∑
i=0

‖�i‖2

P(N ≥ i)

∞∑
l=i

‖�l‖2

≤ c

∞∑
i=0

i−
rq
2 +t

∞∑
l=i

l−
rq
2 ≤ c

∞∑
i=0

i1−rq+t ,

provided q > 2
r

which holds since q > 3
r−θ

. The right-hand side is finite provided t < rq − 2.
Regarding the expected computing time of Z, by Assumption 4.3, we have

E[τ ] =
∞∑
i

tiP(N ≥ i) �
∞∑
i

iθq−t log(i),

which is finite provided t > 1+ θq .
Concatenating, we have that for the unbiased procedure to work we need to choose t ∈ (1+

θq, rq − 2), which is possible since 1+ θq < rq − 2 under the assumption q > 3
r−θ

. �
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8.3. Proofs of the results in Section 5

In this section we present the proofs of Theorems 5.3 and 5.4. The crucial step for both proofs
is to derive bounds on Ed(T i

0 ,Bi
0) for the appropriate distance d , which in turn give bounds on

the decay of ‖�i‖2; the method of generating T i
0 ,Bi

0 and �i is summarised in Algorithm 5. The
main idea used to obtain such bounds is explained in Section 8.3.1 under artificial conditions.
The rigorous bounds used for Theorems 5.3 and 5.4 are contained in Lemma 8.2 and Lemma 8.3
in Section 8.3.3, respectively. Obtaining these bounds is based on results known for coupling of
the pCN algorithms on the same state space which are summarised in Section 8.3.2. Finally, in
Section 8.3.4 we put things together and prove Theorems 5.3 and 5.4.

8.3.1. Main idea

In the following, we show how to obtain bounds on the contraction of the transdimensional
coupling K

ji

ji−1
defined in (5.4), under the following artificial assumption on the fixed state space

coupling Ki defined in (5.5):

EWdτ

(
ϕi
T (x1,W),ϕi

T (x2,W)
)≤ rdτ (x1, x2). (8.4)

This assumption does not hold for the pCN algorithm, but allows us to present the strategy of
our proofs while avoiding technicalities and overloaded notation. The fact that dτ satisfies the
triangle inequality is crucial for our analysis. In particular, it allows us to introduce intermediate
steps I i

k = ϕi
I(Bi

k−1,W
i
k) by performing a transition from a state of the lower level chain Bi

k ,
according to the transition kernel Pji

of the high level chain T i
k . This enables us to use (8.4) to

control the distance between I i
k and T i

k , while at the same time I i
k is with high probability close

to Bi
k = ϕi

B(Bi
k−1,W

i
k), since they have the same starting point. We show that this intuition is

accurate below.
The intermediate step I i

k is constructed as follows:

Î i
k = ϕi

T̂
(
Bi

k−1, ξ
i
k

)= ρBi
k−1 +

(
1− ρ2) 1

2 ξ i
k,

I i
k = ϕi

T
(
Bi

k−1,W
i
k

)= 1[0,α(Bi
k−1,Îi

k)]
(
Ui

k

)
Î i

k + 1
(α(Bi

k−1,Îi
k),1]
(
Ui

k

)
Bi

k−1.

Using the triangle inequality, we get the bound

Edτ

(
T i

k ,Bi
k

) ≤ E
[
dτ

(
T i

k ,I i
k

)+ dτ

(
I i

k,Bi
k

)]
(8.5)

= E
[
E
(
dτ

(
T i

k ,I i
k

)+ dτ

(
I i

k,Bi
k

)|Fk−1
)]

,

where Fk = σ({T i
l ,Bi

l } | l ≤ k). We use (8.4) together with the Markov property in order to get

E
[
dτ

(
T i

k ,I i
k

)|Fk−1
]= E

[
(Kidτ )

(
T i

k−1,Bi
k−1

)]≤ E
[
rdτ

(
T i

k−1,Bi
k−1

)]
. (8.6)
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Therefore it is left to consider E(dτ (I i
0,Bi

0)|F−1). Since dτ ≤ 1, we have the bound

E
(
dτ

(
I i

k,Bi
k

) |Fk−1
) ≤ E(0 · 1both reject |Fk−1)

+E

(
(1− ρ2)

1
2 ‖ξ i

k −�ji−1ξ
i
k‖

τ
· 1both accept |Fk−1

)
(8.7)

+E(1 · 1one accepts |Fk−1),

where 1one accepts = 1{Ii
k=Îi

k xor Bi
k=B̂i

k}
. The probability that only one of the chains accepts can

be bounded using the Markov property as follows:

P(one accepts |Fk−1)

= Eξ i
k ,U

i
k

(
1[α(Bi

k−1,Îi
k),α(Bi

k−1,B̂i
k)]
(
Ui

k

)+ 1[α(B̂i
k−1,Bi

k),α(Bi
k−1,Îi

k)]
(
Ui

k

))
= Eξ i

k

∣∣α(Bi
k−1, Î i

k

)− α
(
Bi

k−1, B̂i
k

)∣∣
(8.8)

= Eξ i
k

∣∣1∧ exp
(
g
(
Bi

k−1

)− g
(
Î i

k

))− 1∧ exp
(
g
(
Bi

k−1

)− g
(
B̂i

k

))∣∣
≤ CgEξ i

k

∥∥Î i
k − B̂i

k

∥∥
≤ Cg

(
1− ρ2) 1

2 E
∥∥ξ i

k −�ji−1ξ
i
k

∥∥,
where Cg depends on the Lipschitz constant of the log-change of measure g. The second term
on the right-hand side of (8.7) is of similar form, so that we get the overall bound

Edτ

(
Bi

k,I i
k

) ≤ (1

τ
+Cg

)(
1− ρ2) 1

2 E
∥∥ξ i

k −�ji−1ξ
i
k

∥∥

≤
(

1

τ
+Cg

)(
1− ρ2) 1

2 K

√√√√√ ji∑
k=ji−1+1

λk (8.9)

=: Cji−1,ji
,

where we used Cauchy–Schwarz inequality in the last step. Repeated use of the Markov property
and the bounds (8.5), (8.6) and (8.9), yields that

Edτ

(
T i

0 ,Bi
0

)≤ E
[
E
(
dτ

(
I i

0,Bi
0

)+ dτ

(
T i

0 ,I i
0

)|F−1
)]

≤ E
[
rdτ

(
T i
−1,Bi

−1

)+Cji−1,ji

]
≤ r
(
rEdτ

(
T i
−2,Bi

−2

)+Cji−1,ji

)+Cji−1,ji

... (8.10)
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≤ r
(
. . .
(
rEdτ

(
T i−ai−1

,Bi−ai−1

)+Cji−1,ji

)
. . .
)+Cji−1,ji

≤ rai−1Edτ

(
T i−ai−1

,Bi−ai−1

)+Cji−1,ji

1− rai−1

1− r

≤ rai−1 +Cji−1,ji

1− rai−1

1− r
,

where in the last step we used that dτ ≤ 1. Our strategy thus indeed gives a bound on the contrac-
tion of the transdimensional coupling K

ji

ji−1
under the artificial assumption (8.4) on the contrac-

tion of Ki . We use the same strategy to get the required contraction bounds in the more realistic
settings considered in Lemmas 8.2 and 8.3.

8.3.2. Overview of the coupling bounds

We next describe how the existing literature yields that the fixed state space coupling in (5.5)
leads to contraction with respect to

dτ (x, y)= 1∧ ‖x − y‖
τ

and d̃(x, y) :=
√

dτ (x, y)
(
1+ V (x)+ V (y)

)
.

For simplicity, below we assume that ji = i. This particular coupling is called the basic coupling,
[18]. Recall that the contraction bound for a particular coupling is always an upper bound for the
Wasserstein distance of the transition kernel, see Remark 2.2.2. In the following, we summarise
the relevant results and make connections to geometric ergodicity.

Verifying that a particular coupling contracts is often difficult, but [10,17] and [11] give ver-
ifiable conditions which resemble the well-known conditions for geometric and polynomial er-
godicity. Geometric ergodicity is usually established using the Harris theorem by verifying the
existence of a Lyapunov function, also called geometric drift condition. That is, it suffices to
show the existence of a function V , 0 < λ < 1 and b > 0 such that

PV ≤ λV + b (8.11)

and showing that an appropriate small set exists, see [28], Section 3.4. The problem is that the
resulting error bounds on the ergodic average deteriorate with dimension because it is difficult to
find good small sets.

This problem is alleviated when considering Wasserstein convergence. In particular, the ar-
ticle [17] establishes a weak Harris theorem. It shows exponential convergence with respect
to the Wasserstein distance based on d̃(x, y) = √

d(x, y)(1+ V (x)+ V (y)), for d(x, y) ≤ 1 a
distance-like function. Below we use the letter d to also denote the Wasserstein distance and hope
that this does not cause confusion. The small set condition of the Harris theorem is replaced by
the requirements that:

1. a sub-level set S of V is d-small, that is, for all x and y in S

d
(
P(x, ·),P (y, ·))≤ s < 1; (8.12)
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2. the transition kernel P is d-contracting, that is, there is a 0 < c < 1 such that for d(x, y) < 1

d
(
P(x, ·),P (y, ·))≤ cd(x, y). (8.13)

For a summary of the weak Harris theorem we refer the reader to Section 2.2.1 of [18]. Equations
(8.12) and (8.13) are typically established using the fact that the Wasserstein distance can be
bounded using a particular coupling. That is, it suffices to establish the existence of couplings
K(1) and K(2) such that

(
K(1)d

)
(x, y)≤ s < 1, (8.14)(

K(2)d
)
(x, y)≤ cd(x, y) for d(x, y) < 1. (8.15)

An inspection of the proof of the weak Harris theorem in [17], shows that in fact the contraction
property is established for the coupling arising from

• if d(x, y) < 1 use coupling K(2);
• else if x, y ∈ S use coupling K(1);
• else use any coupling,

rather than directly for the Wasserstein distance which takes the infimum over all couplings.
Thus, the same is true for Theorems 2.14 and 2.17 of [18], that derive a non-explicit but
dimension-independent contraction rate for the basic coupling Ki of the pCN algorithm, for
target measures which are changes of measure from a Gaussian distribution with log-density
satisfying Assumption 5.1. More precisely, the proof shows that:

• (8.11) is satisfied for V (x)= exp(‖x‖) and with b and λ which are dimension independent;
• there exists a dimension-independent τ , such that the basic coupling Ki satisfies both (8.14)

and (8.15) for the distance dτ , for s and c which are also dimension-independent.

In particular, this shows that for any 0 < r < 1, there exists n0 = n0(r) ∈N such that

(
(Ki)

n0(r)d̃
)
(x, y)≤ rd̃(x, y) for any x, y ∈Xi , i ∈N, (8.16)

for

d̃(x, y) :=
√

dτ (x, y)
(
1+ V (x)+ V (y)

)
where V (x)= exp(‖x‖).

The work of [17] has been extended

• in [10] to cover polynomial ergodicity using more complicated drift conditions;
• in [11] to obtain more explicit bounds in the geometric case.

The article [10] explicitly considers the pCN algorithm. In particular, equation (68) in [10] es-
tablishes that

Kidτ ≤ dτ . (8.17)
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Combining Proposition 12 of [10], Lemma 3.2 of [18] and Theorem 1 of [11], we get that the
basic coupling decays exponentially

(Ki)
ndτ (x, y)≤ Crn

(
V (x)+ V (y)

)
, (8.18)

where C is dimension independent and V as above.
In the next subsection we will employ the above contraction results for the fixed state-space

basic coupling Ki of the pCN algorithm, to show the decay of the transdimensional coupling
K

ji

ji−1
of the pCN algorithm, defined in (5.4).

8.3.3. Coupling bounds between T i
0 and Bi

0

In the following we use the results reviewed in the previous subsection to obtain coupling
bounds between T i

0 and Bi
0 in terms of dτ (x, y) = 1 ∧ ‖x−y‖X

τ
(Lemma 8.2) and d̃(x, y) :=√

d(x, y)(1+ V (x)+ V (y)) (Lemma 8.3). These bounds in turn imply bounds on the decay of
‖�i‖2 which are crucial for the proofs of Theorem 5.3 and 5.4.

Lemma 8.2. Under Assumption 5.1, there exist τ,C > 0 and r ∈ (0,1), such that

Edτ

(
T i

0 ,Bi
0

)≤ Crai−1 + ai−1Cji−1,ji
, (8.19)

with Cji−1,ji
:=
√∑ji

k=ji−1+1 λk . In particular if f :X →R is s-Hölder continuous with respect

to dτ for some s ∈ [ 1
2 ,1], for the choice ji ∼ r−ai

2
2α−1 we get the estimate

‖�i‖2
2 � rai−1 . (8.20)

Proof. From Section 8.3.2, we know that there are τ , C and r ∈ (0,1) independent of i, such
that the fixed state space coupling Ki satisfies

(Ki)
ndτ (x, y) ≤ Crn

(
V (x)+ V (y)

)
(8.21)

Kidτ ≤ dτ ,

for any n ∈ N and for the Lyapunov function V (x)= exp(‖x‖). This statement is much weaker
than the artificial assumption (8.4) in Section 8.3.1 because of the multiplicative constant and
the Lyapunov function. As a result we cannot simply recurse as in (8.10). In the following, the
constant C may change from occurrence to occurrence, but C it is always independent of n and i.

We define recursively for l ∈N and for a fixed r ∈ Z, the l-step random functions

ϕ
i,l
B
(
x, {Ws}l+r

s=1+r

) := ϕi
B
(
ϕ

i,l−1
B
(
x, {Ws}l+r−1

s=r+1

)
,Wl+r

)
ϕ

i,l
T
(
x, {Ws}l+r

s=1+r

) := ϕi
T
(
ϕ

i,l−1
T
(
x, {Ws}r+l−1

s=r+1

)
,Wl+r

)



Unbiased Monte Carlo 1779

with the convention that ϕ
i,0
T = ϕ

i,0
B = Id . Using the triangle inequality and following the strategy

described at the beginning of Section 8.3.1, we can bound

Edτ

(
T i

0 ,Bi
0

)= Edτ

(
ϕ

i,ai−1
T

(
ϕ

i,ai−ai−1
T

(
x0, {Ws}−ai−1

s=−ai+1

)
, {Ws}0s=−ai−1+1

)
,

ϕ
i,ai−1
B

(
x0, {Ws}0s=−ai−1+1

))
≤ Edτ

(
ϕ

i,ai−1
T

(
T i−ai−1

, {Ws}0s=−ai−1+1

)
, ϕ

i,ai−1
T

(
x0, {Ws}0s=−ai−1+1

))
(8.22)

+Edτ

(
ϕ

i,ai−1
T

(
x0, {Ws}0s=−ai−1+1

)
, ϕ

i,ai−1
B

(
x0, {Ws}0s=−ai−1+1

))
=:R1 +R2.

Using (8.21) and the Markov property, we have that

R1 ≤ Crai−1E
(
V (x0)+ V

(
T i

ai−1

))≤ Crai−1 , (8.23)

where the second inequality follows from the fact that supj,n P n
j V (x0) <∞. This can be seen

by induction on (8.11) which as discussed in the previous subsection for the pCN algorithm is
satisfied with dimension independent parameters, which gives

P nV = λnV + 1− λn

1− λ
b,

implying

sup
n

P nV ≤ V + 1

1− λ
b.

By repeatedly using the triangle inequality in order to introduce intermediate steps which differ
from each other in the evolution at only one time-step, we can estimate R2 as below:

R2 ≤ E
[
dτ

(
ϕ

i,ai−1−1
T

(
ϕi
T (x0,W−ai−1+1), {Ws}0s=−ai−1+2

)
,

ϕ
i,ai−1−1
T

(
ϕi
B(x0,W−ai−1+1), {Ws}0s=−ai−1+2

))
+ dτ

(
ϕ

i,ai−1−1
T

(
ϕi
B(x0,W−ai−1+1), {Ws}0s=−ai−1+2

)
,

ϕ
i,ai−1−1
B

(
ϕi
B(x0,Wai−1+1), {Ws}0s=−ai−1+2

))]
...

≤ E

ai−1−1∑
k=0

dτ

(
ϕ

i,k
T
(
ϕi
T
(
ϕ

i,ai−1−k

B
(
x0, {Ws}−k−1

s=−ai−1+1

)
,W−k

)
, {Ws}0s=−k+1

)
,

ϕ
i,k
T
(
ϕi
B
(
ϕ

i,ai−1−k

B
(
x0, {Ws}−k−1

s=−ai−1+1

)
,W−k

)
, {Ws}0s=−k+1

))
.
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Since Kidτ ≤ dτ by (8.21), we hence have

R2 ≤ E

ai−1−1∑
k=0

dτ

(
ϕi
T
(
ϕ

i,ai−1−k

B
(
x0, {Ws}−k−1

s=−ai−1+1

)
,W−k

)
,

ϕi
B
(
ϕ

i,ai−1−k

B
(
x0, {Ws}−k−1

s=−ai−1+1

)
,W−k

))
.

Similarly to (8.9), we see that for each k the summands are bounded by Cji−1,ji
, hence we get

that

R2 ≤ ai−1Cji−1,ji
(8.24)

with Cji−1,ji
:=
√∑ji

k=ji−1+1 λk . Combining (8.23) and (8.24) with (8.22), we get the desired
bound (8.19).

To (roughly) optimise the right-hand side of (8.19), we require that the two terms have bounds
of the same order. Since λ� � �−2α , we have that

Cji−1,ji
=
(

ji∑
k=ji−1+1

λk

) 1
2

� j
1−2a

2
i−1 .

We hence require ai−1j
1−2a

2
i−1 = rai−1 and using [4], Lemma 4.5, we get that the choice ji ∼ rai

2
1−2a

as i →∞ yields that

Edτ

(
T i

0 ,Bi
0

)
� rai−1 .

The estimate (8.20) then follows from (5.8). �

Lemma 8.3. Under Assumption 5.1, there exist τ and r ∈ (0,1), such that

Ed̃
(
T i

0 ,Bi
0

)
� rai−1 +C

1
2
ji−1,ji

, (8.25)

with Cji−1,ji
:=
√∑ji

k=ji−1+1 λk . In particular if f :X →R is 1
2 -Hölder continuous with respect

to d̃ , for the choice ji ∼ Cr−ai
4

2α−1 we have the estimate

‖�i‖2
2 � rai−1 . (8.26)

Proof. Combining (8.17) with (8.11), which as discussed in the previous subsection are both
satisfied for the pCN algorithm with dimension independent constants b > 0, 0 < λ < 1 and



Unbiased Monte Carlo 1781

τ > 0 and for V (x)= exp(‖x‖), we get the following bound

(
(Ki)

nd̃
)
(x, y)≤ ((Ki)

ndτ (x, y)
) 1

2
(
1+ ((Ki)

nV
)
(x)+ ((Ki)

nV
)
(y)
) 1

2

≤ (dτ (x, y)
) 1

2

(
1+ V (x)+ V (y)+ 2b

1− λ

) 1
2

(8.27)

≤
√

2b

1− λ
+ 1 · d̃(x, y) := b̃d̃(x, y).

In the first inequality we used Cauchy–Schwarz and in the second, we used that (8.11) implies

P nV ≤ λnV + b

1− λ
. (8.28)

A major problem is that d̃ usually does not satisfy the triangle inequality, so that the method
described in Section 8.3.1 cannot be applied directly. However, this can be circumvented using
the technique of Section 4.1.1 of [18]. More precisely, we define

d̂(x, y) :=

√√√√√ inf
n,x=z1,...,y=zn

n−1∑
j=1

d0(zj , zj+1)

with d0 = dτ (1 + V (x) + V (y)); d̂ satisfies the triangle inequality by construction. Following
the proof of Lemma 4.1.1 in [18], it is possible to show that there exists a constant CL ≤ 1 such
that

CLd̃ ≤ d̂ ≤ d̃.

Using (8.16), we choose n0 = n0(
CL

2 ) such that

(
(Kj )

n0 d̃
)
(x, y)≤ CL

2
d̃(x, y) for any j. (8.29)

Using the triangle inequality for d̂ and d̃ ≤ 1
CL

d̂ , we get

Ed̃
(
T i

0 ,Bi
0

)≤ 1

CL

Ed̂
(
ϕ

i,n0
T
(
T i−n0

, {Ws}0s=−n0+1

)
, ϕ

i,n0
T
(
Bi−n0

, {Ws}0s=−n0+1

))
+ 1

CL

Ed̂
(
ϕ

i,n0
B
(
Bi−n0

, {Ws}0s=−n0+1

)
, ϕ

i,n0
T
(
Bi−n0

, {Ws}0s=−n0+1

))
=:R1 +R2,

where the l-step random functions ϕ
i,l
T , ϕ

i,l
B are defined as in the proof of Lemma 8.2. Using

(8.29), we get that

R1 ≤ 1

2
d̃
(
T i−n0

,Bi−n0

)
.
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Using the triangle inequality for d̂ , d̂ ≤ d̃ and (8.27), we have

R2 ≤ 1

CL

E

n0−1∑
k=0

d̂
{
ϕ

i,k
T
(
ϕi
T
(
ϕ

i,n0−1−k

B
(
Bi−n0

, {Ws}−k−1
s=−n0+1

)
,W−k

)
, {Ws}0s=−k+1

)
,

ϕ
i,k
T
(
ϕi
B
(
ϕ

i,n0−1−k

B
(
Bi−n0

, {Ws}−k−1
s=−n0+1

)
,W−k

)
, {Ws}0s=−k+1

)}
(8.30)

≤ b̃

CL

E

n0−1∑
k=0

d̃
{
ϕi
T
(
ϕ

i,n0−1−k

B
(
Bi−n0

, {Ws}−k−1
s=−n0+1

)
,W−k

)
,

ϕi
B
(
ϕ

i,n0−1−k

B
(
Bi−n0

, {Ws}−k−1
s=−n0+1

)
,W−k

)}
.

The next step is to derive a bound on the one-step difference between ϕi
B(x,W) and ϕi

T (x,W).
We obtain the following bound using the Cauchy–Schwarz inequality, (8.9) and (8.11)

Ed̃
(
ϕi
B(x,W),ϕi

T (x,W)
)≤ (Edτ

(
ϕi
B(x,W),ϕi

T (x,W)
)) 1

2

· (1+EV
(
ϕB(x,W)

)+EV
(
ϕT (x,W)

)) 1
2

� C
1
2
ji−1,ji

(
1+ 2λV (x)+ 2b

) 1
2 .

Notice that the application of Cauchy–Schwarz here leads to C
1
2
ji−1,ji

instead of Cji−1,ji
in Sec-

tion 8.3.3. This is the reason for the stronger condition a > 2θ + 1
2 in Theorem 5.4 compared to

a > θ + 1
2 in Theorem 5.3. Using this bound on the right-hand side of (8.30), yields

R2 ≤ b̃

CL

E

n0−1∑
k=0

C
1
2
ji−1,ji

(
1+ 2λV

(
Bi
−k−1

)+ 2b
) 1

2 .

Using the Cauchy–Schwarz inequality together with (8.28) we thus get that

R2 ≤ b̃

CL

C
1
2
ji−1,ji

n0−1∑
k=0

(
E1+ 2λλai−1−k−1V (x0)+ 2λ

2b

1− λ
+ 2b

) 1
2

≤M
b̃

CL

C
1
2
ji−1,ji

n0

(
1+ 2V (x0)+ 8b

1− λ

) 1
2

,

where the constant M only depends on λ and n0 and we used that λ < 1 and ai is increasing. We

abuse notation and write M =M b̃
CL

n0. Combining the bounds for R1 and R2, we obtain that

Ed̃
(
T i

0 ,Bi
0

)≤ 1

2
Ed̃
(
T i−n0

,Bi−n0

)+MC
1
2
ji−1,ji

(
1+ 2V (x0)+ 8b

1− λ

) 1
2

.
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Finally, using the Markov property we can iterate the above bound k = ! ai−1
n0
"times to obtain

Ed̃
(
T i

0 ,Bi
0

)≤ (1

2

)k

Ed̃
(
T i−kn0

,Bi−kn0

)+ 2MC
1
2
ji−1,ji

(
1+ 2V (x0)+ 8b

1− λ

) 1
2

≤
(

1

2

)k

Eb̃d̃
(
T i−ai−1

, x0
)+ 2MC

1
2
ji−1,ji

(
1+ 2V (x0)+ 8b

1− λ

) 1
2

≤
(

1

2

)k

b̃E

√
1+ V (x0)+ V

(
T i−ai−1

)+CC
1
2
ji−1,ji

≤
(

1

2

)k

b̃

√
1+ 2V (x0)+ b

1− λ
+CC

1
2
ji−1,ji

� rai−1 +C
1
2
ji−1,ji

where to get the first inequality we summed-up a geometric series, in the second inequality we

used (8.27) and where r = ( 1
2 )n0(

CL
2 )−1

.
The rest of the proof is very similar to the last part of the proof of Lemma 8.2 (using (5.10)

instead of (5.8)), and is hence omitted. �

8.3.4. Proofs of Theorems 5.3 and 5.4

In order to prove Theorems 5.3 and 5.4, we need to first use Proposition 1.1 which gives condi-
tions securing unbiasedness and finite variance of Z and then make sure that these conditions are
compatible with a finite expected computing time.

Proof of Theorem 5.3. By the considerations at the end of Section 1.3, in order to get the
unbiasedness and finite variance of Z it suffices to verify (1.7). Using (8.20), we have that for the
stated choices of ai and ji , it holds

∑
i≤l

‖�i‖2‖�l‖2

P(N ≥ i)
=

∞∑
i=0

‖�i‖2

P(N ≥ i)

∞∑
l=i

‖�l‖2 �
∞∑
i=0

‖�i‖2

P(N ≥ i)

r
m
2 i

1− r
1
2

(8.31)

�
∞∑
i=0

rmi

P(N ≥ i)
,

where r < 1 is defined in Lemma 8.2. It is hence sufficient to choose the distribution of N such
that
∑

i
rmi

P(N≥i)
<∞. A valid choice is for example, P(N ≥ i)∝ r(m−ε)i for ε > 0 which can be

arbitrarily small.
Regarding the expected computing time of Z, we have that it is equal to

∑∞
i=0 tiP(N ≥ i),

where ti is the expected time to generate �i . By Assumption 5.2, we have ti � aij
θ
i , hence

∞∑
i=0

tiP(N ≥ i) �
∞∑
i=0

ir( 2θm
1−2a

+m−ε)i .
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To get that the right-hand side is finite, we need to have ε < 2θm
1−2a

+ m and such a choice is

possible since a > θ + 1
2 . �

Proof of Theorem 5.4. The proof is almost identical to the proof of Theorem 5.3, and is hence
omitted. �

Remark 8.4. In Theorem 4.5, in Section 4, we give an example of parameter choices for which
the unbiasing procedure works, which is such that ai grow logarithmically and ji polynomially
in i. A simple calculation shows that we could have made the same choices here and would
have ended up with the same condition on the regularity, α, of the reference measure μ0. The
present choice implies that the random variable N has moments of all orders. On the other hand
the dimensionality jN increases exponentially in N . Thus, the comparison of both approaches
depends on the concrete choices.
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ther consideration on unbiased estimators for Bayesian linear inverse problems and an elliptic
inverse problem as detailed example.
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