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We analyze the effect of a heterogeneous variance on bump detection in a Gaussian regression model. To
this end, we allow for a simultaneous bump in the variance and specify its impact on the difficulty to detect
the null signal against a single bump with known signal strength. This is done by calculating lower and
upper bounds, both based on the likelihood ratio.

Lower and upper bounds together lead to explicit characterizations of the detection boundary in several
subregimes depending on the asymptotic behavior of the bump heights in mean and variance. In particular,
we explicitly identify those regimes, where the additional information about a simultaneous bump in vari-
ance eases the detection problem for the signal. This effect is made explicit in the constant and/or the rate,
appearing in the detection boundary.

We also discuss the case of an unknown bump height and provide an adaptive test and some upper bounds
in that case.
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1. Introduction

Assume that we observe random variables Y = (Y1, . . . , Yn) through the regression model

Yi = μn

(
i

n

)
+ λn

(
i

n

)
Zi, i = 1, . . . , n, (1)

where Zi
i.i.d.∼ N (0,1) are observational errors, μn denotes the mean function and λ2

n is the vari-
ance function sampled at n equidistant points i/n, say. The aim of this paper is to analyze the
effect of a simultaneous change in the variance on the difficulty to detect μn ≡ 0 against a mean
of the form

μn(x) = �n1In(x) =
{

�n, if x ∈ In,

0, otherwise,
(2)

1350-7265 © 2018 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
http://dx.doi.org/10.3150/16-BEJ899
mailto:farida.enikeeva@math.univ-poitiers.fr
mailto:munk@math.uni-goettingen.de
mailto:frank.werner@mpibpc.mpg.de


Bump detection in heterogeneous Gaussian regression 1267

Figure 1. The HBR model: Data together with parameters In, �n, σ0 and σn in (1)–(3) from the HBR.
Here �n = 4, σ 2

0 = 1, σ 2
n = 4 and n = 512.

that is, a bump with height �n > 0 on an interval In ⊂ [0,1] as location. The assumption that
�n > 0 is posed only for simplicity here, if �n is negative or |μn| is considered, similar results
can be obtained analogously. Further, in model (1) we assume a simultaneous change of the
variance by

λ2
n(x) = σ 2

0 + σ 2
n 1In(x), x ∈ [0,1] (3)

with a “baseline” variance σ 2
0 > 0. Note that the additional change in the variance σ 2

n > 0 may
only occur when the mean has a bump of size �n on In. We assume throughout this paper that
σ 2

n and σ 2
0 are known, and that also the length |In| of In is known. Note that as the position of In

is unknown, both functions μn and λn are (partially) unknown as well. Concerning �n we will
later distinguish between the cases that �n is known (to which we will provide sharp results) and
unknown.

The model arising from (1)–(3) with the above described parameters will be called the hetero-
geneous bump regression (HBR) model, which is illustrated in Figure 1. The aim of this paper
is to provide some first insights for precise understanding of the effect of the heterogeneity on
detection of the signal bump.

1.1. Applications

The HBR model may serve as a prototypical simplification of more complex situations, where
many bumps occur and have to be identified. In fact, in many practical situations it is to be ex-
pected that the variance changes when a change of the mean is present; see, for example, Muggeo
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Figure 2. Current recordings of a porin in picoampere (pA) sampled every 0.4 milliseconds.

and Adelfio [38] for a discussion of this in the context of CGH array analysis. Another example
arises in econometrics and financial analysis, where it has been argued that price and volatility
do jump together [5,31]. The HBR model can also be viewed as a heterogeneous extension of
the “needle in a haystack” problem for |In| ↘ 0, that is, to identify s small cluster of non-zero
components in a high-dimensional multivariate vector [1,6,17,20,30].

Finally we mention the detection of opening and closing states in ion channel recordings (see
[40] and the references therein), when the so-called open channel noise is present which arises for
large channels, e.g. porins [43,48]. A small segment of a current recording of a porin in planar
lipid bilayers performed in the Steinem lab (Institute of Organic and Biomolecular Chemistry
University of Göttingen) is depicted in Figure 2. We find that the observations fluctuate around
two main levels, which correspond to the open and closed state. It is also apparent that the
variance changes together with the mean.

1.2. Detailed setting and scope of this paper

Let us now formalize the considered testing problem. Let In ⊂ [0,1], n ∈ N a given sequence of
intervals. W.l.o.g. assume in the following that ln := 1/|In| only takes values in the integers, i.e.
ln ∈ N for all n ∈ N and define

An := {[
(j − 1)|In|, j |In|

]|1 ≤ j ≤ ln
}
. (4)

Then for fixed n ∈ N we want to test

H0 : μn ≡ 0, λn ≡ σ0, σ0 > 0 fixed

against

Hn
1 : ∃In ∈An s.t. μn = �n1In , λ2

n = σ 2
0 + σ 2

n 1In , σn > 0.

(5)

Throughout the most of this paper we assume that the parameters �n, σ0, σn and |In| are
known, only the position In of the bump is unknown. Note, that if the location In of the bump
was also known (and not only its width |In|), then the whole problem reduces to a hypothesis
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test with simple alternative, i.e. the Neyman–Pearson test will be optimal. This situation may be
viewed as a variation of the celebrated Behrens–Fisher problem (see e.g. [37]) to the situation
when the variance changes with a mean change.

The requirement that �n is known will be relaxed later on.
The main contribution of this paper is to precisely determine the improvement coming from

the additional change in variance by determining the detection boundary for (5). We stress that
this issue has not been addressed before to the authors best knowledge, and it has been completely
unclear if and to what extend the additional change in variance adds information to the model so
far. We will provide some partial answers to this.

The testing problem (5) is in fact a simplification of the practically more relevant problem
where the interval In in the alternative is not necessarily an element of An, but can be arbitrary
in [0,1] with the predefined length |In|. Furthermore the parameters |In|, σ0 and σn will also be
unknown in most practical situations, although often for the in Section 1.1 mentioned channel
recordings the variances and the conductance level �n can be pre-estimated with high accuracy,
and hence regarded as practically known. In fact, lack of knowledge of all these quantities leads
to a much more complex problem and raises already a remarkable challenge for designing an
efficient test, which is far above the scope of this paper. Instead, we aim for analyzing the amount
of information contained in the most simple HBR model compared to the homogeneous case, and
therefore we restrict ourselves to the simplified (but still quite complicated) situation (5). Note
that our lower bounds for the detection boundary are also lower bounds for the general situation
(although we speculate that then not sharp).

Our results are achieved on the one hand by modifying a technique from Dümbgen and
Spokoiny [22] providing lower bounds in the homogeneous model. We will generalize this to
the case of a non-central chi-squared likelihood ratio which appears due to the change in vari-
ance. On the other hand we will analyze the likelihood ratio test for (5) which then provides
upper bounds. Doing so we use a generalized deviation inequality for the weighted sum of non-
central chi-squared random variables from Laurent, Loubes and Marteau [35] (see Appendix A
for a discussion of this and related inequalities). The authors there also study a heterogeneous
regression problem, but in a setting which is not related to bump detection.

1.3. Analytical tools and literature review

Minimax testing theory

In this paper, the analysis of the HBR model is addressed in the context of minimax testing
theory, and we refer e.g. to a series of papers by Ingster [29] and to Tsybakov [50] for the general
methodology. Following this paradigm we aim for determining the detection boundary which
marks the borderline between asymptotically detectable and undetectable signals of type (2).

In the following we consider tests �n : Rn → {0,1}, where �n(Y ) = 0 means that we accept
the hypothesis H0 and �n(Y ) = 1 means that we reject the hypothesis. We denote the probability
of the type I error by

ᾱ(�n,σ0) := EH0

[
�n(Y )

]= PH0

(
�n(Y ) = 1

)



1270 F. Enikeeva, A. Munk and F. Werner

and say that the sequence of tests �n has asymptotic level α ∈ (0,1) under H0, if
lim supn→∞ ᾱ(�n,σ0) ≤ α. The type II error is denoted by

β̄
(
�n,�n, |In|, σ0, σn

) := sup
In∈An

Pμn=�n1In ,λ2
n=σ 2

0 +σ 2
n 1In

(
�n(Y ) = 0

)

and lim supn→∞ β̄(�n,�n, |In|, σ0, σn) is the asymptotic type II error of the sequence of tests
�n under hypothesis H0 and alternative Hn

1 determined by the parameters �n, |In|, σ0 and σn.
Below we will skip the dependence on the parameters to ease the presentation.

Obviously, a fixed bump can be detected always with the sum of type I and II errors tending
to 0 as n → ∞. Thus we are interested in asymptotically vanishing bumps, hence we want to
investigate which asymptotic behavior of �n, σn and |In| ↘ 0 implies the following twofold
condition for a fixed α > 0 (cf. [34]):

(a) lower detection bound: let H̃ n
1 consist of faster vanishing bumps. Then for any test with

lim supn→∞ ᾱ(�n) ≤ α it holds lim infn→∞ β̄(�n) ≥ 1 − α.
(b) upper detection bound: let H̃ n

1 consist of slower vanishing bumps. Then there is a se-
quence of tests with lim supn→∞ ᾱ(�n) ≤ α and lim supn→∞ β̄(�n) ≤ α.

Typically the terms faster and slower are measured by changing the constant appearing in the
detection boundary by an ±εn term. If upper and lower bounds coincide (asymptotically), we
speak of the (asymptotic) detection boundary, cf. (6) below.

In fact we will see that for our specific situation the obtained asymptotic behavior �n, σn and
|In| ↘ 0 does not depend on the specific choice of α ∈ (0,1). Consequently, we determine condi-
tions for H0 and Hn

1 to be either consistently distinguishable or asymptotically indistinguishable
in the spirit of Ingster [29].

Literature review

Motivated by examples from biology, medicine, economics and other applied sciences, methods
for detecting changes or bumps in a sequence of homogeneous observations have been studied
extensively in statistics and related fields. We refer to Csörgő and Horváth [19], Siegmund [45],
Carlstein, Müller and Siegmund [16] or Frick, Munk and Sieling [24] for a survey. Estimating a
piecewise constant function in this setting consists on the one hand in a model selection problem
(namely estimating the number of change points) and on the other hand in a classical estimation
problem (estimating the locations and amplitudes). For the former, we refer to Yao [51], who
proposed a method to estimate the total number of change points in the data by Schwarz’ crite-
rion, and to Bai and Perron [4], who investigate a Wald-type test. For a more general approach to
treat the change-point problem from a model selection perspective we refer to Birgé and Massart
[9], and for a combined approach with confidence statements and estimation, see Frick, Munk
and Sieling [24]. Concerning the latter, Siegmund and Venkatraman [46] used a generalized like-
lihood ratio to estimate the location of a single change point in the data. The overall estimation
problem has e.g. been tackled by Boysen et al. [12] via 	0-penalized least-squares and by Har-
chaoui and Lévy-Leduc [26] via a TV-penalized least-squares approach. Siegmund, Yakir and
Zhang [47] proposed a specialized estimator for the situation of many aligned sequences when
a change occurs in a given fraction of those. Recent developments include efficient algorithms
for the overall estimation problem based on accelerated dynamic programming and optimal par-



Bump detection in heterogeneous Gaussian regression 1271

titioning by Killick, Fearnhead and Eckley [33] and Frick, Munk and Sieling [24], on penalized
or averaged log likelihood ratio statistics by Rivera and Walther [41], or Bayesian techniques as
proposed by Du, Kao and Kou [21]. We also mention the recent paper by Goldenshluger, Juditski
and Nemirovski [25], which has been discussed in this context by [39].

The special question of minimax testing in such a setting has also been addressed by several
authors. We mention the seminal paper by Dümbgen and Spokoiny [22] and also Dümbgen and
Walther [23] who studied multiscale testing in a more general setup, and [24] for jump detection
in change point regression. Furthermore, we refer to Chen and Walther [18] for an optimality
consideration of the tests introduced in [41], and to a rigorous minimax approach for detecting
sparse jump locations by Jeng, Cai and Li [32]. Nevertheless, all these papers only address the
case of a homogeneous variance, i.e. λn ≡ σ0. There, it is well-known that the detection boundary
is determined by the equations

√
n|In|�n = √

2σ0

√
− log

(|In|
)
, (6)

and the terms “faster” and “slower” in the above definition are expressed by replacing
√

2σ0 by√
2σ0 ± εn with a sequence (εn)n∈N such that εn → 0, εn

√− log(|In|) → ∞ as n → ∞ (for
details see [24]).

In the heterogeneous model (1)–(3) and the connected testing problem (5) mainly two situa-
tions have to be distinguished, see also [36].

The first situation emerges when it is not known whether the variance changes (but it might).
Then as in (3) we explicitly admit σ 2

n = 0 and the variance is a nuisance parameter rather than an
informative part of the model for identification of the bump in the mean. Hence, no improvement
of the bound (6) for the case of homogeneous variance is to be expected. The estimation of the
corresponding parameters has also been considered in the literature. Huang and Chang [28] con-
sider a least-squares type estimator, and Braun, Braun and Müller [13] combine quasilikelihood
methods with Schwarz’ criterion for the model selection step. We also mention Arlot and Celisse
[3] for an approach based on cross-validation and Boutahar [11] for a CUSUM-type test in a
slightly different setup. Even though, a rigorous minimax testing theory remains elusive and will
be postponed to further investigations.

The second situation, which we treat in this paper, is different: We will always assume σ 2
n > 0

(as in the examples in Section 1.1), which potentially provides extra information on the location
of the bump and detection of a change might be improved. This is not the case in the situation
discussed above, as the possibility of a change in variance can only complicate the testing pro-
cedure, whereas σ 2

n > 0 gives rise to a second source of information (the variance) for signal
detection. The central question is: Does the detection boundary improve due to the additional
information and if so, how much?

Relation to inhomogeneous mixture models

Obviously, the HBR model is related to a Gaussian mixture model

Yi ∼ (1 − ε)N
(
0, σ 2

0

)+ εN
(
�,σ 2), i = 1, . . . , n, (7)

which has been introduced to analyze heterogeneity in a linear model with a different focus, see
e.g. [2,14,15]. For ε ∼ n−β (0 < β < 1) different (asymptotic) regimes occur. If β > 1/2, the
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non-null effects in the model are sparse, which leads to a different behavior as if they are dense
(β ≤ 1/2). Although it is not possible to relate (7) with the HBR model in general, it is insightful
to highlight some distinctions and commonalities in certain scenarios (for the homogeneous case
see the discussion part of [24]). A main difference to our model is that the non-null effects do not
have to be clustered on an interval In. It is exactly this clustering, which provides the additional
amount of information due to the variance heterogeneity in the HBR model. A further difference
is that the definition of an i.i.d. mixture as in (7) intrinsically relates variance and expectation of
the Yi .

1.4. Organization of the paper

The paper is organized as follows: In the following Section 2 we present our findings of the de-
tection boundary. The methodology and the corresponding general results are stated in Section 3.
Afterwards we derive lower bounds in Section 4 and upper bounds in Section 5. There we also
discuss upper bounds for the case that �n is unknown and provide a likelihood ratio test which
adapts to this situation. In Section 6 we present some simulations and compare the finite sample
power of the non-adaptive test and the adaptive test. Finally we will discuss some open questions
in Section 7. To ease the presentation all proofs will be postponed to the Appendix.

2. Overview of results

Throughout the following we need notations for asymptotic inequalities. For two sequences
(an)n∈N and (bn)n∈N, we say that an is asymptotically less or equal to bn and write an � bn

if there exists N ∈N such that an ≤ bn for all n ≥ N . Similarly we define an � bn. If an/bn → c

as n → ∞ for some c ∈ R \ {0} we write an ∼ bn. If c = 1 we write an  bn. We use the termi-
nology to say that an and bn have the same asymptotic rate (but probably different constant) if
an ∼ bn, and that they have the same rate and constant if an  bn. Consequently, the relation in
(6) determining the detection boundary in the homogeneous case becomes

√
n|In|�n  √

2σ0

√
− log

(|In|
)
.

The notations ∼ and  coincide with standard notations. The definitions of � and � can be
seen as extensions of the classical minimax notations by [29] or [22], where the null hypothesis
is tested against the complement of a ball around 0 with varying radius ρ = ρ(n). The results
are typically presented by stating that if ρ(n) tends to 0 faster than the boundary function ρ∗(n),
or if their ratio converges to some constant < 1, then the null and the alternative hypotheses are
indistinguishable.

In our setting, the asymptotic conditions are defined in terms of sums rather than ratios. Thus
we introduced � and � to have similar notations.

In the HBR model, our signal has a change in mean determined by �n and also a change in its
variance, which will be described by the parameter

κn := σn

σ0
> 0.
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In fact, we will see that the detection boundary is effectively determined by the ratio of κ2
n and

�n, which leads to three different regimes:

DMR Dominant mean regime. If κ2
n vanishes faster than �n, the mean will asymptotically

dominate the testing problem. In this case, the additional information will asymptotically vanish
too fast, so that we expect the same undetectable signals as for the homogeneous case. The
dominant mean regime consists of all cases in which κ2

n/�n → 0, n → ∞.
ER Equilibrium regime. If κ2

n has a similar asymptotic behavior as �n, we expect a gain from
the additional information. The equilibrium regime consists of all cases in which κn → 0, �n →
0 and c := limn→∞ κ2

n/(�n/σ0) = limn→∞ σ 2
n /(�nσ0) satisfies 0 < c < ∞.

DVR Dominant variance regime. If �n vanishes faster than κ2
n , the variance will asymptoti-

cally dominate the testing problem. In this case, we expect the same detection boundary as for
the case of testing for a jump in variance only. The dominant variance regime consists of all cases
in which κn → 0 and κ2

n/�n → ∞, n → ∞.

With this notation, we can collect the most important results of this paper in the following
Table 1. The corresponding detection boundaries in different regimes are also illustrated in Fig-
ure 3.

Table 1. Main results of the paper

Constant

Upper bound

Rate Lower bound �n known �n unknown

DMR
√

n|In|�n ∼√− log(|In|) √
2σ0 − εn

√
2σ0 + εn

√
2σ0 + εn

Theorem 4.1 Theorem 5.1 Theorem 5.4

ER
√

n|In|�n ∼√− log(|In|) √
2σ0

√
2

2+c2 − εn

√
2σ0

√
2

2+c2 + εn σ0
c+

√
2+3c2

1+c2 + εn

Theorem 4.2 Theorem 5.2 Theorem 5.4
√

n|In|κ2
n ∼√− log(|In|) 2

√
c2

2+c2 − εn 2
√

c2

2+c2 + εn c
c+

√
2+3c2

1+c2 + εn

cf. (24) analog to (24) analog to (24)

DVR
√

n|In|κ2
n ∼√− log(|In|) 2 − εn 2 + εn 1 + √

3 + εn

Theorem 4.3 Theorem 5.3 Theorem 5.4

Here (εn) is any sequence such that εn → 0, εn

√− log(|In|) → ∞.
The second column depicts the rates obtained in the different regimes, the columns three to five give the constants in
different situations. ER is stated twice, because the results are shown w.r.t. the different rates from DMR and DVR
respectively.
Exemplary, the lower bound entry in the DMR denotes that signals are no longer detectable if

√
n|In|�n � (

√
2σ0 −

εn)
√− log(|In|). Vice versa, the upper bound entry in the DMR means that signals are detectable as soon as

√
n|In|�n �

(
√

2σ0 + εn)
√− log(|In|), no matter if �n is known or needs to be estimated from the data.
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Figure 3. Illustration of the detection boundaries (8), (9), (10) and (11) in the different regimes. The dashed
green lines illustrate the phase transitions between the DMR, ER and ER, DVR respectively, whereas
the dashed blue line depicts the phase transition between the rates for DVR and DMR. Note, that on the
left-hand side the x-axis corresponds to c, whereas on the right-hand side x- and y-axis are inverted and the
x-axis belongs to 1/c.

�n known

It can readily be seen from Table 1 that the lower and the upper bounds with known �n coin-
cide up to the ±εn term in all regimes. This directly implies that the detection boundaries are
determined by these constants, which we will describe in more detail now.

DMR: A comparison of the lower and upper bounds in Table 1 yields that the detection bound-
ary is given by √

n|In|�n  √
2σ0

√
− log

(|In|
)
. (8)

Hence, the detection boundary in the dominant mean regime coincides with the detection bound-
ary in the homogeneous model (cf. (6)). More precisely, if the additional information κ2

n about
a jump in the variance vanishes faster than the jump �n in mean, we cannot profit from this
information asymptotically.

ER: It follows similarly that the detection boundary is given by

√
n|In|�n  √

2σ0

√
2

2 + c2

√
− log

(|In|
)
, (9)
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where c = σ−1
0 limn→∞ σ 2

n /�n. The characterization (9) shows that we do always profit from

the additional information in the ER case as
√

2
2+c2 < 1 whenever c > 0. Compared to the homo-

geneous model or the dominant mean regime the constant improves but the rate stays the same.
Note, that the improvement can be quite substantial, e.g. if c = 1, which amounts to the same
magnitude of σn and �n, the additional bump in the variance leads to a reduction of 33% sample
size to achieve the same power compared to homogeneous bump detection. If c = 2, we obtain a
reduction of 66%.

As �n and κ2
n are of the same order in the ER, we may replace �n by κ2

n in (9) and obtain the
equivalent characterization

√
n|In|κ2

n  2

√
c2

2 + c2

√
− log

(|In|
)
. (10)

This formulation allows for a comparison with the DVR below and is also depicted in Table 1,
second ER row.

DVR: We find from entries three and four in the DVR row of Table 1 that the detection
boundary is given by √

n|In|κ2
n  2

√
− log

(|In|
)
. (11)

If the jump in variance asymptotically dominates the jump in mean, we exactly obtain the detec-
tion boundary for a jump in variance only. This is a natural analog to (8) and coincides with the
findings in the literature, cf. [19], Section 2.8.7.

Finally note that if c in (10) tends to ∞, we end up with (11). In this spirit a constant c < ∞
can be also seen as an improvement over the pure DVR where the rate stays the same but the
constant decreases, which is an analog to the comparison of the DMR and the ER, see above.
A summary of the obtained detection boundary statements is illustrated in Figure 3.

�n unknown

In case that �n is unknown, it has to be estimated from the data Y and the corresponding like-
lihood ratio test will be introduced in Section 4.4. The change in the considered statistics leads
to different upper bounds. It is readily seen from Table 1 that the obtained upper bounds do not
coincide with the lower bounds in all regimes.

DMR: It follows from the last entry in the DMR row that (8) also characterizes the adaptive
detection boundary for unknown �n.

ER: If the parameter �n is unknown, it can be seen from the last entry in the ER row that
it is unclear if the lower bound remains sharp. We do not have an adaptive lower bound which
would allow for an explicit statement here.

DVR: In this regime it is again unclear if the lower bound is also sharp in case that �n is
unknown (again we do not have an adaptive one), but we consider it likely that the obtained
upper bound 1 + √

3 (cf. the last entry in the DVR row) is sharp.

This loss of a constant can be interpreted as the price for adaptation and is quantified by
the ratio r(c) of (33) and (25), (34) and (26) and (35) and (28) respectively. The ratios are
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Figure 4. The price of adaptation r plotted against the parameter 0 ≤ c < ∞.

given by

r(c) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, DMR, c = 0,√
2 + c2(c + √

2 + 3c2)

2(1 + c2)
, ER, 0 < c < ∞,

1 + √
3

2
, DVR, c = ∞,

which are displayed in Figure 4. Note that r is a continuous function. Remarkably, the price for
adaptation is never larger then

√
2, as r attains its maximum at c = √

2, such that r(
√

2) = √
2.

As c → ∞, r tends to (1 + √
3)/2, as c → 0, it tends to 1, meaning that adaptation has no

cost at all in this situation. Note, that this is in line with findings for the homogeneous Gaussian
model [24].

If we relax the regimes ER and DVR by allowing for σn → σ > 0, things become more com-
plicated. We will prove lower bounds for those cases as well, which include logarithmic terms in
κ = limn→∞ κn (cf. Theorems 4.2 and 4.3 and values of C in (21b) and (22b) respectively). Our
general methodology (cf. Theorem 3.3) will also allow for upper bounds in these situations (cf.
(27) and (29)), but it is clear that they cannot be optimal for the following simple reason: The
underlying deviation inequality does not include logarithmic terms in κ , neither do any from the
literature (cf. Appendix A).

3. General methodological results

Fixing In in (5), we obtain the likelihood ratio by straightforward calculations as

Ln(�n, In, κn;Y) = (
κ2
n + 1

)− n|In|
2 exp

( ∑
i: i

n
∈In

κ2
nY 2

i + 2Yi�n − �2
n

2(1 + κ2
n)σ 2

0

)
(12)

= (
κ2
n + 1

)− n|In|
2 exp

(
κ2
n

2(1 + κ2
n)σ 2

0

∑
i: i

n
∈In

(
Yi + �n

κ2
n

)2

− n|In|�2
n

2σ 2
0 κ2

n

)
.
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For the general testing problem (5) where only the size |In| is known but the location In not,
the likelihood ratio function is then given by supIn∈An

Ln(�n, In, κn;Y).

3.1. Lower bounds

Let �n be any test with asymptotic significance level α under the null-hypothesis μ ≡ 0, λn ≡ σ0.
We will now determine classes S := (Sn)n∈N of bump functions, such that �n is not able to
differentiate between the null hypothesis μ ≡ 0, λn ≡ σ0 and functions (μn,λn) ∈ Sn with type
II error ≤ 1 − α. To this end, we construct a sequence S such that

ᾱ(�n) ≤ α + o(1) ⇒ 1 − β̄(�n) − α ≤ o(1), (13)

which is equivalent. For such classes S we say that S is undetectable.
In the following, the sequence S will always be characterized by asymptotic requirements on

�n, κn and |In|. To keep the notation as simple as possible, only the asymptotic requirements
will be stated below, meaning that the sequence S

Sn = {
μn = �n1In , λ

2
n = σ 2

0 + σ 2
n 1In |�n, |In|, κn satisfy the specified requirements

}
is undetectable.

To prove lower bounds we use the following estimate, which has been employed in [22,24] as
well:

Lemma 3.1. Assume that (1)–(3) hold true and An is given by (4). If �n is a test with asymptotic
level α ∈ (0,1) under the null-hypothesis μ ≡ 0, i.e. ᾱ(�n) ≤ α + o(1), then

1 − β̄(�n) − α ≤ Eμ≡0,λ≡σ0

[∣∣∣∣ 1

ln

∑
In∈An

Ln(�n, In, κn,Y ) − 1

∣∣∣∣
]

+ o(1), (14)

as n → ∞.

Recall that we want to construct S such that the right-hand side of (14) tends to 0. This can be
achieved (as in [22], Lemma 6.2) by the weak law of large numbers. By controlling the moments
of Ln(�n, In, κn,Y ), this leads to the following theorem characterizing undetectable sets S :

Theorem 3.2. Assume the HBR model is valid with known parameters �n, κn and |In|. The
sequence S determining the asymptotic behavior of �n, κn and |In| is undetectable, if |In| ↘ 0
and there exists a sequence δn > 0, satisfying δn < 1/κ2

n such that for n → ∞,

n|In|�2
n

2σ 2
0

(1 + δn)δn

1 − δnκ2
n

− δn

n|In|
2

log
(
1 + κ2

n

)
(15)

− n|In|
2

log
(
1 − δnκ

2
n

)+ δn log
(|In|

)→ −∞.
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3.2. Upper bounds

To construct upper bounds we will now consider the likelihood ratio test. Recall that |In| is
known, but the true location of the bump is unknown. Motivated by (12) it is determined by

T �n,κn,|In|,σ0
n (Y ) := sup

In∈An

1

σ 2
0

∑
i: i

n
∈In

(
Yi + �n

κ2
n

)2

(16)

as test statistic. For simplicity of presentation, we will just write Tn for the statistic in (16) in the
following and drop the dependence on the parameters.

Furthermore let

�n(Y ) :=
{

1, if Tn(Y ) > c∗
α,n,

0, else
(17)

be the corresponding test where c∗
α,n ∈ R is determined by the test level.

In the following we will be able to analyze the likelihood ratio test (17) in DMR, ER and
DVR with the help of Lemma A.1. For the relaxed situations where κn �→ 0 we will prove lower
bounds including logarithmic terms in Theorems 4.2 and 4.3. Upper bounds including logarith-
mic terms cannot be obtained by the deviation inequalities in Lemma A.1, and we furthermore
found no deviation inequality including logarithmic terms in the literature. Even worse we are
not in position to prove such an inequality here, and thus we will not be able to provide upper
bounds which coincide with the lower ones in the relaxed regimes.

Now we are able to present the main theorem of this section:

Theorem 3.3. Assume the HBR model with |In| ↘ 0, σn > 0 holds true and let H0, Hn
1 be as in

(5). Let α ∈ (0,1) be a given significance level and

c∗
α,n = n|In| + n|In|�2

n

σ 2
0 κ4

n

− 2 log
(
α|In|

)+ 2

√
n|In|

(
1 + 2

�2
n

σ 2
0 κ4

n

)
log

(
1

α|In|
)

. (18)

Assume furthermore that �n, |In| and κn satisfy the following condition:

n|In|
(

κ4
n + 2

�2
n

σ 2
0

)
+ κ2

n�2
nn|In|
σ 2

0

≥ 2κ2
n log

(
1

|In|
)

+ 2κ2
n log

(
1

α

)
+ 2

√
n|In|

(
κ4
n + 2

�2
n

σ 2
0

)
log

(
1

α|In|
)

(19)

+ 2
(
1 + κ2

n

)√
n|In|

(
κ4
n + 2

(
1 + κ2

n

)�2
n

σ 2
0

)
log

(
1

α

)
.

Then the test (17) with the statistic given Tn defined in (16) and the threshold (18) satisfies

lim sup
n→∞

ᾱ(�n) ≤ α and lim sup
n→∞

β̄(�n) ≤ α.
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This theorem allows us to analyze the upper bounds obtained by the likelihood ratio test in the
regimes DMR, ER and DVR.

Remark 3.4. Suppose for a second that not only the width |In|, but also the location In of the
bump is known. In this case, the alternative becomes simple, and the analyzed likelihood ratio
test will be optimal as it is the Neyman–Pearson test. It can readily be seen from the proofs that
all log(|In|)-terms vanish in this situation, whereas the other expressions stay the same. Thus our
analysis will also determine the detection boundary in this case.

4. Lower bounds for the detection boundary

We will now determine lower bounds in the three different regimes by analyzing (15).

4.1. Dominant mean regime (DMR)

As mentioned before, we expect the same lower bounds as for the homogeneous situation here.

Theorem 4.1. Assume the HBR model with |In| ↘ 0 and let (εn) be any sequence such that
εn → 0, εn

√− log(|In|) → ∞.

1. If σ 2
n /�n → 0 and σ 2

n = o(εn) as n → ∞, then the sequence S with

√
n|In|�n � (

√
2σ0 − εn)

√
− log

(|In|
)

(20)

is undetectable.
2. If σ 2

n /�n → 0 where σ 2
n = σ 2(1 + o(εn)) and 1/�2

n = o(εn) as n → ∞, then the sequence
S with (20) is undetectable.

4.2. Equilibrium regime (ER)

Now let us consider the case that σ 2
n and �n are asymptotically of the same order. Consequently

κ2
n and �n will be of the same order. In this situation we expect a gain by the additional informa-

tion coming from σ 2
n > 0. In fact, the following theorem states that the constant in the detection

boundary changes, but the detection rate stays the same:

Theorem 4.2. Assume the HBR model with |In| ↘ 0 and let (εn) be any sequence such that
εn → 0, εn

√− log(|In|) → ∞.

1. Let σ 2
n = cσ0�n(1 + o(εn)), c > 0 and σ 2

n = o(εn) as n → ∞. Then the sequence S with

√
n|In|�n � (C − εn)

√
− log

(|In|
)
, C := √

2σ0

√
2

2 + c2
(21a)

as n → ∞ is undetectable.
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2. If σ 2
n = σ 2(1 + o(εn)) and �n = σ 2

cσ0
(1 + o(εn)) as n → ∞, then with κ := σ/σ0 the se-

quence S with

√
n|In|� (C − εn)

√
− log

(|In|
)
, C := 1√

κ2

2c2 (κ2 + c2) − 1
2 log(1 + κ2)

(21b)

as n → ∞ is undetectable.

In the first case, for c = 0, we have C = √
2σ0, which corresponds to no change in the variance

and hence reduces to the homogeneous model. But if c > 0, we always obtain C <
√

2σ0, more

precisely we improve by the multiplicative factor
√

2
2+c2 < 1.

As C = ( κ2

2c2 (κ2 + c2) − 1
2 log(1 + κ2))−1/2 is not a multiple of

√
2σ0, the gain in the second

case (21b) is not that obvious. But using log(1 + κ2) ≤ κ2 with equality if and only if κ = 0
implies that C ≤ √

2σ0 with equality if and only if κ = 0.
Finally, if σn → 0, then by a Taylor expansion it follows that

κ2

2c2

(
κ2 + c2)− 1

2
log

(
1 + κ2)= �2

n

2 + c2

4σ 2
0

+O
(
σ 6

n

)
, σn → 0,

and hence (21b) will reduce to (21a) in this situation.

4.3. Dominant variance regime (DVR)

Now let us consider the case that the jump in the mean �n vanishes faster than the jump in
the variance σ 2

n . In this situation we again expect a further gain by the additional information.
Somewhat surprisingly, we will even obtain a gain in the detection rate compared to the ER
in (21).

Theorem 4.3. Assume the HBR model with |In| ↘ 0 and let (εn) be any sequence such that
εn → 0, εn

√− log(|In|) → ∞.

1. If σ0�n = σ 2
n θn with sequences �n,σn, θn → 0 as n → ∞ where σ 2

n = o(εn) and θ2
n =

o(εn), then the sequence S with

√
n|In|�n � (2σ0 − εn)

√
− log

(|In|
)
θn (22a)

is undetectable.
2. If σn = σ(1 + o(εn)) and �2

n = o(εn) as n → ∞, then the sequence S with

√
n|In| � (C − εn)

√
− log

(|In|
)
, C := 1√

κ2

2 − 1
2 log(1 + κ2)

(22b)

is undetectable.
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First note that (22a) can be equivalently formulated as

√
n|In|κ2

n � (2 − εn)

√
− log

(|In|
)
, (23)

which is also meaningful if �n ≡ 0 and hence determines the detection boundary if only a jump
in the variance with homogeneous mean μ ≡ 0 occurs. We want to emphasize that the exponent
2 of κn in (23) seems natural, as testing the variance for a change is equivalent to testing the
mean of the transformed quantities (Yi − �n1In(i/n))2 (see [19], Section 2.8.7). Consequently,
the detection rate improves compared to the DMR (20), as we assume κ2

n/�n → ∞.
Note that we can also rewrite (21a) in terms of the κ2

n -rate, which gives the equivalent expres-
sion

√
n|In|κ2

n � (C − εn)

√
− log

(|In|
)
, C := 2

√
c2

2 + c2
. (24)

This makes the ER comparable with the DVR. As expected C ≤ 2, and thus we see a clear
improvement in the constant over (23). If c → ∞, then C tends to 2 which coincides with (23).

Again, if κ → 0 it can be seen by a Taylor expansion that (22b) reduces to (22a). Furthermore,
(22b) can be seen as the natural extension of (21b) as c → ∞.

4.4. Discussion

]
The condition σ 2

n = o(εn) seems to be unavoidable as soon as a Taylor expansion (cf. (49c))
is about to be used.

In several assumptions we require a convergence behavior of the form 1+o(εn). Note that this
cannot readily be replaced by 1 + o(1), because the detection boundary is well-defined only up
to a term of order εn. Thus if the convergence behavior is slower, at least the constants will need
to change depending on the specific convergence behavior.

5. Upper bounds for the detection boundary

After determining lower bounds for the detection boundary, we now aim for proving that those
are sharp in the following sense: There exists a level α test which detects with asymptotic type
II error ≤ α bump functions having asymptotic behavior of the form (20), (21) and (22) where
(C − εn) on the right-hand side is replaced by (C + εn).

5.1. Dominant mean regime (DMR)

Let us first consider the case σ 2
n /�n → 0 and σ 2

n = o(εn) as n → ∞. The following theorem
states that our lower bounds are optimal by exploiting the likelihood ratio test:
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Theorem 5.1. Assume the HBR model with |In| ↘ 0 and let H0, Hn
1 be defined by (5). Suppose

εn > 0 is any sequence such that εn

√− log(|In|) → ∞ as n → ∞ and α ∈ [0,1] is a given
significance level.

Furthermore, let:

1. either σ 2
n /�n → 0 and σ 2

n = o(εn),
2. or σ 2

n /�n → 0 and σ 2
n = σ 2(1 + o(εn))

as n → ∞. If √
n|In|�n � (

√
2σ0 + εn)

√
− log

(|In|
)
, (25)

then the test (17) with Tn defined in (16) and the threshold (18) satisfies

lim sup
n→∞

ᾱ(�n) ≤ α and lim sup
n→∞

β̄(�n) ≤ α.

5.2. Equilibrium regime (ER)

Theorem 5.2. Assume the HBR model with |In| ↘ 0 and let H0, Hn
1 be defined by (5). Suppose

εn > 0 is any sequence such that εn

√− log(|In|) → ∞ as n → ∞ and α ∈ [0,1] is a given
significance level.

Furthermore let σ 2
n = cσ0�n(1 + o(εn)) with c > 0 and σ 2

n = o(εn) as n → ∞ and

√
n|In|�n � (C + εn)

√
− log

(|In|
)
, C := √

2σ0

√
2

2 + c2
. (26)

Then the test (17) with Tn defined in (16) and the threshold (18) satisfies

lim sup
n→∞

ᾱ(�n) ≤ α and lim sup
n→∞

β̄(�n) ≤ α.

Comparing Theorems 4.2 and 5.2 one may note that our upper bounds so far do not handle
the case where κ2

n does not tend to 0. In fact we can also obtain an upper bound from (19) for

σ 2
n = σ 2(1 + o(εn)) and �n = σ 2

cσ0
(1 + o(εn)) as n → ∞, i.e.

√
n|In|� (C + εn)

√
− log

(|In|
)
, C :=

√
2κ2 + 4κ2

c2 + 2κ4

c2 + 1 + 2
c2 +

√
1 + 2

c2

κ2 + 2κ2

c2 + κ4

c2

. (27)

Obviously, this bound does not coincide with the lower bounds from Theorem 4.2. This is due
to the fact that our tail estimates for the χ2 distribution does not include any logarithmic terms,
but our lower bounds do. Thus it is impossible to obtain the same bounds using Lemma A.1 with
our technique.
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5.3. Dominant variance regime (DVR)

Theorem 5.3. Assume the HBR model with |In| ↘ 0 and let H0, Hn
1 be defined by (5). Suppose

εn > 0 is any sequence such that εn

√− log(|In|) → ∞ as n → ∞ and α ∈ [0,1] is a given
significance level.

Furthermore let σ0�n = σ 2
n θn with sequences �n,σn, θn → 0 as n → ∞ where σ 2

n = o(εn),
θn = o(εn) and

√
n|In|�n � (2σ0 + εn)

√
− log

(|In|
)
θn. (28)

Then the test (17) with Tn defined in (16) and the threshold (18) satisfies

lim sup
n→∞

ᾱ(�n) ≤ α and lim sup
n→∞

β̄(�n) ≤ α.

Note again that we can also obtain upper bounds in case that σn = σ(1 + o(εn)) and �2
n =

o(εn) as n → ∞, i.e.

√
n|In|� (C + εn)

√
− log

(|In|
)
, C :=

√
2κ2 + 1 + 1

κ2
, (29)

which again cannot coincide with the lower bounds from Theorem 4.3 for the same reason as in
the equilibrium regime.

5.4. Adaptation

In this section we will discuss an adaptive version of the likelihood ratio test for which �n

does not need to be known. In this case it is natural to replace �n by its empirical version
�̂n := (n|In|)−1∑

i: i
n
∈In

Yi . This leads to the marginal likelihood ratio

Ln(In, κn;Y) = (
κ2
n + 1

)− n|In|
2 exp

(
κ2
n

2σ 2
0 (κ2

n + 1)

∑
i: i

n
∈In

Y 2
i + n|In|

2σ 2
0 (κ2

n + 1)
�̂2

n

)

= (
κ2
n + 1

)− n|In|
2 exp

(
κ2
n

2σ 2
0 (κ2

n + 1)

∑
i: i

n
∈In

(Yi − �̂n)
2 + n|In|

2σ 2
0

�̂2
n

)

and to its corresponding test statistic

T κn,|In|,σ0
n (Y ) := sup

An∈An

(
κ2
n

σ 2
0 (κ2

n + 1)

∑
i: i

n
∈An

(Yi − �̂n)
2 + 1

σ 2
0 n|In|

( ∑
i: i

n
∈An

Yi

)2)
. (30)
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Again we will drop the dependence on the parameters subsequently and write T ∗
n := T

κn,|In|,σ0
n

for the statistic in (30) to ease the presentation. Let

�∗
n(Y ) :=

{
1, if T ∗

n (Y ) > c∗
α,n,

0, else
(31)

be the corresponding adaptive test where c∗
α,n ∈ R is determined by the test level α. An analysis

of the likelihood ratio test (31) with T ∗
n as in (30) can be carried out similarly to the non-adaptive

case. The main difference is that we now need Lemma A.1 with k = 2. Thus, the following result
can be proven:

Theorem 5.4. Assume the HBR model with |In| ↘ 0 and let H0, Hn
1 be defined by (5). Suppose

εn > 0 is any sequence such that εn

√− log(|In|) → ∞ as n → ∞ and α ∈ [0,1] is a given
significance level. Define the corresponding threshold by

c∗
n,α := κ2

n

κ2
n + 1

(
n|In| − 1

)+ 1 + 2

√[
κ4
n

(κ2
n + 1)2

(
n|In| − 1

)+ 1

]
log

(
1

α|In|
)

(32)

+ 2 log

(
1

α|In|
)

.

Now suppose that we are in one of the following three situations:

DMR: κ2
n/�n → 0 and 1/�n = o(εn) as n → ∞ and

√
n|In|�n � (

√
2σ0 + εn)

√
− log

(|In|
)
. (33)

ER: σ 2
n = cσ0�n(1 + o(εn)) with c > 0 and σ 2

n = o(εn) as n → ∞ and

√
n|In|�n � (C + εn)

√
− log

(|In|
)
, C := σ0

c + √
2 + 3c2

1 + c2
. (34)

DVR: σ0�n = σ 2
n θn with sequences �n,σn, θn → 0 as n → ∞ where σ 2

n = o(εn), θn = o(εn)

and furthermore √
n|In|�n �

(
(1 + √

3)σ0 + εn

)√− log
(|In|

)
θn. (35)

In any of these cases the test (31) with the statistic given T ∗
n defined in (30) and the threshold

(32) satisfies

lim sup
n→∞

ᾱ
(
�∗

n

)≤ α and lim sup
n→∞

β̄
(
�∗

n

)≤ α.

The above theorem states upper bounds which are adaptive to the height �n of the bump. It is
remarkable that the adaptive upper bound coincides with the non-adaptive one (cf. Theorem 5.1)
in the dominant mean regime, where in the two other regimes the rates coincide but we lose a
constant.
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6. Simulations

In this section we will examine the finite sample properties of the test discussed in Section 5
by means of a simulation study. We therefore implemented the non-adaptive likelihood ratio test
�n (cf. (17)) with the threshold c∗

α,n as in (18) as well as the adaptive likelihood ratio test �∗
n

(cf. (31)) with c∗
α,n as in (32). For these tests the levels ᾱ(�n), ᾱ(�∗

n) and powers 1 − β̄(�n),
1 − β̄(�∗

n) have been examined by 104 simulation runs for α = 0.05 with different parameters
σ0, n, κn, �n and |In|, respectively.

All derived detection boundaries involve the ratio n|In|/ log(1/|In|). For the simulations
below, we therefore fixed this ratio and then considered three situations, namely small sam-
ple size (|In| = 0.1, n = 829), medium sample size (|In| = 0.05, n = 2157) and large sam-
ple size (|In| = 0.025, n = 5312). In all three situations we computed the power for σ0 = 1,
κ2
n ∈ {0.01,0.02, . . . ,1.2} and �n ∈ {0.01,0.02, . . . ,0.7}. The corresponding results are shown

in Figure 5.

Power loss caused by adaptivity

By comparing the constants in Theorems 4.1–4.3 and Theorem 5.4 it can be seen (as discussed
in Section 2) that the adaptive test is (asymptotically) at least as powerful as non-adaptive test
if �n and κ2

n are multiplied by a factor of
√

2. By comparing subplots 5(b) and (a), (d) and (c)
and (f) and (e) respectively, it can be seen roughly that this also holds true in the simulations.
Interestingly, the shape of the function r from Figure 4 becomes also visible as a small “belly”
on the lower right in the adaptive large sample situation (subplot 5(f)), i.e. �n has initially to
increase with κn to reach the same power.

Improvement by heterogeneity

Let us consider an exemplary situation from the medium sample size case, i.e. n = 2157 and
|In| = 0.05. From subplot 5(c) it can be seen that the empirical power for �n = 0.2 increases
dramatically when we alter κn from κ2

n = 0 to κ2
n = 0.5. For κn = 0 we use the standard likelihood

ratio test for comparison, which is based on the statistic

T |In|
n (Y ) = sup

In∈An

1

σ 2
0

∑
i: i

n
∈In

Yi

and uses the exact quantiles of N (0, n|In|) and the union bound to compute the threshold c∗
α,n.

A comparison of the two situations is shown in Figure 6. Remarkably, the non-adaptive test at
level 5% is able to detect the bump when κ2

n = 0.5, but not when κ2
n = 0 for the depicted data.

Note that the empirical power of the test in the heterogeneous situation is 47.1%, whereas the
one of the test in the homogeneous situation is only 22.5% (note that this is larger than the power
depicted in Figure 6 for κ2

n = 0.01 due to the used exact quantiles for the homogeneous test).
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Figure 5. Power of non-adaptive (known mean �n) and adaptive (�n unknown) tests plotted for �n vs.
κ2
n in three different situations (small sample size |In| = 0.1, n = 829, medium sample size |In| = 0.05,

n = 2157, and large sample size |In| = 0.025, n = 5312), each simulated by 104 Monte Carlo experiments.
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Figure 6. Comparison of homogeneous and heterogeneous bump detection. We simulated data from the
model (1) once with λn ≡ 1 (homogeneous) and once with λn(x) =√

1 + 0.5 · 1In
(x) (heterogeneous) for

the same errors Zi , 1 ≤ i ≤ n. Here n = 2157, In = [0.5,0.55] and �n = 0.2. Even though the observations
look quite similar in both situations, the non-adaptive test (17) with level 5% is able to detect a bump in the
heterogeneous situation, but not in the homogeneous situation.

7. Conclusions and future work

Summary

We obtain asymptotic minimax testing rates for the problem of detecting a bump with unknown
location In in a heterogeneous Gaussian regression model, the HBR model. The lower bound
condition (15) guides us for a distinction into three possible regimes in the HBR model. It allows
to quantify the influence of the presence of an additional information about the change in the
variance on the detection rate. Both cases of known and unknown bump height �n are consid-
ered. In three possible regimes of the HBR model the exact constants of the asymptotic testing
risk are obtained for the case of known �n. In the case of adaptation to an unknown �n the
obtained rates remain the same as for the case of known �n. The optimal constant coincides in
the DMR with the case for known �n, else it is unknown (see Table 1 for details). The obtained
results are based on non-asymptotic deviation inequalities for the type I and type II errors of
testing. We would like to stress that the thresholds (18) and (32) of both tests are non-asymptotic
in the sense that they guarantee the non-asymptotic significance level α. This allows to apply the
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proposed tests even for finite samples. We also provide non-asymptotic upper detection bound
conditions (19) and (53). Lemma 3.1 on the lower bound estimate can be easily proven for the
case of a non-asymptotic type I error as well.

Open issues and extensions

Our results are incomplete concerning the situation if κn → κ > 0 in the equilibrium and the
dominant variance regime. We applied the same techniques to prove lower bounds in this case,
and we conjecture that these lower bounds are optimal, i.e. determine the detection boundary.
We were not able to prove coinciding upper bounds due to limitations in the used deviation
inequalities. To do so we would need deviation inequalities for χ2 random variables involving
the logarithmic terms from the moments, but such a result is beyond the scope of this paper.

Furthermore, we only investigated adaptation to �n, but it would also be interesting to see what
happens if the “baseline” variance σ0 or/and σn is unknown. By using the empirical variance on
In as an estimator, this would lead to a likelihood ratio test with a test statistic involving fourth
powers of Gaussian random variables. For the analysis good tail inequalities for such random
variables are on demand.

Additionally, one could also ask for adaptation w.r.t. |In| and corresponding lower bounds,
but this is far beyond the scope of this paper and requires further research. See, however, Frick,
Munk and Sieling [24] for the homogeneous case.

Another important open question is concerned with the situation of multiple jumps. In the
homogeneous case this has been addressed in [24], and upper bounds with constants 4 for a
bounded and 12 for an unbounded number of change points have been proven. Even though it
seems likely that these constants are optimal, no corresponding lower bounds have been proven
so far. In the present HBR model this is an open question as well.

As stressed in the Introduction we currently only deal with the HBR model, i.e. that a jump
in mean also enforces a jump in variance (κn > 0). But often it is more reasonable to consider
the situation that whenever a jump in mean happens, there can also be a jump in variance, but
not conversely. This would be modeled by letting κn ∈ [0,∞). For simplicity one could restrict
oneself to κn ∈ {0, κ1,n}. Still it is unclear what the detection boundary should be in this situation.
In fact it is not even clear if the additional uncertainty leads to a loss of information.

We believe that lower bounds can be constructed in the same way (and it is likely that they
stay the same), but the calculation of upper bounds seems quite more involved.

Appendix A: A chi-squared deviation inequality

For the analysis of the likelihood ratio test and the adaptive version for unknown �n in Sec-
tion 5.4 a specific deviation inequality for the weighted sum of two non-central χ2 distributed
random variables is required. Recall that X ∼ χ2

d (a2) with non-centrality parameter a2 and d

degrees of freedom, if

X =
d∑

j=1

(ξj + aj )
2 where ξj

i.i.d.∼ N (0,1) and a2 =
d∑

j=1

a2
j .
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In this case E[X] = d + a2 and V[X] = 2(d + 2a2).
In the following we consider the weighted sum of k non-central chi-squared variables Z =∑k
i=1 biXi , where bi ≥ 0 and Xi ∼ χ2

di
(a2

i ) are independent with di ∈ N, a2
i ≥ 0, i = 1, . . . , k.

Note that

E[Z] =
k∑

i=1

bi

(
di + a2

i

)
and V[Z] = 2

k∑
i=1

b2
i

(
di + 2a2

i

)
.

Lemma A.1. Let Z =∑k
i=1 biXi , where bi ≥ 0 and Xi ∼ χ2

di
(a2

i ) are independent with di ∈ N,

a2
i ≥ 0, i = 1, . . . , k. Let ‖b‖∞ = max1≤i≤k |bi |. Then the following deviation bounds hold true

for all x > 0:

P
(
Z ≤ E[Z] −√

2V[Z]x) ≤ exp(−x), (36a)

P
(
Z > E[Z] +√

2V[Z]x + 2‖b‖∞x
) ≤ exp(−x). (36b)

The above lemma is a reformulation of [35], Lemma 2.
In the following we will briefly discuss other deviation inequalities for χ2 distributed random

variables [7,8,10,27,42,49] and their connections to (36) from the perspective of our purpose. At
first we mention an inequality by Birgé [8], Lemma 8.1, which deals with k = 1 and coincides
with the above result in that case. Also related to (36) is Prop. 6 in Rohde and Dümbgen [42],

P

(
Z > E[Z] +

√
2V[Z]x + 4‖b‖2∞x2 + 2‖b‖∞x

)
≤ exp(−x), x > 0. (37)

This differs from our bound (36b) by the additional 4‖b‖2∞x2 term in the square root, revealing
(36b) as strictly sharper.

Other deviation results were proven for second order forms fw(s) = sT BT Bs + wT s, s ∈ R
d

of Gaussian vectors with B ∈ R
d×d,w ∈ R

d . To relate this with our situation, let d =∑k
i=1 di ,

choose any aj,i ∈R such that
∑di

j=1 a2
j,i = a2

i for all 1 ≤ i ≤ k and set

B := diag(
√

b1 · 1d1,
√

b2 · 1d2, . . . ,
√

bk · 1dk
),

w := (b1a1,1, b1a2,1, . . . , b1ad1,1, b2a1,2, . . . , b2ad2,2, b3a1,3, . . .)
T .

Here 1m = (1, . . . ,1) ∈ R
m. Let Tr(A) be the trace of a matrix A. Then Tr(BT B) = Tr(B2) =∑k

i=1 bidi , Tr(B4) =∑k
i=1 b2

i di , ‖B2‖∞ = ‖b‖∞ and wT w =∑k
i=1 b2

i a
2
i . This yields

fw(ζ ) = Z −
k∑

i=1

bia
2
i = Z −E[Z] + Tr

(
B2), ζ ∼N (0, Id) (38)

with Z as in Lemma A.1.
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A deviation inequality for the case w �= 0 can be found in the monograph by Ben Tal et al. [7],
Prop. 4.5.10, which provides in our setting the bound

P
(
fw(ζ ) > Tr

(
B2)+ 2

√∥∥B2
∥∥2

x2 + 2
(
Tr
(
B4
)+ wT w

)
x + 2

∥∥B2
∥∥x)≤ exp(−x) (39)

for all x > 0, where ‖B2‖ denotes the spectral norm of B2 given by the square root of the largest
eigenvalue. Taking (38) into account, this yields

P

(
Z > E[Z] + 2

√√√√2
k∑

i=1

b2
i

(
di + a2

i

)
x + ‖b‖2∞x2 + 2‖b‖∞x

)
≤ exp(−t), t > 0

for Z as in Lemma A.1. As 8
∑k

i=1 b2
i (di + a2

i ) > 2V[Z], this inequality is strictly weaker than
the Dümbgen–Rohde estimate (37) in the present setting.

For the case w = 0 (corresponding to centered χ2 random variables or ai = 0 for 1 ≤ i ≤ k in
our notation), Lemma A.1 reduces to the deviation inequality in Hsu et al. [27]:

P
(
f0(ζ ) > Tr

(
B2)+ 2

√
Tr
(
B4
)
x + 2

∥∥B2
∥∥∞x

)≤ exp(−x), x > 0. (40)

The situation w = 0 has also been considered by Spokoiny and Zhilova [49], where the following
inequality is proven:

P
(
f0(ζ ) > Tr

(
B2)+ max

{
2
√

2 Tr
(
B4
)
x,6

∥∥B2
∥∥∞x

})≤ exp(−x), x > 0. (41)

Comparing (40) with (41) gives that (41) is sharper for moderate deviations, i.e. if

(3 − 2
√

2)
Tr(B4)

‖B2‖2∞
≤ x ≤ 1

4

Tr(B4)

‖B2‖2∞
,

for large and small deviations it is weaker. We are actually interested in large deviations, and
furthermore the restriction ai = 0 makes (41) not applicable for our purpose.

Appendix B: Proofs of Section 3

Proof of Lemma 3.1. We follow [22],

1 − β̄(�n) − α ≤ inf
(μn,λn)∈Sn

Eμn,λn

[
�n(Y )

]− α ≤ inf
In∈An

Eμn=�n1In ,λ2
n=σ 2

0 +σ 2
n 1In

[
�n(Y )

]− α

≤ 1

ln

∑
In∈An

[
Eμn=�n1In ,λ2

n=σ 2
0 +σ 2

n 1In

[
�n(Y )

]− α
]

≤ 1

ln

∑
In∈An

Eμn=�n1In ,λ2
n=σ 2

0 +σ 2
n 1In

[
�n(Y ) −Eμ≡0

[
�n(Y )

]]+ o(1)
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= Eμ≡0,λ≡σ0

[(
1

ln

∑
In∈An

Ln(�n, In, κn,Y ) − 1

)
�n(Y )

]
+ o(1)

≤ Eμ≡0,λ≡σ0

[∣∣∣∣ 1

ln

∑
In∈An

Ln(�n, In, κn,Y ) − 1

∣∣∣∣
]

+ o(1),

as n → ∞. �

Proof of Theorem 3.2. By Lemma 3.1 we have to prove that the right-hand side of (14) tends
to 0 under the given conditions.

Suppose that

lim
n→∞Eμ≡0,λ≡σ0

[
1{|Ln(�n,In,κn,Y )−1|≥ξ ln}

∣∣Ln(�n, In, κn,Y ) − 1
∣∣]= 0 (42)

for any ξ > 0. Then the weak law of large numbers for triangular arrays (the condition (42) im-
plies the conditions imposed in [44], Example 2.2) is applicable (as |In| ↘ 0 and hence ln ↗ ∞),
i.e. m−1∑m

i=1 Zi → 1 in probability with m = ln and Zi = Ln(�n, [(i −1)|In|, i|In|], κn,Y ). As
Zi > 0 we have

E

[∣∣∣∣∣ 1

m

m∑
i=1

Zi

∣∣∣∣∣
]

= 1

m

m∑
i=1

E
[|Zi |

]= 1

m

m∑
i=1

E[Zi] = 1 for all m ∈ N,

which then implies m−1∑m
i=1 Zi → 1 in expectation, i.e. (14) tends to 0.

The only thing left to prove is that (42) holds true under the imposed conditions. To show this
we will use the moments of Ln = Ln(�n, In, κn,Y ) under the null hypothesis. Note that under

the null hypothesis μ ≡ 0 it holds Yi
i.i.d.∼ N (0, σ 2

0 ) and thus due to independence for η > 0

Eμ≡0,λ≡σ0

[
Lη

n

] = (
1 + κ2

n

)−η
n|In|

2 Eμ≡0,λ≡σ0

[
exp

(
η

∑
i: i

n
∈An,j

κ2
nY 2

i + 2Yi�n − �2
n

2(1 + κ2
n)σ 2

0

)]

= (
1 + κ2

n

)−η
n|In|

2 Eμ≡0,λ≡σ0

[ ∏
i: i

n
∈An,j

exp

(
η
κ2
nY 2

i + 2Yi�n − �2
n

2(1 + κ2
n)σ 2

0

)]

(43)

= (
1 + κ2

n

)−η
n|In|

2
∏

i: i
n
∈An,j

E

[
exp

(
η
κ2
nσ 2

0 X2 + 2σ0X�n − �2
n

2(1 + κ2
n)σ 2

0

)]

= (
1 + κ2

n

)−η
n|In|

2

(
E

[
exp

(
η
κ2
nσ 2

0 X2 + 2σ0X�n − �2
n

2(1 + κ2
n)σ 2

0

)])n|In|
,

where X ∼N (0,1). Thus we need to calculate the expectation of

exp

(
η
κ2
nσ 2

0 X2 + 2σ0X�n − �2
n

2(1 + κ2
n)σ 2

0

)
= exp

(
− η�2

n

2σ 2
0 κ2

n

)
· exp

(
ηs(X + λ)2), (44)
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where we abbreviated

s = κ2
n

2(1 + κ2
n)

, (45)

λ = �n

σ0κ2
n

. (46)

The right-hand side in (44) corresponds to the Laplace transform of a non-central χ2 distributed
random variable given by

E
[
exp

(
t (X + λ)2)]= exp( λ2t

1−2t
)√

1 − 2t
(47)

if λ ∈ R, t < 1/2, otherwise the Laplace transform does not exist. Note that t = ηs < 1/2 if and
only if η < 1 + 1/κ2

n . In this case the expectation is given by

E

[
exp

(
η
κ2
nσ 2

0 X2 + 2σ0X�n − �2
n

2(1 + κ2
n)σ 2

0

)]

= exp

(
− η�2

n

2σ 2
0 κ2

n

)
E
[
exp

(
ηs(X + λ)2)]

=
√

1 + κ2
n√

1 + (1 − η)κ2
n

exp

(
η(η − 1)�2

n

2σ 2
0 (1 + (1 − η)κ2

n)

)
.

By (43) this implies

Eμ≡0,λ≡σ0

[
Lη

n

] = (
1 + κ2

n

)−η
n|In|

2

( √
1 + κ2

n√
1 + (1 − η)κ2

n

exp

(
η(η − 1)�2

n

2σ 2
0 (1 + (1 − η)κ2

n)

))n|In|

= (1 + κ2
n)−(η−1)

n|In |
2

(1 + (1 − η)κ2
n)

n|In|
2

exp

(
η(η − 1)n|In|�2

n

2σ 2
0 (1 + (1 − η)κ2

n)

)
.

To prove (42) we now note for any n such that ln ≥ 1/ξ as Ln > 0 we have

Eμ≡0,λ≡σ0

[
1{|Ln−1|≥ξ ln}|Ln − 1|]

=
∫ ∞

ξ ln

Pμ≡0,λ≡σ0(Ln ≥ x + 1)dx + ξ lnPμ≡0,λ≡σ0(Ln ≥ ξ ln + 1)

≤
∫ ∞

ξ ln

Pμ≡0,λ≡σ0(Ln ≥ x)dx + ξ lnPμ≡0,λ≡σ0(Ln ≥ ξ ln)

= Eμ≡0,λ≡σ0[1{Ln≥ξ ln}Ln]
(48)

≤ Eμ≡0,λ≡σ0

[
(Ln)

1+δ
]
(ξ ln)

−δ
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= exp

(
n|In|�2

n

2σ 2
0

(1 + δ)δ

1 − δκ2
n

− δ
n|In|

2
log

(
1 + κ2

n

)

− n|In|
2

log
(
1 − δκ2

n

)+ δ log
(|In|

)− δ log(ξ)

)
.

Now, for (48) to tend to 0, the exponent must converge to −∞. Consequently, the weak law of
large numbers is applicable and finally (14) tends to 0 if (15) holds true. �

Proof of Theorem 3.3. Recall that the test statistic is given by

Tn(Y ) = sup
An∈An

S(An),

with the inner part

S(An) := 1

σ 2
0

∑
i: i

n
∈In

(
Yi + �n

κ2
n

)2

.

We readily see that S(An) obeys the following distributions

Under H0 : S(An) ∼ χ2
n|In|

(
n|In|�2

n

σ 2
0 κ4

n

)
,

Under Hn
1 : S(In) ∼ (

1 + κ2
n

)
χ2

n|In|
((

1 + κ2
n

)n|In|�2
n

σ 2
0 κ4

n

)
.

Here In in the alternative denotes the true position of the jump.
Using (36b) with k = 1, b1 = 1, d1 = n|In| and a2

1 = n|In|
σ 2

0 κ4
n

we find

PH0

(
sup

In∈An

S(In) > c∗
α,n

)
≤ 1

|In|PH0

(
S(In) > c∗

α,n

)

= 1

|In|P
(

χ2
n|In|

(
n|In|�2

n

σ 2
0 κ4

n

)
> c∗

α,n

)

≤ α.

For the type II error denote

yn,α = (
1 + κ2

n

)
n|In| +

(
1 + κ2

n

)2 n|In|�2
n

σ 2
0 κ4

n

− 2
(
1 + κ2

n

)√(
n|In| + 2

(
1 + κ2

n

)n|In|�2
n

σ 2
0 κ4

n

)
log

1

α
.
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Then we calculate using (36a) with k = 1, b1 = (1 + κ2
n), d1 = n|In| and a2 = (1 + κ2

n)
n|In|�2

n

σ 2
0 κ4

n

that

sup
Bn∈An

PBn

(
sup

An∈An

S(An) < yn,α

)
≤ sup

Bn∈An

inf
An∈An

PBn

(
S(An) < yn,α

)
≤ sup

Bn∈An

PBn

(
S(Bn) < yn,α

)

= P

((
1 + κ2

n

)
χ2

n|In|
((

1 + κ2
n

)n|In|�2
n

σ 2
0 κ4

n

)
< yn,α

)

≤ α.

Thus the claim is proven if yn,α ≥ c∗
n,α , i.e.

(
1 + κ2

n

)
n|In| +

(
1 + κ2

n

)2 n|In|�2
n

σ 2
0 κ4

n

− 2
(
1 + κ2

n

)√(
n|In| + 2

(
1 + κ2

n

)n|In|�2
n

σ 2
0 κ4

n

)
log

(
1

α

)

≥ n|In| + n|In|�2
n

σ 2
0 κ4

n

− 2 log
(
α|In|

)+ 2

√
n|In|

(
1 + 2

�2
n

σ 2
0 κ4

n

)
log

(
1

α|In|
)

.

But it can be easily seen by rearranging terms and multiplying by κ2
n that this is equivalent to

(19). �

Appendix C: Proofs of Section 4

If δnκ
2
n → 0 and / or κn → 0, Taylor’s formula can be used to simplify some of the terms in (15),

which we will use in the following:

(1 + δn)δn

1 − δnκ2
n

= δn + δ2
n

(
1 + κ2

n

)+ δ3
nκ

2
n

(
1 + κ2

n

)+ κ4
nδ4

n +O
(
κ6
nδ4

n

)
, (49a)

− log
(
1 − δnκ

2
n

) = δnκ
2
n + δ2

nκ
4
n

2
+O

(
κ6
nδ3

n

)
, (49b)

−δn log
(
1 + κ2

n

) = −δnκ
2
n + δnκ

4
n

2
+O

(
κ6
nδn

)
. (49c)

Proof of Theorem 4.2. Note that δn < 1
κ2
n

is satisfied for free here as the right-hand side diverges

or is constant and δn → 0. Furthermore in both cases the assumption n|In|�n = O(log(|In|)) is
satisfied as well. Thus we can apply Theorem 3.2.
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1. Under the assumptions of this part of the theorem, we may use (49a)–(49c) and insert
κ2
n = c�n/σ0(1 + o(εn)) to find that (15) is satisfied if

δn

[
n|In|�2

n

2σ 2
0

(
1 + c2

2

)
+ log

(|In|
)]+ δ2

n

n|In|�2
n

2σ 2
0

(
1 + c2

2

)
(50)

+ o
(
δnεnn|In|�2

n

)→ −∞.

Here we used that �n = o(εn). Then with δn := σ−1
0 εn and using (21a) we obtain

δn

[
n|In|�2

n

2σ 2
0

(
1 + c2

2

)
+ log

(|In|
)]

= σ−1
0 εn log

(|In|
)(

1 − (C − εn)
2C−2)

= 2σ−1
0 C−1ε2

n log
(|In|

)− σ−1
0 C−2ε3

n log
(|In|

)
and furthermore

δ2
n

n|In|�2
n

2σ 2
0

(
1 + c2

2

)
+ 2σ−1

0 C−1ε2
n log

(|In|
)

= σ−1
0 ε2

n log
(|In|

)(−σ−1
0 (C − εn)

2C−2 + 2C−1)
= (

σ−2
0

(√
2 + c2 − 1

)
ε2
n +O

(
ε3
n

))
log

(|In|
)
.

It can be readily seen that C1 := √
2 + c2 − 1 ≥ √

2 − 1 > 0 for all c ≥ 0. Thus under (21a) we
have

δn

[
n|In|�2

n

2σ 2
0

(
1 + c2

2

)
+ log

(|In|
)]+ δ2

n

n|In|�2
n

2σ 2
0

(
1 + c2

2

)

= (
C1ε

2
n + o

(
ε2
n

))
log

(|In|
)

→ −∞

as n → ∞. Thus (50) is satisfied.
2. Here only (49a) and (49b) can be applied. Thus (15) is satisfied if

δn

[
n|In|

(
�2

n

2σ 2
0

− 1

2
log

(
1 + κ2)+ κ2

2
+ o(εn)

)
+ log

(|In|
)]

(51)

+ δ2
nn|In|

[
�2

n

2σ 2
0

(
1 + κ2)+ κ4

4
+ o(εn)

]
+O

(
δ3
nn|In|

)→ −∞.
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Inserting the assumption �n = σ 2

cσ0
(1+o(εn)) = σ0κ

2

c
(1+o(εn)), (21b) and δn := ηεn with η > 0

to be chosen later we find

δn

[
n|In|

(
�2

n

2σ 2
0

− 1

2
log

(
1 + κ2)+ κ2

2
+ o(εn)

)
+ log

(|In|
)]

= ηεn log
(|In|

)[
1 − (C − εn)

2
(

κ2

2c2

(
κ2 + c2)− 1

2
log

(
1 + κ2))+ o(εn)

]

= 2ηC−1ε2
n log

(|In|
)(

1 + o(1)
)

and

δ2
nn|In|

[
�2

n

2σ 2
0

(
1 + κ2)+ κ4

4
+ o(εn)

]
+ 2ηC−1ε2

n log
(|In|

)(
1 + o(1)

)+O
(
δ3
nn|In|

)

= η2ε2
n log

(|In|
)(

2η−1C−1 − (C − εn)
2
(

κ4

2c2

(
1 + κ2)+ κ4

4

)
+ o(1)

)

= η2ε2
n log

(|In|
)(

2η−1C−1 − C2
(

κ4

2c2

(
1 + κ2)+ κ4

4

)
+ o(1)

)
→ −∞

if we choose e.g. η−1 = C3( κ4

2c2 (1 + κ2) + κ4

4 ). Thus (15) is satisfied. �

Proof of Theorem 4.1. 1. This follows directly from Theorem 4.2 with c = cn → 0.
2. Similarly as in the proof of Theorem 4.2 we have to show that (51) is satisfied.
Therefore note that with δn := ηεn with η > 0 to be chosen later we have

δn

[
n|In|

(
�2

n

2σ 2
0

− log
(
1 + κ2)+ κ2

2
+ o(εn)

)
+ log

(|In|
)]

= ηεn log
(|In|

)[
1 − (

√
2σ0 − εn)

2
(

1

2σ 2
0

+ 1

�2
n

(
κ2

2
− log

(
1 + κ2))+ o(εn)

)]

= √
2ησ−1

0 ε2
n log

(|In|
)(

1 + o(1)
)

by the assumption that 1/�2
n = o(εn). Furthermore

δ2
nn|In|

[
�2

n

2σ 2
0

(
1 + κ2)+ κ4

4

]
+ √

2ησ−1
0 ε2

n log
(|In|

)(
1 + o(1)

)
= η2ε2

n log
(|In|

)(√
2η−1σ−1

0 − (
1 + κ2)+ o(1)

)→ −∞

if we choose e.g. η = σ−1
0 (1 + κ2)−1. This proves the claim. �
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Proof of Theorem 4.3. Note again that δn < 1
κ2
n

is satisfied for free here as the right-hand

side diverges or is constant and δn → 0. Furthermore in both cases the assumption n|In|�n =
O(log(|In|)) is satisfied as well. Thus we can apply Theorem 3.2.

1. Under the assumptions of this part of the theorem, we may again use (49a)–(49c) to find
that (15) is satisfied if

δn

(
n|In|�2

n

2σ 2
0

+ n|In|κ
4
n

4
+ log

(|In|
))+ δ2

n

(
n|In|�2

n

2σ 2
0

+ n|In|κ
4
n

4

)
(52)

+ o
(
δnεn log

(|In|
))→ −∞.

Here we used that κ2
n = o(εn). By κ2

n = σ 2
n

σ 2
0

= �n

σ0

1
θn

, we have under (22a) with δn := σ−1
0 εn that

δn

(
n|In|�2

n

2σ 2
0

+ n|In|κ
4
n

4
+ log

(|In|
))

= σ−1
0 εn

(
n|In|�2

n

2σ 2
0

(
1 + 1

2θ2
n

)
+ log

(|In|
))

= σ−1
0 εn log

(|In|
)(

1 − (2σ0 − εn)
2

2σ 2
0

(
1 + θ2

n

))

= −2εn log
(|In|

)θ2
n

σ0
+
(

2

σ 2
0

ε2
n log

(|In|
)− 1

2σ 3
0

ε3
n log

(|In|
))(1

2
+ θ2

n

)

= ε2
n log

(|In|
)( 2

σ 2
0

+ o(1)

)
,

where we used θ2
n = o(εn). Furthermore

δ2
n

(
n|In|�2

n

2σ 2
0

+ n|In|κ
4
n

4

)
+ ε2

n log
(|In|

)( 2

σ 2
0

+ o(1)

)
+ o

(
δnεn log

(|In|
))

= σ−2
0 ε2

n log
(|In|

)(
2 − (2σ0 − εn)

2

2σ 2
0

(
1

2
+ θ2

n

)
+ o(1)

)

= ε2
n log

(|In|
)(

1 + o(1)
)

→ −∞.

Thus (52) and hence (15) is satisfied.
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2. Similarly as in the proof of Theorem 4.2 we have to show that (51) is satisfied. Therefore
note that with δn := ηεn where η > 0 will be chosen later we have

δn

[
n|In|

(
�2

n

2σ 2
0

− 1

2
log

(
1 + κ2)+ κ2

2
+ o(εn)

)
+ log

(|In|
)]

= ηεn log
(|In|

)[
1 + (C − εn)

2
(

1

2
log

(
1 + κ2)− κ2

2

)]
+ o

(
ε2
n log

(|In|
))

= 2C−1ηε2
n log

(|In|
)(

1 + o(1)
)

by the assumption that �2
n = o(εn). Furthermore

δ2
nn|In|

[
�2

n

2σ 2
0

+ κ4

4

]
+ 2C−1ηε2

n log
(|In|

)(
1 + o(1)

)

= η2ε2
n log

(|In|
)(

2C−1η−1 − (C − εn)
2 κ4

4
+ o(1)

)
→ −∞

if we choose e.g. η−1 = C3 κ4

4 , which proves the claim.
�

Appendix D: Proofs of Section 5

Proof of Theorem 5.2. Due to Theorem 3.3 we only have to show that under the assumptions
of the theorem the condition (19) is satisfied as n → ∞. The given situation is κ2

n = c�n/σ0(1 +
o(εn)). Inserting this into (19) we have to show that

(
c2 + 2

)n|In|�2
n

σ 2
0

+ c
�n

σ0

n|In|�2
n

σ 2
0

≥ 2c�n

σ0
log

(
1

α|In|
)

+ 2

√
n|In|�2

n

σ 2
0

(
2 + c2

)
log

(
1

α|In|
)

+ 2

(
1 + c�n

σ0

)√
n|In|�2

n

σ0

(
c2 + 2 + 2c�n

σ0

)
log

(
1

α

)

as n → ∞. Inserting (26) and dividing by − log(|In|) yields that

(
c2 + 2

) (C + εn)
2

σ 2
0

+ c
�n

σ0

(C + εn)
2

σ 2
0

≥ 2c�n

σ0

(
1 + logα

log(|In|)
)

+ 2

√
(C + εn)2

σ 2
0

(
2 + c2

) log(α) + log(|In|)
log(|In|)
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+ 2

(
1 + c�n

σ0

)√(
c2 + 2 + 2c�n

σ0

)
(C + εn)2

σ 2
0

log(α)

log(|In|)
is sufficient as n → ∞. The definition of C and some straightforward calculations using �n =
o(εn) and logα/ log(|In|) → 0 show that is enough to prove

4 + 4
√

c2 + 2

σ0
εn + c2 + 2

σ 2
0

ε2
n

> 4 + 2
√

2 + c2

σ0
εn + 8

√
log(α)

log(|In|) + 4
√

2 + c2

σ0
εn

√
log(α)

log(|In|) ,

which directly follows from εn

√− log(|In|) → ∞. �

Proof of Theorem 5.1. 1. This follows directly from Theorem 4.2 with c = cn → 0.
2. Inserting the assumptions and dropping all lower-order contributions, we find with κ :=

σ/σ0 that for (19) the following is sufficient as n → ∞:

(
κ2 + 2

)n|In|�2
n

σ 2
0

≥ 2κ2 log

(
1

|In|
)

+ 2
√

2

√
n|In|�n

σ0

√
log

(
1

|In|
)

+ 2
√

2(1 + κ)3/2
√

n|In|�n

σ0

√
log

(
1

α

)
.

Inserting (25) and dividing by − log(|In|), we see that it is enough to prove

(
κ2 + 2

) (√2σ0 + εn)
2

σ 2
0

≥ 2κ2 + 2
√

2
(
√

2σ0 + εn)

σ0
+ 2

√
2(1 + κ)3/2 (

√
2σ0 + εn)

σ0

√
log( 1

α
)

log(|In|) .

But this condition is true due to our requirements on εn. �

Proof of Theorem 5.3. Due to Theorem 3.3 we only have to show that under the assumptions of
the theorem the condition (19) is satisfied as n → ∞. The given situation is κ2

n = �n/(σ0θn)(1+
o(εn)). Inserting this into (19) we have to show that(

2 + 1

θ2
n

)
n|In|�2

n

σ 2
0

+ �n

σ0θn

n|In|�2
n

σ 2
0

≥ 2�n

σ0θn

log

(
1

|In|
)

+ 2

√
n|In|�2

n

σ 2
0

(
2 + 1

θ2
n

)
log

(
1

α|In|
)

+ 2

(
1 + �n

σ0θn

)√
n|In|�2

n

σ0

(
2 + 1

θ2
n

+ 2�n

σ0θn

)
log

(
1

α

)
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as n → ∞. Inserting (28) and dividing by − log(|In|) yields that

(2σ0 + εn)
2

σ 2
0

(
2θ2

n + 1
)+ (2σ0 + εn)

2

σ 2
0

θn�n

σ0

≥ 2

√
(2σ0 + εn)2

σ 2
0

(
2θ2

n + 1
) log(α) + log(|In|)

log(|In|)

+ 2

√
(2σ0 + εn)2

σ 2
0

(
2θ2

n + 1
) log(α)

log(|In|)

is sufficient as n → ∞ where we used that �n/θn ∼ σ 2
n = o(εn). Some straightforward calcula-

tions and skipping all terms of order o(εn) shows that is enough to prove

4 + 4

σ0
εn > 4

√
log(α) + log(|In|)

log(|In|) + 2εn

σ0
4

√
log(α) + log(|In|)

log(|In|)

+ 4

√
log(α)

log(|In|) + 2εn

σ0

√
log(α)

log(|In|) .

Employing
√

a + b ≤ √
a + √

b we find the sufficient condition

2

σ0
εn > 8

√
log(α)

log(|In|)

as n → ∞, which directly follows from εn

√− log(|In|) → ∞. �

Proof of Theorem 5.4. For An ∈An let us abbreviate

ȲAn := (
n|In|

)−1 ∑
i: i

n
∈An

Yi, S2
An

:=
∑

i: i
n
∈An

(Yi − ȲAn)
2.

In our model where the Yi ’s are independent Gaussian, it follows from Cochran’s theorem that
S2

An
obeys a χ2

n|An|−1 distribution and ȲAn an independent χ2
1 distribution. Now recall that the

test statistic is given by

T ∗
n (Y ) = sup

An∈An

S(An),

with the inner part

S(An) := κ2
nn|In|

σ 2
0 (κ2

n + 1)
S2

An
+ n|In|

σ 2
0

(ȲAn)
2.



Bump detection in heterogeneous Gaussian regression 1301

Using the above results, we readily see that S(An) obeys the following distributions

Under H0 : S(An) ∼ κ2
n

κ2
n + 1

χ2
n|In|−1(0) + χ2

1 (0),

Under Hn
1 : S(In) ∼ κ2

nχ2
n|In|−1(0) + (

κ2
n + 1

)
χ2

1

(
n|In|�2

n

σ 2
0 (1 + κ2

n)

)
.

Here In in the alternative denotes the true position of the jump.
For simplicity denote by χ2

j a chi-squared random variable with j degrees of freedom and

by ξ a standard normal variable independent of χ2
j . Now applying Lemma (36b) with k = 2,

b1 = κ2
n

κ2
n+1

, d1 = n|In| − 1, b2 = 1, d2 = 1 and a1 = a2 = 0 we get

PH0

(
sup

An∈An

S(An) > c∗
α,n

)
≤ 1

|In|PH0

(
S(An) > c∗

α,n

)

= 1

|In|P
(

κ2
n

κ2
n + 1

χ2
n|In|−1 + ξ2 > c∗

α,n

)
≤ α.

Let us turn to the type II error. We will apply (36a) with k = 2, b1 = κ2
n , d1 = n|In| − 1, b2 =

κ2
n + 1, d2 = 1, a1 = 0 and a2

2 = n|In|�2
n

σ 2
0 (1+κ2

n)
. Denote

yn,α = κ2
nn|In| + 1 + �2

nn|In|
σ 2

0

− 2

√[
κ4
nn|In| + 2κ2

n + 1 + 2(1 + κ2
n)�2

nn|In|
σ 2

0

]
log

1

α
.

We have

sup
Bn∈An

PBn

(
sup

An∈An

S(An) < yn,α

)

≤ sup
Bn∈An

inf
An∈An

PBn

(
S(An) < yn,α

)
≤ sup

Bn∈An

PBn

(
S(Bn) < yn,α

)

= P

(
κ2
nχ2

n|In|−1(0) + (
1 + κ2

n

)(
ξ +

√
�2

nn|In|
σ 2

0 (κ2
n + 1)

)2

< yn,α

)

= P

(
κ2
n

κ2
n + 1

χ2
n|In|−1(0) +

(
ξ +

√
�2

nn|In|
σ 2

0 (κ2
n + 1)

)2

<
yn,α

κ2
n + 1

)
≤ α.
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Thus to find the detection boundary conditions we need to investigate the inequality yn,α ≥ c∗
n,α :

κ2
nn|In| + 1 + �2

nn|In|
σ 2

0

− 2

√[
κ4
nn|In| + 2κ2

n + 1 + 2(1 + κ2
n)�2

nn|In|
σ 2

0

]
log

1

α

≥ κ2
nn|In| + 1

κ2
n + 1

+ 2

√
κ4
nn|In| + 2κ2

n + 1

(κ2
n + 1)2

log

(
1

α|In|
)

− 2 log
(
α|In|

)
.

First of all we can rewrite this inequality as follows,

κ4
nn|In|
κ2
n + 1

+ κ2
n

κ2
n + 1

+ �2
nn|In|
σ 2

0

− 2

√[
κ4
nn|In| + 2κ2

n + 1 + 2(1 + κ2
n)�2

nn|In|
σ 2

0

]
log

1

α
(53)

≥ 2

√
κ4
nn|In| + 2κ2

n + 1

(κ2
n + 1)2

log

(
1

α|In|
)

− 2 log
(
α|In|

)
.

Now we analyze it in the three regimes as usual:

• Dominant mean regime: Inserting κ2
n/�n = o(εn) and ignoring all o(εn)-terms in the fol-

lowing, we find that it is sufficient to prove

�2
nn|In|
σ 2

0

≥ 2 log

(
1

|In|
)

+ 2
√

2

√
�2

nn|In|
σ 2

0

√
log

(
1

α

)
.

Inserting (33) and dividing by − log(|In|) we find that the above is the case if

2
√

2σ−1
0 εn ≥ 4

√
log(α)

log(|In|)

which is true by assumption.
• Equilibrium regime: Inserting κ2

n/�n = o(εn) and ignoring all o(εn)-terms in the following,
we find that it is sufficient to prove

�2
nn|In|
σ 2

0

(
1 + c2)

≥ 2 log

(
1

|In|
)

+ 2

√(
c2 + 2

)�2
nn|In|
σ 2

0

√
log

(
1

α

)
+ 2c

√
�2

nn|In|
σ 2

0

√
log

(
1

α|In|
)

.
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Inserting (34) and dividing by − log(|In|) we find that the above is the case if

1 + c2

σ 2
0

C2 + 2
1 + c2

σ 2
0

Cεn + (1 + c2)ε2
n

σ 2
0

≥ 2 + 2C
c

σ0
+ 2c

σ0
εn + 2(C + εn)

σ0

(√
c2 + 2 + c

)√ log(α)

log(|In|)
which is true by the definition of C and our assumption on εn.

• Dominant variance regime: Inserting κ2
n = �n/(σ0θn) and ignoring all o(εn)-terms in the

following, we find that it is sufficient to prove

�2
nn|In|
σ 2

0

(
1 + 1

θ2
n

)

≥ 2 log

(
1

|In|
)

+ 2

√(
2 + 1

θ2
n

)
�2

nn|In|
σ 2

0

√
log

(
1

α

)
+ 2

θn

√
�2

nn|In|
σ 2

0

√
log

(
1

α|In|
)

.

Let C = 1 + √
3. Inserting (35), dividing by − log(|In|), and using θ2

n = o(εn) we find that
the above holds true if

C2 + 2
C

σ 2
0

εn ≥ 2 + 2C + (
2C + 2C2)√ log(α)

log(|In|)
which is true by the definition of C and our assumption on εn. �
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