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Consider finite sequences X[1,n] = X1, . . . ,Xn and Y[1,n] = Y1, . . . , Yn of length n, consisting of i.i.d.
samples of random letters from a finite alphabet, and let S and T be chosen i.i.d. randomly from the unit
ball in the space of symmetric scoring functions over this alphabet augmented by a gap symbol. We prove
a probabilistic upper bound of linear order in (ln(n))1/4n3/4 for the deviation of the score relative to T of
optimal alignments with gaps of X[1,n] and Y[1,n] relative to S. It remains an open problem to prove a lower
bound. Our result contributes to the understanding of the microstructure of optimal alignments relative to
one given scoring function, extending a theory begun in (J. Stat. Phys. 153 (2013) 512–529).
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1. Introduction and main results

The subject of this paper is concerned with the asymptotics of optimal sequence alignments
for random sequences whose lengths tend to infinity. An important problem that occurs both in
bioinformatics and in natural language processing is to decide on the homology of two (or more)
finite sequences consisting of symbols from a fixed finite alphabet. A highly successful approach
is to fix a scoring function and maximise the total score over the set of all alignments with gaps
of the two sequences (for a precise definition, see the text below). Despite the combinatorially
many alignments to be considered, the total score can be maximised in polynomial time by use
of a dynamic programming recursion [7]. Using this approach, two sequences can be considered
as homologous if the total score of their optimal alignment relative to a salient scoring function
significantly exceeds the typical total score of an optimal alignment of two random sequences of
the same length. Rigorous statistical tests on this basis require an understanding of relevant null
models, thus giving the initial motivation for the theoretical study of optimal sequence alignments
of random sequences and their total scores [8].
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The purpose of this paper is to contribute to this theory by studying the following ques-
tion: given two symmetric scoring functions S and T , and given two i.i.d. random sequences
of length n, does the rescaled total score (the score divided by n) relative to T of an optimal
alignment of the two sequences relative to S converge as n tends to infinity, and if the answer
to this question is ‘yes’, can we bound the convergence rate? We will answer both questions in
the affirmative. Before we go into the technical details of our analysis, we introduce the neces-
sary notation and background and give further details on the main contributions of this paper in
relation to the existing literature.

1.1. Alignments with gaps

Let n ∈N and write [1, n] := {1, . . . , n}. Consider two sequences of length n, x[1,n] := (xi)i∈[1,n]
and y[1,n] := (yj )j∈[1,n] consisting of letters from a finite alphabet A. Let us augment this al-
phabet by a symbol G for a gap and write A∗ = A ∪ {G}. We define an alignment (with gaps)
of x[1,n] and y[1,n] as a pair of increasing subsequences (i�)�∈[1,k] and (j�)�∈[1,k] of [1, n]. For
� ∈ [1, k], each letter xi� of the first sequence is then interpreted as aligned with the letter yj�

from
the second sequence, while all remaining letters of either sequence are thought of as aligned with
gaps.

For example, the pair of increasing subsequences ({1,5,6,8}, {2,4,5,6}) of [1,8] correspond
to the alignment

G x1 x2 x3 x4 G x5 x6 x7 x8 G G

y1 y2 G G G y3 y4 y5 G y6 y7 y8

Note that the same subsequences also correspond to the alignment

G x1 x2 G x3 x4 x5 x6 x7 x8 G G

y1 y2 G y3 G G y4 y5 G y6 y7 y8

and other arrangements obtained by permuting the order of consecutive letters aligned with gaps,
so that the pair ({1,5,6,8}, {2,4,5,6}) represent in fact an equivalence class of alignments. By
slight abuse of language, we will speak about an alignment when in fact referring to an entire
equivalence class. In order to refer to the set of alignments of two sequences of length n, we
introduce the following notation,

�n,k := {(
(i�)�∈[1,k], (j�)�∈[1,k]

) : 1 ≤ i1 < · · · < ik ≤ n,1 ≤ j1 < · · · < jk ≤ n
} (

k ∈ [0, n]),
�n :=

n⋃
k=0

�n,k.

1.2. Scoring functions and optimal alignments

A function R : A∗ ×A∗ → R will be called a symmetric scoring function if R(α,β) = R(β,α)

for all α,β ∈ A∗, and R(G,G) = 0. Given a symmetric scoring function R and two finite se-
quences x[1,n] and y[1,n] consisting of letters from the alphabet A, we define the total score of
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x[1,n] and y[1,n] under an alignment ν = ((i�), (j�)) ∈ �n,k as the sum of the scores of individu-
ally aligned letter pairs,

Rν(x[1,n], y[1,n]) :=
k∑

�=1

R(xi� , yj�
) +

∑
i∈[1,n]\{i�:�∈[1,k]}

R(xi,G) +
∑

j∈[1,n]\{j�:�∈[1,k]}
R(G,yj ).

Note that since our definition of alignments with gaps disallows the situation where a gap is
aligned with a gap, the value of R(G,G) should be inconsequential. Our rationale for requiring
R(G,G) = 0 is to simplify some of our formulas, notably the ones defined in Section 1.6.

The optimal alignment score of x[1,n] and y[1,n] relative to R is defined by

R∗(x[1,n], y[1,n]) := max
ν∈�n

Rν(x[1,n], y[1,n]),

while the set of optimal alignments of x[1,n] and y[1,n] relative to R is the set of alignments

ν∗
R(x[1,n], y[1,n]) := {

ν ∈ �n : Rν(x[1,n], y[1,n]) = R∗(x[1,n], y[1,n])
}

on which the maximum is achieved. Note that in general, ν∗
R is not a singleton.

For a scoring function R, we define

|R|∞ = max
(α,β)

∣∣R(α,β)
∣∣.

With this notation observe the following general bound on the change of the optimal alignment
for two given scoring functions R1 and R2,∣∣R∗

1(x[1,n], y[1,n]) − R∗
2(x[1,n], y[1,n])

∣∣ ≤ 2n|R1 − R2|∞. (1.1)

1.3. Random sequences

Let us now consider two sequences (Xi)i∈N : � → AN and (Yj )j∈N : � → AN, defined on some
appropriate probability space (�,F ,P) so as to consist of i.i.d. random letters Xi (respectively,
Yi ) drawn from a fixed probability distribution over a finite alphabet A. Let us again augment
this alphabet by a symbol G for a gap and write A∗ = A ∪ {G}. We write X[1,n] = (Xi)

n
i=1 for

the finite sequence consisting of the first n terms of (Xi)i∈N and use a similar notation for the
second sequence.

Let a symmetric scoring function R be given on A∗ ×A∗. The following is then a well-defined
random variable for any n ∈N

Ln,R : � → R,

ω �→ R∗(X[1,n](ω),Y[1,n](ω)
)
,

and we write

ν∗
n,R : � → P (�n),

ω �→ ν∗
R

(
X[1,n](ω),Y[1,n](ω)

)
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for the random set of optimal alignments of X[1,n] and Y[1,n] relative to R.
It was shown in [2] that

E[Ln,R]
n

n→∞−→ λR, (1.2)

where λR is some deterministic constant that depends only on R. Lemmas 2.1 and 2.2 contain a
proof and some quantitative convergence bound for the convergence of Ln,R/n and E[Ln,R]/n

to λR .
We close this section observing that for two given scoring functions, R1 and R2,

|Ln,R1 − Ln,R2 | ≤ 2n|R1 − R2|∞ and |λR1 − λR2 | ≤ 2|R1 − R2|∞ (1.3)

which follow directly from (1.1) and (1.2).

1.4. The problem setting of this paper

Let us now consider two different symmetric scoring functions S and T and investigate the total
score relative to T of an optimal alignment relative to S. Using the random sequences introduced
above, we define the following random subsets of R2,

SCORESn
S,T :=

{(
Sν(X[1,n], Y[1,n])

n
,
Tν(X[1,n], Y[1,n])

n

)
: ν ∈ �n

}
,

SETn
S,T := cl

(
conv

(
SCORESn

S,T

))
,

where cl(·) denotes the topological closure in the canonical topology of R2 and conv(·) denotes
the convex hull.

Next, consider a symmetric scoring function R = aS + bT given as a linear combination of S

and T . It follows from our definition of SETn
S,T that

Ln,R

n
= max

(x,y)∈SETn
S,T

f(a,b)(x, y), (1.4)

where f(a,b) : (x, y) �→ ax + by is the linear form on R
2 defined by the weights a, b. Combining

equations (1.2) and (1.4), it follows that

max
(x,y)∈SETn

S,T

f(a,b)(x, y)
n→∞−→ λaS+bT , a.s. (1.5)

Since any linear functional f ∈ (R2)∗, can be written in the form f (x, y) = ax + by, it follows
that λf = λa,b is well defined for any linear functional f .

Using (1.5) for the case of a, b rational numbers combined with a density argument and the
estimate from (1.3), we can conclude that almost surely,

max
(x,y)∈SETn

S,T

f (x, y)
n→∞−→ ξf (1.6)
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for any linear functional f ∈ (R2)∗.
We observe that, if a sequence of random compact convex sets A1,A2, . . . ⊂R

2 has the prop-
erty that for any linear functional f ∈ (R2)∗,

max
(x,y)∈An

f (x, y)
n→∞−→ ξf , a.s., (1.7)

where ξf ∈ R is a deterministic constant that depends only on f , then the sequence (An)n∈N con-
verges in Hausdorff distance to a convex compact set A. We will prove this claim in Lemma 2.4.
For compact sets A,B ⊂R

2, the Hausdorff distance is defined as

dH (A,B) = max
{

sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)
}
, (1.8)

where d(x, y) = ‖x − y‖2 denotes the Euclidean distance.
Using (1.6) and the sequence of sets An = (SETn

S,T )n∈N in (1.7), we conclude from (1.8) that

dH

(
SETn

S,T ,SETS,T

) n→∞−→ 0, a.s. (1.9)

One of our goals is to refine this analysis and quantify an upper-bound on the rate of convergence.
An upper bound on the convergence was given in [4] for scoring functions that are not necessarily
symmetric. In this paper, we give a much simpler proof that is made possible by exploiting the
symmetry of scoring functions. Since most scoring functions used in applications are symmetric,
the simplification is of interest.

Another goal is to study how much the total score relative to T varies when two random strings
are aligned optimally relative to S. Note that we have

Ln,S = max
(x,y)∈SETn

S,T

x.

In general, we should not expect that ν∗
n,S to be a singleton. In other words, there may exist

multiple optimal alignments of X[1,n] and Y[1,n] relative to S. Therefore, we need to consider the
following quantities,

max
π∈ν∗

n,S

Tπ (X[1,n], Y[1,n])
n

= max

{
y : (x, y) ∈ SETn

S,T , x = Ln,S

n

}
, (1.10)

min
π∈ν∗

n,S

Tπ (X[1,n], Y[1,n])
n

= min

{
y : (x, y) ∈ SETn

S,T , x = Ln,S

n

}
, (1.11)

Lemma 2.5 will establish that if max(x,y)∈SETS,T
x has a unique maximizer (x0, y0), then the

upper and lower bounds (1.10), (1.11) both converge to y0 almost surely.



976 R. Hauser, H. Matzinger and I. Popescu

1.5. Relation to percolation and empirical distribution of aligned letter
pairs

The current paper is a continuation of the paper [4] on the empirical distribution of letter pairs
in optimal alignment of random sequences. To explain what this is about, let us start with an
example.

Example. Consider the following alignment with gaps:

A T T A T

A T A T A A

Take here x = AT T AT and y = AT AT AA to be the two strings of letters and denote the above
alignment by π . The frequency of the aligned letters in the alignment π is given by

�pπ(x, y) = (pAA,pAT ,pAG,pT A,pT T ,pT G,pGA,pGT ) =
(

1

3
,0,0,

1

6
,

1

3
,0,

1

6
,0

)
.

For instance, two columns are A aligned with A and thus the frequency of the pair (A,A) is
given by pAA = 2/6 = 1/3. In the same fashion, two columns are T aligned with T and this
corresponds to pT T = 2/6 = 1/3. Furthermore, there is one gap aligned with A and a T aligned
with an A and this completely describe the vector �pπ(x, y).

The vector �pπ(x, y) is called the empirical distribution of the aligned letter pairs of the align-
ment π . One of the basic questions is how does it behave when we have long random strings?

In [4], it is proven that the empirical distribution of the aligned letter pairs of an optimal
alignment converges to a limit when the length of the strings goes to infinity and the letters are
taken to be independent and identically distributed. However, one serious restriction is that the
scoring function needs to be chosen at random and thus the result in [4] holds only for almost all
scoring functions rather than for all. A further technical detail is that in this paper and in [4] the
empirical distribution of the aligned letter pairs is taken by rescaling by n and not by the number
of columns. This is of minor importance and we are going to ignore it.

Assume now that X1,X2, . . . and Y1, Y2, . . . be i.i.d. sequences of letters from a finite alphabet
which is fixed. Let πn denote any optimal alignment of X1, . . . ,Xn with Y1, . . . , Yn according
to the scoring function S. The result in [4], states that for almost all scoring function S, the
empirical distribution of the aligned letter pairs

�pπn(X1, . . . ,Xn,Y1, . . . , Yn)

converges almost surely as n goes to infinity. Notice that we can choose πn in any way we want
among the alignments of X1, . . . ,Xn with Y1, . . . , Yn which are optimal according to S.

The practical importance of this comes from the fact that in many cases an optimal alignment
score can be used to determine if two DNA strings are related or not. Nevertheless, there are
also many real life situations where such a one dimensional score may not conclude about the
similarity of the strings. Typically, in those hard-to-discriminate-cases, the optimal alignments
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“look completely different” depending on whether the strings are related or not. This suggests
that a different approach should be used. For instance, at first, compute the (an) optimal alignment
with a given scoring function. Then, use some statistic related to the empirical distribution of the
aligned letter pairs of an optimal alignment. (For example, how many same letters are aligned
with each other. We can also consider Meta-letters, which represents words of a finite given
length from our alphabet A. The same analysis can be carried out for the empirical distribution
of those Meta-letters. Hence, we can extend our analysis to the joint distribution of subsequently
aligned letter pairs and even arbitrary strings.)

If there is a unique limiting distribution for the aligned letter pairs by optimal alignments,
things become much easier for testing. When the limiting distribution of optimal alignments is
unique, then when the strings are long enough, all empirical distributions along different optimal
paths should be similar, thus, we can just consider for a statistical test, one optimal alignment
with its empirical distribution of aligned letter pairs. If there are several coexisting possible limits
of optimal alignments, we never know all the different empirical distributions and thus it not
possible to construct testings for similarity of the sequences as for the unique limiting case.

In preliminary testing [6], there is very encouraging evidence for cases where relatedness is
difficult to recognize with a single scoring function. Our approach from [6] without fine tun-
ing and optimization, already works at least as well as BLAST (a dedicated software for DNA
analysis).

In [4], we establish only a result on the convergence to the empirical letter pair distribution
but not on the speed of that convergence. In the present work, we also have an estimate on the
convergence speed.

In the current paper, we do not need the whole empirical distribution, only a one dimensional
functional of it. (Since with a finite number of linear functionals we can reconstitute the whole
empirical distribution of the aligned letter pairs.)

As an example of such a linear functional, take T to be defined by:

T (pAA,pAT , . . . ,pG,T ) := pAA.

So, then T is simply for an alignment the proportion of columns aligning an A with an A.
Let again πn be an alignment of the strings X1, . . . ,Xn and Y1, . . . , Yn which is optimal ac-

cording to S (chosen arbitrarily from the many possible ones). The main result of the current
paper, namely Theorems 1.1 and 1.2, imply that

T
( �pπn(X1, . . . ,Xn,Y1, . . . , Yn)

)
converges at a rate

constant ×
(

ln(n)

n

)1/4

(1.12)

again, provided that we chose the scoring functions S and T at random. The rate (1.12), holds
then for almost all S and T .

The difficulty in analyzing the empirical distribution function of optimal alignments, resides in
the fact that concentration inequalities are not available. Whilst Azuma–Hoeffding applies to the
optimal alignment score, it does not apriori apply to the empirical aligned letter pair distribution
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of an optimal alignment. The reason is the following. When you change one letter only in the
strings X or Y , then the score according to S changes by at most |S|. Hence, when the strings X

and Y are i.i.d. we can apply Azuma–Hoeffding to the optimal alignment score. This argument
does not work for the empirical letter pair distribution of an optimal alignment. Indeed, a one-
letter-change only could potentially lead to an entirely new optimal alignment. This in turn,
would result in a massive change for the empirical letter pair distribution. And since we assume
long term correlation in optimal alignments, we believe that a one letter change will often result
in an entirely different optimal alignment.

Optimal alignments of random strings can be reformulated as a Last Passage Percolation prob-
lem with correlated weights. In First Passage Percolation (FPP) and Last Passage Percolation
(LPP), the question of the empirical weight-distribution along an optimal path, is known to be
difficult. For example, one long standing open problem [5], is the question of how finding how
many vertical and horizontal vertices are in an optimal path from say (0,0) to (n,n). Formulated
differently, we consider FPP on the Z

2 grid. The weights are i.i.d. and we ask if the proportion
of vertical to horizontal edges in any shortest path from (0,0) to (n,n) converges as n → ∞.

We believe that in certain cases, this percolation problem can be solved with the techniques of
the current paper. Think for example of a situation where the distribution of the weights is differ-
ent for horizontal and for vertical edges (for the FPP on Z

2). Assume also that these distributions
have finite support which are disjoint. Then we could count along a shortest path the proportion
of weights of each type encountered. This would yield the empirical distribution of the weights
along an optimal path. The same result as in this article applies to this scenario provided we
chose the weights at random.

In FPP, an open problem is to determine in which directions the asymptotically rescaled wet
zone is strictly convex. This is one of the hardest problems. In this paper, we bypass this difficulty
by the fact that we choose the direction at random with uniform probability. Consequently, here,
as well as in [4], we get strict convexity at the boundary for almost every point. What we do then
is to choose the scoring functions at random and then automatically get a.s. the desired strict
convexity at the places where these scoring functions reach their optimal values on the convex
sets involved. This convex set is not exactly the same as the rescaled wet zone, but the idea is
very similar.

Finally, we should mention that as in the case with the wet-zone proving, for a specific scoring
function that there is strict convexity in the place where the scoring function reaches its maximum
on the convex set is very difficult. But, then again, if the scoring function is chosen at random,
the result will hold. And we can consider, the scoring functions used by biologists to be chosen at
random so that our result holds. Let us explain why. The scoring function is the logarithm of an
evolution probability. Nature does not tend to give to two different letter pairs exactly the same
alignment score. Hence, you can think of the scoring function used by biologist as a point where
a little random disturbance has been introduced. That random disturbance would then guarantee
the a.s. strict convexity which we need for our result.

Finally, let us mention a counter example. Recall that the Longest Common Subsequence
(LCS) of two strings x and y is a subsequence of both strings of maximal lengths. If the LCS of
two strings is large, then, we can assume that the strings are related. Now, the length of the LCS,
can be viewed as an optimal alignment score. Indeed, it suffices to take a scoring function with
0 gap penalty and which gives one point for identical aligned letters and 0 otherwise. Our result
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does not apply to LCS. The LCS-scoring function is not chosen at random. For instance, every
letter aligned with itself yields precisely 1 point. This is never the case, in the scoring functions
which arise naturally as the logarithms of pairwise evolution probabilities and we can view these
as small random perturbations.

1.6. Statement of the main results

To state the main results of this paper, we introduce the following norms on the set of symmetric
scoring functions R :A∗ ×A∗ → R,

|R| := max
a,b,c∈A∗

∣∣R(a, b) − R(a, c)
∣∣ (the change norm), (1.13)

|R|2 :=
√ ∑

a,b∈A∗
R2(a, b) (the Frobenius norm). (1.14)

Notice that the change norm plays the following important role: given two finite sequences and a
fixed alignment with gaps, changing a single letter of one of the two sequences into an arbitrary
other letter from the alphabet A changes the total score of the alignment by at most |R|. It is an
abuse of notation as | · | is not really a norm. Indeed, for instance, in the case of a scoring function
R which is diagonal, that is R(a, b) �= 0 if and only if a = b, we have |R| = 0. Again, by the
abuse of notation we will continue to call | · | a norm.

Theorem 1.1. Let S and T be two symmetric scoring functions on A∗ ×A∗ such that the optimi-
sation problem max(x,y)∈SETn

S,T
x has a unique maximizer (x0, y0) and the boundary of SETS,T

has curvature at least k > 0 at this point, then the following bound applies for n ≥ n0 with n0
large enough,

P

[∣∣∣∣Tπ(X[1,n], Y[1,n])
n

− y0

∣∣∣∣ ≤ 5|T | + 2
√

30|S|
k

(
ln(ne)

n

)1/4

,∀π ∈ ν∗
n,S

]
≥ 1 − 3n− lnn.

Here, e is the Euler constant and n0 depends on the geometry of the boundary ∂SETS,T near
(x0, y0).

It is clear that n0 depends (in our argument) on the local behavior of the boundary of ∂SETS,T

near the point (x0, y0). Given more information about the local structure we can eventually ex-
tract a concrete bound on n0 from the proof of the theorem.

In particular, if both S and T have change norm less than 1, the statement of Theorem 1.1
simplifies to

P

[∣∣∣∣Tπ(X[1,n], Y[1,n])
n

− y0

∣∣∣∣ ≤ 17

k

(
ln(ne)

n

)1/4

,∀π ∈ ν∗
n,S

]
≥ 1 − 3n− lnn, ∀n ≥ n0,

where n0 depends on the local geometry of the boundary of SETS,T near (x0, y0).
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The curvature condition at the point (x0, y0) means that one can parametrize the boundary
∂SETS,T of the set SETS,T by a curve c(t) for t in a neighbourhood of 0, with c(0) = (x0, y0)

and ‖ċ(t)‖2 = 1 for all allowable t , where ċ denotes the derivative with respect to t , the curvature

κ
(
∂SETS,T , (x0, y0)

) := ∥∥c̈(0)
∥∥

2

then being defined as the standard curvature of this curve at t = 0. Here we denoted by ‖ · ‖2 the
standard Euclidean norm of a vector in R

2. By convention, we define the curvature at vertices of
∂SETS,T (points on the boundary where SETS,T has a normal cone with nonempty interior) to
be +∞. We postpone the proof of Theorem 1.1 until Section 3.

While Theorem 1.1 establishes that if the boundary of SETS,T has positive curvature at
(x0, y0), then the T -score on an S-optimal alignment has a fluctuation of order at most
O([ln(n)/n]0.25), the conditions of this result are difficult to verify in practice. However, as
the following result shows, they apply generically.

Theorem 1.2. Let S and T be chosen i.i.d. uniformly at random from the Frobenius-unit sphere
in the space of symmetric scoring functions. Then the following hold true,

1. max(x,y)∈SETn
S,T

x has a unique maximizer (x0, y0) almost surely,
2. for any real number k > 0,

P
[
κ
(
∂SETS,T , (x0, y0)

)
< k

] ≤ 4k

π
,

where κ(∂SETS,T , (x0, y0)) is the curvature at (x0, y0) of the boundary of SETS,T .

The Frobenius norm is defined as in (1.14) and is a natural norm because it has invariant
properties under the orthogonal transformations.

Combining Theorems 1.1 and 1.2, we arrive at the following conclusion.

Corollary 1.1. If the symmetric scoring functions S and T are chosen as in Theorem 1.2, then
almost surely there exists k > 0 such that

P

[∣∣∣∣Tπ(X[1,n], Y[1,n])
n

− y0

∣∣∣∣ ≤ 17

max(k,1)

(
ln(ne)

n

)1/4

,∀π ∈ ν∗
n,S

]
≥ 1 − 3n− lnn,

∀n large enough.

2. Preliminary results and their proofs

In this section, we derive the main estimates on which the proofs of our main theorems rely. We
begin by giving the classical Azuma–Hoeffding–McDiarmid Inequality.

Theorem 2.1. Let W1, . . . ,Wn i.i.d. random variables that take values in some set D, let a ≥ 0
be a constant and f : Dn → R a n-variate real function with the property that for any i ∈ [1, n],
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w ∈ Dn and z ∈ D,∣∣f (w1,w2, . . . ,wn) − f (w1,w2, . . . ,wi−1, z,wi+1, . . . ,wn)
∣∣ ≤ a.

Then, for any ε > 0, the following inequalities hold true,

P
[∣∣f (W1,W2, . . . ,Wn) − E

[
f (W1, . . . ,Wn)

]∣∣ ≥ εn
] ≤ 2 exp

(−ε2n/
(
2a2)),

P
[
f (W1,W2, . . . ,Wn) − E

[
f (W1, . . . ,Wn)

] ≥ εn
] ≤ exp

(−ε2n/
(
2a2)).

For a proof, see, for example, [1].

Lemma 2.1. For any symmetric scoring function R : A∗ ×A∗ →R, there exists a deterministic
constant λR such that

Ln,R

n

n→∞−→ λR, a.s.

Proof. It is trivial to see that the function n �→ E[Ln,R] is superadditive. Therefore and since the
scoring function is bounded, we have

E[Ln,R]/n
n→∞−→ λR := sup

n≥1
E[Ln,R]/n, (2.1)

where supn≥1 E[Ln,R]/n is finite. For any ε > 0, let Dn,R(ε) denote the event

Dn,R(ε) = {∣∣Ln,R − E[Ln,R]∣∣ ≥ ε ln(n)
√

n
}
.

Applying Theorem 2.1 with a = |R|, we obtain

P
[
Dn,R(ε) ≤ 2 exp

(−ε2(lnn)2/2|R|2)] = 2n
− ε2 lnn

2|R|2 . (2.2)

By virtue of Borel–Cantelli, the finite summability of (2.2) implies that almost surely at most a
finite number of the events Dn,R(ε) will hold. Combined with (2.1), and using the fact that ε > 0
was arbitrary, this implies the claim. �

The next result gives the rate of convergence for E[Ln(R)]/n toward λR . A bound for non-
symmetric scoring functions was given in [4]. Here we exploit the symmetry of R to give a
tighter bound that we will use to prove our main theorems.

Lemma 2.2. For any symmetric scoring function R : A∗ ×A∗ → R, the following convergence
bound applies, ∣∣∣∣λR − E

[
Ln,R

n

]∣∣∣∣ ≤ 3|R|
√

ln(ne)

n
.
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Proof. To simplify the notation, let us write λn,R = E[Ln,R]/n. Let m = kn for some k ∈ N, and
let Pm,n be the set of pairs of partitions of the integer interval [1,m] into 2k pieces for which the
sum of the lengths of the ith pieces is always n. In other words,

p= (i0, i1, . . . , i2k, j0, j1, . . . , j2k)

is in Pm,n if

0 = i0 < i1 < · · · < i2k = m,

0 = j0 < j1 < · · · < j2k = m, and

i� − i�−1 + j� − j�−1 = n, ∀� ∈ [1,2k].
For a partition p ∈Pn,m, let L

p
m,R denote the optimal alignment score of X[1,n] and Y[1,n] relative

to R under the extra constraint that the lth pieces of the two partitons are aligned with each other,
hence imposing that Xil−1+1, . . . ,Xil be aligned with Yjl−1+1, . . . , Yjl

for l = 1, . . . ,2k. In other
words, we have

L
p
m,R =

2k∑
l=2

R(Xil−1+1, . . . ,Xil , Yjl−1+1, . . . , Yjl
). (2.3)

We can apply Azuma–Hoeffding to our constrained optimal alignment score L
p
m,R to justify

that for any constant ε > 0,

P
(
L
p
m,R − E

[
L
p
m,R

] ≥ εm
) ≤ exp

(
−ε2 · m

2|R|2
)

. (2.4)

The optimal alignment score Lm,R is not always equal to one of the constrained alignment
scores L

p
m,R , however we can argue that it is not far from this. In fact, it is not hard to see that

for some partition p ∣∣Lm,R − L
p
m,R

∣∣ ≤ 4k|R|. (2.5)

To argue about this, we reason as follows. Ideally, we take one column after the other in the opti-
mal alignment. We do this starting from the left and going to the right until we have sufficiently
many columns so the total number of letters from the strings of X and Y equals n. That is we
stop when the columns we have chosen contain n letters. This gives then i1 and j1 for the first
part of the partition p. That is the last letter of X in the columns we chose has index i1 and the
last letter of Y in the columns we chose has index j1. After we have done this, we start again
with the remaining of the sequence and take the next columns until we have again n letters. This
then yields i2 and j2. We keep repeating this process, until i1, . . . , i2k and j1, . . . , j2k are all de-
termined. The only problem with this procedure is that sometimes when we add a column, we
could overshoot by 1 letter. For instance, if we have already n − 1 letters and the next column
contains two letters, then we get n + 1 letters. Thus, the alignment defined by i1, . . . , i2k and
j1, . . . , j2k , may be off by one letter per pair of string-pieces

Xil−1+1, . . . ,Xi, Yjl−1, . . . , Yjl
. (2.6)
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That gives a total of 2k letters differently aligned. Each of these letters can lead to a difference
of 2|R| in the alignment score. So, the total difference between the optimal alignment and our
alignment which aligns all the pieces (2.6), is at most 2k × 2|R|.

Continuing now, from (2.5), if the alignment score Lm,R is to exceed a given benchmark, at
least one of the constrained scores L

p
m,R must exceed this benchmark shifted by the correction

term (2.5). This implies

P[Lm,R ≥ nλn,Rk + εm] ≤
∑

p∈Pm,n

P
[
L
p
m,R ≥ nλn,Rm + εm − 4k|R|]. (2.7)

We claim that by symmetry of R, we have

E
[
LP

m,R

] ≤ nλn,Rk, ∀p ∈Pn,m. (2.8)

Our claim holds for two reasons: Firstly, il − il−1 + jl − jl−1 = n implies il < il−1 + n and
jl < jl−1 + n and

R(Xil−1+1, . . . ,Xil , Yjl−1+1, . . . , Yjl
) + R(Xil+1, . . . ,Xil−1+n,Yjl+1, . . . , Yjl−1+n)

≤ R(Xil−1+1, . . . ,Xil−1+n,Yjl−1+1, . . . , Yjl−1+n
).

Taking expectations on both sides, we find

E
[
R(Xil−1+1, . . . ,Xil , Yjl−1+1, . . . , Yjl

)
] + E

[
R(Xil+1, . . . ,Xil−1+n,Yjl+1, . . . , Yjl−1+n)

]
≤ E

[
R(Xil−1+1, . . . ,Xil−1+n,Yjl−1+1, . . . , Yjl−1+n

]
. (2.9)

Second, the crucial assumption that R be symmetric implies that the two terms on the left-hand
side of (2.9) are equal, thus yielding

2E
[
R(Xil−1+1, . . . ,Xil , Yjl−1+1, . . . , Yjl

)
] ≤ E

[
R(Xil−1+1, . . . ,Xil−1+n,Yjl−1+1, . . . , Yjl−1+n

)
]

= E
[
R(X1, . . . ,Xn,Y1, . . . , Yn)

]
= nλn,R. (2.10)

Taking the expectation on both sides of (2.3) and applying (2.10) to each term on the right-hand
side yields the claimed inequality, (2.8).

Substitution of (2.8) into (2.7) now yields

P[Lm,R ≥ nλn,Rk + εm] ≤
∑

p∈Pm,n

P
[
L
p
m,R ≥ E

[
L
p
m,R

] + εm − 4k|R|]. (2.11)

Using (2.4) and the fact that Pn,m has fewer than
(
m
k

)2 elements yields that for large n and k,

P[Lm,R ≥ nλn,Rk + εm] ≤
(

m

k

)2

exp

(
− (ε − 4|R|/n)2 · m

2|R|2
)

. (2.12)
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Let Z be a binomial variable with parameters m and p = 1/n, so that we have

P[Z = k] =
(

m

k

)(
1

n

)k

·
(

n − 1

n

)m−k

≤ 1,

and hence, (
m

k

)
≤ nk ·

(
1

1 − 1
n

)k(n−1)

≤ (e · n)k (n � 1). (2.13)

Substituting (2.13) into (2.12), we find that for large n,

P

[
Lm,R

m
≥ λn,R + ε

]
≤ exp

(
k

[
2 ln(e · n) − (ε − 4|R|/n)2 · n

4|R|2
])

. (2.14)

The key now is to let k tend to infinity. In doing so, we know on the one hand that Lm,R/m →
λR , and on the other that the right-hand side of (2.14) converges either to 0 or +∞. It does
converge to 0 only if

2 ln(e · n) − (ε − 4|R|/n)2 · n
4|R|2 < 0

which is certainly satisfied if n is chosen large enough (n > 10 suffices) and

ε = 3|R|
√

ln(ne)

n
.

Therefore, we find

P

[
λR ≥ λn,R + 3|R|

√
ln(ne)

n

]
= 0,

and since λR is a constant, and similarly λn,R , we actually deduce that

λR ≤ λn,R + 3|R|
√

ln(ne)

n
.

On the other hand, we also know from (2.1) that λn/n ≤ λR , thus concluding the proof. �

Lemma 2.3. Let R : A∗ × A∗ → R be a symmetric scoring function and let An(R) denote the
event

An(R) =
{∣∣∣∣λR − Ln,R

n

∣∣∣∣ ≤ 5|R|
√

ln(ne)

n

}
.

Then for large n,

P
[
An(R)

] ≥ 1 − n− lnn.
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Proof. This follows by combining (2.2) with ε = 2|R|, Lemma 2.2, Theorem 2.1 and
Lemma 2.1. �

The next result is about the convergence of convex compact sets.

Lemma 2.4. Let (An)n∈N be a sequence of random compact convex sets in R
2 such that for any

linear form f ∈ (R2)∗ there exists a deterministic constant ξf ∈ R for which

max
(x,y)∈An

f (x, y)
n→∞−→ ξf , a.s.

Then there exists a deterministic compact convex set A ⊂R2 for which

dH (An,A)
n→∞−→ 0, a.s.,

where dH is the Hausdorff distance.

Proof. Let F be a dense countable subset of the unit sphere in (R2)∗. Then

A := {
(x, y) : f (x, y) ≤ ξf ,∀f ∈ (

R
2)∗} = {

(x, y) : f (x, y) ≤ ξf ,∀f ∈ F
}
.

Furthermore, A is compact and convex, the condition of the lemma implies that

P
[

max
(x,y)∈An

f (x, y)
n→∞−→ ξf ,∀f ∈ F

]
= 1, (2.15)

and we have

max
(x,y)∈A

f (x, y) = ξf , ∀f ∈ F. (2.16)

Suppose it is not the case that dH (An,A) → 0 almost surely. Then there exists δ > 0 and a set
E ⊂ � such that P[E ] > 0 and ∀ω ∈ E there exists a sequence of points (αn(ω))n∈N such that
αn(ω) ∈ An(ω) and

d
(
αn(ω),A

) := min
β∈A

d
(
αn(ω),β

) ≥ δ.

We claim that all the sets An(ω) are contained in a big fixed box �(ω). This can be seen by
considering the functionals f (x, y) = x, f (x, y) = −x, f (x, y) = y and f (x, y) = −y com-
bined with the conditions of the lemma to show that each of the coordinates stays bounded.

Since all sets An(ω) are contained in some large closed box, there exists a convergent sub-
sequence (αnk

(ω))k∈N → α(ω). The continuity of the function α �→ d(α,A) implies that we
have d(α(ω),A) ≥ δ > 0, and in particular that α(ω) /∈ A. By virtue of the Hahn–Banach sep-
aration theorem, there exists gω ∈ (R2)∗ such that A ⊂ {(x, y) : gω(x, y) ≤ max(s,t)∈A gω(s, t)}
and gω(α) > max(s,t)∈A gω(s, t) + ε for some ε > 0. Let (f�)�∈N ⊂ F be a sequence such that
f� → gω in the weak topology. By (2.16), we have A ⊂ {(x, y) : f�(x, y) ≤ ξf�

}, and for � large
enough it is the case that f�(α) > ξf�

+ 2ε/3. Pick and fix now such an �. If it were the case that

max
(x,y)∈An(ω)

f�(x, y) → ξf�
, (2.17)
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then for large enough k,

f�

(
α(ω)

)
> ξf�

+ 2ε/3 > max
(x,y)∈Ank

(ω)
f�(x, y) + ε/3 ≥ f�

(
αnk

(ω)
) + ε/3.

But this is a contradiction, since by continuity of f�, we have f�(αnk
(ω))

k→∞→ f�(α(ω)). We
conclude that for each ω ∈ E there exists f� ∈ F for which (2.17) does not apply, and since
P[E ] > 0, this contradicts (2.15). �

Lemma 2.5. Let S,T be two symmetric scoring functions on A∗ ×A∗. If the optimization prob-
lem max(x,y)∈SETS,T

x has a unique maximizer (x0, y0), then

max
π∈ν∗

n,S

Tπ (X[1,n], Y[1,n])
n

n→∞−→ y0, a.s., (2.18)

min
π∈ν∗

n,S

Tπ (X[1,n], Y[1,n])
n

n→∞−→ y0, a.s. (2.19)

Proof. By virtue of (1.5) and Lemma 2.4, dH (SETn
S,T ,SETS,T ) → 0 almost surely. Keeping

in mind (1.10) and (1.11), taking any convergent subsequence ((xn�
, yn�

))�∈N of a sequence
((xn, yn))n∈N of maximizers

(xn, yn) ∈ arg max

{
y : (x, y) ∈ SETn

S,T , x = Ln,S

n

}
, (2.20)

and writing (x∗, y∗) = lim�→∞(xn�
, yn�

), we have x∗ = x0 almost surely (by virtue of (1.5)),
and (x∗, y∗) ∈ SETS,T almost surely. By the assumptions of the lemma, we thus have (x∗, y∗) =
(x0, y0). Furthermore, a convergent subsequence of ((xn, yn))n∈N always exists, since all sets
SETn

S,T are contained in a compact box, and the argument above shows that (x0, y0) is the only
accumulation point. Therefore, (xn, yn) → (x0, y0) almost surely, and since the choice of (xn, yn)

among the maximizers of (2.20) was arbitrary, (2.18) and (2.19) both follow. �

Lemma 2.6. Let K ⊂R
2 be a deterministic convex compact set. Then the maximizer

(x0, y0) = arg max
(x,y)∈K

ax + by

is unique for all but countable many points (a, b) on the unit sphere in R
2. Furthermore, if (a, b)

is chosen uniformly at random from the unit sphere in R
2, then

P
[
κ
(
∂K, (x0, y0)

) ≤ k
] ≤ k · l

2π
, (2.21)

where κ(∂K, (x0, y0)) is the curvature of the boundary of K at the point (x0, y0), and where l

denotes the length of the boundary of K . Here P(·) is the uniform probability on the unit sphere
of R2.
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Proof. The first part of the lemma is well known. The mapping

H : (a, b) �→ (x0, y0) := arg max
(x,y)∈K

ax + by

is thus well defined for all but a countable number of points (a, b) on the unit circle. If the interior
of K is empty, then K lives on a line segment. The maximizer (x0, y0) is then one of the two
endpoints of this segment for almost all (a, b), and since the curvature is infinite at these points,
the claim of the lemma is trivially true.

If K has nonempty interior, then its boundary ∂K is locally the graph of a convex function,
and hence it is continuous. Given an interior point z ∈ K and r > 0 such that B(z, r) ⊂ K , we
define the spherical projection to be the map which assigns to any point u ∈ ∂K , the point on the
circle ∂B(z, r) which is on the line joining z and u. The spherical projection with respect to an
interior point defines a parametrization u(θ) of ∂K , with θ running on the unit circle. This can
be used to show that the boundary of K is a locally the graph of a convex function.

Since the boundary ∂K is locally the graph of a convex function, u(θ) is differentiable ev-
erywhere except at a countable number of points, and it is twice differentiable everywhere ex-
cept on a set of Lebesgue measure 0, see, for example, [3], Theorem 1, page 242. The length
l = ∫ 2π

0 ‖du(θ)/dθ‖2 dθ is thus well defined and finite, and so is the reparametrization c(t) of

u(θ) with respect to the length t = ∫ θ

0 ‖du(τ)/dτ‖2 dτ . Furthermore, we have ‖ċ(t)‖2 = 1 for
all t ∈ [0, l], and c̈(t) is defined except on a Lebesgue-null set. Let A be the subset of t ∈ [0, l]
where ċ(t) is defined, and B the subset where c̈(t) is defined. Without loss of generality, we
may assume that the orientation of the curve c(t) is positive, so that G(t) = iċ(t) is the unit nor-
mal vector to K at c(t) (orthogonal to ċ(t) and pointing away from K). This defines a mapping
t �→ G(t) from A to the unit circle. We make the following two observations:

(a) κ(t) := κ(∂K, c(t)) = ‖c̈(t)‖2 = ‖Ġ(t)‖2 equals the curvature of ∂K at c(t).
(b) Given (a, b) on the unit circle, if c(t) = arg max(x,y)∈K ax +by for some t ∈ A, and if this

is the unique maximizer, then (a, b) = G(t).

Let T := {t ∈ [0, l] : κ(t) ≤ k} and P̃ (·) denote the uniform probability on T . The fact that
G(t) is defined at all points where κ(t) is defined combined with Observations (a) and (b) imply
that

P
[
κ
(
∂K, (x0, y0)

) ≤ k
] = P̃

[
κ(t) ≤ k

] = P
[
G(T )

]
=

∫
T

∣∣Ġ(t)
∣∣ dt

2π
(2.22)

=
∫

T

k(t)
dt

2π

≤ k · l
2π

. (2.23)

Here G(T ) is a subset of the unit sphere in R
2 and P(G(T )) is its probability.

Equation (2.23) establishes the claim (2.21) of the lemma. The only nontrivial step that needs
further explanation is (2.22). Let g : [0, l] → [0,2π ] be such that G(t) = exp(ig(t)). Then g(t)
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is well defined except at a countable number of points. By convexity of K , g(t) is a non-
decreasing function, and without loss of generality we may assume that it is right continuous.
Equation (2.22) can thus be reformulated as follows,

μ
[
g(T )

] =
∫

T

ġ(t)

2π
dt, (2.24)

where μ is the uniform probability measure on the interval [0,2π ]. If g is smooth and increasing,
then (2.24) is simply a change of variable formula. In the general case we can approximate using
smooth functions. Thus take a standard mollifier φε and gε,δ = (g+δh)�φε where h(x) = x. The
rationale for taking g + δh is to render the derivative positive and gε increasing. Equation (2.24)
is true for gε,δ , and its general validity is obtained by first passing ε to zero, followed by δ. �

3. Proofs of the main theorems

3.1. Proof of Theorem 1.1

Proof. With the notations from Lemma 2.3 combined with the results of Theorem 2.1, we know
that for all large n,

P
[
An(R)

] ≥ 1 − n− lnn.

By the assumptions of the theorem, x0 = λS and

κ
(
∂SETS,T , (x0, y0)

) ≥ k > 0. (3.1)

For small ε > 0 the point Pε := (xε, yε) on the boundary ∂SETS,T with y-coordinate yε :=
y0 + ε/k nearest to (x0, y0) is well defined. For the main objects which appear in this proof
below we refer to Figure 1. Choose aε such that the linear form f(1,aε) : (x, y) �→ x + aεy has its
maximizer over the set SETS,T at Pε . The existence of aε follows from the convexity of SETS,T

and the continuity of the boundary of SETS,T .
This implies that for any (x, y) ∈ SETS,T ,

x + aεy ≤ xε + aεyε. (3.2)

The curvature condition (3.1) implies that for all ε small enough,

xε ≤ x0 − ε2

3
.

Combined with (3.2) for (x, y) = (x0, y0), this yields (x − xε) + aε(y − yε) ≤ 0, and since
furthermore x0 > xε , it follows that

aε ≥ x0 − xε

yε − y0
≥ εk

3
. (3.3)
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Figure 1. The shaded area is SETS,T such that (x0, y0) is the maximizer of the functional f (x, y) = x.
The line in blue is a line which passes though Pε and leaves SETS,T on one side of it.

If An(S) holds, then for any optimal alignment π relative to S we have∣∣∣∣Sπ(X[1,n], Y[1,n])
n

− x0

∣∣∣∣ ≤ 5|S|√ln(en)√
n

, (3.4)

and similarly, if the event An(S + aεT ) holds, then∣∣∣∣Ln,S+aεT

n
− λS+aεT

∣∣∣∣ ≤ 5|S|√ln(en)√
n

. (3.5)

On the other hand,

λS+aεT = max
(x,y)∈SETS,T

f(1,aε)(x, y) = xε + aεyε,
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and substituted into (3.5) this yields

∣∣∣∣Ln,S+aεT

n
− (xε + aεyε)

∣∣∣∣ ≤ 5|S + aεT |√ln(en)√
n

. (3.6)

Next, for any optimal alignment π relative to S, we have

(S + aεT )π (X[1,n], Y[1,n])
n

≤ Ln,S+aεT

n

(3.6)≤ xε + aεyε + 5|S + aεT |√ln(en)√
n

.

It now follows from (3.4) that

aε

(
Tπ(X[1,n], Y[1,n])

n
− y0

)
≤ xε − x0 + aε(yε − y0) + 5(|S + aεT | + |S|)√ln(en)√

n
,

and since xε − x0 ≤ 0 < aε , this finally yields that for large n and small ε > 0,

Tπ(X[1,n], Y[1,n])
n

− y0 ≤ ε

k
+ 5(|S + aεT | + |S|)√ln(en)

aε

√
n

≤ 5(2|S| + aε|T |)√ln(en)

aε

√
n

.

In combination with (3.3), this yields

Tπ(X[1,n], Y[1,n])
n

− y0 ≤ ε

k
+ 5(6|S| + εk|T |)

εk

√
ln(en)

n
.

For large n (depending on the geometry of the boundary of SETS,T near (x0, y0)), we can mini-
mize the right-hand side over ε (the minimizing value being ε = √

30|S|√ln(n)/n), yielding for
large n that

Tπ(X[1,n], Y[1,n])
n

− y0 ≤ 5|T | + 2
√

30|S|
k

(
ln(en)

n

)1/4

.

By changing the scoring function T to −T , an analogous argument also shows that

−
(

Tπ(X[1,n], Y[1,n])
n

− y0

)
≤ 5|T | + 2

√
30|S|

k

(
ln(en)

n

)1/4

,

and hence, ∣∣∣∣Tπ(X[1,n], Y[1,n])
n

− y0

∣∣∣∣ ≤ 5|T | + 2
√

30|S|
k

(
ln(en)

n

)1/4

. (3.7)

We conclude that if all of the events An(S) and An(S + aεT ) and An(S − aεT ) hold, then (3.7)
applies, and since the probability that any individual event fails to hold is bounded by n− lnn, the
claim of the theorem follows. �
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3.2. Proof of Theorem 1.2

Proof. Let V = arccos〈S,T 〉F , where 〈·, ·〉F is the inner product on the space of symmetric
scoring functions that corresponds to the Frobenius norm. Then V is uniformly distributed on
[−π/2,π/2]. Let T1 be the Gram–Schmidt orthogonalization of T with respect to S1 := S, and
let U be a uniform random variable on [0,2π ], independent of S and T , and hence also of V ,
and let us define (S2, T2) = �(S1, T1), where � is the rotation

� :R2 → R
2,

(x, y) �→ (
cos(U)x + sin(U)y,− sin(U)x + cos(U)y

)
by the angle U . It is easy to see that SETS2,T2 = �(SETS1,T1), and that under �−1, the point
where SETS2,T2 has a point of maximal first coordinate corresponds to the point where the ran-
dom linear form f : (x, y) �→ cos(U)x + sin(U)y takes a maximum value on SETS1,T1 . Further-
more, since � is angle-preserving, the curvature κ1 of ∂SETS2,T2 and ∂SETS1,T1 at these points
is also the same. Lemma 2.6 applies, and we have P[κ1 ≤ k] ≤ k · l/(2π), where l is the length
of the boundary of SETS1,T1 . Since the scoring functions under considerations have unit norm,
the rescaled alignment score cannot exceed 2, implying that l ≤ 8 and

P[κ1 ≤ k] ≤ 4k

π
. (3.8)

It remains to relate κ1 to the curvature κ of ∂SETS,T at the point where its first coordinate is
maximized. Since SETS,T = �(SETS1,T1), where � is the linear transformation

� :R2 → R
2,

(x, y) �→ (
x, cos(V )x + sin(V )y

)
,

we have κ = κ1/| sinV | ≥ κ1, so that

P[κ < k] ≤ P[κ1 < k] ≤ 4k

π
,

as claimed in the statement of the theorem. �
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