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Designs from good Hadamard matrices
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Hadamard matrices are very useful mathematical objects for the construction of various statistical designs.
Some Hadamard matrices are better than others in terms of the qualities of designs they produce. In this pa-
per, we provide a theoretical investigation into such good Hadamard matrices and discuss their applications
in the construction of nonregular factorial designs and supersaturated designs.
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1. Introduction

Hadamard matrices have wide-ranging applications in science and technology (Horadam [13]),
and are particularly useful in the construction of statistical designs (Dey and Mukerjee [10];
Cheng [7]). They can be directly used as optimal weighing designs, and are also intimately
related to balanced incomplete block designs. In this article, we concern ourselves with the use
of Hadamard matrices for constructing nonregular factorial designs and supersaturated designs.

A Hadamard matrix H is an orthogonal square matrix of entries 1. Therefore, HTH =
HH"™ = nE, where n is the order of H and E denotes the identity matrix. For a Hadamard
matrix of order n to exist, n» must be 1, 2 or a multiple of 4. Though not yet proven, it is widely
believed that there exists a Hadamard matrix for every n that is a multiple of 4 — the famous
Hadamard conjecture. Hadamard matrices of order n < 1000 are all known to exist except these
three unresolved cases n = 668, 716 and 892.

Two Hadamard matrices are said to be isomorphic or equivalent, if one can be obtained from
the other by permuting the rows, permuting the columns, sign-switching a row or a column, or
a combination of the above. If a complete list of all nonisomorphic Hadamard matrices for a
given order is available, then all Hadamard matrices of the same order can be obtained. To date,
Hadamard matrices of order n < 32 have been completely enumerated (Kharaghani and Tayfeh-
Rezaie [14]). For n = 1,2, 4, 8, 12, there exists only one nonisomorphic Hadamard matrix. For
n =16, 20, 24, 28 and 32, the number of nonisomorphic Hadamard matrices is 5, 3, 60, 487 and
13710027, respectively.

There arises a natural question as to which Hadamard matrices to use when it comes to the
construction of nonregular designs and supersaturated designs. In this paper, we provide an an-
swer to this question by characterizing and identifying some “good” Hadamard matrices. This is
done using a notion of type for Hadamard matrices, which was introduced by Kimura [15] and
further explored by Kharaghani and Tayfeh-Rezaie [14]. We establish a theoretical result linking
the type of a Hadamard matrix with its J-characteristics. Based on this result, it follows that the
larger the type, the better a Hadamard matrix. We then embark on an investigation into Hadamard
matrices of the largest type and their usefulness in the construction of nonregular designs with
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the maximum generalized resolutions and supersaturated designs that minimize the maximum
correlations.

2. Good Hadamard matrices

2.1. Hadamard matrices of type b

Let H be a Hadamard matrix of order n. By permutation and negation of rows and columns, any
four columns of H can be uniquely transformed into the following form

I, I, I, Iy |
I, I, Iy —1I
L, I, —Ip I
Ia Ia _Ia _Ia
Iy =I, I, I |’
Ia _Ia Ia _Ia
Ia _Iu _Ia Ia
Iy —Iy —I, —1Ip]

)]

where a +b =n/4,0<b <[n/8] and I, is an all-ones column vector of length a.

Following Kimura [15], a set of four columns that can be transformed to the above form is
said to be of type b. A Hadamard matrix is of type b if it has a set of four columns of type b
but has no set of four columns of type less than b. The type of a Hadamard matrix is invariant
with respect to isomorphism operations, but it is generally not so for matrix transposition. Up to
order 32, Hadamard matrices have also been enumerated according to their types. Kharaghani
and Tayfeh-Rezaie [14] obtained Table 1.

Pondering this table, one cannot keep from hoping that Hadamard matrices of large types are
good for design construction. This is indeed the case and its justification follows.

2.2. Statistical properties

A Hadamard matrix of type b can be normalized so that its first column consists of all ones. The
resulting Hadamard matrix H is still of type b. Deleting the column of all ones gives a saturated

Table 1. Number of nonisomorphic Hadamard matrices by type

Order 12 16 20 24 28 32

Type 0 0 5 0 58 0 13680757
1 1 0 3 1 486 26369
2 0 0 0 1 1 2900
3 0 0 0 0 1
Total 1 5 3 60 487 13710027
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orthogonal array D of n runs for n — 1 factors. Let D = (dy, ..., d,—1) = (d;;), where d; is the
Jjth column of D and d;; is the ith entry of d;. A key result of this paper is Theorem 1 below,
which links the type of H to the J-characteristics of D.

Theorem 1. Let D = (dy, ..., d,—1) be a saturated orthogonal array obtained by deleting the
all-ones column from a Hadamard matrix H. Then H is of type b if and only if

max |J;| =n — 8b,

|1]=3,4
where t denotes a subset of column indices 1,2, ...,n — 1 and J; is the J-characteristic J; =
YTl jer dij of the corresponding columns.

The proofs of Theorem 1 and later results are all deferred to Appendix A. One consequence of
Theorem 1 is Corollary 1 below.

Corollary 1. Let Hy be any Hadamard matrix. Then

_|H H
m=lin

is a Hadamard matrix of type 0.

A theory for J-characteristics was fully developed in Tang [20]. It was used earlier in Deng
and Tang [9] and Tang and Deng [22] to define minimum G and G, aberration and later in
Stufken and Tang [19] to enumerate orthogonal arrays. Recent applications of J-characteristics
include Bulutoglu and Kaziska [2], Bulutoglu and Ryan [3], Evangelaras [11] and Bulutoglu and
Ryan [4].

As small |J;| values represent less aliasing, Theorem 1 implies that the larger the type, the
better a Hadamard matrix.

2.3. Hadamard matrices of type by ax

Let bmax denote the largest b for a Hadamard matrix of order n. Table 1 says that bpax =
1,0,1,2,2 and 3 for n = 12, 16, 20, 24, 28 and 32, respectively. From the definition, we must
have bpnax < [1/8]. In fact, the following bound can be established.

Lemma 1. For any n > 4, we have that

i)

A much simpler, yet almost equally useful, result is in the next lemma.
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Lemma 2. We have that

bmax <[n/8] —1 forall n > 20.

This simple bound is attained for all currently known cases n = 20, 24, 28 and 32. The bound,
say Bi, in Lemma 1 improves that, say B», in Lemma 2 only for large n. It can be shown that
By < B for n > 64 when n is a multiple of 8 and for n > 148 when 7 is not a multiple of 8, and
B1 = B, for all other cases with n > 20.

For n = 16 and 20, all Hadamard matrices are of the same type. For n = 24, only one
Hadamard matrix has type bmax = 2 and we find that it is given by Paley’s first construction
[18]. For n = 28, the unique Hadamard matrix of type byax = 2 is from Paley’s first construction
(Kimura [15]). We find that the Hadamard matrix of order 28 from Paley’s second construction
is of type 1. For n = 32, again there is only one Hadamard matrix of type bpmax = 3, which is
given by Paley’s first construction (Kharaghani and Tayfeh-Rezaie [14]). For details on various
constructions of Hadamard matrices, we refer to Hedayat, Sloane and Stufken [12].

Hadamard matrices of order 36 have not been completely enumerated although millions of
them have been found. By examining the 235 Hadamard matrices of order 36 available at http://
www.indiana.edu/~maxdet/had_36all.can.gz, we find that two of them have type b = 3. Lemma 2
gives bmax < [36/8] — 1 = 3. Thus, bpax = 3 for n = 36. These two Hadamard matrices of type
bmax = 3 are presented in Appendix B.

The rest of this subsection is devoted to a study on the types of Hadamard matrices given by
Paley’s first construction. For convenience, we will simply call them Paley matrices, which is
available for every order n that is a multiple of 4 such that n — 1 is a prime power. The next result
provides a lower bound on the type of a Paley matrix.

Lemma 3. Let bpaey denote the type of a Paley matrix of order n. Then

P n/8—[Q+vn—1)/4] ifn =0 (mod8),
Paley =Py =Yy _4)/8 — [V —1/4]  ifn=4 (mod8).

The lower bound /p,ley On bpaley in Lemma 3 appears quite sharp, as we have verified that for
all n <5000 where Paley matrices are available, the bound is attained. We therefore conjecture
that bp,ley = Ipaley for all Paley matrices.

Combining Lemmas 1 and 3, we have

lPaley = bPaley < bmax < [(”/8)(1 —1/+/n-3 )]

Thus, if
Ipatey = [(n/8)(1 — 1/+/n = 3)], (2)

then bpyjey = bmax. We have checked that (2) holds for n = 24, 28, 32, 44, 60, 72 and 80, and /pqjey
is strictly smaller than the right-hand side of (2) for every other n > 48 that is a multiple of 4
such that n — 1 is a prime power. This provides several more Hadamard matrices of type bmax as
summarized in Corollary 2.


http://www.indiana.edu/~maxdet/had_36all.can.gz
http://www.indiana.edu/~maxdet/had_36all.can.gz
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Corollary 2. The Paley matrix of order n has type bmax for n =44, 60, 72 and 80, in addition to
n=24,28 and 32.

3. Designs from good Hadamard matrices

3.1. Generalized resolution

Let D be a two-level fractional factorial design of n runs. Suppose 7 is the smallest integer such
that max;— | J;| > 0. Then the generalized resolution of design D is defined as

R(D)=r+(1—glax|1,|/n>,

=r

which extends the notion of resolution for regular designs to all factorial designs and enjoys some
attractive properties (Deng and Tang [9]). Let H = (I, D) be a Hadamard matrix of order n and
type bmax, and Dy = (H", —H™)". Proposition 1 below is immediate from Theorem 1.

Proposition 1.

(1) For design D,, we have that R(D3) =4 + 8bmax/n. Thus, D> has the maximum general-
ized resolution.

(ii) Fordesign D1, we have that R(D1) > 3 + 8bmax/n. If bmax attains the bound in Lemma 1,
then R(D1) =3 + 8bmax/n, in which case, D1 must have the maximum generalized reso-
lution.

Some illustrations of Proposition 1 follow. For n = 24, D is a design of 24 runs for 23 factors
and has a generalized resolution of 3.67 and D, is a design of 48 runs for 24 factors and has
R(Dy) = 4.67. For n =32, Dy has R(D;) = 3.75 and D; has R(D,) = 4.75. That D has
R(D1) = 3.75 was noted earlier in Xu and Wong [24] but their quaternary code designs have
a generalized resolution of 3.5. For n = 36, R(D) = 3.67 and R(D,) = 4.67, where D is a
design of 36 runs for 35 factors and D, a design of 72 runs for 36 factors. All these designs have
the maximum generalized resolutions.

As Hadamard matrices of type by,x are only available for small orders, it will be very useful
to have a result that can construct large designs with large generalized resolutions. The next
proposition does just that.

Proposition 2. Let D be as in Proposition | and H' be any Hadamard matrix of order n'. Then
D1 ® H', a design of nn’ runs for (n — 1)n’ factors, has R(D1 ® H') =3 + 8byax /1.

The validity of Proposition 2 can be verified routinely using Lemma 2 in Tang [21]. For n = 24,
Proposition 2 gives a design of 24n’ runs for 23n’ factors with a generalized resolution of 3.67.
For n = 32, we obtain a design of 32n’ runs for 31n’ factors with a generalized resolution of
3.75. Here n’ = 1, 2 or a multiple of 4 so long as a Hadamard matrix of order n’ exists.
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3.2. Supersaturated designs

Using half fractions of Hadamard matrices, Lin [16] provided a construction of supersaturated
designs, which are E(sz)—optimal according to Nguyen [17]. Let H = (I,d;,...,d,—1) be a
Hadamard matrix of order n and type byax. Then Lin’s method [16] constructs a supersaturated
design of n/2 runs for n — 2 factors by selecting the n/2 rows of matrix (dy, ..., d,—7) that have
an entry of +1 in column d,, 1. Let C = (cy, ..., c,—2) denote this design with ¢; being its jth
column. Further let s, = c}ck. The next result establishes a connection between max ; < |5 jk|
and type bpmax.

Proposition 3. Design C satisfies that max j <k |sjx| < (n — 8bmax) /2. If bmax reaches the bound
in Lemma 1, then max < | ji| = (n — 8bmax) /2, which means that no other Hadamard matrix of
the same order can produce a better supersaturated design in terms of minimizing max; < |s jk|
using the method of half-fractioning Hadamard matrices.

For n = 20, 24, 28, 32 and 36, Proposition 3 gives supersaturated designs of 10, 12, 14, 16
and 18 runs, respectively for 18, 22, 26, 30 and 34 factors, respectively. Proposition 3 also says
max; ¢ |sjx| =4 for n = 24 and 32 and max; ¢ |sx| = 6 for n = 20, 28 and 36. These designs
minimize max; . |s ;x| among all designs that can be constructed using Lin’s method [16]. By
the results of Cheng and Tang [8], they actually minimize max ; -4 |s jx| among all supersaturated
designs of the same sizes. Thus, these designs are also max .4 |s x| optimal in addition to being
E(s?) optimal.

Wu [23] proposed a method of constructing a supersaturated design by adding the interaction
columns to a Hadamard matrix. This design is E(s?) optimal according to Bulutoglu and Cheng
[1]. Let H = (dp, d1, ..., d,—1) be a Hadamard matrix of order n and type bmax Where do = 1,
the all-ones column. Then Wu’s design [23] is given by collecting all the columns d;dj for
0 < j <k <n— 1, where for example d;d, denotes the componentwise product of columns d;
and d5. Let C; denote this supersaturated design of n runs for n(n — 1) /2 factors. The next result
is immediate from Theorem 1.

Proposition 4. Design Cy has that max j < |s jx| = (n — 8bmax) and thus minimizes max; .y |S jk|
among all designs that can be constructed using Wu’s method [23].

For n = 24, Proposition 4 gives a supersaturated design of 24 runs for 276 factors with
max; . |s k| = 8. For n =32, we obtain a supersaturated design of 32 runs for 496 factors with
max; . |sjk| =8.

4. Discussion

Good Hadamard matrices are those of largest types as they produce least aliasing among their
three and four columns. We have investigated the usefulness of such good Hadamard matri-
ces in the construction of nonregular designs and supersaturated designs. From Section 2.3,
we know that Paley’s first construction gives rise to Hadamard matrices of type bpa,x for
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n =24,28,32,44, 60,72 and 80. It will be of great interest to examine if this holds in general.
A counterexample would settle the issue. Otherwise, we would need a sharper bound on bpx
than that given in Lemma 1. Another research direction is to explore other possible applications.
For example, Butler [5] obtained some theoretical constructions of minimum G, aberration de-
signs using Hadamard matrices. One would expect that if good Hadamard matrices are used in
his constructions, the resulting designs should also do well in terms of minimum G aberration.
We leave these problems for future research.

Appendix A: Proofs

Proof of Theorem 1. Let H be of type b. We will prove that max; =34 |J;| =n — 8b. From
the proof, it is obvious that the converse is also true. For convenience, our notation for J-
characteristics will be slightly different but quite self-explanatory. Consider the four columns
in (1) of Section 2. Obviously, their J-characteristicis 4(a —b) =n—8b>0asa+b=n/4 and
b < [n/8]. For any four columns of type b, their J-characteristic must be equal to £(n — 8b).
This is because permutation of rows and columns and negation of rows have no effect on the J
value, and only negation of columns can possibly change the sign of the J value.

Now let us look at design D = (dy,...,d,—1) as in Theorem 1, which is obtained from
a Hadamard matrix H = (I,dy,...,d,—1) of type b by deleting the all-ones column /.
Then any set of four different columns dj ,dj,,dj,,d;, must be of type b > b. Thus
|J(dj,,dj,,dj;,dj,)| =n — 8b' < n — 8b. Since the set of four columns 1,dj,,dj,,dj, is also
of type b’ > b, we obtain |J(d},,dj,.dj;)| =|J(,d},,dj,,dj;)| =n — 80 <n — 8b. That
H=(,d,...,d,—1) has a set of four columns of type b implies that equality must be attained
for at least one of the above |J| values. ([l

Proof of Corollary 1. Let ¢, d be two columns of Hj. Then H; has the following set of four

columns
c d ¢ d
c d —c —-d

which has a J value equal to n, and is thus of type 0. (]

Proof of Lemmas 1 and 2. Noting that I //n, d1//n, ..., d,_1/+/n form an orthonormal basis,
we obtain Z’};;{J(dl,dz, dj)}* = n?. This leads to n?> < (n — 3)(n — 8bmax)> by Theorem 1.
Solving the above inequality we obtain Lemma 1. To prove Lemma 2, we only need to show that

n 1
[g(l— m)} <[n/3]—1 3

holds for n > 20. The inequality in (3) is obvious if # is a multiple of 8. Let n be a multiple of 4
but not a multiple of 8. Then (3) holds if n/(8+4/n — 3) > 0.5, which is true when n > 20. ([l

Proof of Lemma 3. Theorem 2.1 of Bulutoglu and Cheng [1] states that |J;| <k + 1+ (k —
1)a/n — 1 if |t| = k is odd, which leads to |J;| <4 + 24/n — 1 for |¢t| = 3. Their same theorem
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says that |J; + 1| <k + 1+ (k —2)«/n — 1 if |t| = k is even. But with a simple modification to
their proof, one can actually show that |J;| <k 4 (k — 2)s/n — 1 if |t| = k is even. This gives
|Ji] <4+2+/n —1for |t| =4.Thus | ;] <4+2+/n —1for |t| =3, 4. Let Jmax = max) =34 | J;|.
Invoking Lemma 3 in Stufken and Tang [19], we obtain that Jox =80 <4 +24/n—1ifn=
0 (mod 8) and Jpax = 8o +4 <4 +2+/n — 1 if n =4 (mod 8) for some integer «. This gives o <
[(1/4) 2+ +/n—1)] forn =0 (mod8) and @ < [(1/4)s/n — 1] for n =4 (mod 8). Thus, Jmax <
8[(1/4)(2 + +/n—1)] for n =0 (mod8) and Jpax <4 + 8[(1/4)s/n — 1] for n =4 (mod38).
Finally by Theorem 1, we obtain Lemma 3. ]

Proof of Proposition 1. Part (i) follows from Theorem 1 and a result of Butler [6], Theorem 3.
From the proof of Lemma 1, we see that if bp,x attains the bound in Lemma 1, then there
must exist three columns in D that have |J;| = n — 8bmax. This implies that R(D;) = 3 +
8bmax/n. The same idea can also be used to show that if bpax reaches the bound in Lemma 1,
any other Hadamard matrix will not produce a D that has a generalized resolution greater than
3 + 8bmax/n. This proves part (ii). O

Proof of Proposition 3. We have that

n
Jdj,dy,dp—1) = Zdijdikdi(n—l) = Z dijdirdin—1) + Z dijdirdin—1)
i=1 din—1=+1 di(n—1y=—1

which simplifies to 3 . dijdik — Y4, —— dijdik- Noting that

T
Sjk =Cjck = Z dijdik
din—1)="=+1

and that

n

Z dijdik+ Z dijdikZZdijd,’kZO for j <k,
din-1==+1 din-1=—1 i=1

we obtain J(d}, di, dy,—1) = 25 ji, which leads to max j ¢ |s x| < (n —8bmax)/2 by invoking The-
orem 1. If byax reaches the bound in Lemma 1, then there must exist three columns d;, dy, d,—1
that have |J(d}, d, dy—1)| = n — 8bmax. This proves Proposition 3. O

Proof of Proposition 4. For j; < k; and j, < kp where (j1, k1) # (jo2, k2), we have

n—8b if j1, k1, j2, ko are all distinct,
|(djdi) " (dpdiy)| = | (d)y diy djy diy)| = (() ) otherwise.,

where b’ > b,y is the type of the four columns (dj,, dr,,dj,, dr,) when they are all distinct.
Proposition 4 then follows from Theorem 1. ]
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Appendix B: Two Hadamard matrices of order 36 and type
bmax =3

i an o e e e e o S S e
e oo e it e
——————————————— e e s e S
Ftttt————tt———— =+ttt —————
ottt ———— ottt ——
e et S
e i S s s S +—+++
e e s s S e e ++ 4+
=ttt ——— Fo—tt o+ —+
FoF—— -ttt —— -ttt ———— -+
e o s s
ottt ———
i e e e e o S
e e o o s e
e et S S e et
FoFt ottt —— -+t ——F——
Ft -ttt — =ttt ——+—F
-+ ———— Fttt -ttt ———++
—t -ttt —F—— -+t +———F—F+—F—+——F++——+
e e e i e e
Ft -ttt -ttt ——F—F+———++++——
Ftt——tt— -+ ——— - —F+——F—++—+—
e e s e s o e et
ettt —— e T i ++
Ft——F ettt —— e+ttt —— - — -
Ft——Ft -t ——— =ttt -~ +——
e S e e e s e e
—— -+ttt —F——— -+ -+ —++—F+——
e e e e e o s T
i e e S s et S e e it 2
—++-————— ottt — -+ttt — -
s s S s e S S T
s s et S S S
—++-————- ot ——— =+t —++—+
e T e st B L S
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e e et L e s o e
e S o s
e T o i L it +
e e -
—————— -t -+ttt —F+ -+ —F+—+————+
—————— Ftt—t—— ot —— -+ —+—+
—————— FHttt ottt ————+—++
i e et
e T s i e A
e s e s e e
i e s s e o S
e e S e et s
e S e T S s e s e S
i e e o S e s
ettt — - —
e e s T e s
-+ ——F—t+++————— ++++-———— FHH++————+
Ft ettt —— - —F—— A+
e st S e s st st
-ttt -+t —F—— - —+ 4+
-ttt —+
-ttt - —— 4+
ettt —— -t ——FF—F——+—++——+++——+
e e e s e st S
e e S st st o S S e
ettt —— -+ ———+++—+—++
e e s o e e i ol
e e S e ek s
ottt —— =+ttt +———+
bttt — -+t~ ——
ettt ———— ottt —+—+—+
ottt — e ——t— -+ ——++
bttt ——F——F+—+—+++——+

+—F+—F——F++—t+++————— ++———++——++——+—+++
e e e e e e o
—— =ttt ——————— +——++++++——++—+
—— =+ttt —F——F—F——F——F———F -+ ++—++
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