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The aim of this paper is to establish various functional inequalities for the convolution of a compactly
supported measure and a standard Gaussian distribution on RY. We especially focus on getting good depen-
dence of the constants on the dimension. We prove that the Poincaré inequality holds with a dimension-free
bound. For the logarithmic Sobolev inequality, we improve the best known results (Zimmermann, JFA 2013)
by getting a bound that grows linearly with the dimension. We also establish transport-entropy inequalities
for various transport costs.
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1. Introduction

Poincaré or logarithmic Sobolev inequalities have been extensively studied in the past decades
to quantify long time behavior of Markov processes or investigate the concentration of measure
property, which plays a key role for example in the topic of large random matrices.

We refer to [3,4,13,19] for a comprehensive introduction to this subject. Let us briefly recall
some well-known facts about these functional inequalities to motivate the present study.

A probability measure v on RY satisfies a Poincaré inequality with constant C if, for any
smooth function f from RY to R,

A“ﬂdl)_(/u@dfd]))sz/Rdlvfﬁd”'

We denote by Cp(v) the smallest constant such that this inequality holds.
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Similarly, v satisfies a logarithmic Sobolev inequality with constant C if, for any smooth
function f from RY to R,

/Rd f*log(f?)dv - (/]Rd f2dv>log(/Rd fzdv> SC/Rd IV 2 dv,

and we denote by Crs(v) the smallest constant such that this inequality holds.
If v is the Gaussian distribution Ny (x, I') on R? with mean x and covariance matrix I', then
the values of these optimal constants are known:

1
Cp(v) = 7Crs(n) = max Spec(I').
The Bakry—Emery criterion ensures that if v has the density e~ on R and Hess(V) > pI,; then
1 2
Cp(v)<— and Crs(n) <-—.
o P

More generally, the inequality 2C p (v) < Crs(v) always holds. These two functional inequalities
do not hold if the support of v is not connected — one can find a non constant function whose
gradient is zero v-almost surely.

The present paper focuses on the case when the probability measure v on R¥ is given by
the convolution 1 * Ny(0, 821;), where the support of w is included in the centered ball of R4
with radius R. This question has been investigated recently in [21-23]; we present here several
improvements and related questions.

Let us fix some notation first.

X and Z are two independent random variables with respective distribution  and A (0, 1;);
vs is the density of the Gaussian measure Ny (0, 521d);

p is the density of the law p x y5 of the random variable S = X 4 §Z;

C4(8, R) is the supremum over all probability measures p supported in the closed Euclidean
ball B;(0, R) of the optimal constant in the logarithmic Sobolev inequality for u * ys.

This notation is mainly consistent with [23], except that our § is the standard deviation of the
Gaussian rather than its variance, and we denote the dimension by d.
Zimmermann’s results [22,23] may be summed up as follows.

Theorem 1.1 (Bounds on logarithmic Sobolev inequality constants [23]). The convolution of
a compactly supported measure and a Gaussian measure satisfies a logarithmic Soboley inequal-
ity. Moreover, there exist universal constants (K;)j<;<4 such that:

o In dimension 1,

Ci(,R) <K R 2R2 + K»2(8 +2R)?
s < ——eX — .
! RT 2 TP\ T ) T2
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In particular in the low variance case § < R,

83 R?
Ci(8,R) < K3Eexp<25—2>.

o In dimension d, C4(8, R) is finite. In the low variance case § < R, it satisfies:
R2

Cq(8, R) < K4R? eXp(zod + 55_2)'

The proofs in [23] rely on two main ideas. The one-dimensional case is treated by explicit

computations on Hardy-like criteria taken from [6]. In higher dimension, the author applies the

Lyapunov function approach of [7]. The constants K; are explicit but quite large (for example K4

may be taken equal to 289). Let us also mention the alternate approach of [24] in dimension 1 by

measure transportation, that unfortunately yields even worse constants. In the related note [21],

Wang and Wang answer various related questions on functional inequalities for convolutions,

and give many qualitative results under relaxed assumptions, both on the support of X and on the
distribution of the mollifier Z, but without exhibiting explicit constants.

We follow here the focus of [23] on quantitative estimates on the constants and their depen-
dence on the dimension d. Our first result concerns the Poincaré inequality.

Theorem 1.2 (Dimension free Poincaré inequality). If u is supported in the closed Euclidean
ball B4(0, R), then u x ys satisfies a Poincaré inequality and

R2
Cp(uxys) < 82 exp(48—2>.

The next result is an improvement on the bounds of Theorem 1.1.

Theorem 1.3 (Bounds on the logarithmic Sobolev constants).

e In the large variance case § > R, the logarithmic Sobolev constants are bounded uniformly
in the dimension:

84
Ca(8,R) < 2R
o In dimension 1, for any §, R,
8 R?
Ci(8, R) <48 exp(——2>.
s
e In the small variance case § < R, the logarithmic Sobolev constant admits the following
dimension-dependent bound:

R? R?
Cis(8,R) < (K1d+K28—2)R2exp<48—2), (1)

where K1, K, are universal constants.
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The stronger bound in dimension 1 is obtained as a corollary of a bound that holds in any
dimension (with a strong dependence on d). Its proof uses a trick by Miclo to apply the classical
Holley—Stroock perturbation argument, and is much less technical than the ones in [23,24].

For the logarithmic Sobolev constant, the dependence in the dimension drops from exponential
to linear: this enhancement would translate into weaker dependence assumptions in the applica-
tions to random matrices considered in [23].

In view of these results, it seems natural to conjecture as in [23] that C4(§, R) may admit a
dimension free bound. Let us give some partial results in this direction.

The first is a dimension free bound for a transport-entropy inequality. We recall that if & :
RY x RY — Rt is a cost function, then the optimal transport cost related to this k, is defined, for
all probability measures v; and v, by

T, v =int [ kGe ) drte. ),

where the infimum is taken over the set of all couplings = between v; and v. Let T 4 and 7
denote the transportation costs associated to (x, y) — ||x — y||‘21 and (x, y) — |x — y|? (here and
in the whole paper, | - | denotes the Euclidean norm).

Theorem 1.4 (Transportation-entropy inequality). Let i be a probability measure on R? sup-
ported in B;(0, R). The probability u  ys satisfies the following transport-entropy inequalities:
for any probability measure v on RY,

Toa(v, wxys) <C(R,8)H (| *ys),
Ta(v, % ys) </dC(R,8)H (v|p x vs),

where C(R,8) = ¢'82(1 + ?—22) exp(%) for some universal constant c’.

Remark 1. We obtain here a transportation-entropy inequality with a constant that scales like
V/d: this is an improvement over the linear scaling that would follow from applying Otto-Villani’s
theorem (see [5,18]) to deduce the 7, transport inequality from the logarithmic Sobolev inequal-
ity (1). The price to pay for this improvement is that the proof of Theorem 1.4 relies on rather
technical estimates on an intricate cost function (see Section 3.4).

Finally, we are able to get bounds on the logarithmic Sobolev constant in several restricted
cases.
Theorem 1.5 (Partial results).

e The quantity Cq(8, R) may be bounded only in terms of 8 and R in the region § > R/~/2.
o If u is radially symmetric, then

8 R?
Crs(uys) <48%exp( —— ).
T 82
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o Ifu= Zf\;l Dix; is a discrete probability measure on N > 3 points, with minimal weight
Px =min(p;), then

R2
Crs(u ys) <82 +3log(1/p,)s> exp<48_2>_

e The logarithmic Sobolev inequality restricted to log-convex functions holds with a constant
that does not depend on the dimension.

To prove or disprove the conjecture, one is tempted to guess the measure p that leads to the
worst logarithmic Sobolev constant. A natural candidate, proposed in [23], Example 21, is the
two-point measure 1/2(8ge, +5—re,) (Where e; denotes the first basis vector). Note that this can-
didate is easily seen to satisfy a logarithmic Sobolev inequality with a bounded constant, either
by the bound on discrete measures or by a simple tensorization argument of a one-dimensional
convolution with a (d — 1)-dimensional Gaussian law. To build a counterexample, one would
have to consider measures with a number of points that grows with the dimension.

Remark 2 (Discrete measures). Since the support of a discrete measure on N points is in-
cluded in an (N — 1)-dimensional affine space, the same tensorization argument of an (N — 1)-
dimensional convolution with a (d — N + 1)-dimensional Gaussian law shows that Crs(u * ys)
is also bounded by (K1 N + 1(21;—22)R2 exp(4R2 /82). This gives a better bound than Theorem 1.5
when N is fixed and the minimal weight p, vanishes.

Outline of the paper

The paper is organized as follows. In Section 2, we use the perturbation idea of Holley—Stroock,
by rewriting the potential of @ x y5 as a sum of a convex function and a bounded perturbation,
proving the first two items of Theorem 1.3. In Section 3, viewing p x ys as a mixture of Gaussian
measures we prove the Poincaré and transportation inequalities (Theorems 1.2 and 1.4) and es-
tablish the bound for discrete measures (third item of Theorem 1.5). Theorem 1.2 yields the final
bound on logarithmic Sobolev constants (the third item in Theorem 1.3) as an easy corollary. The
various remaining results in Theorem 1.5 are proved in Section 4.

2. Perturbation arguments

2.1. Large variance
The density p of u x ys is given explicitly by:

|z —x|? |z|?

1 1
p(Z) = \/l\{d (27T82)d/2 CXP(— 282 >I’L(dx) = (27T82)d/2 eXp(‘(W + W(‘)‘(Z))),
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where

Z-X |x|2
Ws(z) = _IOg/Rd eXP(8—2 - W)M(dx)

= —log/ exp<¥>v(dx) —logC,
R4 (S

for C, = [gaexp(—|x]?/(26%))u(dx) and v(dx) = C; ' exp(—|x|*/(26%))pu(dx). Let us com-
pute the Hessian of (—Ws):

I - 1 - -
azi(_WS)(Z):S_zE(Xi) and 9’ (—Wa)(Z)=8—4COV(Xi,Xj),

2izj

where the distribution of X is proportional to exp(z - x) dv. Therefore, for any unit vector v,
1 -
0 <Hess(—=Ws)v-v < 5 Var(v - X).

Since v - X lives in [—R, R], its variance is bounded by RZ%, s0

1 R?
Hess(—log(p)) > iy 1.

Remark 3. This bound is slightly better than the one given in [23] where the variance of v - X is
bounded by 2R?.

In particular, if § > R, p is log-concave and the Bakry—Emery criterion yields:
54

Crs(uxys) < m

This proves the first item in Theorem 1.3.

2.2. A perturbation argument

It turns out we can get a (dimension dependent) bound on the logarithmic Sobolev constant with
a very short proof, using the following trick to decompose the logarithm of the density p as a
sum of a convex function and a bounded perturbation.

Let a; = E[|Z]] be the expected value of the norm of a standard Gaussian random variable Z
in dimension d. Note that a; has an explicit expression (we will use below that a; = +/2/7) and
is in any case smaller than Jd.

Lemma 2.1 (Miclo’s trick [14,19]). Suppose the function W : R — R may be written as W =
W. + W, where Hess(W.) > pl;, and W is [-Lipschitz with respect to the Euclidean distance.
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Then for any o > 0, one can write W as a sum U, + Uy, where Hess(U;) > (p — l%‘)ld and
Uy is bounded by loay.
In particular, the measure Z ‘;,1 exp(—W) satisfies a logarithmic Sobolev inequality and

1 4 4,
Crs(Zy, exp(—W)) < —exp| —I*ajaq ).
p P

By way of comparison, it is known (see [1,2]) that if pg = exp(—Vp) dx satisfies a logarithmic
Sobolev inequality, then v = exp(—V') dx satisfies a defective logarithmic Sobolev inequality, as
soon as the gradient V(V — V) satisfies some exponential integrability condition. This defective
inequality can be used together with the Poincaré inequality to obtain the logarithmic Sobolev in-
equality. This strategy is used in [21] (see in particular Lemma 2.3 of [21] for a precise statement
of the perturbation result). It is more general, since it only supposes a logarithmic Sobolev in-
equality for the unperturbed measure, and replaces a boundedness assumption by an integrability
condition. The trade-off is that the constants are not explicit.

Since the statement of Lemma 2.1 in [14,19] contains a typo in the convexity bound, let us
provide a detailed proof.

Proof of Lemma 2.1. Let 0 > 0 and U, be the following regularized version of W;: Uy (x) =
E[W;(x 4+ 0Z)], where Z is a standard d-dimensional Gaussian random variable. Let U, =
W. + Uy and Up = W) — U, Since W is [-Lipschitz,

|Up(0)| = [E[Wi(x) = Wi(x + 0 2)]| <I0E[|Z]] <loaq.

Therefore, Uj, is bounded.
We now turn to the convexity bound. It is enough to prove that, for any unit vector v in R¢,
HessUysv-v < %‘ First, we compute the derivatives of U, :

—an 1 lx — yI?
3an(x)=(2ﬂ02) / ;[Rd Wi(y) (yi —xi)exp(— 20; dy

—an 1 |z|?
= (27102) / ;/Rd Wi (x + 2)zi exp(—za—2 dz,

—an 1

|zI?
0ijUs (x) = (27102) 57 Jo Wi(x +2)zi exp(—za—2 dz.

Now,

—dj2 1

HessUy v -v = (27102) i
R

2
(v VWi +2)-2) exp(_%> o

Since W is [-Lipschitz,

2
on—ds2 1 |z]
|Hess Uy v - v| < (2m07) ;./Rd |v~z|exp<—26—2 dz.
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By rotation invariance of the standard Gaussian distribution, we get

l l
|HessUyv - v| < —ZE[UIZH] = =,
o o

This implies that Hess(W, + Uy ) > (p — Z”T‘)Id, as claimed.
The final claim is a direct consequence of the obtained decomposition with o = 2la;/p, the
Holley—Stroock perturbation lemma and the Bakry—Emery criterion (see [19]). ]

Let us now use this lemma to prove the one-dimensional bound in Theorem 1.3. Write
—log(p) as

2  d 2
—log(p(z)) = TR log(278%) ) + Ws(2).

The first term is § ~2-convex. Since

1 Jgexexp(53)v(dx)
52 fRdexp(g—f)v(dx) ’

VWs(z) =

and v(By(0,R)) =1, Ws is R/82-Lipschitz on R?. Lemma 2.1 then yields
Crs(u * ys) < 48> exp(4a1adR28_2)_

This gives a first dimension dependent bound that is not comparable to the one from Theorem 1.1.
In dimension 1, since a; = +/2/m, we get the bound claimed in the second item of Theorem 1.3.

3. Mixture arguments

3.1. Poincaré inequality

In this section, we denote by Yy s the distribution Ay(x, 821,). Recall that U * ys =
fRd yx,s dju(x). The variance of a function f under the mixture p x y5 can be classically de-
composed as

Var/uyg ()= /I‘Qd Var)/x,a (fHdu(x) + Varu (X = / fdyx,é)

=A+B.

Since y, s satisfies the Poincaré inequality with constant 82, the first term A is bounded by

52fRd fR IV f12dyesdpx) =62fRd IV 12 sys).
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For the second term, B let g : x —> fRd f dyx.s. Duplicating variables yields

B=—ff (8(x) — g’ du(x) dp(y).
Rdx d

Now

2
(s(x) — )’ fdyes— fdyy 5)

(L
(6-22)y
(

dyy.s 2
couns(1:(1-5222)))

dyys
ary, ,(f) Var,, (1— )
Yx,8 Yx,8 d]/xss

by Cauchy—Schwarz inequality. For the first factor, we reapply the Poincaré inequality for the
Gaussian measure y, ;. The second factor is the x? divergence between the Gaussian distribu-
tions yy s and yy 5. An easy computation shows that this divergence is (exp(|x — yI2/8%) — 1);
since |x — y| is bounded by 2R, we get

(6 = 2))} < 8(exp(@R/5®) =1) [ 19 Py

Reintegrating with respect to u yields

B < 8%(exp(4R*/8%) — 1) fd IVFI2d(w*ys),
R
so that the measure p x y5 satisfies a Poincaré inequality with a constant

Cp(*ys) < 8%exp(4R?/8%).

3.2. A mild dependence on d for logarithmic Sobolev constants via
Lyapunov functions

The proof of the logarithmic Sobolev inequality in dimension greater than 1 in [23] is based
on a criterion from [7]. This criterion uses a Lyapunov function approach to prove a so-called
defective logarithmic Sobolev inequality, which can then be strengthened using the Poincaré
inequality. In [23], this Poincaré inequality is itself obtained by Lyapunov criteria, with con-
stants depending exponentially on the dimension. Simply plugging our dimension-free Poincaré
inequality in the argument of [7] gives a much better bound.

Let us first recall the criterion, in the form used in [23], where the constants are explicitly
written.
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Theorem 3.1 (Logarithmic Sobolev inequality via Lyapunov functions [7]). Suppose that V
satisfies

Hess(V) > —-K1;
with K > 0, and there exists a “Lyapunov function”, that is, a function W > 1 such that
AW —(VV, VW) < (b —c|x|))W )
for some positive constants b, c.

Suppose that v = Z;l exp(—V)dx satisfies a Poincaré inequality with constant Cp(v). Let A
and B be defined by

A=Z(e7"+K/2) +e,

(7' +K/2) (b—i—c/ |x|2dv(x)).
]Rd

Then v satisfies a logarithmic Sobolev inequality and Crs(v) <A+ (B +2)Cp(v).

B =

I O

Zimmermann proves in [23] that (2) holds with b = d/ (88%) + R?/(326%) and ¢ = ﬁ for
1

the function W (x) = exp(g57)- Using the bound K < R?/8* and choosing ¢ = 2/K, this proves

that, for § < R, thanks to the bound on the Poincaré constant,

R? R2
Crs(u*ys) < <K1d + K25—2>R2 exp<48—2)

for some universal constants K|, K>, which is the general bound announced in Theorem 1.3.

3.3. A bound for discrete measures

Suppose in this section that u is a probability measure on N points in B;(0, R):

N
n= Zpi&c,-.
i=1

The distribution of S = X + Z; is a mixture of N Gaussian laws with respective means x; and
common covariance matrix 82I;. Poincaré and logarithmic Sobolev inequalities for mixtures of
two measures have been studied by Chafai and Malrieu in [8]; Schlichting and Menz [16,20]
have used and generalized their results to prove Eyring—Kramers formule. The decomposition
of the variance used in Section 3.1 has the following analogue for entropies:

Entyiys (£7) =/Rd Ent,, , (fz)d,u(x)+Entﬂ<x — fRd fzdyx,(g). 3)
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To bound the second term, we use the following result, that is essentially a consequence of the

discrete logarithmic Sobolev inequality for the complete graph proved by Diaconis and Saloff-
Coste in [9].

Theorem 3.2 (Upper bound for the entropy when u is discrete [20]). Let u = ZIN= | Pilki be
a finite mixture of measures. Let p, = minj<;<y p;. Then for any f,

1 N
Entu<i = /}Agd fzd/,L,'> < m(él’i Var,L,-(f)—i—VarM(i — /Rdfd,u,')),

where A(p,q) = (p —q)/(log p —logq).

Remark 4. For discrete chains, much more general results are available for various definitions
of the discrete gradient appearing in the energy, see, for example, [12]. Unfortunately, we were
not able to relate these energies to the continuous one f IV fI?du.

Proof of Theorem 3.2. This follows from Corollary 2.18 of [20], using the result from [9]
instead of the alternate Lemma 2.13 of [20]. O

Coming back to the decomposition (3), we can use the Gaussian logarithmic Sobolev inequal-
ity on the first term and Theorem 3.2 on the second term to get:

Entyiay, (£7) <267 /R ) IV 1> du(x)

N
1
- pi Vary, (f) + Var <i+—>/ de,,-> :
A(P*,l—P*) (; l o g Rd "

The last bracket is the variance Var,.; (), which is bounded thanks to the Poincaré inequality.

1 < log(1

Since 55— < “F42 and p, < (1/N) < 1/3, we finally get

Crs(u * v5) <287 + 3log(1/p.)8* exp(4R?/87).

3.4. Dimension free transport-entropy inequality for the £4 norm

We now adapt the arguments of Section 3.1 to prove that the measure u x y;s satisfies a transport-
entropy inequality with a constant depending only on R and §. It is more convenient in this
section to state and prove all intermediate results for § = 1. In the final result, we come back to
the general case by an immediate scaling argument.

The first step is to establish a weighted version of the Poincaré inequality.



344 Bardet, Gozlan, Malrieu and Zitt

Lemma 3.3 (Weighted Poincaré inequality for Gaussian measures). For all x € R?, the
Gaussian measure yx 1 satisfies the following weighted Poincaré inequality: for all C U func-
tion f,

1

o (3; £ ) dye.1 (),

d
Vary, , (f) < c(1+1x) /R >
i=1

where c is a positive universal constant.

Proof. Let us first establish the result for the standard Gaussian distribution y = N'(0, 1) in di-
mension d = 1. According to the well known Muckenhoupt criterion for Hardy type inequalities
(see, e.g., Theorem 6.2.1 in [3]), the inequality

]

fo (Fu) = f©O) dy@w) <c /0 fl@?dy )

1 +u?

holds for all C! function f 110, 00) — R, with the constant

* —u?/2 Y 2\ u?/2
c=sup e du (l+u )e du < oo.
y>0Jy 0

Similarly, for any C! function f on (—oo0, 0], it holds

0

F@)?dy ).

0
/ (f@) = £O) dyw) <c f

00 oo 1+ u?

Therefore, if f is now C! function on IR, one has

1

o S dy ).

Vary(f)S/R(f(u)—f(O))zd)/(u)SC/R

Applying this inequality to f(#) = g(x +u), u € R, yields

Vary, (g) < C/R x)zg/(v)z dyx,1(v).

14+ (v —
Since 1 +v2 < 142w —x)2+2x2 <2(1 +x2)(1 + (x — v)?), the claim holds for the Gaussian
measure Yy, 1 in dimension 1.

To prove the general case, just remark that, for any x € R¢, ¥x.1 is the product of the (one
dimensional) measures yj ;. The classical tensorization property for Poincaré-type inequalities
yields

d
1
V(&) < 2emax(1-+7) [ 3y () a0,

1

which completes the proof. ]
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This result extends to mixture of Gaussian measures.
Proposition 3.4 (Weighted Poincaré inequality for % y|). Let u be a probability measure

on R? supported in B4(0, R). The probability j * ys satisfies the following weighted Poincaré
inequality: for all C' function f on R4,

d
1 2
Var,,, <C(R ——(0; f(u)) " d(u* u), 4
wan () = C( )/Rd,;m%(’f( ) d(ux y) @) 4)
with C(R) =c(1 + R2)e4R2 for some universal constant c.

Proof. According to Lemma 3.3, for all x € R such that |x| < R, it holds

1
l—i-ui2

d
Var,  (f) <c(1+ RZ)/RZ (8; £ W) dys.1 (w)
i=1

for all C! function f on R?. Inserting these weighted Poincaré inequalities into the proof given
in Section 3.1 immediately yields the desired bound. U

We now arrive at a first transportation-entropy inequality.

Theorem 3.5. Let ju be a probability measure on R? having its support in By (0, R). The prob-
ability u x yy satisfies the following transport-entropy inequality: for any probability measure v
onRY,

Te, wxy) < (1+ R*) exp(4R?)H Wl x y1),
where ¢’ is a universal constant and Ty, is the optimal transport cost related to the cost function

k(x, y) =min(lx — y/% [x — yl) +min(jx — ylII}, x = yI3),  Vx,yeR%

Before proving this result, let us show how to deduce Theorem 1.4 as a corollary. The Eu-
clidean and £* norms on R? satisfy:

VzeRY,  izlls <zl <d*)zlls
This gives the following lower bound on the cost k:
k(x, y) =min(jx — y[*; |x — yl) +min(jlxc = ylI3, llx = yII3)
> min(|lx — ylI3; Ilx — ylla) + min(llx — ylI3, Ix — y113)
> [lx — ylI3-
By Theorem 3.5 we get

Taa, w*xy1) < Te, pry1) <’ (1+ R*) exp(4R*) H (v|p * y1);
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where we recall that 7 4 is the transportation cost associated to (x, y) > |[lx — ylI*. The inequal-
ity for a general § follows by a simple scaling argument. The inequality for the Euclidean cost
7> is proved in the same way, by bounding k(x, y) from below by d~'/2|x — y|?. This concludes
the proof of Theorem 1.4.

Proof of Theorem 3.5. We proceed in two steps.
Step 1. A transport-entropy inequality with an intricate cost. Let us define three functions «,
w and T by

2
Yu e R, w(u):sign(u)<|u|+%>;

Yu eR, a(u) = min(u?; |ul);
VieRY, T =(oM),...,0x)).

According to Theorem 4.6 in [10], the weighted Poincaré inequality (4) implies (and is actually
equivalent to) the following transport cost inequality: for all probability measure v on R?,

Tr, wxy) < HW|p*ys),

where the cost function k is defined by
~ 1
k(x,y)=a<5|T(x)—T(y)|), Vx,y e R (5)

and where D = ¢”/C(R) for some universal constant ¢”.

For the sake of completeness, let us give the short proof of the implication we need. Let us
begin by showing that the measure [t := T#(u * 1) satisfies the usual Poincaré inequality with
the constant 2C (R). Indeed, if f is a C! function, applying the weighted Poincaré inequality (4)
to g = f o T and using the elementary bound (@ ()2 <21 +v?) yields:

d
1
Var (f) < C(R) / > - vzw’(viﬁ(aiff(T(v))d(u*m)(v)
i=1 i

<2C(R) / IV £I2 ) dji(u).

According to a well-known result by Bobkov, Gentil and Ledoux [5], Corollary 5.1 showing the
equivalence between the Poincaré inequality and a transport inequality involving a quadratic-
linear cost, the probability /i satisfies the following: for any probability measure v on RY,

Tov, 1) =HE|R),

where the cost function p : R x RY — R is defined by

1
p(x,y>=a<5|x —y|), x,y eR?,
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where D = ¢”/C(R) for some universal constant ¢”’. Let v be a probability measure on R? and
let (X, Y) be an optimal coupling between v := Tyv and fi (for the transport cost 7,) and denote
by X =7"'(X)and Y = T~1(Y). Then (X, Y) is a coupling between v and u + y; and it holds

E[k(X, V)] =E[p(T (X), T())] =E[p(X, )] =T, (5, 1) < HE|@) = H@l* y1),

where the last equality comes from the fact that if v < u » yq, then ¥ < i with

dv

—1 d
d(u*m)(T W),  VYueR"

v =
an=

This concludes the first step.

Step 2. A lower bound on the cost function k. We now bound & (x, y) from below by the more
convenient cost function k(x, y). According to Lemma 2.6 of [10], |o (u) —@ (v)| > o (Jju —v|/2),
for all u, v € R. Therefore, for all x, y in RY:

IT@) ~ T =Y o) — oG]
v\ 2
ZZU)(|XI 2y1|)
1 1 5\
:Z<§|xi_)’i|+g|xi_)’i| )

1 1
EZZ|xi_Yi|2+aZ|xi_)’i|4
1 l

> (L oy Lo
=3\t T TR YL )

Using the inequality «(au) > a(a)x(u) for all a, u € R ([10], Lemma 2.6) and the concavity
of the function u — a(4/u), u € R, this leads to the following bound on the cost function k:

1/2
k(x,y) > < ! (—1 lx —yI*+ ! llx — V||4) >
X, o X X
Y D32\ 2 Y 2 4

> %a(%mya(pc — ) +a(lx - y13)).

. . 1 " . .
) >
Fmally, 1t 1S easy to check that o 532) B for some universal constant ¢’”’, which Completes

the proof. (]

i
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Remark 5. If one could improve the conclusion in the result by Bobkov, Gentil, Ledoux and
conclude that f satisfies the transport inequality with the cost function

(xﬁ»}j( m—%>

instead of p, then one would conclude that p satisfies Talagrand’s inequality, with respect to the
Euclidean norm, with a dimension free constant.

4. Special cases and extensions

4.1. Spherically symmetric measures
We prove in this section the following claim of Theorem 1.5:

Theorem 4.1. If w is a spherically symmetric measure with support in B;(0, R), then u * ys
satisfies a logarithmic Sobolev inequality and

8 R2
QWMWK%%W<5J

Let us recall that p » s is the law of the random variable S = X 4 §Z. By assumption, the law
w of X is spherically symmetric, that is, invariant by any vectorial rotation of R“. Since Z has
the same invariance, this implies that the density p(z) of S only depends on the norm of z, thus
we can write:

d
1
p2) = p(lzler) / (2n82)d/2 p(—ﬁ<(|z|—x1)2+g x?))du(x1,x2,...,xd).
i=2

Denoting, for all » € R,

. 1 (2l —xD\ .
ps(r) = /R WGXP<—T> diti(x1)

the density of the convolution of ys with the first marginal fi; of the measure

d
1 1 5
mexp<—ﬁ ;xi ) dp(xy, x2, ..., xq),

one has p(z) = ps(Iz]).
Since the one-dimensional measure (i is supported in the interval [— R, R], the method from
Section 2.2 apply. Using Lemma 2.1, with 0 = 2Raj, we obtain a decomposition

—log(ps(r)) = we (r) + wp(r),
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where wy, : R — R is 1/(252)-convex and wp : R — R is bounded by 2(Ra1/8)2.

Since the measure f1] is symmetric, the function ps is even, so that w, and w;, constructed in
the proof of Lemma 2.1 are even too.

This entails a decomposition of p on R? as a sum

—log(p(2)) = Wo (2) + Wi (r)

by taking W, (z) = wes (|z]) and Wy (z) = wp(|z]). The function W, is of course bounded by
2(Ra; /5)2. We prove in Lemma 4.2 that W, is convex. The conclusion follows by the same
reasoning as in Section 2.2.

Lemma 4.2. Let w : R — R be a C?, even, and p-convex function. Then W : R? — R defined by
W(z) =w(|z]) forall z € R is also C* and p-convex.

Proof. Letus denote N (z) = |z|. For any z # 0, one computes

1
VN(Z) = mz,

1 |-
Hess N(z) = — | la — 7522 ).
|zl |z

By composition with w, one deduces, for any z # 0,

w/
W= 28D
|z]
w// z w/ z 1
Hess W(z) = (|2 DZZT + ) <Id — —ZZZT).
|z] |z] |z]

These two quantities converge respectively to 0 and w” (0)I; when z — 0. By a classical contin-
uation lemma, this implies that W is C> with VW (0) = 0 and Hess W (0) = w” (0)I.
w'(Iz])

By assumption, w”(|z]) > p for any z € R4, Furthermore, for any z # 0, NEE > p (since the
1

assumptions imply that 0 is a minimum of w). Finally, noting that zz” and (I; — WZZT) are the

orthogonal projections on Vect(z) and z*, one gets that Hess W (z) > pl, for any z € RY. (]

4.2. Dimension free log-Sobolev for § € (R/+/2, R)

The first item of Theorem 1.3 states that for § > R, the probability measure p * ys satisfies a
logarithmic Sobolev inequality with an explicit, dimension free, constant. In this section, we
improve on this result by proving the first point of Theorem 1.5.

The proof of the following result relies on the connections between functional inequalities
and concentration of measure inequalities. The well-known Herbst argument shows that the log-
arithmic Sobolev inequality implies a Gaussian concentration of measure phenomenon. More
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precisely, if 41 is a probability measure on R? satisfying the logarithmic Sobolev inequality with
a constant Cpg, then for any 1-Lipschitz function f : RY — R, it holds

u(fzm+n<e /s vi>0,

where m = f fdu (see, e.g., Theorem 5.3 of [13]). On the other hand, a recent result by E. Mil-
man [17] shows that conversely under some curvature assumptions a sufficiently strong Gaussian
concentration of measure inequality implies back the logarithmic Sobolev inequality. It appears
that in the range of parameters R/+/2 < § < R the measure 1 * y; is sufficiently concentrated to
apply Milman’s result.

Theorem 4.3. Suppose that R/ V2 <8 < R, then s satisfies a logarithmic Sobolev inequal-
ity with a constant depending only on R and § and not on d.

Proof. Let us examine the concentration properties of X + §Z where X and Z are independent
random variables with respective laws p and Ny (0, I). If f : R? - Risa 1-Lipschitz function,
then denoting by m = E[ f(X + §Z)], it holds for any t > 0

Pf(X+8Z)>=m+1]|=Ex[P[f(X +38Z) =m +1]X]]

<Ex [exp<—§[t +m—Ez[f(X +32)]]2+>},

where the second inequality follows from the concentration inequality satisfied by §Z (which is
for instance a consequence of the fact that y;s satisfies the logarithmic Sobolev inequality with
the constant 282). Now, for any x € B4(0, R),

Im —Ez[f(x +382)]| = [Ex[Ez[ f(X +82Z) — f(x +52)]]| <Ex[IX — xI] <2R.

Therefore Ez[ f(X + 8Z)] < 2R + m almost surely, hence
1
Plf(X+82)=m+1] < exp(—z—sz[t - 2R]2+>.

In particular, for any 0 < ¢ < 1, it holds

2R
e

On the other hand, the density of the law of X 4§ Z is of the form e~V with a function Vj such
that Hess Vs > 8% - ?—f = —«s. In this range of parameters, x5 > 0. According to Theorem 1.2 of

[17], as soon as 2% > %K(s (which means that R/§ < +/1 + ¢), the probability measure p satisfies

a Gaussian isoperimetric inequality, which in turn implies the logarithmic Sobolev inequality
with a constant depending only on the parameters ¢, R, §. (]

IP’[f(X—I—(SZ)Zm—I—t]fexp<—%t2>, vt >
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4.3. Dimension free log-Sobolev for log-convex functions
Recall the following results by Maurey.

Theorem 4.4 ([15], Theorem 3). Let X be a bounded random variable such that |X| < R a.s.
Then X satisfies the so called convex t-property:

E[eQ4R2f(X)]]E[e_f(X)] <1,
for any convex function f : R — R, where Qs f(x) = infycpa{f(y) + %}, s >0.

On the other hand, the Gaussian random variable § Z with law N (0, §1,) satisfies the follow-
ing T-property

R[22/ CDE[~/6D] <1,

for any function f : RY >R ([15], Theorem 2).
By the tensorization property of the convex t-property [15], one concludes that (X, § Z) satis-
fies the following t-property

E[eéﬂx,sm]E[e—ﬂx,sa] <1,

for any convex function f :R? x RY — R, where

~ 1 1
xp)=  inf ¥2) + 5 lx1 = il + 5 v — P
Q f(x1,x2) (y],yz)eRdXRd{f(yl Y2) + fega =il + gl — vl }

In particular, applying the inequality above to f(x, x2) = g(x1 + x2), and using the fact that

1 1
v — y11* + WP@ —y2|2} = mbﬂ +x2— %,

inf
yi+y=y| 16R2
with C(8, R) = 82 + 4R?, one concludes that X + §Z satisfies
E[¢QcsX+32)|E[~sX+2)] < |,

for any convex function g : R — R.
According to [11], this inequality is equivalent to the following transport type inequality

T2(v1,v2) <C @S, R)(Hilp*ys) + Halw*vs)),

for all probability measures vy, v on R?, where H (-|u » ys) denotes the relative entropy func-
tional and

Tawi,v) = inf  E[|X; —E[X2|X1]|2]-

X1~ X2~
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It is also shown in [11] that this transport inequality implies the following logarithmic Sobolev
inequality

Entu*ya(ef) < 8(52 +4R2) / |Vf|zefdu*y5,

for any convex function f : R¢ — R. This proves the fourth item of Theorem 1.5.
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