
Bernoulli 24(1), 2018, 316–332
DOI: 10.3150/16-BEJ878

Hitting probabilities for the Greenwood
model and relations to near
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We derive some properties of the Greenwood epidemic Galton–Watson branching model. Formulas for
the probability h(i, j) that the associated Markov chain X hits state j when started from state i ≥ j are
obtained. For j ≥ 1, it follows that h(i, j) slightly oscillates with varying i and has infinitely many accu-
mulation points. In particular, h(i, j) does not converge as i → ∞. It is shown that there exists a Markov
chain Y which is Siegmund dual to the chain X. The hitting probabilities of the dual Markov chain Y are
investigated.
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1. Introduction and results

Let N0 := {0,1, . . .}. Fix p ∈ (0,1) and let X = (Xk)k∈N0 be a Markov chain with state space N0
and lower left triangular transition matrix P = (pij )i,j∈N0 having binomial entries

pij =
(

i

j

)
pjqi−j , i, j ∈ N0, i ≥ j, (1)

where q := 1 − p. One may interpret Xk as the size of some population in generation k. At
each time step each individual survives (independently of the other individuals) with success
probability p. In the epidemics literature (see, for example, [1,7] or [22], page 78), this model
is known as the Greenwood model [9]. Obviously, pij = P(Ki = j), where Ki := ∑i

k=1 νk and
ν1, ν2, . . . are i.i.d. Bernoulli random variables with P(ν1 = 1) = p and P(ν1 = 0) = q . Thus,
X is a subcritical Bienaymé–Galton–Watson branching process with Bernoulli offspring distri-
bution qδ0 + pδ1. For general information on branching processes we refer the reader to [3,12]
and [14]. Note however that in the literature (see, for example, [3], page 3, [11], page 475, or
[12], page 5) the relatively simple situation without true branching when the offspring variable
ν1 satisfies P(ν1 ≤ 1) = 1 is often excluded. Alternatively, the model may be viewed as a game
where players throw coins. Players throwing heads (with probability q) are losers and have to
leave the game; those who throw tails (with probability p) remain in the game and flip their
coins again. The random variable Xk counts the number of remaining players in the game after
k rounds. A slight modification of this game, where rounds in which all remaining players throw
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heads are disregarded, is called the leader election model [5]. Clearly, the state 0 is absorbing.
For some information on the absorption time of the process X we refer the reader to the remark
after the proof of Proposition 1.1. Given the process starts in state i ∈ N0, the extinction proba-
bility is P(Xk = 0 for some k ∈ N0|X0 = i) = 1. More generally, we are interested in the hitting
probabilities

h(i, j) := P(Xk = j for some k ∈N0|X0 = i)

that the chain X, started with initially i ∈ N0 individuals, ever visits state j ∈ N0. Note that
(see, for example, Norris [18], page 145) the hitting probabilities h(i, j) are related to the Green
matrix G of the Markov chain X. Clearly, h(i, i) = 1 for all i and h(i, j) = 0 for all i < j , since
the transition matrix of the Markov chain X is lower left triangular. We can therefore assume
without loss of generality that i > j in the following proposition.

Proposition 1.1 (Hitting probabilities, part 1). For the Greenwood model with parameter p ∈
(0,1), the Markov chain X has hitting probabilities h(i,0) = 1, i ∈ N, and

h(i, j) = (
1 − pj

)(i

j

) i∑
k=j

(
i − j

k − j

)
(−1)k−j

1 − pk
, i, j ∈N, i > j. (2)

Proposition 1.1 is useful to compute h(i, j) for moderate values of i − j . It is reasonable to
ask how the hitting probability h(i, j) behaves when i becomes large. Formula (2) however does
not seem to be very helpful to answer this question directly. We therefore provide alternative
formulas for h(i, j), which will turn out to be useful to understand the behavior of h(i, j) as i

varies. For n ∈N let Mn denote the maximum of n i.i.d. geometric random variables G1, . . . ,Gn

with distribution P(G1 = k) = qpk−1, k ∈N.

Theorem 1.2 (Hitting probabilities, part 2). For the Greenwood model with parameter p ∈
(0,1), the Markov chain X has hitting probabilities

h(i, j) = (
1 − pj

)(i

j

) ∞∑
k=1

(
1 − pk

)i−j
pjk (3)

=
(

i

j

) ∞∑
k=1

((
1 − pk

)i−j − (
1 − pk−1)i−j )

pjk (4)

=
(

i

j

)
E

(
pjMi−j

)
, i, j ∈ N0, i > j. (5)

Remark. A formula for the generating function φj (z) := ∑∞
i=j+1 h(i, j)zi/i!, z ∈C, is provided

in (14). For some information on (hitting probabilities for) the more general class of θ -linear
fractional branching processes we refer the reader to the recent work [10].
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Let us now turn to the behavior of h(i, j) as i varies. In the literature, several examples of
Markov chains are known (see, for example, [8], pages 85–86, and [17], Theorem 1.1) where the
associated hitting probability h(i, j) converges as i → ∞.

Let us start with the following heuristics. Fix j ∈ N and define μ := − logp ∈ (0,∞). The sum
on the right-hand side in (3) is approximately equal to

∫ ∞
0 pjt (1 −pt)i−j dt = μ−1

∫ 1
0 xj−1(1 −

x)i−j dx = μ−1B(j, i − j +1), where B denotes the beta function. Multiplying with (1−pj )
(
i
j

)
it follows that h(i, j) can be roughly approximated by (1 − pj )

(
i
j

)
μ−1B(j, i − j + 1) =

μ−1(1 − pj )/j , a value which surprisingly does not depend on i anymore. It is hence tempt-
ing to conjecture that h(i, j) converges to μ−1(1 − pj )/j as i → ∞. The following corollary
shows that this is not the case for the Greenwood model. In fact (see the remark after the proof of
Corollary 1.3), h(i, j) slightly oscillates around the value μ−1(1 −pj )/j as i varies. The Green-
wood model therefore serves as a counterexample, where h(i, j) does not converge as i → ∞,
and the proof of this oscillating behavior is one of the main contributions of this article. For more
information on (near constancy) oscillation related to truncation of continuous random variables,
we refer the reader to Janson [15] and the references therein. Similar oscillatory effects are known
for the (expected) duration of the leader election algorithm (see, for example, Prodinger [20] or
Fill et al. [5], Theorem 2).

Corollary 1.3 (Asymptotic behavior of the hitting probabilities). Fix p ∈ (0,1) and j ∈ N.
For every α ∈ [0,1] there exists a subsequence (il)l∈N (depending on p, j and α) such that

lim
l→∞h(il, j) = 1

j !
∑
n∈Z

(
e−pn−α − e−pn−1−α )

pj(n−α) = 1

j !E
(
pj(Z−α)

)
,

where Z = Z(p,α) is an integer valued random variable with distribution function P(Z ≤ n) =
e−pn−α

, n ∈ Z. In particular, the sequence (h(i, j))i≥j has infinitely many accumulation points
and, hence, does not converge as i → ∞.

Remark (Discrete Gumbel distribution). Define μ := − logp ∈ (0,∞). If G is standard Gum-
bel distributed with distribution function x �→ e−e−x

, x ∈ R, then the truncated random variable
Z := �G/μ + α	 + 1 has distribution function P(Z ≤ n) = P(G < μ(n − α)) = e−e−μ(n−α) =
e−pn−α

, n ∈ Z, so the random variable Z in Corollary 1.3 has a kind of discrete Gumbel distri-
bution. Note that Z − α = �G/μ + α	 − α + 1 coincides with the random variable Xα studied
in Example 2.7 of [15] with c := 1/μ. If U is uniformly distributed on [0,1] and independent of

X := G/μ, then XU
d= X + U .

Proposition 1.4 (Resolvent). Let α ∈ (0,1). The resolvent Rα := (I −αP )−1 of the Greenwood
model is a lower left triangular matrix having entries

rα(i, j) =
(

i

j

) i∑
k=j

(
i − j

k − j

)
(−1)k−j

1 − αpk
, i, j ∈ N0, i ≥ j. (6)
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We now turn to the question of the existence of a Markov chain Y which is dual to the chain X.
Dual Markov processes often arise naturally when considering some random phenomenon for-
wards and backwards in time. Typical examples are for instance known from the physics lit-
erature on interacting particle systems and from mathematical population genetics. Duality has
been proven to be a powerful tool in order to analyze the underlying processes. For some gen-
eral information on duality of Markov processes, we refer the reader to the book of Liggett [16],
Chapter II, Section 3.

Recall that Ki := ∑i
k=1 νk , where ν1, ν2, . . . are i.i.d. Bernoulli random variables with P(ν1 =

1) = p and P(ν1 = 0) = q . For every j ∈ N0 the map i �→ P(Xk+1 ≤ j |Xk = i) = P(Ki ≤ j) is
non-increasing in i ∈ N0, that is, X is stochastically monotone. Moreover, the latter expression
tends to 0 as i → ∞. Via Siegmund duality [21] it follows that there exists a Markov chain
Y = (Yk)k∈N0 with state space N0 which is dual to X with respect to the duality kernel H :N2

0 →
{0,1} defined via H(i, j) := 1 if i ≤ j and H(i, j) := 0 otherwise. We have

P(Yk+1 ≥ i|Yk = j) = P(Xk+1 ≤ j |Xk = i) = P(Ki ≤ j), i, j ∈N0.

Thus, the chain Y has transition probabilities

πij := P(Yk+1 = j |Yk = i) = P(Yk+1 ≥ j |Yk = i) − P(Yk+1 ≥ j + 1|Yk = i)

= P(Kj ≤ i) − P(Kj+1 ≤ i) = P(Kj ≤ i,Kj+1 > i)
(7)

= P(Kj = i,Kj+1 = i + 1)

= P(Kj+1 = i + 1|Kj = i)P(Kj = i) = ppji =
(

j

i

)
pi+1qj−i , i, j ∈ N0.

Note that similar computations are also valid for more general stochastic processes (Kn)n∈N0

with state space N0 satisfying Kn+1 − Kn ∈ {0,1} for all n ∈ N0. For more details, we refer the
reader to the Appendix. Conditional on Yk = i, Yk+1 + 1 is Pascal distributed with parameters
i + 1 and p, i.e. Yk+1 + 1 counts the total number of trials in a Bernoulli sequence with success
parameter p until you have obtained i + 1 successes. The chain Y = (Yk)k∈N0 can be pathwise

constructed (see, for instance, [2], Example 9) from Y0 and a family {ν(k)
j : j ∈ N, k ∈ N0} of

independent and identically distributed (i.i.d.) Bernoulli variables with success parameter p via
the recursion Yk+1 := inf{j ∈ N0 : ν

(k)
1 + · · · + ν

(k)
j+1 > Yk}, k ∈ N0. The transition matrix � :=

(πij )i,j∈N0 of Y is upper right triangular. Note that E(Yk+1|Yk = i) = (i + 1)/p − 1 ≥ i for all
i ∈ N0. Thus, Y is a submartingale. Since the process Y does not jump downwards it returns
to the state i ∈ N0 in k steps with probability π

(k)
ii = πk

ii = (pi+1)k = p(i+1)k . In particular,∑∞
k=0 π

(k)
ii = 1/(1 − pi+1) < ∞. Thus, Y is transient. Again, we are interested in the hitting

probabilities

h̃(i, j) := P(Yk = j for some k ∈N0|Y0 = i), i, j ∈N0.

We call h̃(i, j) the dual hitting probabilities. Clearly, h̃(i, i) = 1 for all i and h̃(i, j) = 0 for all
i > j , since � is upper right triangular. We can therefore assume without loss of generality that
i < j . The following proposition provides formulas for h̃(i, j) for i < j .
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Theorem 1.5 (Hitting probabilities of the dual chain Y). For the Greenwood model with pa-
rameter p ∈ (0,1), the Siegmund dual Markov chain Y has hitting probabilities

h̃(i, j) = (
1 − pj+1)(j

i

) j∑
k=i

(
j − i

k − i

)
(−1)k−i

1 − pk+1
(8)

= (
1 − pj+1)(j

i

) ∞∑
k=1

p(i+1)k
(
1 − pk

)j−i (9)

=
(

j

i

) ∞∑
k=1

p(i+1)k
((

1 − pk
)j−i − (

p − pk
)j−i)

, i, j ∈ N0, i < j. (10)

Remark. A formula for the generating function ψi(z) := ∑∞
j=i+1 h̃(i, j)zj /j !, z ∈ C, is pro-

vided in (15).

In order to understand the behavior of h̃(i, j) as j varies let us start with the following heuris-
tics. The sum on the right-hand side in (9) is approximately equal to

∫ ∞
0 p(i+1)t (1 − pt)j−i dt =

μ−1
∫ 1

0 xi(1 − x)j−i dx = μ−1B(i + 1, j − i + 1). Thus, h̃(i, j) can be roughly estimated by

(1−pj+1)
(
j
i

)
μ−1B(i +1, j − i +1) = μ−1(1−pj+1)/(j +1). For large j a reasonable approx-

imation for h̃(i, j) is μ−1/j . A similar argument (see the remark after the proof of Corollary 1.6)
as provided for h(i, j) shows however that j h̃(i, j), seen as a function of j , oscillates around
μ−1. A precise statement is provided in the following corollary.

Corollary 1.6 (Asymptotics of the dual hitting probabilities). Fix p ∈ (0,1) and i ∈ N0. For
every β ∈ [0,1] there exists a subsequence (jl)l∈N (depending on p, i and β) such that

lim
l→∞ jlh̃(i, jl) = 1

i!
∑
n∈Z

e−pn−β

p(i+1)(n−β).

In particular, the sequence (j h̃(i, j))j≥i has infinitely many accumulation points and, hence,
does not converge as j → ∞.

We finish the results with the following proposition.

Proposition 1.7 (Resolvent of the dual chain Y). Let α ∈ (0,1). The resolvent R̃α := (I −
α�)−1 of the dual chain Y is an upper right triangular matrix with entries

r̃α(i, j) =
(

j

i

) j∑
k=i

(
j − i

k − i

)
(−1)k−i

1 − αpk+1
, i, j ∈ N0, i ≤ j.
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2. Proofs concerning the Markov chain X

Proof of Proposition 1.1. It is readily checked that the transition matrix P with entries (1) has
spectral decomposition P = RDL, where D is the diagonal matrix with entries dii := pi and
R = (rij )i,j∈N0 and L = (lij )i,j∈N0 have entries rij := (

i
j

)
and lij := (−1)i−j

(
i
j

)
.

The Markov chain X has Green matrix (see, for example, Norris [18], page 145) G =∑∞
n=0 P n = ∑∞

n=0(RDL)n = R(
∑∞

n=0 Dn)L. Thus, for i, j ∈ N with i ≥ j , the (i, j)-entry of
G is

g(i, j) =
i∑

k=j

rik

∞∑
n=0

dn
kklkj =

i∑
k=j

rik
1

1 − pk
lkj

=
i∑

k=j

(
i

k

)
1

1 − pk
(−1)k−j

(
k

j

)
=

(
i

j

) i∑
k=j

(
i − j

k − j

)
(−1)k−j

1 − pk
.

Multiplying g(i, j) with 1 − fj , where fj = pjj = pj is the return probability for j , we obtain
(see, for example, Norris [18], page 145) the formula for h(i, j) for i, j ∈ N with i ≥ j . Clearly,
h(i,0) = 1 for all i ∈N0, since the state 0 is absorbing. �

Remark (Absorption time). The spectral decomposition P = RDL used in the previous proof
is helpful to derive the distribution of the absorption time τn := inf{m ∈ N0 : Xm = 0,X0 =
n} of the Markov chain X. Since P m = (RDL)m = RDmL it follows that τn has distribu-
tion function P(τn ≤ m) = P(Xm = 0|X0 = n) = (P m)n0 = (RDmL)n0 = ∑n

k=0 rnkd
m
kklk0 =∑n

k=0

(
n
k

)
(pk)m(−1)k = (1 − pm)n, m ∈ N0. Thus, τn has the same distribution as the maximum

of n i.i.d. random variables G1, . . . ,Gn with distribution P(G1 = k) = qpk−1, k ∈ N, which is
also clear from the model, because Gi can be interpreted as the time of death of the ith indi-
vidual, 1 ≤ i ≤ n. Note that τn has mean E(τn) = ∑∞

k=0 P(τn > k) = ∑∞
k=0(1 − (1 − pk)n) ∼∫ ∞

0 (1 − (1 − pu)n)du = μ−1
∫ 1

0 (1 − (1 − x)n)/x dx = μ−1hn ∼ μ−1 logn as n → ∞, where
μ := − logp ∈ (0,∞) and hn := ∑n

i=1 1/i denotes the nth harmonic number, n ∈ N. For more
information on the (mean of the) maximum of n i.i.d. geometric random variables, we refer the
reader to [4].

More generally, for k ∈ {0, . . . , n}, let τnk := inf{m ∈ N0 : Xm ≤ k,X0 = n} denote the first
time the chain X, started in state n, jumps to a state smaller than or equal to k. Note that τn0 = τn.
For all m ∈N0,

P(τnk ≤ m) = P(Xm ≤ k|X0 = n) =
k∑

j=0

(
P m

)
nj

=
k∑

j=0

n∑
i=j

rnid
m
ii lij =

k∑
j=0

n∑
i=j

(
n

i

)(
pi

)m
(−1)i−j

(
i

j

)
(11)

=
k∑

j=0

(
n

j

)(
pm

)j
n∑

i=j

(
n − j

i − j

)(−pm
)i−j =

k∑
j=0

(
n

j

)(
pm

)j (1 − pm
)n−j

.
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Thus, τnk has distribution function P(τnk ≤ m) = P(Knm ≤ k), where Knm is binomially dis-
tributed with parameters n and pm. Clearly, limn→∞ P(τnk ≤ m) = 0 for all k,m ∈ N0. By
the central limit theorem, for large n the probability P(τnk ≤ m) can be approximated by
�((k−npm)/

√
npm(1 − pm)), where � denotes the distribution function of the standard normal

distribution.

Proof of Theorem 1.2. Two proofs are presented. The first proof exploits the formula (2) for the
hitting probability h(i, j) whereas the second proof is based on generating functions.

Alternative 1. Without loss of generality, assume that 1 ≤ j < i. Rewriting the sum on the
right-hand side of (2) as

i∑
k=j

(
i − j

k − j

)
(−1)k−j

1 − pk
=

i−j∑
l=0

(
i − j

l

)
(−1)l

1 − pl+j
=

i−j∑
l=0

(
i − j

l

)
(−1)l

∞∑
k=0

p(l+j)k

=
∞∑

k=0

pjk

i−j∑
l=0

(
i − j

l

)(−pk
)l =

∞∑
k=1

pjk
(
1 − pk

)i−j

it follows from (2) that

h(i, j) = (
1 − pj

)(i

j

) ∞∑
k=1

(
1 − pk

)i−j
pjk

=
(

i

j

) ∞∑
k=1

(
1 − pk

)i−j
pjk −

(
i

j

) ∞∑
k=1

(
1 − pk

)i−j
pj (k+1)

=
(

i

j

) ∞∑
k=1

(
1 − pk

)i−j
pjk −

(
i

j

) ∞∑
k=2

(
1 − pk−1)i−j

pjk

=
(

i

j

) ∞∑
k=1

((
1 − pk

)i−j − (
1 − pk−1)i−j )

pjk,

which is (4).
Alternative 2. The following proof is based on generating functions and does not make use

of (2). It exploits similar ideas as in [17]. For j ∈ N0 define the generating function φj : C → C

via φj (z) := ∑∞
i=j+1 h(i, j)zi/i!. Note that |φj (z)| ≤ ∑∞

i=j+1 |z|i/ i! ≤ e|z| < ∞. We have (see
Norris [18], page 13, Theorem 1.3.2)

φj (z) =
∞∑

i=j+1

h(i, j)
zi

i! =
∞∑

i=j+1

i∑
k=j

pikh(k, j)
zi

i! =
∞∑

i=j+1

pij

zi

i! +
∞∑

i=j+1

i∑
k=j+1

pikh(k, j)
zi

i! ,
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since h(j, j) = 1. The first sum on the right-hand side above reduces to

∞∑
i=j+1

pij

zi

i! =
∞∑

i=j+1

(
i

j

)
qi−jpj zi

i! = (pz)j

j !
∞∑

i=j+1

(qz)i−j

(i − j)! = (pz)j

j !
(
eqz − 1

)
.

Concerning the remaining part one may exchange the two sums and conclude that the remaining
part equals

∞∑
k=j+1

h(k, j)

∞∑
i=k

pik

zi

i! =
∞∑

k=j+1

h(k, j)
(pz)k

k!
∞∑
i=k

(qz)i−k

(i − k)! = φj (pz)eqz.

Thus, for each j ∈ N0, the generating function φj is a solution to the equation

φj (z) = (pz)j

j !
(
eqz − 1

) + eqzφj (pz), |z| < 1. (12)

This equation is of the form φj (z) = aj (z) + b(z)φj (pz) with aj (z) := (pz)j (eqz − 1)/j ! and
b(z) := eqz. Iteration leads to

φj (z) =
K∑

k=0

aj

(
pkz

) k−1∏
l=0

b
(
plz

) + φj

(
pK+1z

) K∏
l=0

b
(
plz

)
, |z| < 1,K ∈N0. (13)

For K = 0 equation (13) coincides with (12) and for arbitrary K ∈ N0 equation (13) is obtained
by induction on K . Letting K → ∞ in (13) and noting that φj (p

K+1z) → φj (0) = 0 as K → ∞
and that

K∏
l=0

b
(
plz

) =
K∏

l=0

eqplz = e
∑K

l=0 qplz = e(1−pK+1)z → ez

as K → ∞ leads to the solution

φj (z) =
∞∑

k=0

aj

(
pkz

) k−1∏
i=0

b
(
piz

) =
∞∑

k=0

(pk+1z)j

j !
(
eqpkz − 1

) k−1∏
i=0

eqpiz

= zj

j !
∞∑

k=0

pj(k+1)
(
eqpkz − 1

)
e(1−pk)z

(14)

= zj

j !
∞∑

k=0

pj(k+1)
(
e(1−pk+1)z − e(1−pk)z

)

= zj

j !
∞∑

k=1

pjk
(
e(1−pk)z − e(1−pk−1)z

)
.
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Replacing the exponentials by their power series expansions we obtain

φj (z) = zj

j !
∞∑

k=1

pjk
∞∑
l=1

((
1 − pk

)l − (
1 − pk−1)l)zl

l! .

The index transformation i = j + l leads to

φj (z) = 1

j !
∞∑

i=j+1

zi

(i − j)!
∞∑

k=1

pjk
((

1 − pk
)i−j − (

1 − pk−1)i−j )
.

Thus, the coefficient h(i, j) in front of zi/i! is given by (4). �

Proof of Corollary 1.3. Fix p ∈ (0,1) and j ∈ N and let μ := − logp ∈ (0,∞). For i ∈ N with
i > j define ai := μ−1 log(i − j) and let αi := ai − �ai	 denote the fractional (non-integer)
part of ai . Since ai → ∞ as i → ∞ and ai+1 − ai = μ−1 log(1 + 1/(i − j)) → 0 as i → ∞ it
follows that {αi : i = j + 1, j + 2, . . .} is dense in [0,1]. Thus, for every α ∈ [0,1] there exists a
subsequence (il)l∈N (depending on p, j and α) such that i1 < i2 < · · · and liml→∞ αil = α. By
Theorem 1.2,

h(il, j) =
(

il

j

) ∞∑
k=1

((
1 − pk

)il−j − (
1 − pk−1)il−j )

pjk.

Using the index transformation n := k − �ail	 = k + αil − ail and noting that pail =
(e−μ)μ

−1 log(il−j) = 1/(il − j), we obtain

h(il, j) =
(

il

j

) ∞∑
n=1−�ail

	

((
1 − pn−αil

il − j

)il−j

−
(

1 − pn−1−αil

il − j

)il−j)
pj(n−αil

)

(il − j)j
.

For l → ∞ this expression converges by dominated convergence to

1

j !
∞∑

n=−∞

(
e−pn−α − e−pn−1−α )

pj(n−α) = 1

j !E
(
pj(Z−α)

) =: f (α).

In order to verify that the function f is non-constant, we proceed as follows. Let G be standard
Gumbel distributed with distribution function x �→ e−e−x

, x ∈ R. Define X := G/μ and Xα :=
�X + α	 − α + 1 for all α ∈ [0,1]. It is readily checked that Z − α

d= Xα for all α ∈ [0,1]. By
Janson [15], page 1810, Example 2.7 (formula for E(etXα ) applied with c := 1/μ and t := −jμ)
the function f satisfies

f (α) = 1

j !E
(
pjXα

) = 1

j !E
(
e−jμXα

) =
∑
k∈Z

cke
2π ikα, α ∈ [0,1],
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with Fourier coefficients

ck := 1

j !
1 − pj

jμ − 2π ik

(1 + j − 2π ik/μ) = 1 − pj

j !μ 
(j − 2π ik/μ) �= 0, k ∈ Z.

Therefore, f cannot be constant because otherwise all Fourier coefficients ck , k ∈ Z \ {0}, would
vanish, which is not the case. From the non-constancy and the continuity of f , we conclude that
the image f ([0,1]) of f is a non-empty (closed) interval. It follows that the sequence (h(i, j))i≥j

has infinitely many accumulation points. In particular, h(i, j) does not converge as i → ∞. �

Example. For j = 1, p = 1/2 and α = 0 a possible subsequence is il = j + 2l = 1 + 2l , and
we have h(il,1) → E((1/2)Z) as l → ∞, where Z is an integer valued random variable with
distribution function P(Z ≤ n) = e−(1/2)n , n ∈ Z.

Remark. The function f occurring at the end of the previous proof takes in average the value∫ 1
0 f (α)dα = c0 = (1 − pj )/(jμ) showing that, for large i, the hitting probabilities h(i, j)

oscillate around (1 − pj )/(jμ) as i varies. Since |
(−it)| = |
(it)| = √
π/(t sinh(πt)) ∼√

2π/te−πt/2 as t → ∞, the Fourier coefficients ck decrease rapidly with increasing k. In fact
all Fourier coefficients ck , k ∈ Z \ {0}, are quite small in comparison to the leading Fourier coef-
ficient c0. The amplitude of the oscillation is hence rather small.

Remark. For a sequence (an)n∈N and 0 ≤ a < b ≤ 1 define In(a, b) := {k ∈ N : n − 1 + a <

ak ≤ n − 1 + b} and In := In(0,1) = {k ∈ N : n − 1 < ak ≤ n} for all n ∈ N. The sequence
(an)n∈N is said to have density f : [0,1] → R, if limn→∞ |In(a, b)|/|In| = ∫ b

a
f (x)dx for all

0 ≤ a < b ≤ 1.
Fix j ∈ N and μ ∈ (0,∞). For the particular sequence (an)n∈N used in the proof of Corol-

lary 1.3 defined via an := 0 for n ≤ j and an := μ−1 log(n−j) for n > j we have In(a, b) = {k >

j : μ(n − 1 + a) < log(k − j) ≤ μ(n − 1 + b)} = {k > j : j + eμ(n−1+a) < k ≤ j + eμ(n−1+b)}
for all sufficiently large n. Thus, |In(a, b)| = eμ(n−1+a) − eμ(n−1+b) + O(1) = eμ(n−1)(eμb −
eμa) + O(1) from which we conclude that

|In(a, b)|
|In| → eμb − eμa

eμ·1 − eμ·0 = eμb − eμa

eμ − 1

as n → ∞. Thus, the sequence (an)n∈N has density f (x) = μeμx/(eμ − 1), x ∈ [0,1], and
distribution function F(x) = (eμx − 1)/(eμ − 1), x ∈ [0,1].

The behavior is quite different for the sequence an := nα for some 0 < α < 1. In this case,
we still have an+1 − an ∼ αnα−1 → 0 as n → ∞, so the fractional parts of (an)n are still dense
in [0,1]. But |In(a, b)| = (n − 1 + b)1/α − (n − 1 + a)1/α + O(1) = (b − a)(1/α)n1/α−1 +
o(n1/α−1), from which we conclude that (an)n has density f (x) = 1, x ∈ [0,1], so (an)n is
uniformly distributed on [0,1].

Proof of Proposition 1.4. From the spectral decomposition P = RDL used in the proof of
Proposition 1.1 it follows that Rα = (I −αP )−1 = ∑∞

k=0 αkP k = R(
∑∞

k=0 αkDk)L = RD(α)L,
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where D(α) is the diagonal matrix with diagonal entries dii(α) := ∑∞
k=0(αdii)

k = 1/(1 −
αdii) = 1/(1 − αpi), i ∈N0. Thus, for all i, j ∈N0 with i ≥ j ,

rα(i, j) =
i∑

k=j

rikdkk(α)lkj =
i∑

k=j

(
i

k

)
1

1 − αpk
(−1)k−j

(
k

j

)
=

(
i

j

) i∑
k=j

(
i − j

k − j

)
(−1)k−j

1 − αpk
,

which is (6). �

3. Proofs concerning the dual Markov chain Y

Proof of Theorem 1.5. A straightforward computation shows that the transition matrix � with
entries (7) has spectral decomposition � = R̃D̃L̃, where D̃ is the diagonal matrix with entries
d̃ii := pi+1, i ∈ N0, and R̃ := (r̃ij )i,j∈N0 and L̃ := (l̃ij )i,j∈N0 have entries r̃ij := (−1)j−i

(
j
i

)
and l̃ij := (

j
i

)
. Now proceed as in the proof of Proposition 1.1, which yields the formula (8) for

h̃(i, j).
Two proofs of (9) and (10) are now provided. The first proof uses (8). The second proof is

based on generating functions and does not make use of (8). Since both proofs are almost the
same as those provided for Theorem 1.2, only the key ideas and main steps are provided.

Alternative 1. Performing in the sum on the right-hand side of (8) the index transformation
l = k − i, making use of 1/(1 −pl+i+1) = ∑∞

k=0 p(l+i+1)k and interchanging afterwards the two

sums
∑j−i

l=0 and
∑∞

k=0 shows that (8) equals (9). Moreover, (10) is equal to (9), since

(
1 − pj+1) ∞∑

k=1

p(i+1)k
(
1 − pk

)j−i

=
∞∑

k=1

p(i+1)k
(
1 − pk

)j−i −
∞∑

k=1

p(i+1)(k+1)pj−i
(
1 − pk

)j−i

=
∞∑

k=1

((
1 − pk

)j−i − (
p − pk

)j−i)
p(i+1)k.

Alternative 2. For i ∈N0 and z ∈ C consider

ψi(z) :=
∞∑

j=i+1

h̃(i, j)
zj

j ! =
∞∑

j=i+1

j∑
k=i

πikh̃(k, j)
zj

j ! =
∞∑

j=i+1

πij

zj

j ! +
∞∑

j=i+1

j−1∑
k=i

πikh̃(k, j)
zj

j ! .

Using πij = (
j
i

)
pi+1qj−i it is readily checked that

∑∞
j=i+1 πij z

j /j ! = pi+1zi(eqz − 1)/i! =:
ai(z). Interchanging the two sums the other part reduces to

∑∞
k=i πik

∑∞
j=k+1 h̃(k, j)zj /j ! =
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∑∞
k=i πikψk(z). Thus, ψi(z) = ai(z) + ∑∞

k=i πikψk(z). Therefore, for z,u ∈C,

ψ(z,u) :=
∞∑
i=0

ψi(z)u
i =

∞∑
i=0

(
ai(z) +

∞∑
k=i

πikψk(z)

)
ui =

∞∑
i=0

ai(z)u
i +

∞∑
k=0

ψk(z)

k∑
i=0

πiku
i .

Since
∑∞

i=0 ai(z)u
i = (eqz − 1)pepzu =: a(z,u) and

∑k
i=0 πiku

i = ∑k
i=0

(
k
i

)
pi+1qk−iui =

p(pu + q)k it follows that ψ(z,u) = (eqz − 1)pepzu + ∑∞
k=0 ψk(z)p(pu + q)k = a(z,u) +

pψ(z,pu+q). Iteration gives ψ(z,u) = ∑K−1
k=0 pka(z,pku+1−pk)+pKψ(z,pKu+1−pK),

K ∈N. Letting K → ∞ and noting that |ψ(z,1)| < ∞ yields ψ(z,u) = ∑∞
k=0 pka(z,pku+1−

pk). Plugging in a(z,pku + 1 − pk) = p(eqz − 1)epz(pku+1−pk) = p(eqz − 1)epk+1zuepze−pk+1z

leads to the solution

ψ(z,u) = (
eqz − 1

)
epz

∞∑
k=0

pk+1epk+1zue−pk+1z

= (
ez − epz

) ∞∑
k=0

pk+1epk+1zue−pk+1z

=
∞∑

k=0

pk+1epk+1zu
(
e(1−pk+1)z − e(p−pk+1)z

)

=
∞∑

k=1

pkepkzu
(
e(1−pk)z − e(p−pk)z

)
.

Series expansion epkzu = ∑∞
i=0 pik(zu)i/i! yields

ψ(z,u) =
∞∑
i=0

(zu)i
/
i!

∞∑
k=1

p(i+1)k
(
e(1−pk)z − e(p−pk)z

)
,

from which it follows that the coefficient ψi(z) = [ui]ψ(z,u) in front of ui is

ψi(z) = zi

i!
∞∑

k=1

p(i+1)k
(
e(1−pk)z − e(p−pk)z

)
. (15)

Further series expansion e(1−pk)z −e(p−pk)z = ∑∞
j=i+1((1−pk)j−i −(p−pk)j−i )zj−i/(j − i)!

shows that the coefficient h̃(i, j) = j ![zj ]ψi(z) is given by (10). �

Remark (Distributional equality of waiting times). For k,n ∈ N0 with k ≤ n let σkn := inf{m ∈
N0 : Ym ≥ n,Y0 = k} denote the first time the chain Y , started in state k, jumps to a state larger
than or equal to n. By Siegmund duality, for all m ∈ N0, P(σkn ≤ m) = P(Ym ≥ n|Y0 = k) =
P(Xm ≤ k|X0 = n) = P(τnk ≤ m). Thus σkn has the same distribution as τnk (see the remark after
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the proof of Proposition 1.1). In particular, σn := σ0n has the same distribution as the absorption

time τn := τn0 of the Markov chain X started at X0 = n. The spectral decomposition � = R̃D̃L̃

used at the beginning of the proof of Theorem 1.5 shows that σkn has distribution function

P(σkn ≤ m) = P(Ym ≥ n|Y0 = k) =
∞∑

j=n

(
�m

)
kj

=
∞∑

j=n

(
R̃D̃mL̃

)
kj

=
∞∑

j=n

j∑
i=k

r̃ki d̃
m
ii l̃ij =

∞∑
j=n

j∑
i=k

(−1)i−k

(
i

k

)(
pi+1)m

(
j

i

)
(16)

= (
pm

)k+1
∞∑

j=n

(
j

k

) j∑
i=k

(
j − k

i − k

)(−pm
)i−k

= (
pm

)k+1
∞∑

j=n

(
j

k

)(
1 − pm

)j−k
, m ∈N0.

That (16) coincides with (11) follows either from the Siegmund duality stated at the beginning
of this remark or alternatively from equation (18) in the Appendix with p replaced by pm.

Proof of Corollary 1.6. We proceed as in the proof of Corollary 1.3. Fix p ∈ (0,1) and i ∈ N0

and let μ := − logp ∈ (0,∞). For j > i define bj := μ−1 log(j − i) and put βj := bj − �bj	.
Since bj → ∞ as j → ∞ and bj+1 − bj = μ−1 log(1 + 1/(j − i)) → 0 as j → ∞ it follows
that {βj : j = i + 1, i + 2, . . .} is dense in [0,1]. Thus, for every β ∈ [0,1] there exist integers
j1 < j2 < · · · such that liml→∞ βjl

= β . By Theorem 1.5, h̃(i, jl) = (1 − pjl+1)
(
jl

i

)∑∞
k=1(1 −

pk)jl−ip(i+1)k . Using the index transformation n := k − �bjl
	 = k + βjl

− bjl
and noting that

pbjl = (e−μ)μ
−1 log(jl−i) = 1/(jl − i) we obtain

h̃(i, jl) = (
1 − pjl+1)(jl

i

) ∞∑
n=1−�bjl

	

(
1 − pn−βjl

jl − i

)jl−i
p(i+1)(n−βjl

)

(jl − i)i+1
.

This expression, multiplied with jl , tends by dominated convergence to liml→∞ jlh̃(i, jl) =
(1/i!)∑

n∈Z e−pn−β
p(i+1)(n−β) =: g(β). Note that g(β) is defined for all β ∈ R and g : R → R

is 1-periodic. It is easy to see that g is continuously differentiable. Clearly, g has Fourier coeffi-
cients

ck :=
∫ 1

0
g(β)e−2π ikβ dβ = 1

i!
∑
n∈Z

∫ 1

0
e−pn−β

p(i+1)(n−β)e−2π ikβ dβ, k ∈ Z.
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Using the substitution x := pn−β and noting that dβ/dx = c/x with c := 1/μ and that e−2π ikβ =
e−2π ik(n+c logx) = x−2π ikc it follows that

ck = c

i!
∑
n∈Z

∫ pn−1

pn

e−xxi−2π ikc dx = c

i!
∫ ∞

0
e−xxi−2π ikc dx

= c

i!
(i + 1 − 2π ikc) �= 0, k ∈ Z.

Since g is continuously differentiable the Fourier series β �→ ∑
k∈Z cke

2π ikβ coincides with g.
As in the proof of Corollary 1.3 it follows that the image g([0,1]) is a non-empty interval.
Thus, (j h̃(i, j))j≥i has infinitely many accumulation points and j h̃(i, j) does not converge as
j → ∞. �

Remark. The function g occurring at the end of the previous proof takes in average the value∫ 1
0 g(β)dβ = c0 = 1/μ showing that, for large j , the values j h̃(i, j) oscillate around 1/μ as j

varies. The same argument as already used in the first remark after the proof of Corollary 1.3
shows that the Fourier coefficients ck decrease rapidly with increasing k and that the amplitude
of the oscillation is rather small.

Proof of Proposition 1.7. Proceeding in the same way as in the proof of Proposition 1.4, but
with the spectral decomposition � = R̃D̃L̃, we obtain for all i, j ∈ N0 with i ≤ j

r̃α(i, j) =
j∑

k=i

r̃ikd̃kk(α)l̃kj =
j∑

k=i

(−1)k−i

(
k

i

)
1

1 − αpk+1

(
j

k

)

=
(

j

i

) j∑
k=i

(
j − i

k − i

)
(−1)k−i

1 − αpk+1
.

�

Appendix

The following lemma provides a formula for a particular class of stochastic processes K =
(Kn)n∈N0 with state space N0 satisfying Kn+1 − Kn ∈ {0,1} for all n ∈ N0. Such processes
arise for example, in the Chinese restaurant process (see, for example, [19]), where Kn counts
the number of occupied tables after the nth customer has entered the restaurant. Other applica-
tions stem from population genetics, where Kn is the number of types in a sample of size n taken
from a population consisting of individuals of different types. The lemma is useful to derive
combinatorial identities, as indicated in the examples afterwards.

Lemma A.1. Suppose that K = (Kn)n∈N0 is a stochastic process with state space N0 satisfying
Kn+1 − Kn ∈ {0,1} for all n ∈ N0. Then, for all n, k ∈ N0,

P(Kn ≤ k) − lim
N→∞P(KN ≤ k) =

∞∑
j=n

P(Kj = k,Kj+1 = k + 1). (17)
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Proof. From Kj+1 − Kj ∈ {0,1} for all j ∈ N0 we conclude that P(Kj ≤ k) − P(Kj+1 ≤
k) = P(Kj ≤ k,Kj+1 > k) = P(Kj = k,Kj+1 = k + 1) for all j, k ∈ N0. For all n, k ∈ N0 it
follows by summation over all j ≥ n that

∑∞
j=n P(Kj = k,Kj+1 = k + 1) = ∑∞

j=n(P(Kj ≤
k) − P(Kj+1 ≤ k)) = P(Kn ≤ k) − limN→∞ P(KN ≤ k). �

In the following three examples are provided. The first example is related to the Greenwood
model, the other examples are related to (generalized) Stirling numbers and Chinese restaurant
processes and are hence of independent interest. In the first and second example, the chain K is
time-homogeneous whereas in the third example K is in general time-inhomogeneous.

Examples.

1. Let p ∈ (0,1]. If K = (Kn)n∈N0 is the Markov chain with initial state K0 := 0 moving one
step to the right with probability p and staying where it is with probability q := 1 − p, then
Kn is binomially distributed with parameters n and p. The chain K is transient, since p > 0. In
particular, limN→∞ P(KN ≤ k) = 0 for all k ∈ N0. Thus, (17) reduces to

k∑
j=0

(
n

j

)
pjqn−j = pk+1

∞∑
j=n

(
j

k

)
qj−k, n ∈ N, k ∈N0. (18)

Note that (18) is essentially a combinatorial reformulation of the Siegmund duality of the chains
X and Y studied in this article, as pointed out in the remark around (16).

2. Fix N ∈N. Suppose that K = (Kn)n∈N0 is a Markov chain with initial state K0 := 0 which
moves from state k ∈ {0, . . . ,N} to state k + 1 with probability 1 − k/N and stays in state k

with probability k/N . In this case, Kn counts the number of non-empty boxes when n balls
are allocated randomly and independently to N boxes. One may also interpret Kn as follows.
Imagine a restaurant having N tables each of infinite capacity. Customers successively enter
the restaurant. Each customer chooses randomly one of the N tables and takes place at this
table. Then Kn is the number of occupied tables after the nth customer has been seated. The
states 0, . . . ,N − 1 are transient, the state N is absorbing and the chain K never moves to a
state above N . It is known and easily checked by induction on n ∈ N0 that Kn has distribution
P(Kn = k) = N−n(N)kS(n, k), k ∈ N0, where (N)0 := 1, (N)k := N(N − 1) · · · (N − k + 1)

for k ∈ N, and S(·, ·) denote the Stirling numbers of the second kind. Since all states k < N are
transient we have limN→∞ P(KN ≤ k) = 0 for k < N and from (17) we conclude that

1

Nn

k∑
j=0

(N)jS(n, j) = (N)k

(
1 − k

N

) ∞∑
j=n

S(j, k)

Nj
, n ∈N0,0 ≤ k < N. (19)

3. Fix 0 ≤ a ≤ b ≤ 1 and θ1, θ2 ∈R with 0 < θ1 ≤ θ2. Define r := θ2 − θ1. Let K = (Kn)n∈N0

be a (in general time-inhomogeneous) Markov chain with K0 := 0 and the following transition
probabilities. Given the chain is at time n ∈N0 in state k ∈ {0, . . . , n} it moves to state k + 1 with
probability pk(n) := (θ1 + ak)/(θ2 + bn) and stays in state k with probability 1 − pk(n). Note
that 0 < pk(n) ≤ 1 for 0 ≤ k ≤ n. Exploiting the recursion S(n + 1, k) = S(n, k − 1) + (bn −
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ak + r)S(n, k) for the generalized Stirling numbers S(n, k) := S(n, k;−b,−a, r) as defined in
Hsu and Shiue [13] it follows by induction on n ∈N0 that Kn has distribution

P(Kn = k) = [θ1|a]k
[θ2|b]n S(n, k;−b,−a, r), k ∈ N0, (20)

where [x|y]0 := 1 and [x|y]n := ∏n−1
j=0(x + jy) for x, y ∈ R and n ∈ N. Clearly, (20) holds for

n = 0, since K0 = 0. The induction step from n ∈ N0 to n + 1 reads

P(Kn+1 = k) = pk−1(n)P(Kn = k − 1) + (
1 − pk(n)

)
P(Kn = k)

= θ1 + a(k − 1)

θ2 + bn

[θ1|a]k−1

[θ2|b]n S(n, k − 1) + bn − ak + r

θ2 + bn

[θ1|a]k
[θ2|b]n S(n, k)

= [θ1|a]k
[θ2|b]n+1

(
S(n, k − 1) + (bn − ak + r)S(n, k)

) = [θ1|a]k
[θ2|b]n+1

S(n + 1, k).

From (17), we obtain the duality relation

1

[θ2|b]n
k∑

j=0

[θ1|a]j S(n, j ;−b,−a, r)

(21)

= [θ1|a]k+1

∞∑
j=n

S(j, k;−b,−a, r)

[θ2|b]j+1
, n, k ∈N0.

For a = 0, b = 1 and θ1 = θ2 =: θ the Stirling numbers S(n, k;−1,0,0) coincide (see, for exam-
ple, [13], page 368) with the usual unsigned Stirling numbers |s(n, k)| of the first kind and (21)
implies that

1


(θ + n)

k∑
j=0

θj
∣∣s(n, j)

∣∣ = θk+1
∞∑

j=n

1


(θ + j + 1)

∣∣s(j, k)
∣∣, n, k ∈N0, θ > 0. (22)

The combinatorial identity (22) is equivalent (see [6], Section 4) to the Siegmund duality of the
block counting process and the fixation line of the Poisson–Dirichlet coalescent.
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