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Consider a finite system of competing Brownian particles on the real line. Each particle moves as a Brow-
nian motion, with drift and diffusion coefficients depending only on its current rank relative to the other
particles. We find a sufficient condition for a.s. absence of a total collision (when all particles collide) and
of other types of collisions, say of the three lowest-ranked particles. This continues the work of Ichiba,
Karatzas and Shkolnikov [Probab. Theory Related Fields 156 (2013) 229–248] and Sarantsev (2016).
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1. Introduction

1.1. A brief preview of results

We start by describing the concept of competing Brownian particles informally. A formal defini-
tion is postponed until the next section.

Consider N Brownian particles on the real line. Suppose the particle which is currently the
kth leftmost one (we say: has rank k), moves as a Brownian motion with drift coefficient gk and
diffusion coefficient σ 2

k . In other words, the behavior of a particle depends on its current rank
relative to other particles. This is called a system of competing Brownian particles.

A caveat: if two or more particles occupy the same position at the same time, how do we
resolve ties, that is, assign ranks to these particles? We can use the following “lexicographic”
rule: particles Xi with smaller indices i get smaller ranks.

Let Xk = (Xk(t), t ≥ 0), k = 1, . . . ,N , be these particles. Let W1, . . . ,WN be i.i.d. Brownian
motions. Then the particles X1, . . . ,XN are governed by the following SDE:

dXi(t) =
N∑

k=1

1(Xi has rank k at time t)
(
gk dt + σk dWi(t)

)
. (1.1)

Let Yk(t) be the one of these N particles which has rank k at time t . The processes Xi, i =
1, . . . ,N , are called named particles, and Yk, k = 1, . . . ,N , are called ranked particles. If
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Xi(t) = Yk(t), we say that the corresponding particle at time t has name i and rank k. By defini-
tion, the ranked particles satisfy

Y1(t) ≤ Y2(t) ≤ · · · ≤ YN(t), t ≥ 0. (1.2)

Weak existence and uniqueness in law for these systems were proved in [3]. Some motivation for
studying these systems is provided later in the Introduction.

This article is devoted to collisions of competing Brownian particles. Let us exhibit some
results proved in this paper; they are corollaries of general theorems from Section 2. Suppose,
for the sake of simplicity, that we have N = 4 competing Brownian particles. We shall present
some results, and explain how they are related to the paper [64].

Theorem 1.1. If the following conditions⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

9σ 2
1 ≤ 7σ 2

2 + 7σ 2
3 + 7σ 2

4 ;
3σ 2

1 ≤ 5σ 2
2 + σ 2

3 + σ 2
4 ;

3σ 2
1 + 3σ 2

4 ≤ 5σ 2
2 + 5σ 2

3 ;
3σ 2

4 ≤ σ 2
1 + σ 2

2 + 5σ 2
3 ;

9σ 2
4 ≤ 7σ 2

1 + 7σ 2
2 + 7σ 2

3 ,

hold, then a.s. there does not exist t > 0 such that

Y1(t) = Y2(t) = Y3(t) = Y4(t). (1.3)

Moreover, a.s. there does not exist t > 0 such that

Y1(t) = Y2(t) and Y3(t) = Y4(t). (1.4)

Theorem 1.2. If the five inequalities from Theorem 1.1 together with

σ 2
2 ≥ 1

2

(
σ 2

1 + σ 2
3

)
hold, then a.s. there does not exist t > 0 such that

Y1(t) = Y2(t) = Y3(t). (1.5)

Similar statements (but with other inequalities involving σ 2
k , k = 1, . . . ,N ) can be stated for

any N = 5,6, . . . , and for any type of collision between Y1, . . . , YN . We also have the following
statement for N = 4; however, in this case we did not find any specific generalizations for this
result in cases N ≥ 5.

Theorem 1.3. With N = 4, if the following condition holds:

σ 2
1 + σ 2

4 ≤ σ 2
2 + σ 2

3 , (1.6)
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then a.s. there are no t > 0 such that (1.3) and (1.4) hold.

1.2. Relation to previous results from the paper [64]

The results of this paper complement the main result of the companion paper [64]. Let us discuss
the relation between these two papers.

Definition 1. A triple collision at time t occurs if there exists a rank k = 2, . . . ,N − 1 such that
Yk−1(t) = Yk(t) = Yk+1(t). A simultaneous collision at time t occurs if there are ranks k �= l

such that such that Yk(t) = Yk+1(t), Yl(t) = Yl+1(t).

Note that a triple collision is a particular case of a simultaneous collision. One motivation for
studying triple collisions is that a strong solution to SDE (2.1) is known to exist and be unique
up to the first moment of a triple collision: this was proved in [34]. The question of whether
a classical system of competing Brownian particles a.s. avoids triple collisions was studied in
[33,34], with significant partial results obtained. In our companion paper [64], the following
necessary and sufficient condition was found.

Proposition 1.4. A system of N competing Brownian particles has a.s. no triple collisions and
no simultaneous collisions at any time t > 0, if and only if the sequence (σ 2

1 , . . . , σ 2
N) is concave,

that is,

1

2

(
σ 2

k−1 + σ 2
k+1

) ≤ σ 2
k , k = 2, . . . ,N − 1. (1.7)

If the condition (1.7) is violated for some k = 2, . . . ,N − 1, then with positive probability there
exists t > 0 such that Yk−1(t) = Yk(t) = Yk+1(t).

An interesting corollary: If there are a.s. no triple collisions at any time t > 0, then there are
a.s. no simultaneous collisions at any time t > 0.

We call the condition (1.7) global concavity, as opposed to local concavity at rank j , with just
one inequality:

1

2

(
σ 2

j−1 + σ 2
j+1

) ≤ σ 2
j .

Thus, if there is no local concavity at k, then with positive probability there is a triple collision
between Yk−1, Yk and Yk+1. However, we do not know whether the converse is true: if there is
local concavity at k, then there are a.s. no triple collisions between Yk−1, Yk , Yk+1.

Proposition 1.4 is a condition to avoid all possible triple collisions. If we are interested in
avoiding only an individual triple collision, such as

Y1(t) = Y2(t) = Y3(t),

we can get another sufficient condition for this: see Theorem 1.2 above. This condition is not
stronger than (1.7): we can find diffusion parameters, say

σ 2
1 = σ 2

2 = σ 2
4 = 1, σ 2

3 = 0.9,
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which satisfy the conditions in Theorem 1.2, but do not satisfy (1.7). In this case, there are no
triple collisions of the type

Y1(t) = Y2(t) = Y3(t),

and no simultaneous collisions of the type

Y1(t) = Y2(t), Y3(t) = Y4(t),

but with positive probability there are triple collisions of the type

Y2(t) = Y3(t) = Y4(t).

We can take

σ 2
1 = σ 2

4 = 1, σ 2
2 = σ 2

3 = 0.9.

Then local concavity fails at ranks 2 and 3. Therefore, with positive probability there exists a
triple collision between ranked particles Y1, Y2, and Y3, and with positive probability there exists
a triple collision between ranked particles Y2, Y3, and Y4. However, the five inequalities (2.8) are
satisfied. Therefore, there are no simultaneous collisions of the type

Y1(t) = Y2(t), Y3(t) = Y4(t).

It was noted in [64], Corollary 1.3, that if there are a.s. no triple collisions, then there are a.s. no
simultaneous collisions. As we see in this example, it is possible to find diffusion coefficients so
that the system avoids simultaneous collisions of the type (1.4), but exhibits triple collisions with
positive probability.

Also, the collision as in (1.3) is stronger than a triple or a simultaneous collision.

1.3. Outline of the proofs

The main results of this paper are Theorems 2.3 and 2.4. Theorems 1.1 and 1.2, along with other
examples in Section 2, are corollaries of these two results. Theorems 2.3 and 2.4 are proved in
Sections 3 and 4. Let us give a brief outline of the proofs.

Consider the gaps between the consecutive ranked particles:

Z1(t) = Y2(t) − Y1(t), . . . ,ZN−1(t) = YN(t) − YN−1(t), 0 ≤ t < ∞.

These form an (N − 1)-dimensional process in R
N−1+ , which is called the gap process and is

denoted by Z = (Z(t), t ≥ 0). It turns out that Z is a particular case of a well-known process,
which is called a semimartingale reflected Brownian motion (SRBM) in a positive multidimen-
sional orthant. We discuss this relationship in Section 4.2.

Let us informally describe the concept of an SRBM; a formal definition is given in Section 3.1.
Fix the dimension d ≥ 1, and let R+ := [0,∞) be the positive half-axis. Let S = R

d+ be the d-
dimensional positive orthant. Fix a drift vector μ ∈ R

d , a d × d reflection matrix R and another
d ×d covariance matrix A. An SRBM in the orthant S with these parameters R,μ,A is a Markov
process which:
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(i) behaves as a d-dimensional Brownian motion with drift vector μ and covariance matrix
A in the interior of the orthant S;

(ii) at each face Si := {x ∈ S|xi = 0}, i = 1, . . . , d , this process is reflected in the direction of
ri , which is the ith column of R.

If ri = ei , where ei is the ith vector from the standard basis in R
d , then this reflection is called

normal; otherwise, it is called oblique. This process is denoted by SRBMd(R,μ,A). The survey
[71] provides a good overview of this process. More information and citations concerning an
SRBM are provided in Section 3.1.

The parameters R, μ and A of the SRBM which is the gap process depend on gn,σn,n =
1, . . . ,N , see Section 4.2, equations (4.2), (4.4) and (4.3).

Let us return to the examples above. Consider a system of N = 4 competing Brownian par-
ticles. A collision of the type (1.3) is equivalent to Z1(t) = Z2(t) = Z3(t) = 0, that is, to the
process Z hitting the corner of the orthant R3+ at time t . A collision of the type (1.4) is equivalent
to Z1(t) = Z3(t) = 0, that is, to the process of gaps Z hitting the edge {x ∈ R

3+|x1 = x3 = 0} of
the boundary ∂R3+ of the orthant R3+. Similarly, we can rewrite other types of collisions in terms
of the gap process.

In Section 3, we obtain results concerning an SRBM a.s. avoiding corners or edges. In The-
orem 3.4, we find a sufficient condition for an SRBMd(R,μ,A) to a.s. avoid the corner of the
orthant S = R

d+. In Theorem 3.8, we find a sufficient condition for an SRBMd(R,μ,A) to a.s.
avoid the “edge”

SI := {x ∈ S|xi = 0, i ∈ I }
of a given subset I ⊆ {1, . . . , d}. This is done by reducing the property of avoiding an edge to
the property of avoiding a corner, and allows us to find a sufficient condition for a.s. avoiding an
edge SI ; see Corollary 3.14.

In Section 4, we find the relationship between the parameters of an SRBM and the parameters
of the system of competing Brownian particles, see (4.2), (4.3) and (4.4). Then we apply results
of Section 3 to finish the proofs of Theorems 2.3 and 2.4.

1.4. Motivation

Systems of competing Brownian particles are used in Stochastic Finance: the process(
eX1(t), . . . , eXN(t)

)′ (1.8)

can be viewed as a stock market model, see [1]. Here, eXi(t) is the capitalization of the ith stock
at time t ≥ 0. In real world, stocks with smaller capitalizations have the following property:
logarithms of their capitalizations have larger drift coefficients (which in financial terminology
are called growth rates) and larger diffusion coefficients (which are called volatilities) than that
of stocks with larger capitalizations. It is easy to construct a model (1.8) which captures this
property: just let

g1 > g2 > · · · > gN and σ1 > σ2 > · · · > σN.
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For applications to financial market models similar to (1.8), see the articles [7,19,36,41,44], the
book [17], Chapter 5, and the somewhat more recent survey [20], Chapter 3.

These systems also arise as discrete analogues of a so-called nonlinear diffusion process, gov-
erned by McKean–Vlasov equation, studied in [14,23,50,51]. As N → ∞, systems of competing
Brownian particles converge weakly (in a certain sense) to a nonlinear diffusion process, see [15,
39,66].

Also, let us mention that systems of competing Brownian particles serve as scaling limits
of a certain type of exclusion processes on Z, namely asymmetrically colliding random walks,
see [43].

Systems of competing Brownian particles were also studied in the papers [7,18,32–36,40,52,
53,61].

1.5. Organization of the paper

Section 2 contains rigorous definitions, main results: Theorems 2.3 and 2.4, and examples (in-
cluding the ones mentioned above). Section 3 is devoted to a semimartingale reflected Brownian
motion in the orthant, and contains conditions for it to avoid edges of the boundary of this or-
thant. Section 4 applies results of Section 3 to systems of competing Brownian particles. Proofs
of Theorems 2.3, 2.4 and 1.3 are contained there. Section 5 deals with a generalization of the
concept of competing Brownian particles: the so-called systems with asymmetric collisions. The
Appendix contains a few technical lemmas.

2. Formal definitions and main results

2.1. Notation

We denote by Ik the k × k-identity matrix. For a vector x = (x1, . . . , xd)′ ∈ R
d , let ‖x‖ :=

(x2
1 + · · · + x2

d)1/2 be its Euclidean norm. For any two vectors x, y ∈ R
d , their dot product is

denoted by x · y = x1y1 + · · · + xdyd . We compare vectors x and y componentwise: x ≤ y if
xi ≤ yi for all i = 1, . . . , d ; x < y if xi < yi for all i = 1, . . . , d ; similarly for x ≥ y and x > y.
We compare matrices of the same size componentwise, too. For example, we write x ≥ 0 for
x ∈ R

d if xi ≥ 0 for i = 1, . . . , d ; C = (cij )1≤i,j≤d ≥ 0 if cij ≥ 0 for all i, j . The symbol a′
denotes the transpose of (a vector or a matrix) a.

Fix d ≥ 1, and let I ⊆ {1, . . . , d} be a nonempty subset. Write its elements in increasing order:
I = {i1, . . . , im},1 ≤ i1 < i2 < · · · < im ≤ d . For any x ∈ R

d , let [x]I := (xi1, . . . , xim)′. For any
d × d-matrix C = (cij )1≤i,j≤d , let [C]I := (cikil )1≤k,l≤m. We let 1 := (1, . . . ,1)′ (the dimension
of this vector depends on the context).

2.2. Definitions

Now, let us define systems of competing Brownian particles formally. Assume we have the usual
setting: a filtered probability space (�,F, (Ft )t≥0,P) with the filtration satisfying the usual
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conditions. The term standard Brownian motion stands for a one-dimensional Brownian motion
with drift coefficient zero and diffusion coefficient one, starting from zero.

Definition 2. Consider a continuous adapted R
N -valued process

X = (
X(t), t ≥ 0

)
, X(t) = (

X1(t), . . . ,XN(t)
)′
.

For every t ≥ 0, let pt be the permutation of {1, . . . ,N} which:

(i) ranks the components of X(t), that is, Xpt (i)(t) ≤ Xpt (j)(t) for 1 ≤ i < j ≤ N ;
(ii) resolves ties in lexicographic order: if Xpt (i)(t) = Xpt (j)(t) and i < j , then pt (i) < pt (j ).

Fix parameters g1, . . . , gN ∈ R and σ1, . . . , σN > 0, and let W1, . . . ,WN be i.i.d. standard
(Ft )t≥0-Brownian motions.

Suppose the process X satisfies the following SDE:

dXi(t) =
N∑

k=1

1
(
pt (k) = i

)[
gk dt + σk dWi(t)

]
, i = 1, . . . ,N. (2.1)

Then X is called a classical system of N competing Brownian particles. For k = 1, . . . ,N , the
process

Yk = (
Yk(t), t ≥ 0

)
, Yk(t) ≡ Xpt (k)(t)

is called the kth ranked particle.

We use the term classical to distinguish these systems from similar systems of competing
Brownian particles with so-called asymmetric collisions; more on this in Section 4.

Definition 3. Consider a system from Definition 2. We say that a collision of order M occurs at
time t ≥ 0, if there exists k = 1, . . . ,N such that

Yk(t) = Yk+1(t) = · · · = Yk+M(t).

A collision of order M = 2 is called a triple collision. A collision of order M = N − 1 is called
a total collision.

As mentioned before, a related example of a total collision (for a slightly different SDE) was
considered in the paper [3].

There is another closely related concept. We can have, for example, Y1(t) = Y2(t) and Y4(t) =
Y5(t) = Y6(t) at the same moment t ≥ 0. This is called a multicollision of a certain order (this
particular one is of order 3).

Definition 4. Consider a system from Definition 2, and fix a nonempty subset I ⊆ {1, . . . ,N −1}.
A multicollision with pattern I occurs at time t ≥ 0 if

Yk(t) = Yk+1(t) for all k ∈ I.
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We shall sometimes say that there are no multicollisions with pattern I if a.s. there does not exist
t > 0 such that there is a multicollision with pattern I at time t .

A multicollision with pattern I has order M = |I |. If I = {k, k + 1, . . . , l − 2, l − 1}, then
a multicollision with pattern I is, in fact, a multiple collision of particles with ranks k, k +
1, . . . , l − 1, l. If I = {1, . . . ,N − 1}, this is a total collision. If I = {k, l}, this is a simultaneous
collision. If I = {k, k + 1}, this is a triple collision.

We can immediately state some results which reduce multicollisions to total collisions.

Lemma 2.1. Fix 1 < N1 ≤ N2 < N . Suppose that σ1, . . . , σN ≥ 0 are such that for a system
of competing Brownian particles with parameters σN1, . . . , σN2 a multicollision with pattern
I ⊆ {N1, . . . ,N2} happens with positive probability. Then for a system of competing Brownian
particles with parameters σ1, . . . , σN this multicollision also happens with positive probability.

Proof. This follows from the relation between multicollisions and hitting edges of RN−1+ by the
gap process, established in Lemma 4.1, and from Theorem 3.9. �

It is worth providing some references about a diffusion hitting a lower-dimensional manifold:
the articles [6,21,54,55], and the book [22].

In this paper, we are interested in triple and simultaneous collisions, as well as the collisions of
higher order M ≥ 4. We examine whether the classical system of competing Brownian particles
avoid collisions (and multicollisions) with given pattern. This paper contains two main results.
One is a sufficient condition for absence of total collisions. The other is more general: a sufficient
condition for the absence of multicollisions with a given pattern. The approach taken in this
article does not give necessary and sufficient conditions for absence of multicollisions, only
sufficient conditions; neither does it provide conditions for having multicollisions with positive
probability (as opposed to avoiding them).

2.3. Avoiding a multicollision depends only on diffusion coefficients

The following lemma tells us that the property of a system of competing Brownian particles to
avoid multicollisions with a given pattern is independent of the initial conditions x and the drift
coefficients g1, . . . , gN . In other words, it can possibly depend only on the diffusion coefficients
σ 2

1 , . . . , σ 2
N .

Lemma 2.2. Take a classical system of competing Brownian particles from Definition 2. Fix I ⊆
{1, . . . ,N − 1}, a pattern. Let x ∈ R

N be the initial conditions, and let Px be the corresponding
probability measure. Denote by

p(g1, g2, . . . , gN ,σ1, σ2, . . . , σN , x) (2.2)

the probability that there exists a moment t > 0 such that the system, starting from x, will expe-
rience a multicollision with pattern I at this moment. For fixed σ1, . . . , σN > 0, either

p(g1, g2, . . . , gN ,σ1, σ2, . . . , σN , x) = 0 for all x ∈ R
N, (gk)1≤k≤N ∈ R

N
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or

p(g1, g2, . . . , gN ,σ1, σ2, . . . , σN , x) > 0 for all x ∈R
N, (gk)1≤k≤N ∈R

N.

However, in the second case (when the probability (2.2) is positive) the exact value of this
probability depends on the initial conditions x and the drift coefficients g1, . . . , gN . This follows
from Remark 5 in [64], Section 3.2, and connection between competing Brownian particles and
an SRBM, discussed just above. The proof is postponed until Appendix.

2.4. Sufficient conditions for avoiding total collisions

Let us introduce some additional notation. Let M ≥ 2. For

α = (α1, . . . , αM)′ ∈ R
M and l = 1, . . . ,M − 1,

we define

cl(α) := −2(M − 1)

M
α2

1 + 2(M + 1)

M

l∑
p=2

α2
p + 2(M − 1)(M − l) − 4l

(M − l)M

M∑
p=l+1

α2
p.

We also denote by α← := (αM, . . . , α1)
′ the vector α with components put in the reverse order.

Note that cM−1(α) = cM−1(α
←). Let

P(α) := min
(
c1(α), c1

(
α←)

, c2(α), c2
(
α←)

, . . . , cM−2(α), cM−2
(
α←)

, cM−1(α)
)
. (2.3)

For example, in cases M = 2 and M = 3 we have the following expressions for P(α):

P(α1, α2) = c1(α1, α2) = −α2
1 − α2

2, (2.4)

P(α1, α2, α3) = min

(
8

3
α2

2 − 4

3
α2

1 − 4

3
α2

3,
2

3
α2

2 + 2

3
α2

3 − 4

3
α2

1,
2

3
α2

1 + 2

3
α2

2 − 4

3
α2

3

)
. (2.5)

Theorem 2.3. Consider a classical system of competing Brownian particles from Definition 2,
and denote

σ := (σ1, . . . , σN)′.

If P(σ ) ≥ 0 in the notation of (2.3), then a.s. there is no total collision at any time t > 0.

2.5. Examples of avoiding total collisions

In this subsection, we consider systems of N = 3, N = 4 and N = 5 particles. We apply Theo-
rem 2.3 to find a sufficient condition for a.s. avoiding total collisions. In particular, we compare
our results for three particles to a necessary and sufficient condition (1.7). We also compare
results for N = 4 particles given by Theorems 2.3 and 1.3.
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Example 1. The case of N = 3 particles. In this case, “triple collision” is a synonym for “total

collision”. The quantity P(σ ) is calculated in (2.5). The inequality P(σ ) ≥ 0 is equivalent to the

following system:

⎧⎪⎨
⎪⎩

σ 2
1 + σ 2

3 ≤ 2σ 2
2 ;

2σ 2
1 ≤ σ 2

2 + σ 2
3 ;

2σ 2
3 ≤ σ 2

2 + σ 2
1 .

(2.6)

In fact, the first inequality in (2.6) follows from the second and the third ones. Therefore, (2.6) is

equivalent to

{
2σ 2

1 ≤ σ 2
2 + σ 2

3 ;
2σ 2

3 ≤ σ 2
2 + σ 2

1 .
(2.7)

This sufficient condition is more restrictive than (1.7), which for N = 3 particles takes the form

2σ 2
2 ≥ σ 2

1 + σ 2
3 . Therefore, Theorem 2.3 gives a weaker result than the result from [64], men-

tioned in Proposition 1.4. In other words, for three particles the results from this paper do not give

us anything new compared to [33,64], which is not surprising: in [33,64], they found a necessary

and sufficient condition for avoiding total collision for N = 3 particles.

Example 2. The case of N = 4 particles. The result was stated in the Introduction as Theo-

rem 1.1. The condition P(σ ) ≥ 0 holds, if and only if all the following five inequalities hold:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

9σ 2
1 ≤ 7σ 2

2 + 7σ 2
3 + 7σ 2

4 ;
3σ 2

1 ≤ 5σ 2
2 + σ 2

3 + σ 2
4 ;

3σ 2
1 + 3σ 2

4 ≤ 5σ 2
2 + 5σ 2

3 ;
3σ 2

4 ≤ σ 2
1 + σ 2

2 + 5σ 2
3 ;

9σ 2
4 ≤ 7σ 2

1 + 7σ 2
2 + 7σ 2

3 .

(2.8)

As mentioned in Section 1, let σ 2
1 = σ 2

2 = σ 2
4 = 1, and σ 2

3 = 0.9. Then there are triple col-

lisions between the particles Y2, Y3 and Y4 with positive probability, because the sequence

(σ 2
1 , σ 2

2 , σ 2
3 , σ 2

4 ) is not concave: it does not satisfy the condition (1.7). But the condition

P(σ ) ≥ 0 is satisfied, hence there are a.s. no total collisions. Note that this example satisfies

the conditions of Theorem 2.3, but fails to satisfy those of Theorem 1.3.
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Example 3. The case of N = 5 particles. In this case, P(σ ) ≥ 0 is equivalent to the following
seven inequalities: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8σ 2
1 ≤ 7σ 2

2 + 7σ 2
3 + 7σ 2

4 + 7σ 2
5 ;

6σ 2
1 ≤ 9σ 2

2 + 4σ 2
3 + 4σ 2

4 + 4σ 2
5 ;

4σ 2
1 ≤ 6σ 2

2 + 6σ 2
3 + σ 2

4 + σ 2
5 ;

2σ 2
1 + 2σ 2

5 ≤ 3σ 2
2 + 3σ 2

3 + 3σ 2
4 ;

8σ 2
5 ≤ 7σ 2

4 + 7σ 2
3 + 7σ 2

2 + 7σ 2
1 ;

6σ 2
5 ≤ 9σ 2

4 + 4σ 2
3 + 4σ 2

2 + 4σ 2
1 ;

4σ 2
5 ≤ 6σ 2

4 + 6σ 2
3 + σ 2

2 + σ 2
1 .

(2.9)

By analogy with the previous example, let σ 2
1 = σ 2

2 = σ 2
4 = σ 2

5 = 1, and σ 2
3 = 0.9. Then there

are triple collisions among the particles Y2, Y3 and Y4 with positive probability, but a.s. no total
collisions.

Example 4. An application of Theorem 1.3. Take σ 2
1 = σ 2

3 = 10 and σ 2
2 = σ 2

4 = 1. Then by The-
orem 1.3 there are a.s. no total collisions, but this fails to satisfy the conditions of Theorem 2.3.
This, together with Example 2, shows that none of the two results: Theorem 2.3 applied to the
case of N = 4 particles, and Theorem 1.3, is stronger than the other one.

2.6. A sufficient condition for avoiding multicollisions of a given pattern

For every nonempty finite subset I ⊆ Z, denote by I := I ∪ {max I + 1} the augmenta-
tion of I by the integer following its maximal element. For example, if I = {1,2,4,6}, then
I = {1,2,4,6,7}. A nonempty finite subset I ⊆ Z is called a discrete interval if it has the form
{k, k + 1, . . . , l − 1, l} for some k, l ∈ Z, k ≤ l. For example, the sets {2}, {3,4}, {−2,−1,0} are
discrete intervals, and the set {3,4,6} is not. Two disjoint discrete intervals are called adjacent if
their union is also a discrete interval. For example, discrete intervals {1,2} and {3,4} are adjacent,
while {3,4,5} and {10,11} are not.

Every nonempty finite subset I ⊆ Z can be decomposed into a finite union of disjoint non-
adjacent discrete intervals: for example, I = {1,2,4,8,9,10,11,13} can be decomposed as
{1,2} ∪ {4} ∪ {8,9,10,11} ∪ {13}. This decomposition is unique. The non-adjacency is nec-
essary for uniqueness: for example, {1,2} ∪ {4} ∪ {8,9,10} ∪ {11} ∪ {13} is also a decomposition
into a finite union of disjoint discrete intervals, but {8,9,10} and {11} are adjacent.

For a vector α = (α1, . . . , αM)′ ∈R
M , define

T (α) = 2(M − 1)

M

M∑
p=1

α2
p. (2.10)

For every discrete interval I = {k, . . . , l} ⊆ {1, . . . ,N}, let P(I ) := P(σk, . . . , σl) and T (I ) :=
T (σk, . . . , σl).
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Consider a subset I ⊆ {1, . . . ,N − 1}. Suppose it has the following decomposition into the
union of non-adjacent discrete disjoint intervals:

I = I1 ∪ I2 ∪ · · · ∪ Ir . (2.11)

Definition 5. We say that I satisfies Assumption (A) if

r∑
j=1
j �=i

T (I j ) +P(I i) ≥ 0, i = 1, . . . , r. (2.12)

We say that I satisfies Assumption (B) if at least one of the following is true:

• at least two of discrete intervals I1, . . . , Ir are singletons;
• at least one of discrete intervals I1, . . . , Ir consists of two elements {k − 1, k}, and the

sequence (σ 2
j ) has local concavity at k:

σ 2
k ≥ 1

2

(
σ 2

k−1 + σ 2
k+1

); (2.13)

• there exists a subset

I ′ = Ii1 ∪ Ii2 ∪ · · · ∪ Iis ,

which satisfies the Assumption (A).

Remark 2.1. (i) If a subset I ⊆ {1, . . . ,N − 1} is a discrete interval, that is, the decomposition
(2.11) is trivial, then Assumption (A) is equivalent to P(I ) ≥ 0.

(ii) If a subset I ⊆ {1, . . . ,N − 1} is a discrete interval of three or more elements, then As-
sumption (B) is equivalent to P(I ) ≥ 0.

(iii) If a subset I ⊆ {1, . . . ,N − 1} contains two elements: I = {k, l}, k < l, then Assump-
tion (B) is automatically satisfied if k + 1 < l. If k + 1 = l, then Assumption (B) is equivalent to
the local concavity at l:

σ 2
l ≥ 1

2

(
σ 2

l+1 + σ 2
l−1

)
.

Indeed, as mentioned in Example 1, the condition P(I ) ≥ 0 is more restrictive than local con-
cavity at l.

Theorem 2.4. Consider a system of competing Brownian particles from Definition 2. Fix a subset
J ⊆ {1, . . . ,N − 1}. Suppose every subset I such that J ⊆ I ⊆ {1, . . . ,N − 1} satisfies Assump-
tion (B). Then there a.s. does not exist t > 0 such that the system has a multicollision with pattern
J at time t .

The following immediate corollary gives a sufficient condition for absence of multicollisions
of a given order (and, in particular, multiple collisions of a given order).



168 C. Bruggeman and A. Sarantsev

Corollary 2.5. Consider a classical system of competing Brownian particles from Definition 2.
Fix an integer M = 3, . . . ,N , and suppose that every subset I ⊆ {1, . . . ,N − 1} with |I | ≥
M satisfies condition (2.12). Then a.s. there does not exist t > 0 such that the system has a
multicollision (and, in particular, a collision) of order M .

2.7. Examples of avoiding multicollisions

In this subsection, we apply Theorem 2.4 to systems with a small number of particles: N = 4
and N = 5. We consider different patterns of multicollisions.

Example 5. Let N = 4 (four particles) and J = {1,3}. (This was already mentioned in the Intro-
duction, in Theorem 1.1.) A multicollision with pattern J is the same as a simultaneous collision
of the following type:

Y1(t) = Y2(t) and Y3(t) = Y4(t). (2.14)

We need to check Assumption (B) for subsets I = J = {1,3} and I = {1,2,3}. The subset I =
{1,2,3} is a discrete interval. According to Remark 2.1, we can apply Example 2, and rewrite
Assumption (B) as the system of five inequalities (2.8). For I = {1,3}, the decomposition (2.11)
of I into the union of disjoint non-adjacent discrete intervals has the following form: I = {1} ∪
{3}. Therefore, Assumption (B) is always satisfied. Therefore, the system of five inequalities
(2.8) is sufficient not only for avoiding total collisions in a system of four particles, but also for
avoiding multicollisions (2.14), with pattern J = {1,3}.

Example 6. Let N = 4 and J = {1,2}. Let us find a sufficient condition for a.s. avoiding triple
collisions of the type Y1(t) = Y2(t) = Y3(t). (This was already mentioned in the Introduction, as
Theorem 1.2.) There are two subsets I such that J ⊆ I ⊆ {1,2,3}: I = {1,2} and I = {1,2,3}.
These two sets are both discrete intervals. As mentioned in the Remark 2.1, Assumption (B) for
I = {1,2,3} is equivalent to P(I ) ≥ 0, which, in turn, is equivalent to (2.8). Assumption (B) for
I = {1,2} is equivalent to local concavity at index 2: 2σ 2

2 ≥ σ 2
1 + σ 2

3 . We can write this as the
system of six inequalities: local concavity at 2 and the five inequalities (2.8) from Example 2.

Example 7. Consider N = 5 (five particles) and take the pattern J = {1,2,3}. This corresponds
to a collision of the following type:

Y1(t) = Y2(t) = Y3(t) = Y4(t). (2.15)

There are two subsets I such that J ⊆ I ⊆ {1,2,3,4}: I = J = {1,2,3} and I = {1,2,3,4}.
These two sets are both discrete intervals. As mentioned in the Remark 2.1, Assumption (B) for
each of these sets I takes the form P(I ) ≥ 0: P({1,2,3,4}) ≥ 0 and P({1,2,3,4,5}) ≥ 0. We
can write them as the system of twelve inequalities: the five inequalities (2.8) from Example 2,
and the seven inequalities (2.9) from Example 3.

Example 8. Consider N = 5 and take the pattern J = {1,2,4}. This corresponds to a collision

Y1(t) = Y2(t) = Y3(t) and Y4(t) = Y5(t). (2.16)
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There are two subsets I such that J ⊆ I ⊆ {1,2,3,4}: I = J = {1,2,4} and I = {1,2,3,4}. The
set I = {1,2,3,4} is a discrete interval; by Remark 2.1, Assumption (B) for I = {1,2,3,4} takes
the form P({1,2,3,4,5}) ≥ 0. This is equivalent to the conjunction of the seven inequalities
(2.9) from Example 3. For I = {1,2,4}, the situation is more complicated. The decomposition
of this I into a union of disjoint non-adjacent discrete intervals is I = {1,2} ∪ {4}. Therefore,
Assumption (B) holds for this set I in one of the following cases:

• if there is local concavity at 2: σ 2
2 ≥ (σ 2

1 + σ 2
3 )/2;

• Assumption (A) holds for {1,2}, which is equivalent to P({1,2,3}) ≥ 0, which, in turn, is
a stronger assumption than local concavity at 2 (see Example 1);

• Assumption (A) holds for {4}, which is when P({4,5}) ≥ 0; but this is never true, see (2.4);
• Assumption (A) holds for {1,2} ∪ {4}, which is equivalent to

T
({1,2,3}) +P

({4,5}) ≥ 0, T
({4,5}) +P

({1,2,3}) ≥ 0. (2.17)

But P({4,5}) =P(σ4, σ5) = −σ 2
4 − σ 2

5 , as in (2.4), and P({1,2,3}) =P(σ1, σ2, σ3) is given by
(2.5). Therefore, we have:

T
({1,2,3}) +P

({4,5}) = 4

3

(
σ 2

1 + σ 2
2 + σ 2

3

) − σ 2
4 − σ 2

5 ≥ 0, (2.18)

which can be written as

4σ 2
1 + 4σ 2

2 + 4σ 2
3 ≥ 3σ 2

4 + 3σ 2
5 . (2.19)

The other condition T ({4,5}) + P({1,2,3}) ≥ 0 is equivalent to the system of the following
three inequalities: ⎧⎪⎨

⎪⎩
4σ 2

1 + 4σ 2
3 ≤ 8σ 2

2 + 3σ 2
4 + 3σ 2

5 ;
4σ 2

1 ≤ 2σ 2
2 + 2σ 2

3 + 3σ 2
4 + 3σ 2

5 ;
4σ 2

3 ≤ 2σ 2
1 + 2σ 2

2 + 3σ 2
4 + 3σ 2

5 .

(2.20)

Therefore, (2.17) is equivalent to the system of (2.19) and (2.20):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4σ 2
1 + 4σ 2

3 ≤ 8σ 2
2 + 3σ 2

4 + 3σ 2
5 ;

4σ 2
1 ≤ 2σ 2

2 + 2σ 2
3 + 3σ 2

4 + 3σ 2
5 ;

4σ 2
3 ≤ 2σ 2

1 + 2σ 2
2 + 3σ 2

4 + 3σ 2
5 ;

4σ 2
1 + 4σ 2

2 + 4σ 2
3 ≥ 3σ 2

4 + 3σ 2
5 .

(2.21)

Assumption (B) holds for I = {1,2} ∪ {4} if and only if there is local concavity at 2 or (2.21)
hold. Thus, the system of seven inequalities (2.9) from Example 3, together with local concavity
at 2 or the four inequalities (2.21), is a sufficient condition for avoiding multicollisions of pattern
{1,2,4}.

Remark 2.2. We can also make use of the condition (1.6) instead of the five inequalities (2.8).
If the condition (1.6) is satisfied, then there are a.s. no simultaneous collisions (2.14) at any
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time t > 0. Similarly, in all of the examples involving N = 4 particles avoiding certain types
of collisions, we can substitute the condition (1.6) instead of the five inequalities (2.8), and the
statement will still be true. In Example 6, the two conditions: (1.6) and the local concavity at
the index 2, guarantee absence of triple collisions Y1(t) = Y2(t) = Y3(t). The same works for
Examples 7 and 8.

Example 9. Suppose we have three or more particles: N ≥ 3. Consider the case when all dif-
fusion coefficients are equal to one: σ1 = · · · = σN = 1. Then there are no triple and multiple
collisions, as well as no multicollisions of order M ≥ 3. To show this, we do not even need to use
Theorem 2.4. Indeed, using Girsanov transformation as in [64], Section 3.2, we can transform
the classical system of competing Brownian particles into N independent Brownian motions with
zero drifts and unit diffusions. Since the Bessel process of dimension two a.s. does not return to
the origin, there are a.s. no triple collisions and multicollisions of order M ≥ 3 for the system of
independent Brownian motions.

Still, we can apply our results of this article to the case of unit diffusion coefficients. Consider
total collisions and apply Theorem 2.3. Let σ1 = · · · = σN = 1, so that σ = 1 = (1,1, . . . ,1)′;
then it is straightforward to calculate that

cl(σ ) = cl

(
σ←) = 2N − 6, l = 1, . . . ,N − 1.

Therefore, we have:

P(σ ) = min
(
c1(σ ), . . . , cN−2(σ ), cN−1(σ ), c1

(
σ←)

, . . . , cN−2
(
σ←)) = 2N − 6 ≥ 0.

Apply Theorem 2.3: the system avoids total collisions. How does this result change if we move
the diffusion coefficients σ 2

1 , . . . , σ 2
N a little away from 1? In other words, if the vector σ is in a

small neighborhood of 1 = (1, . . . ,1)′ ∈ R
N , what can we say about absence of total collisions?

If N = 3, then P(1) = 0. Even in a small neighborhood of 1, we can have either P(σ ) ≥ 0
or P(σ ) < 0. Therefore, we cannot claim that in a certain neighborhood of 1 we do not have
any total (in this case, triple) collisions. This is consistent with the results of [64]. Indeed, the
inequality (1.7) takes the form

σ 2
2 ≥ 1

2

(
σ 2

1 + σ 2
3

)
. (2.22)

This becomes an equality for σ = (σ1, σ2, σ3)
′ = 1. The point 1 lies at the boundary of the set of

points in R
3 given by (2.22). Or, equivalently, in any neighborhood of 1 there are both points σ

which satisfy (2.22) and which do not satisfy (2.22).
But for N ≥ 4 (four or more particles), we have: P(1) > 0. Since P(σ ) is a continuous func-

tion of σ , there exists a neighborhood U of 1 such that for all σ ∈ U we have: P(σ ) > 0, and the
system of competing Brownian particles does not have total collisions.
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3. Semimartingale reflected Brownian motion (SRBM) in the
orthant

3.1. Definitions

We informally described a semimartingale reflected Brownian motion (SRBM) in the orthant in
Section 2. Now, let us define this process formally. Fix d ≥ 1, the dimension. Let us describe the
parameters of an SRBM: a drift vector μ ∈ R

d , a d × d-matrix R = (rij )1≤i,j≤d with rii = 1,
i = 1, . . . , d , which is called a reflection matrix, and another d × d symmetric positive definite
matrix A = (aij )1≤i,j≤d , which is called a covariance matrix. Recall the notation: S = R

d+. Our
goal is to define a Markov process in S which behaves as a Brownian motion with drift vector μ

and covariance matrix A in the interior of S, and reflects in the direction of the ith column of R

on the face Si , for each i = 1, . . . , d .
Let (�,F, (Ft )t≥0,P) be the standard setting: a filtered probability space with the filtration

satisfying the usual conditions.

Definition 6. Fix x ∈ S. Consider the following three processes:

(i) a continuous adapted S-valued process Z = (Z(t), t ≥ 0);
(ii) an ((Ft )t≥0,P)-Brownian motion B = (B(t), t ≥ 0) in R

d with drift vector μ and covari-
ance matrix A, starting from B(0) = x;

(iii) another continuous adapted R
d -valued process

L = (
L(t), t ≥ 0

)
, L(t) = (

L1(t), . . . ,LN(t)
)′
,

such that the following is true:

Z(t) = B(t) + RL(t) for t ≥ 0,

and for each k = 1, . . . , d , the process Lk has the following properties: it is nondecreasing,
Lk(0) = 0, and ∫ ∞

0
Zk(t)dLk(t) = 0,

that is, Lk can increase only when Zk = 0.

Then the process Z is called a semimartingale reflected Brownian motion (SRBM) in the or-
thant S, with drift vector μ, covariance matrix A, and reflection matrix R, starting from x. The
process B is called the driving Brownian motion for the SRBM Z. The process L is called the
vector of regulating processes for Z, and its ith component Li is called the regulating process
corresponding to the face Si of the boundary ∂S. As mentioned before, the process Z is denoted
by SRBMd(R,μ,A).

Let us define a few classes of matrices; see also a useful equivalent characterization in [64],
Lemma 2.5.
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Definition 7. Consider a d × d-matrix R = (rij )1≤i,j≤d . It is called a reflection matrix if rii = 1
for i = 1, . . . , d . It is called a completely-S matrix if for all nonempty I ⊆ {1, . . . , d} there exists
u ∈R

|I | such that u > 0 and [R]I u > 0. It is called a reflection nonsingular M-matrix if rii = 1
for i = 1, . . . , d , rij ≤ 0 for i �= j , and the spectral radius of the matrix Id − R is less than 1. It
is called strictly copositive if it is symmetric and for every x ∈ S \ {0} we have: x′Rx > 0.

Now, let us state a general existence and uniqueness theorem for this process was proved in
[28,59,67]; see also the survey [71].

Proposition 3.1. Fix any point x ∈ S. If R is a reflection nonsingular M-matrix, then there
exists and is unique in the strong sense an SRBMd(R,μ,A), starting from x. If, more generally,
R is a completely-S reflection matrix, then this process exists and is unique in the weak sense.
These processes for all x ∈ S together form a Feller continuous strong Markov family.

An SRBM in the orthant is the heavy traffic limit for series of queues, when the traffic intensity
tends to one, see [25,57,58]. We can also define an SRBM in general convex polyhedral domains
in R

d , see [13]. An SRBM in the orthant and in convex polyhedra has been extensively studied,
see the survey [71], and articles [4,5,8,10–13,16,25–30,42,45–49,56,59,67–70,72].

For any subset I ⊆ {1, . . . , d}, we let SI := ⋂
i∈I Si = {x ∈ S|xi = 0 for i ∈ I }. If an

SRBMd(R,μ,A) starts from z ∈ S, we denote the corresponding probability measure as Pz.
The following proposition was shown in [64], Section 3.2.

Proposition 3.2. Fix a d × d reflection nonsingular M-matrix R and a positive definite sym-
metric d ×d-matrix A. Let μ ∈R

d . Denote Z = (Z(t), t ≥ 0) = SRBMd(R,μ,A). Consider the
statement

Pz

(∃t > 0 : Z(t) ∈ SI

) = 0, (3.1)

Whether it is true or false does not depend on the initial condition z ∈ S or on the drift vector
μ ∈ R

d ; it depends only on the reflection matrix R and the covariance matrix A.

This justifies the following definition, taken from [64].

Definition 8. An SRBMd(R,μ,A) does not hit SI , or avoids SI , if for every z ∈ S, we have:

Pz

(∃t > 0 : Z(t) ∈ SI

) = 0. (3.2)

An SRBMd(R,μ,A) hits SI if for every z ∈ S, we have:

Pz

(∃t > 0 : Z(t) ∈ SI

)
> 0. (3.3)

Remark 3.1. For every fixed nonempty I ⊆ {1, . . . , d}, either (3.2) or (3.3) holds. In other words,
either all the probabilities on the left-hand side of (3.2) are simultaneously positive for all z ∈ S,
or they are all simultaneously equal to zero for all z ∈ S. The property of a.s. avoiding a given
edge does not depend on the initial condition, or on the drift vector μ. However, if the probability
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on the left-hand side (3.2) is positive, then its exact value does depend on z and μ; see Remark 5
in [64], Section 3.2.

Definition 9. An SRBMd(R,μ,A) avoids edges of order p, if it does not hit SI for any subset
I ⊆ {1, . . . , d} with p elements. An SRBMd(R,μ,A) avoids the corner if it does not hit edges
of order p = d . An SRBMd(R,μ,A) avoids non-smooth parts of the boundary if it does not hit
edges of order p = 2.

3.2. Main results

Here, we state our main results for an SRBM in the orthant. There are three important theorems.
First, we provide a sufficient condition for not hitting the corner, and another sufficient condition
for hitting the corner. Taken together, they do not give us a necessary and sufficient condition,
because there is a gap between them. In this respect, the results of this paper is different from
that of [64], where we gave a necessary and sufficient condition for avoiding non-smooth parts
of the boundary.

A remaining question is about hitting or avoiding a given edge SI of the boundary ∂S. We
provide another theorem which reduces it to the question of not hitting the corner. This gives us
a sufficient condition for not hitting the given edge of ∂S. The last of these three main results is
a sufficient condition for hitting a given edge of ∂S.

For a strictly copositive d × d-matrix Q = (qij )1≤i,j≤d and consider the following constants:

c+(Q) := max
x∈S\{0}

x′QAQx

x′Qx
, c−(Q) := min

x∈S\{0}
x′QAQx

x′Qx
.

Lemma 3.3. For a positive definite matrix A, the numbers c±(Q) are well defined and strictly
positive.

The (rather straightforward) proof is postponed until the Appendix. The following theorem is
our main result about an SRBM hitting the corner.

Theorem 3.4. Suppose R is a completely-S reflection matrix, and A is a positive definite sym-
metric matrix. Take a strictly copositive nonsingular d × d-matrix Q.

(i) If the following conditions are true:

tr(QA) ≥ 2c+(Q) and (QR)ij ≥ 0 for i �= j, (3.4)

then the SRBMd(R,μ,A) does not hit the corner.
(ii) If the following conditions are true:

0 ≤ tr(QA) < 2c−(Q) and (QR)ij ≤ 0 for i �= j, (3.5)

then the SRBMd(R,μ,A) hits the corner.

An important example of such matrix M is given in the next corollary.
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Corollary 3.5. Suppose the matrix R is a reflection nonsingular M-matrix for which there exists
a diagonal matrix C = diag(c1, . . . , cd) with c1, . . . , cd > 0, such that R = RC is symmetric.

(i) If the following condition is true:

tr
(
R

−1
A

) ≥ 2c+
(
R

−1)
, (3.6)

then the SRBMd(R,μ,A) does not hit the corner.
(ii) If the following conditions are true:

0 ≤ tr
(
R

−1
A

)
< 2c−

(
R

−1)
, (3.7)

then the SRBMd(R,μ,A) hits the corner.

Theorem 3.4 applies also to completely-S reflection matrices which are not reflection nonsin-
gular M-matrices (that is, they contain positive off-diagonal elements). The following is a useful
corollary, which can be viewed as a generalization of Corollary 3.5, because for a reflection non-
singular M-matrix R we have: R̃ = R.

Corollary 3.6. Take a completely-S reflection matrix R = (rij )1≤i,j≤d . Consider the matrix R̃ =
(r̃ij )1≤i,j≤d , defined as

r̃ij =

⎧⎪⎨
⎪⎩

1, i = j ;
rij , rij ≤ 0;
0, rij > 0.

Assume R̃ is a reflection nonsingular-M matrix. Also, suppose there exists a diagonal matrix
C = diag(c1, . . . , cd) with c1, . . . , cd > 0, such that R = R̃C is symmetric. If the following con-
dition is true:

tr
(
R

−1
A

) ≥ 2c+
(
R

−1)
, (3.8)

then the SRBMd(R,μ,A) does not hit the corner.

Proof. Just take Q = R̃−1 and apply Theorem 3.4. We need only to prove that (QR)ij ≥ 0 for
i �= j . But all elements of Q are nonnegative, and so

(QR)ij =
d∑

k=1

qikrkj ≥
d∑

k=1

qikr̃kj = (QR̃)ij = 0.
�

Example 10. Let d = 2, and

R =
[

1 2
3 1

]
, A = I2 =

[
1 0
0 1

]
.
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Then R̃ = I2 and R
−1 = I2. Therefore,

c+
(
R

−1) = max
x∈S\{0}

x′I2x

x′I2x
= 1 and tr

(
R

−1
A

) = tr(I2) = 2.

Thus, condition (3.8) holds, and the SRBM2(R,μ,A) does not hit the corner.

Sometimes the numbers c±(Q) are difficult to calculate. Let us give useful estimates of c+(Q)

from above, and of c−(Q) from below.

Lemma 3.7. If the matrix Q = (qij )1≤i,j≤d satisfies qij > 0 for all i, j = 1, . . . , d , then

c+(Q) ≤ c+(Q) := max
1≤i≤j≤d

(QAQ)ij

qij

, c−(Q) ≥ c−(Q) := min
1≤i≤j≤d

(QAQ)ij

qij

.

The next theorem establishes a connection between not hitting the corner and not hitting an
edge. It is similar to results from [34], and we took the proof technique from [34].

Theorem 3.8. Take a completely-S reflection matrix R. Consider an SRBMd(R,μ,A). Fix a
nonempty subset J ⊆ {1, . . . , d}. Suppose the process

SRBM|I |([R]I , [μ]I , [A]I
)

for each J ⊆ I ⊆ {1, . . . , d}
does not hit the corner. Then an SRBMd(R,μ,A) does not hit the edge SJ .

The last of our main results about SRBM links hitting corners to hitting edges. Note that in this
case, the condition that R is a reflection nonsingular M-matrix, rather than just a completely-S
matrix, is crucial; the reader can see that the proof heavily uses comparison techniques from [65],
which, in turn, apply the condition that R is a reflection nonsingular M-matrix.

Theorem 3.9. Consider an SRBMd(R,μ,A) with a reflection nonsingular M-matrix R. Fix a
nonempty subset I ⊆ {1, . . . , d}. Suppose an SRBM|I |([R]I , [μ]I , [A]I ) hits the corner. Then an
SRBMd(R,μ,A) hits the edge SI .

The rest of the section will be devoted to the proofs of Theorems 3.4, 3.8 and 3.9.

3.3. Proof of Theorem 3.4

First, we present an informal overview of the proof, and then give a complete proof.

3.3.1. Outline of the proof

First, we show (i). Let Z = (Z(t), t ≥ 0) be an SRBMd(R,μ,A), starting from z ∈ S. By Propo-
sition 3.2, we can assume z ∈ S \ ∂S, and μ = 0. Consider the function

F(x) := x′Qx. (3.9)
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The matrix Q is strictly copositive. Therefore, if F(x) = 0 for a certain x ∈ S, then x = 0.
Therefore, the process Z hits the corner if and only if the process F(Z(·)) hits zero. Let L =
(L(t), t ≥ 0) be the vector of regulating processes for Z, and let B = (B(t), t ≥ 0) be the driving
Brownian motion for Z, so that we have:

Z(t) = B(t) + RL(t), t ≥ 0. (3.10)

If we write an equation for F(Z(·)) using the Itô–Tanaka formula, we get:

dF
(
Z(t)

) = β(t)dt + dM(t) + dl(t),

where l = (l(t), t ≥ 0) is a nondecreasing process, and M = (M(t), t ≥ 0) is a local martingale.
Since we wish to prove that F(Z(t)) > 0 for all t > 0, we can eliminate the term l. In other
words, it suffices to prove this property of staying positive for the process U = (U(t), t ≥ 0)

given by

dU(t) = β(t)dt + dM(t).

It turns out that the drift coefficient β is constant. The local martingale M = (M(t), t ≥ 0) can be
represented as dM(t) = ρ(t)dW(t), where W = (W(t), t ≥ 0) is a standard Brownian motion.
The diffusion coefficient ρ(t) is comparable with that in the SDE for Bessel squared process.
After an appropriate random time-change, we can make the diffusion coefficient exactly equal
to the one for a Bessel squared process. However, this will not turn our process into a Bessel
squared process. Indeed, the drift coefficient for the new process will not be constant (and for a
Bessel squared process, it is constant). Still, we can bound this drift coefficient from below by 2.
But we know that a Bessel squared process hits zero if and only if its index is less than two.
Therefore, our time-changed process (together with the original process F(Z(·))) does not hit
zero. This, in turn, means that the process Z does not hit the origin. The proof of (ii) is similar,
only there the process l = (l(t), t ≥ 0) is nonincreasing, and we bound the new drift coefficient
from above by something strictly less than 2. Together, this means that the process F(Z(·)) does
indeed hit zero, and the process Z hits the origin.

3.3.2. Complete proof

We split the proof into several lemmata.

Lemma 3.10. The process F(Z(·)) can be represented as

dF
(
Z(t)

) = ρ(t)dW(t) + tr(QA)dt + l(t), (3.11)

where W = (W(t), t ≥ 0) is a standard Brownian motion,

ρ(t) := (
Z′(t)QAQZ(t)

)1/2
, t ≥ 0. (3.12)

and l = (l(t), t ≥ 0) is a continuous nondecreasing process with l(0) = 0.
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The proof of this lemma involves little more than applying Itô–Tanaka’s formula and some
computations. It is postponed until the end of this subsection. Assuming we established this
lemma, let us complete the proof.

Define

τ := inf
{
t ≥ 0|Z(t) = 0

} = inf
{
t ≥ 0|F (

Z(t)
) = 0

}
.

Then τ > 0 a.s., because Z(0) = x > 0. For s < τ , we have Z(s) ∈ S \ {0}, and F(Z(s)) > 0. It
follows from the definition of constants c± that

1

2
c

1/2
− ≤ ρ(s)

2F 1/2(Z(s))
= 1

2

(
Z′(s)QAQZ(s)

Z′(s)QZ(s)

)1/2

≤ 1

2
c

1/2
+ .

Make the following time change:

	(t) :=
∫ t

0

ρ2(s)

4F(Z(s))
ds, t ≤ τ.

By [62], Lemma 2, this is a strictly increasing function on [0, τ ] with 	(0) = 0. Denote τ0 :=
	(τ). Define the inverse of 	 by

χ(s) := inf
{
t ≥ 0|	(t) ≥ s

}
.

Lemma 3.11. The time-changed process

V = (
V (s), s < τ0

)
defined by V (s) ≡ F

(
Z

(
χ(s)

))
,

satisfies the following equation:

dF
(
Z

(
χ(s)

)) = β(s)ds + 2V 1/2(s)dW(s) + l(s), (3.13)

where l(s) := l(χ(s)) is a nondecreasing process, β = (β(s), s < τ0) is a certain drift coeffi-
cient satisfying β(s) ≥ β ≥ 2 for all s ∈ [0, τ0), and W = (W(s), s ≥ 0) is a standard Brownian
motion.

Proof. By [62], Lemma 2, the process V = (V (s), s ≥ 0) satisfies the following equation:

dV (s) = tr(QA)
V (s)

ρ2(χ(s))
ds + 2V 1/2(s)dW(s) + l

(
χ(s)

)
.

Here, W = (W(t), t ≥ 0) is yet another standard Brownian motion. Note that

1

4
c− ≤ 	′(s) = ρ2(s)

4F(Z(s))
= Z′(s)QAQZ(s)

4Z′(s)QZ(s)
≤ 1

4
c+.

Therefore, the mapping 	 : [0, τ ) → [0, τ0) is one-to-one, and τ = ∞ if and only if τ0 = ∞.
Note that

V (s)

ρ2(χ(s))
≥ c−1+ ,
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and tr(QA) ≥ 2c+ ≥ 0. Therefore,

tr(QA)
V (s)

ρ2(χ(s))
≥ tr(QA)c−1+ =: β ≥ 2.

This completes the proof. �

Now, note that we have:

P
(∃t > 0 : F (

Z(t)
) = 0

) = 0 if and only if P
(∃s > 0 : V (s) = 0

) = 0.

Suppose the condition (3.4) holds. We need to prove that the process Z does not hit the corner.
Assume the converse. Then P(τ < ∞) > 0, and P(τ0 < ∞) > 0. On the event {τ0 < ∞}, we
have: V (τ0) = 0. Consider the squared Bessel process V = (V (s), s ≥ 0), given by the equation

dV (s) = 2V
1/2

(s)dW(s) + β ds, V (0) = V (0).

Since β ≥ 2, it is known (see, e.g., [60], Section 11.1, page 442) that V a.s. does not hit 0. It
follows from Lemma A.2 in the Appendix that V (s) ≥ V (s) a.s. for s < τ0. If τ0 < ∞, then by
continuity V (τ0) ≥ V (τ0) > 0, but V (τ0) = 0. This contradiction completes the proof of (i). The
proof of (ii) is similar.

Proof of Lemma 3.10. Recall the definition of function F from (3.9). Since the matrix Q is
strictly copositive, we have: F(x) > 0 for x ∈ S \ {0}. Since the matrix Q is symmetric, the first
and second order derivatives of the function F are

∂F

∂xi

= (2Qx)i = 2
d∑

k=1

qikxk,
∂2F

∂xi∂xj

= 2qij , i, j = 1, . . . , d.

Note that 〈Zi,Zj 〉t = 〈Bi,Bj 〉t = aij t . By the Itô–Tanaka formula applied to the process Z from
(3.10) and the function F from (3.9), we have:

dF
(
Z(t)

) =
d∑

i=1

∂F

∂xi

(
Z(t)

)
dZi(t) + 1

2

d∑
i=1

d∑
j=1

∂2F

∂xi∂xj

(
Z(t)

)
d〈Zi,Zj 〉t

=
d∑

i=1

(
2QZ(t)

)
i
dBi(t) +

d∑
i=1

d∑
k=1

(
2QZ(t)

)
i
rik dLk(t) +

d∑
i=1

d∑
j=1

qij aij dt

= 2
d∑

i=1

d∑
j=1

qijZj (t)dBi(t) + 2
d∑

i=1

d∑
j=1

d∑
k=1

qijZj (t)rik dLk(t) + tr(QA)dt.

Let us show that the following process is nondecreasing:

l(t) :=
∫ t

0
2

d∑
i=1

d∑
j=1

d∑
k=1

qijZj (s)rik dLk(s)ds.
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Indeed,

d∑
i=1

d∑
j=1

d∑
k=1

qijZj (t)rik dLk(t) =
d∑

i=1

d∑
j=1

d∑
k=1

ρjiZj (t)rik dLk(t)

=
d∑

j=1

d∑
k=1

(QR)jkZj (t)dLk(t)

=
d∑

j=1

(QR)jjZj (t)dLj (t) +
∑
k �=j

(QR)jkZj (t)dLk(t).

For each j = 1, . . . , d , the regulating process Lj can grow only if Zj = 0: we express this by
writing Zj (t)dLj (t) = 0. And for k �= j , we have: (QR)jk ≥ 0 by assumptions of Theorem 3.4,
and Zj (t) ≥ 0, dLk(t) ≥ 0 by definition. Therefore, the process l is nondecreasing.

Now, recall that B1, . . . ,Bd are driftless one-dimensional Brownian motions (they are driftless,
because the drift μ = 0, according to our assumptions). Therefore, the following process is a
continuous local martingale:

M = (
M(t), t ≥ 0

)
, M(t) := 2

d∑
i=1

d∑
j=1

∫ t

0
ρijZj (s)dBi(s).

We can represent the process F(Z(·)) as follows:

dF
(
Z(t)

) = dM(t) + tr(QA)dt + dl(t).

Let us calculate the quadratic variation of M . Recall that, by definition of the process B ,
〈Bi,Bj 〉t = aij t . Let

Mij (t) =
∫ t

0

∫ t

0
Zj (s)qij dBi(s), i, j = 1, . . . , d.

For i, j, k, l = 1, . . . , d , we have:

〈Mij ,Mkl〉t =
∫ t

0
Zj (s)qijZl(s)qklaik ds.

But the quadratic variation of M = ∑d
i=1

∑d
j=1 Mij is equal to the sum

〈M〉t =
d∑

i=1

d∑
j=1

d∑
k=1

d∑
l=1

〈Mij ,Mkl〉t =
d∑

i=1

d∑
j=1

d∑
k=1

d∑
l=1

∫ t

0
Zj (s)qijZl(s)qklaik ds

=
d∑

i=1

d∑
j=1

d∑
k=1

d∑
l=1

∫ t

0
Zj (s)qij aikqklZl(s)ds =

∫ t

0

(
Z′(s)QAQZ(s)

)
ds.
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Then we can represent M as the stochastic integral

M(t) = 2
∫ t

0
ρ(s)dW(s),

where W = (W(t), t ≥ 0) is a standard Brownian motion. This completes the proof of
Lemma 3.10. �

3.4. Proof of Theorem 3.8

We prove this theorem using induction by d . The induction base is trivial. Induction step: assume
that the statement is true for d − 1 instead of d , and try to prove it for d . For ε ∈ (0,1), let
Kε = {x ∈ S|ε ≤ ‖x‖ ≤ ε−1}. Fix a point z ∈ S \ {0}, so that z ∈ Kε for all ε > 0 small enough.
Start a copy of an SRBMd(R,μ,A) from z (we can assume this by Proposition 3.2). Denote this
copy by Z = (Z(t), t ≥ 0), and let B = (B(t), t ≥ 0) be its driving Brownian motion. Let

τ := inf
{
t ≥ 0|Z(t) ∈ SI

}
be the first moment when the process Z hits the edge SI . We need to show that τ = ∞ a.s. Let

ηε := inf
{
t ≥ 0|Z(t) ∈ Kε

}
.

Note that ηε ≤ ηε′ when ε′ ≤ ε, and limε↓0 ηε = ∞, because by assumptions of the theorem the
process Z does not hit the corner: Z(t) �= 0 for all t ≥ 0 a.s. It suffices to show that τ ≥ ηε for all
ε ∈ (0,1). Fix an ε ∈ (0,1). For every x ∈ Kε , there exists an open neighborhood U(x) of x with
the following property: there exists some index i = i(x) ∈ {1, . . . , d} such that for all y ∈ U(x)

we have: yi(x) > 0. Since Kε is compact, we can extract a finite subcover U(x1), . . . ,U(xs).
Without loss of generality, let us include the neighborhood U(x0) of x0 = z into this subcover.
Now, define a sequence of stopping times:

τ0 := 0, j0 := 0; τk+1 := inf
{
t ≥ τk|Z(t) /∈ U(xjk

)
}
,

and jk+1 is defined as any j = 0, . . . , s such that Z(τk+1) ∈ U(xj ). Suppose that, at some point,
we cannot find such j ; in other words,

Z(τk+1) /∈ U(xj0) ∪ U(xj1) ∪ · · · ∪ U(xjs ).

Then the sequence of stopping times terminates, and we denote K := k + 1. In this case, we have
defined τ0, j0, τ1, j1, . . . , τK−1, jK−1, τK . If the sequence does not terminate, we let K = ∞. We
have:

Zjk
(t) > 0 for t ∈ [τk, τk+1), k < K.

The sequence (τk) can be either finite or countable. Recall that U(xj ), j = 0, . . . , s is a cover of
Kε . Therefore, supk τk ≥ ηε . It suffices to show that τ ≥ τk . We prove this using induction by k.
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Induction base: k = 1. If j0 ∈ I , then Zj0(t) > 0 for t < τ1, and Z(t) /∈ SI . In this case, τ ≥ τ1
is straightforward. Now, if j0 /∈ I , then consider the set J := {1, . . . , d} \ {j0}. We have the
following representation: ([

Z(t ∧ τ1)
]
J
, t ≥ 0

) = (
Z(t ∧ τ1), t ≥ 0

)
,

where Z = (Z(t), t ≥ 0) is an SRBMd−1([R]J , [μ]J , [A]J ), starting from [z]J , with the driving
Brownian motion [B]J = ([B(t)]J , t ≥ 0). This process Z is well defined, since the matrix [R]J
is a reflection nonsingular M-matrix, and by Proposition 3.1 there exists a strong version of Z.
By the induction hypothesis, a.s. there does not exist t ≥ 0 such that Z(t) ∈ SI . For every y ∈ S,
we have: y ∈ SI if and only if [y]J ∈ SI . Therefore, for all t < τ1 we have: Z(t) /∈ SI . This proves
that τ ≥ τ1.

Induction step: suppose t ≥ τk and k < K , that is, the sequence does not terminate at this step.
Then we need to prove τ ≥ τk+1. Consider the process (Z(t + τk), t ≥ 0). This is a version of an
SRBMd(R,μ,A), started from Z(τk). But

Z(τk) ∈ U(xj0) ∪ U(xj1) ∪ · · · ∪ U(xjs ).

There exists j = 0, . . . , s such that Z(τk) ∈ U(xj ). In addition, Z(τk) ∈ S \ {0}, because by
induction hypothesis, the process Z never hits the corner. Apply the reasoning from the induction
base to this process instead of the original SRBM. The moment τk+1 − τk plays the role of τ1
above, and the moment τ − τk plays the role of τ . Therefore, τ − τk ≥ τk+1 − τk , and τ ≥ τk+1.
This completes the proof.

3.5. Proof of Theorem 3.9

This theorem is proved using stochastic comparison.

Definition 10. Consider two R
d -valued processes Z = (Z(t), t ≥ 0) and Z = (Z(t), t ≥ 0). We

say that Z is stochastically dominated by Z, and write it as Z � Z, if for every t ≥ 0 and y ∈R
d

we have:

P
(
Z(t) ≥ y

) ≤ P
(
Z(t) ≥ y

)
.

Proposition 3.12. Take a d × d reflection nonsingular M-matrix R, a d × d positive definite
symmetric matrix A, and a drift vector μ ∈R

d . Fix a nonempty subset I ⊆ {1, . . . , d}. Let

Z = SRBMd(R,μ,A), Z = SRBM|I |([R]I , [μ]I , [A]I
)

such that [Z(0)]I has the same law as Z(0). Then [Z]I � Z.

This result was shown in [65], Corollary 3.6; it is an easy corollary of general comparison
techniques for reflected processes developed in [56], Theorem 4.1, see also [47], Theorem 1.1(i),
[24], Theorem 3.1, [49], Theorem 6(i). Now, it is easy to see that Theorem 3.9 trivially follows
from Proposition 3.12.
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3.6. Corollaries of the main results for an SRBM

The following corollary of Theorem 3.8 gives a sufficient condition for not hitting edges of a
given order.

Corollary 3.13. Consider an SRBMd(R,μ,A). Fix p = 2, . . . , d − 1. Suppose for every I ⊆
{1, . . . , d} such that |I | ≥ p the process SRBM|I |([R]I , [μ]I , [A]I ) does not hit the corner. Then
an SRBMd(R,μ,A) does not hit edges of order p.

The next corollary combines the results of Corollary 3.5, Theorems 3.8 and 3.9. Its proof is
trivial and is omitted.

Corollary 3.14. Take an SRBMd(R,μ,A). Suppose the matrix R is a reflection nonsingular
M-matrix and there exists a diagonal matrix C = diag(c1, . . . , cd) with c1, . . . , cd > 0 such that
RC = R is symmetric.

(i) Fix a nonempty subset J ⊆ {1, . . . , d}. Suppose that for every subset I such that J ⊆ I ⊆
{1, . . . , d} we have:

tr
([R]−1

I [A]I
) ≥ 2 max

x∈R|I |
+ \{0}

x′[R]−1
I [A]I [R]−1

I x

x′[R]−1
I x

. (3.14)

Then the SRBMd(R,μ,A) avoids SI .
(ii) Fix p = 1, . . . , d − 1. Suppose for every subset I ⊆ {1, . . . , d} with |I | ≥ p we have:

tr
([R]−1

I [A]I
) ≥ 2 max

x∈R|I |
+ \{0}

x′[R]−1
I [A]I [R]−1

I x

x′[R]−1
I x

.

Then the SRBMd(R,μ,A) avoids edges of order p.
(iii) Suppose there exists a subset I ⊆ {1, . . . , d} such that

tr
([R]−1

I [A]I
)
< 2 min

x∈R|I |
+ \{0}

x′[R]−1
I [A]I [R]−1

I x

x′[R]−1
I x

.

Then the SRBMd(R,μ,A) hits SI .

4. Proofs of Theorems 2.3, 1.3 and 2.4

4.1. Outline of the proofs

Consider a system of competing Brownian particles from Definition 2. In Lemma 4.1, we note
that a multicollision with pattern I is equivalent to an SRBMN−1(R,μ,A) hitting the edge SI

of the N − 1-dimensional orthant RN−1+ . Here, the parameters R, μ, A are given by (4.2), (4.3)
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and (4.4) below. We apply Corollary 3.5 and Theorem 3.8 to this SRBM to prove Theorems 2.3
and 2.4 respectively. We use the estimate in Lemma 3.7 for c+, since the right-hand side of (3.4)
seems hard to compute for matrices R and A given by (4.2) and (4.4).

Note that the matrix R from (4.2) is itself symmetric. Therefore, in Corollary 3.5 we can take

C = IN−1 and R = R. The inverse matrix R−1 = R
−1 = (ρij )1≤i,j≤N−1 has the form

ρij =
{

2i(N − j)/N, i ≤ j ;
2j (N − i)/N, i ≥ j.

(4.1)

This result can be found in [9,31] (the latter article deals with a slightly different matrix, from
which one can easily find the inverse of the given matrix R). After a (rather tedious) computation,
we rewrite the condition (3.6) from Corollary 3.5 as P(σ ) ≥ 0, where P(σ ) is defined in (2.3).
This proves Theorem 2.3.

Proving Theorem 2.4 is a bit harder. Apply Theorem 3.8, and fix a subset I ⊆ {1, . . . ,N − 1}
such that J ⊆ I . We need to find a sufficient condition for an SRBM|I |([R]I , [μ]I , [A]I ) to a.s.
avoid the corner of the orthant R|I |

+ . We decompose the set I as in (2.11):

I = I1 ∪ I2 ∪ · · · ∪ Ir ,

into a union of disjoint non-adjacent discrete intervals. In Lemma 4.6, we prove that if I satis-
fies Assumption (B), then the SRBM|I |([R]I , [μ]I , [A]I ) indeed avoids the corner. This com-
pletes the proof of Theorem 2.4. But to prove Lemma 4.6, we need to consider different variants
of decomposition (2.11). For example, if I1 = {1} and I2 = {3}, then this guarantees that an
SRBM|I |([R]I , [μ]I , [A]I ) avoids the corner. Various cases are considered in Lemmas 4.7, 4.8
and 4.9, which constitute the crux of the proof.

4.2. Connection between an SRBM and competing Brownian particles

Let us reduce multiple collisions of competing Brownian particles to an SRBM hitting edges of
the boundary of high order. Consider the classical system of competing Brownian particles from
Definition 2. By definition, the ranked particles Y1, . . . , YN satisfy

Y1(t) ≤ · · · ≤ YN(t).

Consider the gap process: an R
N−1+ -valued process defined by

Z = (
Z(t), t ≥ 0

)
, Z(t) = (

Z1(t), . . . ,ZN−1(t)
)′
, Zk(t) = Yk+1(t) − Yk(t).
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It was shown in [1] that this is an SRBMN−1(R,μ,A) in the orthant S =R
N−1+ with parameters

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1/2 0 0 . . . 0 0
−1/2 1 −1/2 0 . . . 0 0

0 −1/2 1 0 . . . 0 0
...

...
...

...
. . .

. . .
. . .

0 0 0 0 . . . 1 −1/2
0 0 0 0 . . . −1/2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (4.2)

μ = (g2 − g1, g3 − g4, . . . , gN − gN−1)
′, (4.3)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ 2
1 + σ 2

2 −σ 2
2 0 0 . . . 0 0

−σ 2
2 σ 2

2 + σ 2
3 −σ 2

3 0 . . . 0 0
0 −σ 2

3 σ 2
3 + σ 2

4 −σ 2
4 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . σ 2
N−2 + σ 2

N−1 −σ 2
N−1

0 0 0 0 . . . −σ 2
N−1 σ 2

N−1 + σ 2
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.4)

Note that the matrix R is a reflection nonsingular M-matrix. This follows from the fact that
IN−1 − R ≥ 0, and R−1 ≥ 0 (which, in turn, was proved in [63], Proposition 2.1(i)). The fol-
lowing lemma translates statements about multiple collisions and multicollisions of competing
Brownian particles to the language of an SRBM. The proof is trivial and is therefore omitted.

Lemma 4.1. Consider a classical system of N competing Brownian particles from Definition 2.
Then there is a multicollision with pattern I at time t if and only if the gap process hits the edge
SI at time t . For example, there is a total collision at time t if and only if the gap process hits the
corner at time t .

For example, Y1(t) = Y2(t) and Y3(t) = Y4(t) = Y5(t) is a multicollision of order 3, with
pattern {1,3,4}, which is equivalent of the gap process hitting the edge {z1 = z3 = z4 = 0}.
Similarly, Y3(t) = Y4(t) = Y5(t) = Y6(t) is a collision of order 3 (which is also a particular case
of a multicollision of order 3, with pattern {3,4,5}), and it is equivalent to the gap process hitting
the edge {z3 = z4 = z5 = 0}.

4.3. Some preliminary calculations

As mentioned before, the matrix R in (4.2) is itself symmetric. Therefore, we can take C = IN−1,
and R = R. Without loss of generality, let

ρij = 0, i = 0,N, j = 0, . . . ,N or j = 0,N, i = 0, . . . ,N.
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This is consistent with the notation (4.1). Note that ρij > 0 for i, j = 1, . . . ,N − 1: all elements
of the matrix R−1 are positive. Therefore, we can apply an estimate from Lemma 3.7:

c+ := max
x∈RN−1\{0}

x′R−1AR−1x

x′R−1x
≤ max

1≤k≤l≤N−1

(R−1AR−1)kl

ρkl

.

Lemma 4.2. For the matrix R given by (4.2) and the matrix A given by (4.4), we have in the
notation of (2.10):

tr
(
R−1A

) = T (σ ). (4.5)

Proof. Straightforward calculation gives

tr
(
R−1A

) =
N−1∑
i=1

N−1∑
j=1

ρij aij =
N−1∑
i=1

(
σ 2

i + σ 2
i+1

)2i(N − i)

N

+ 2
N−1∑
i=2

(−σ 2
i

)2(i − 1)(N − i)

N
= 2(N − 1)

N
σ 2

1 + 2(N − 1)

N
σ 2

N

+
N−1∑
k=2

σ 2
k

(
2k(N − k)

N
+ 2(k − 1)(N − k + 1)

N
− 2

2(k − 1)(N − k)

N

)

= 2(N − 1)

N

N∑
k=1

σ 2
k = T (σ ).

�

The following lemma helps us simplify the matrix R−1AR−1, where A is given by (4.4), and
R−1 is given by (4.1).

Lemma 4.3. Consider the matrix A as in (4.4), and take a symmetric (N − 1)× (N − 1)-matrix
Q = (qij ). Augment it by two additional rows and two additional columns, one from each side,
and fill them with zeros:

qij = 0 for i = 0,N, j = 0, . . . ,N, and for j = 0,N, i = 0, . . . ,N.

Then for k, l = 1, . . . ,N − 1 we have:

(QAQ)kl =
N∑

p=1

(qpk − qp−1,k)(qpl − qp−1,l)σ
2
p.

Proof. The matrix A is tridiagonal:⎧⎪⎨
⎪⎩

aii = σ 2
i + σ 2

i+1, i = 1, . . . ,N − 1;
ai,i+1 = ai+1,i = −σ 2

i+1, i = 1, . . . ,N − 2;
aij = 0, i, j = 1, . . . ,N − 1, |i − j | ≥ 2.
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Using the symmetry of Q, we have:

(QAQ)kl =
N−1∑
i=1

N−1∑
j=1

qikqjlaij =
N−1∑
p=1

(
σ 2

p + σ 2
p+1

)
qpkqpl

−
N−1∑
p=2

σ 2
pqpkqp−1,l −

N−1∑
p=2

σ 2
pqp−1,kqpl

=
N∑

p=1

σ 2
pqpkqpl +

N∑
p=1

σ 2
pqp−1,kqp−1,l −

N∑
p=1

σ 2
pqpkqp−1,l −

N∑
p=1

σ 2
pqp−1,kqpl

=
N∑

p=1

(qpk − qp−1,k)(qpl − qp−1,l)σ
2
p.

�

Lemma 4.3 enables us to calculate (R−1AR−1)kl , where A and R are given by (4.4) and (4.2).

Lemma 4.4. Suppose the matrix R is given by (4.2), and the matrix A is given by (4.4). Then for
1 ≤ k ≤ l ≤ N − 1 we have:

(
R−1AR−1)

kl
= 4(N − k)(N − l)

N2

k∑
p=1

σ 2
p − 4k(N − l)

N2

l∑
p=k+1

σ 2
p + 4kl

N2

N∑
p=l+1

σ 2
p. (4.6)

Proof. Apply Lemma 4.3 to Q = R−1, given by (4.1), so that qij = ρij . For p ≤ k, we get: For
p ≤ k we have:

ρpk − ρp−1,k = 2p(N − k)

N
− 2(p − 1)(N − k)

N
= 2(N − k)

N
,

ρpl − ρp−1,l = 2p(N − l)

N
− 2(p − 1)(N − l)

N
= 2(N − l)

N
.

For k < p ≤ l, we have:

ρpk − ρp−1,k = 2k(N − p)

N
− 2k(N − p + 1)

N
= −2k

N
,

ρpl − ρp−1,l = 2p(N − l)

N
− 2(p − 1)(N − l)

N
= 2(N − l)

N
.

For p > l, we have:

ρpk − ρp−1,k = 2p(N − k)

N
− 2(p − 1)(N − k)

N
= 2(N − k)

N
,

ρpl − ρp−1,l = 2p(N − l)

N
− 2(p − 1)(N − l)

N
= 2(N − l)

N
.
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The rest of the proof is trivial. �

4.4. Proof of Theorem 2.3

Use Corollaries 3.5 and 3.7 for matrices R and A, given by (4.2) and (4.4) respectively. We have
the following sufficient condition for avoiding total collisions:

tr
(
R−1A

) − 2 max
1≤k≤l≤N−1

(R−1AR−1)kl

ρkl

≥ 0. (4.7)

For 1 ≤ k ≤ l ≤ N − 1, denote

ck,l(σ ) = tr
(
R−1A

) − 2
(R−1AR−1)kl

ρkl

.

Then we have:

tr
(
R−1A

) − 2 max
k,l=1,...,N−1

(R−1AR−1)kl

ρkl

= min
1≤k≤l≤N−1

ck,l(σ ). (4.8)

Lemma 4.5. Using definitions of cl(σ ) and σ← from Section 1.2, we have:

(i) For 2 ≤ k ≤ l ≤ N − 2, we have: ck,l(σ ) ≥ 0.
(ii) For 1 = k ≤ l ≤ N − 1, we have: ck,l(σ ) = cl(σ ).

(iii) For 1 ≤ k ≤ l = N − 1, we have: ck,l(σ ) = cN−k(σ
←).

Assuming that Lemma 4.5 is proved, let us finish the proof of Theorem 2.3. Let

δ(σ ) := min
2≤k≤l≤N−2

ck,l(σ ). (4.9)

If N < 4, let δ(σ ) := 0. By Lemma 4.5(i), we always have: δ(σ ) ≥ 0. Recall the definition of
P(σ ) from (2.3) and use Lemma 4.5(ii), (iii):

min
(
c1,1(σ ), c1,2(σ ), . . . , c1,N−1(σ ), c2,N−1(σ ), . . . , cN−1,N−1(σ )

) =P(σ ). (4.10)

Comparing (4.8), (4.9) and (4.10), we have:

min
1≤k≤l≤N−1

[
tr
(
R−1A

) − 2
(R−1AR−1)kl

ρkl

]
= min

(
P(σ ), δ(σ )

)
. (4.11)

Thus,

min
1≤k≤l≤N−1

ck,l(σ ) ≥ 0 if and only if P(σ ) ≥ 0.

This completes the proof of Theorem 2.3. �
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Proof of Lemma 4.5. We can simplify the expression for ck,l(σ ). Applying (4.6) and (4.1), we
have: for 1 ≤ k ≤ l ≤ N − 1,

(R−1AR−1)kl

ρkl

= 2(N − k)

Nk

k∑
p=1

σ 2
p − 2

N

l∑
p=k+1

σ 2
p + 2l

N(N − l)

N∑
p=l+1

σ 2
p.

Therefore, we have:

ck,l(σ ) :=
(

2(N − 1)

N
− 4(N − k)

Nk

) k∑
p=1

σ 2
p

+
(

2(N − 1)

N
+ 4

N

) l∑
p=k+1

σ 2
p +

(
2(N − 1)

N
− 4l

(N − l)N

) N∑
p=l+1

σ 2
p

= 2(N − 1)k − 4(N − k)

kN

k∑
p=1

σ 2
p + 2(N + 1)

N

l∑
p=k+1

σ 2
p

+ 2(N − 1)(N − l) − 4l

(N − l)N

N∑
p=l+1

σ 2
p.

Now, for k ≥ 2 we get:

2(N − 1)k − 4(N − k) ≥ 4(N − 1) − 4N + 8 = 4 ≥ 0.

Similarly, for l ≤ N − 2 we get:

2(N − 1)(N − l) − 4l ≥ 0.

This proves part (i) of Lemma 4.5. Parts (ii) and (iii) are now straightforward. �

4.5. Proof of Theorem 2.4

Fix a subset I ⊆ {1, . . . ,N − 1} such that J ⊆ I . Take the matrices R and A given by (4.2) and
(4.4). Essentially, we need to prove the following lemma:

Lemma 4.6. If the subset I satisfies Assumption (B), then the process

Z = (
Z(t), t ≥ 0

) = SRBM|I |([R]I ,0, [A]I
)

does not hit the origin.

If we prove Lemma 4.6, then Theorem 2.4 will automatically follow from this lemma and
Theorem 3.8. The rest of this subsection is devoted to the proof of Lemma 4.6.
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Let us investigate the structure of the matrices [R]−1
I and [A]−1

I . Split I into disjoint non-
adjacent discrete intervals: I = I1 ∪ I2 ∪ · · · ∪ Ir . Since the matrices R and A are tridiagonal, the
matrices [R]I and [A]I have the following block-diagonal form:

[R]I = diag
([R]I1, . . . , [R]Ir

)
, [A]I = diag

([A]I1 , . . . , [A]Ir

)
.

The following processes are independent SRBMs:

[Z]Ij
= ([

Z(t)
]
Ij

, t ≥ 0
) = SRBM|Ij |([R]Ij

,0, [A]Ij

)
, j = 1, . . . , s. (4.12)

For any subset I ′ = Ii1 ∪ · · · ∪ Iis , the process

[Z]I ′ = ([
Z(t)

]
I ′ , t ≥ 0

) = SRBM|I ′|([R]I ′ ,0, [A]I ′
)
.

Remark 4.1. If for some choice of I ′ this process does not hit the origin of R|I ′|
+ , then the original

process Z does not hit the origin, because of independence of (4.12). In particular, for each
j = 1, . . . , s, the process [Z]Ij

does not hit the origin, then Z does not hit the origin.

Now, let us state three lemmata.

Lemma 4.7. If at least two of the discrete intervals I1, . . . , Ir are singletons, then Z a.s. at any
time t > 0 does not hit the origin.

Lemma 4.8. If at least one I1, . . . , Ir is a two-element subset {k − 1, k} with local concavity at
k, then Z a.s. at any time t > 0 does not hit the origin.

Lemma 4.9. If I satisfies Assumption (A), then Z a.s. at any time t > 0 does not hit the origin.

Combining Lemmas 4.7, 4.8, and 4.9 with Remark 4.1, we complete the proof of Lemma 4.6
and Theorem 2.4. �

In the remainder of this subsection, we shall prove these three lemmas.

Proof of Lemma 4.7. Without loss of generality, suppose I1 = {k} and I2 = {l} are singletons.
Since they are not adjacent, |k − l| ≥ 2; assume that k < l, so that l ≥ k + 2. Then

(Zk,Zl)
′ = SRBM2([R]I1∪I2,0, [A]I1∪I2

)
.

But

[A]I1∪I2 =
[
σ 2

k + σ 2
k+1 0

0 σ 2
l + σ 2

l+1

]
, [R]I1∪I2 = I2.

Therefore, Zk and Zl are independent reflected Brownian motions on R+. They do not hit zero
simultaneously, which is the same as to say that (Zk,Zl)

′ does not hit the origin in R
2+. �
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Proof of Lemma 4.8. Assume without loss of generality that I1 = {1,2}, and we have local con-
cavity at 2: σ 2

2 ≥ (σ 2
1 + σ 2

3 )/2. By Remark 4.1, it suffices to show that an SRBM2([R]I1 , [μ]I1 ,

[A]I1) does not hit the origin. Because of the connection between an SRBM and systems of com-
peting Brownian particles outlined in Section 4.2, this, in turn, is equivalent of a system of three
competing Brownian particles with diffusion coefficients σ 2

1 , σ 2
2 , σ 2

3 not having a triple collision.
But this last statement follows from Proposition 1.4, applied to the case N = 3. �

Proof of Lemma 4.9. By [65], Lemma 5.6, the matrices [R]I1 , . . . , [R]Ir are themselves reflec-
tion nonsingular M-matrices. Therefore, they are invertible, and

[R]−1 = diag
([R]−1

I1
, . . . , [R]−1

Ir

)
.

In addition,

[R]−1
I [A]−1

I = diag
([R]−1

I1
[A]I1 , . . . , [R]−1

Ir
[A]Ir

)
,

(4.13)
[R]−1

I [A]−1
I [R]−1

I = diag
([R]−1

I1
[A]I1 [R]−1

I1
, . . . , [R]−1

Ir
[A]Ir [R]−1

Ir

)
. �

Lemma 4.10. For the matrices R and A given by (4.2) and (4.4), we have:

tr
([R]−1

I [A]−1
I

) =
r∑

j=1

T (I j ). (4.14)

Proof. Because of (4.13), we get:

tr
([R]−1

I [A]−1
I

) =
r∑

j=1

tr
([R]−1

Ij
[A]Ij

)
. (4.15)

Applying Lemma 4.2 with Ij instead of {1, . . . ,N − 1} and I j instead of {1, . . . ,N}, j =
1, . . . , r , we have:

tr
([R]−1

Ij
[A]Ij

) =
r∑

j=1

T (I j ), j = 1, . . . , r. (4.16)

Combining (4.15) and (4.16), we get (4.14). �

Lemma 4.11. We have the following estimate:

max
x∈R|I |

+ \{0}
x′[R]−1

I [A]I [R]−1
I x

x′[R]−1
I x

≤ max
j=1,...,r

max
k,l∈Ij

k≤l

([R]−1
Ij

[A]Ij
[R]−1

Ij
)kl

([R]−1
Ij

)kl

. (4.17)

The proof of Lemma 4.11 is postponed until the end of this section. Assuming we have proved
it, let us show how to finish the proof of Lemma 4.9.
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Using (4.17) and (4.14), we can rewrite the condition (3.14) as

r∑
j=1

T (I j ) − 2 max
i=1,...,r

max
k,l∈Ii

k≤l

([R]−1
Ii

[A]−1
Ii

[R]−1
Ii

)kl

([R]−1
Ii

)kl

≥ 0.

Equivalently,

r∑
j=1
j �=i

T (I j ) + T (I i) − 2 max
k,l∈Ii

k≤l

([R]−1
Ii

[A]−1
Ii

[R]−1
Ii

)kl

([R]−1
Ii

)kl

≥ 0, i = 1, . . . , r.

In the proof of Theorem 2.3, see (4.11) and (4.5), it was shown that for i = 1, . . . , r , we have:

T (I i) − 2 max
k,l∈Ii

k≤l

([R]−1
Ii

[A]−1
Ii

[R]−1
Ii

)kl

([R]−1
Ii

)kl

= min
(
P(I i), δi

)
, δi := δ

([σ ]I i

) ≥ 0.

Therefore, the condition (3.14) is equivalent to∑
j �=i

T (I j ) + min
(
P(I i), δi

) ≥ 0, i = 1, . . . , r. (4.18)

The condition (4.18), in turn, is equivalent to∑
j �=i

T (I j ) +P(I i) ≥ 0, i = 1, . . . , r.

This completes the proof of Lemma 4.9, and with it the proofs of Lemma 4.6 and Theorem 2.4.

Proof of Lemma 4.11. The matrices [R]−1
I and [A]−1

I are block-diagonal, with the blocks cor-
responding to the sets I1, . . . , Ir of indices. Therefore,

x′[R]−1
I [A]I [R]−1

I x =
r∑

j=1

[x]′Ij
[R]−1

Ij
[A]Ij

[R]−1
Ij

[x]Ij
, x′[R]−1

I x =
r∑

j=1

[x]′Ij
[R]−1

Ij
[x]Ij

.

(4.19)
Let Q(x) := {j = 1, . . . , r|[x]Ij

�= 0}. We might as well rewrite (4.19) as

x′[R]−1
I [A]I [R]−1

I x =
∑

j∈Q(x)

[x]′Ij
[R]−1

Ij
[A]Ij

[R]−1
Ij

[x]Ij
,

x′[R]−1
I x =

∑
j∈Q(x)

[x]′Ij
[R]−1

Ij
[x]Ij

.

For j ∈ Q(x), we have: [x]Ij
∈ S

|Ij |
+ \ {0}. The matrix [R]Ij

has the same form as R in

(4.2), but with smaller size. Therefore, all elements of the inverse matrix [R]−1
Ii

(just like
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for R−1) are positive. Therefore, [x]′Ii
[R]−1

Ii
[x]Ii

> 0, i = 1, . . . , r . Applying Lemma A.1 to

ai = [x]′Ii
[R]−1

Ii
[A]Ii

[R]−1
Ii

[x]Ii
and bi = [x]′Ii

[R]−1
Ii

[x]Ii
> 0 for i ∈Q(x), we get:

x′[R]−1
I [A]I [R]−1

I x

x′[R]−1
I x

≤ max
j∈Q(x)

[x]′Ij
[R]−1

Ij
[A]Ij

[R]−1
Ij

[x]Ij

[x]′Ij
[R]−1

Ij
[x]Ij

. (4.20)

But the matrix [R]Ij
, as just mentioned, has all elements positive. Applying Lemma 3.7, we have

for y ∈R
|Ij |
+ \ {0}:

y′[R]−1
Ij

[A]Ij
[R]−1

Ij
y

y′[R]−1
Ij

y
≤ max

k,l∈Ij

k≤l

([R]−1
Ij

[A]Ij
[R]−1

Ij
)kl

([R]−1
Ij

)kl

. (4.21)

Combining (4.20) and (4.21), we get (4.17). �

4.6. Proof of Theorem 1.3

Recall the setting of Theorem 3.4: we have a process Z = (Z(t), t ≥ 0) in R
d+, which is an

SRBMd(R,μ,A) with a reflection nonsingular M-matrix R. We would like this process to avoid
the corner {0}. We have: d = N − 1 = 3, and

R =
⎡
⎣ 1 −1/2 0

−1/2 1 −1/2
0 −1/2 1

⎤
⎦ , A =

⎡
⎣σ 2

1 + σ 2
2 −σ 2

2 0
−σ 2

2 σ 2
2 + σ 2

3 −σ 2
3

0 −σ 2
3 σ 2

3 + σ 2
4

⎤
⎦ .

We pick the following matrix:

Q =
⎡
⎣1 1 1

1 λ 1
1 1 1

⎤
⎦ where λ = σ 2

1 + σ 2
2 + σ 2

3 + σ 2
4

σ 2
2 + σ 2

3

. (4.22)

This is a symmetric matrix. It is also strictly copositive, because all its elements are strictly
positive. Let us show that conditions of Theorem 3.4(i) hold. First, calculations show that

QR =

⎡
⎢⎢⎢⎢⎣

1

2
0

1

2
1 − λ

2
λ − 1 1 − λ

2
1

2
0

1

2

⎤
⎥⎥⎥⎥⎦ , (4.23)

Therefore, (QR)ij ≥ 0 for i �= j is equivalent to

1 − λ

2
≥ 0 ⇐⇒ λ ≤ 2 ⇐⇒ σ 2

2 + σ 2
3 ≥ σ 2

1 + σ 2
4 .
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By a simple calculation, one can also confirm the relation

QAQ = tr(QA)

2
Q,

and tr(QA) ≥ 2c+(Q). This completes the proof of Theorem 1.3.

5. Competing Brownian particles with asymmetric collisions

One can generalize the classical system of competing Brownian particles from Definition 2 in
many ways. Let us describe one of these generalizations. For k = 1, . . . ,N − 1, let

L(k,k+1) = (
L(k,k+1)(t), t ≥ 0

)
be the semimartingale local time process at zero of the process Zk = Yk+1 −Yk . We shall call this
the collision local time of the particles Yk and Yk+1. For notational convenience, let L(0,1)(t) ≡ 0
and L(N,N+1)(t) ≡ 0. Let

Bk(t) =
N∑

i=1

∫ t

0
1
(
ps(k) = i

)
dWi(s), k = 1, . . . ,N, t ≥ 0.

It can be checked that 〈Bk,Bl〉t ≡ δklt ; that is, B1, . . . ,BN are i.i.d. standard Brownian mo-
tions. As shown in [1,2,36], [32], Chapter 3, the ranked particles Y1, . . . , YN have the following
dynamics:

Yk(t) = Yk(0) + gkt + σkBk(t) − 1

2
L(k,k+1)(t) + 1

2
L(k−1,k)(t), k = 1, . . . ,N.

The collision local time L(k,k+1) has a physical meaning of the push exerted when the particles
Yk and Yk+1 collide, which is needed to keep the particle Yk+1 above the particle Yk . Note that
the coefficients at the local time terms are ±1/2. This means that the collision local time L(k,k+1)

is split evenly between the two colliding particles: the lower-ranked particle Yk receives one-half
of this local time, which pushes it down, and the higher-ranked particle Yk+1 receives the other
one-half of this local time, which pushes it up.

In the paper [43], they considered systems of Brownian particles when this collision local
time is split unevenly: the part q+

k+1L(k,k+1)(t) goes to the upper particle Yk+1, and the part
q−
k L(k,k+1)(t) goes to the lower particle Yk . Let us give a formal definition.

Definition 11. Fix N ≥ 2, the number of particles. Take drift and diffusion coefficients

g1, . . . , gN ; σ1, . . . , σN > 0,

and, in addition, take parameters of collision

q±
1 , . . . , q±

N ∈ (0,1), q+
k+1 + q−

k = 1, k = 1, . . . ,N − 1.
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Consider a continuous adapted R
N -valued process

Y = (
Y(t) = (

Y1(t), . . . , YN(t)
)′
, t ≥ 0

)
.

Take other N − 1 continuous adapted real-valued nondecreasing processes

L(k,k+1) = (
L(k,k+1)(t), t ≥ 0

)
, k = 1, . . . ,N − 1,

with L(k,k+1)(0) = 0, which can increase only when Yk+1 = Yk :∫ ∞

0
1
(
Yk+1(t) > Yk(t)

)
dL(k,k+1)(t) = 0, k = 1, . . . ,N − 1.

Let L(0,1)(t) ≡ 0 and L(N,N+1)(t) ≡ 0. Assume that

Yk(t) = Yk(0) + gkt + σkBk(t) − q−
k L(k,k+1)(t) + q+

k L(k−1,k)(t), k = 1, . . . ,N. (5.1)

Then the process Y is called the system of competing Brownian particles with asymmetric colli-
sions. The gap process is defined similarly to the case of a classical system.

Strong existence and pathwise uniqueness for these systems were shown in [43], Section 2.1.
When q±

1 = q±
2 = · · · = 1/2, we are back in the case of symmetric collisions.

Remark 5.1. For systems of competing Brownian particles with asymmetric collisions, we
defined only ranked particles Y1, . . . , YN . It is, however, possible to define named particles
X1, . . . ,XN for the case of asymmetric collisions. This is done in [43], Section 2.4. The con-
struction works up to the first moment of a triple collision. A necessary and sufficient condition
for a.s. absence of triple collisions is given in [64]. We will not make use of this construction in
our article, instead working with ranked particles.

We can define collisions and multicollisions similarly to the classical case, as in Definition 4.
It was shown in [43] that the gap process for systems with asymmetric collisions, much like for
the classical case, is an SRBM. Namely, it is an SRBMN−1(R,μ,A), where μ and A are given
by (4.3) and (4.4), and the reflection matrix R is given by

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −q−
2 0 0 . . . 0 0

−q+
2 1 −q−

3 0 . . . 0 0
0 −q+

3 1 −q−
4 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 1 −q−
N−1

0 0 0 0 . . . −q+
N−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (5.2)

The connection between multicollisions and multiple collisions in this system and hitting of
edges of RN−1+ by the gap process is the same as in Lemma 4.1. This allows us to apply Theorem
(3.4) and Theorem (3.8) to find sufficient conditions for avoiding multicollisions of a given pat-
tern. In particular, the results of Lemma 2.2 are still valid for system with asymmetric collisions:
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the property of a.s. avoiding multicollisions of a certain pattern depends only on the diffusion
coefficients and parameters of collision.

A remark is in order: the matrix R in (5.2) in general is not symmetric, as opposed to the
matrix R in (4.2). But if we take the (N − 1) × (N − 1) diagonal matrix

C = diag

(
1,

q+
2

q−
2

,
q+

2 q+
3

q−
2 q−

3

, . . . ,
q+

2 q+
3 · · ·q+

N−1

q−
2 q−

3 · · ·q−
N−1

)
,

then the matrix R = RC is diagonal.

Appendix

A.1. Proof of Lemma 2.2

Follows from [64], Lemma 3.1, the discussion in [64], Section 3.2, and the reduction of multi-
collisions to hitting edges of the orthant which is done in Lemma 4.1 in this article.

A.2. Proof of Lemma 3.3

Fix x ∈ S \ {0}. Since Q is strictly copositive, we have: x′Qx > 0. Since Q is nonsingular,
Qx �= 0. Since A is positive definite, we have: x′QAQx = (Qx)′A(Qx) > 0. Therefore, the
function

f (x) := x′QAQx

x′Qx

is well-defined and strictly positive on S \ {0}. In addition, it is homogeneous, in the sense that
for x ∈ S \ {0} and k > 0 we have: f (kx) = f (x). Therefore,

{
f (x)|x ∈ S \ {0}} = {

f (x)|x ∈ S,‖x‖ = 1
}
.

The set {x ∈ S|‖x‖ = 1} is compact, and f is continuous and positive on this set. Therefore, it
is bounded on this set (and therefore on the set S \ {0}), and reaches its maximal and minimal
values, both of which are strictly positive.

A.3. Proof of Corollary 3.5

By [64], Lemma 2.1 (equivalent characterization of reflection nonsingular M-matrices), we
have: (

R−1)
ij

≥ 0, i, j = 1, . . . , d; (
R−1)

ii
> 0, i = 1, . . . , d.
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Therefore, the matrix R
−1 = C−1R−1 = (ρij )1≤i,j≤d has elements ρij = c−1

i (R−1)ij . By as-

sumptions, the matrix R
−1

is symmetric. Therefore, its entries satisfy

ρij = ρji ≥ 0, i, j = 1, . . . , d; ρii > 0, i = 1, . . . , d. (A.1)

From here, it is easy to see that R
−1

is strictly copositive: x′R−1
x > 0 for x ∈ S \ {0}. Also,

(R
−1

R)ij = (C−1)ij = 0 for i �= j . It suffices to apply Theorem 3.4.

A.4. Proof of Lemma 3.7

Let us prove the statement for the maximum. For the minimum, the proof is similar. For x ∈
S \ {0}, we have: x1, . . . , xd ≥ 0, and

x′R−1
AR

−1
x

x′R−1
x

=
∑d

i=1
∑d

j=1(R
−1

AR
−1

)ij xixj∑d
i=1

∑d
j=1 ρij xixj

.

Apply Lemma A.1 to s = d2, aij = (R
−1

AR
−1

)ij xixj , bij = ρij xixj (we index ai and bi by
double indices, with each of the two indices ranging from 1 to d). It suffices to note that, because

of the symmetry of R
−1

AR
−1

and R
−1 = (ρij ), we have:

max
i,j=1,...,d

(R
−1

AR
−1

)ij

ρij

= max
1≤i≤j≤d

(R
−1

AR
−1

)ij

ρij

.

A.5. Miscellaneous lemmata

Lemma A.1. Take real numbers a1, . . . , as and positive real numbers b1, . . . , bs . Then

min

(
a1

b1
, . . . ,

as

bs

)
≤ a1 + · · · + as

b1 + · · · + bs

≤ max

(
a1

b1
, . . . ,

as

bs

)
.

Proof. Let us prove the inequality

a1 + · · · + as

b1 + · · · + bs

≤ max

(
a1

b1
, . . . ,

as

bs

)
.

The other inequality is proved similarly. Assume the converse: that

a1 + · · · + as

b1 + · · · + bs

>
ai

bi

, i = 1, . . . , s.

Multiply the ith inequality by (b1 + · · · + bs)bi > 0:

(a1 + · · · + as)bi > ai(b1 + · · · + bs), i = 1, . . . , s.
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Add them up and get:

(a1 + · · · + as)(b1 + · · · + bs) > (a1 + · · · + as)(b1 + · · · + bs),

and we arrive at a contradiction. �

Lemma A.2. Suppose we are given the following:

(i) two real-valued continuous adapted processes

X1 = (
X1(t), t ≥ 0

)
and X2 = (

X2(t), t ≥ 0
)
,

starting from the same X1(0) = X2(0) = x;
(ii) a real continuous function σ : R→ R such that∣∣σ(x) − σ(y)

∣∣ ≤ ρ
(|x − y|), x, y ∈ R, t ≥ 0,

where ρ : R+ → R+ is an increasing function such that ρ(0) = 0 and
∫ ∞

0 ρ−2(s)ds = ∞;
(iii) a continuous function b : R → R and a continuous adapted process β = (β(t), t ≥ 0)

with bounded variation, such that for every subset A ⊆R+, we have:∫
A

dβ(t) ≥
∫

A

b
(
X1(t)

)
dt, (A.2)

and the following equations are satisfied:

dX1(t) = b
(
X1(t)

)
dt + σ

(
X1(t)

)
dW(t), dX2(t) = dβ(t) + σ

(
X2(t)

)
dW(t).

Here, W = (W(t), t ≥ 0) is a standard Brownian motion. Then a.s. for all t ≥ 0 we have: X1(t) ≤
X2(t).

Proof. This is a modification of the proof of [38], Theorem 6.1 and [37], Theorem 1.1. From the
property (A.2), we get: for any measurable function ϕ : R+ →R+ and any t > 0, we get:∫ t

0
ϕ(s)dβ(s) ≥

∫ t

0
ϕ(s)b

(
X2(s)

)
ds.

In the proof [37], Theorem 1.1, we should change β2(s)ds to dβ(s) and β1(s)ds to b(X1(s))ds.
The rest of the proof should be modified accordingly. �
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