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One of two independent stochastic processes (arms) is to be selected at each of n stages. The selection is
sequential and depends on past observations as well as the prior information. The objective is to maximize
the expected future-discounted sum of the n observations. We study structural properties of this classical
bandit problem, in particular how the maximum expected payoff and the optimal strategy vary with the
priors, in two settings: (a) observations from each arm have an exponential family distribution and different
arms are assigned independent conjugate priors; (b) observations from each arm have a nonparametric
distribution and different arms are assigned independent Dirichlet process priors. In both settings, we derive
results of the following type: (i) for a particular arm and a fixed prior weight, the maximum expected payoff
increases as the prior mean yield increases; (ii) for a fixed prior mean yield, the maximum expected payoff
increases as the prior weight decreases. Specializing to the one-armed bandit, the second result captures
the intuition that, given the same immediate payoff, the less one knows about an arm, the more desirable it
becomes because there remains more information to be gained when selecting that arm. In the parametric
case, our results extend those of (Ann. Statist. 20 (1992) 1625–1636) concerning Bernoulli and normal
bandits (see also (In Time Series and Related Topics (2006) pp. 284–294 IMS)). In the nonparametric case,
we extend those of (Ann. Statist. 13 (1985) 1523–1534). A key tool in the derivation is stochastic orders.

Keywords: Bernoulli bandits; convex order; Dirichlet bandits; log-concavity; optimal stopping; sequential
decision; two-armed bandits

1. Introduction

At each of n stages, an experimenter must take an observation from one of two stochastic pro-
cesses (arms). Let us adopt the Bayesian framework and assume that the experimenter’s belief
about an unknown arm is updated according to Bayes theorem after each observation. A strat-
egy specifies which process to select at each stage. The objective is to maximize the expected
payoff,

∑n
i=1 aiZi , where Zi is the observation at stage i and An ≡ (a1, a2, . . . , an) is a discount

sequence satisfying ai ≥ 0 and
∑n

i=1 ai > 0. A strategy is optimal if it achieves the maximum ex-
pected payoff. An arm is optimal initially if there exists an optimal strategy that selects that arm
at the first stage. This is a finite-horizon two-armed bandit [4], a classical problem in sequential
decision theory.

Bernoulli bandits, where each arm generates binary observations, are important as a model
for clinical trials, and have received considerable attention [1,2,4]. Others such as normal bandits
[8,9,25] have also been extensively studied. Clayton and Berry [10] have introduced a one-armed
Bayesian nonparametric bandit using Dirichlet process priors [11]. Chattopadhyay [7] extends
this and studies the two-armed Dirichlet bandit. We shall consider both parametric and nonpara-
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metric bandits in this paper. Moreover, our results are not limited to two-armed cases, although
we present them in such terms for notational convenience.

For such problems, one must balance the desire to maximize the immediate payoff and the
need to explore a less known arm in the hope of higher payoff later on (the exploitation ver-
sus exploration dilemma). From a Bayesian perspective, the optimal strategy is easily specified
through backward induction, although its computation can be nontrivial. If the discount sequence
is geometric, then the problem reduces to several one-armed bandits [12,14,18,24] and the op-
timal strategy is to choose an arm with the highest dynamic allocation index, or Gittins index.
For a recent exposition to Gittins index theory, see [13]. Optimal strategies for general discount
sequences are less tractable.

The Gittins index possesses intriguing monotonicity properties with respect to prior specifica-
tions. For example, [15] show that the Gittins index decreases in τ > 0 for some special bandit
arms: a Bernoulli arm whose unknown parameter has a Beta(τ s, τ (1 − s)) prior (0 < s < 1), or
a normal arm whose unknown mean has a N(μ,1/τ) prior (μ ∈ R). In both cases, τ is naturally
interpreted as the amount of prior information. Such monotonicity results therefore capture an as-
pect of the exploration–exploitation dilemma in precise terms: given the same immediate payoff,
the less one knows about an arm, the more desirable it becomes since there is more room for ex-
ploration. Though easy to state and intuitively appealing, such results are often difficult to prove.
We mention a long-standing conjecture of [2], which states that for a finite-horizon Bernoulli
two-armed bandit with uniform discounting and independent Beta(ui, vi) priors, i = 1,2, for
arms 1 and 2 respectively, if u1/v1 = u2/v2 and u1 +v1 < u2 +v2, then arm 1 is preferred to arm
2 at the initial pull. If, instead of finite-horizon uniform discounting, we assume infinite-horizon
geometric discounting, then the corresponding conjecture is true, as shown by [15]. While our
results are not strong enough to confirm Berry’s original conjecture, they add evidence that it is
likely to hold.

The Bernoulli and normal bandits can be regarded as special cases of a general bandit where
observations from each arm have an exponential family distribution. Assume each arm is as-
signed an independent conjugate prior, which is characterized by a prior mean yield and a prior
weight. The prior mean yield specifies the immediate payoff of an arm, whereas the prior weight
reflects the associated uncertainty. In this more general setting, we show that: (i) for a fixed prior
weight, the maximum expected payoff increases as the prior mean yield for any arm increases;
(ii) for a fixed prior mean yield, the maximum expected payoff increases as the prior weight for
any arm decreases. These generalize and unify several results in the literature concerning specific
distributions. We do not present numerical calculations but it would be interesting to see to what
extent such monotonicity results still hold when the assumptions such as conjugate priors are
relaxed.

We also study Dirichlet bandits, which do not fit in the one-parameter exponential family
framework. For Dirichlet bandits with known arm 2, [10] obtain several structural results. In
particular, the maximum expected payoff increases as F1, the mean of the Dirichlet process prior
for arm 1, increases in the usual stochastic order. Also, a version of the stay-on-a-winner rule
[2,5] holds: if arm 1 is optimal initially then it is optimal at the next stage provided that the initial
observation from arm 1 is sufficiently large. Such results have been extended to the general two-
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armed Dirichlet bandits [7]. In this paper, we obtain further structural properties of Dirichlet
bandits concerning how the value of the bandit (i.e., the maximum expected payoff) varies with
the Dirichlet process priors. In particular, we show that (i) the value increases as the mean of
the Dirichlet process for any arm becomes larger in the increasing convex order; (ii) the value
decreases as the prior weight of the Dirichlet process of an arm increases. We confirm some
conjectures of [10] along the way.

A key tool in our derivation is the notion of stochastic ordering [20,22]. We shall use the usual
stochastic order ≤st, the convex order ≤cx, the increasing convex order ≤icx, the likelihood ratio
order ≤lr, and the relative log-concavity order ≤lc. For random variables Z1 and Z2 taking values
on R, we write Z1 ≤st Z2 (respectively, Z1 ≤cx Z2), if

Eφ(Z1) ≤ Eφ(Z2) (1)

for every increasing (respectively, convex) function φ such that the expectations exist. If Z1 ≤st

Z2 then we also say Z2 is to the right of Z1. We say Z1 is smaller than Z2 in the increasing
convex order, written as Z1 ≤icx Z2, if (1) holds for every increasing and convex function φ

such that the expectations exist. Hence, ≤icx is implied by either ≤st or ≤cx. The convex order is
especially important in deriving our results concerning Dirichlet bandits.

If Z1 and Z2 have densities f1(z) and f2(z) respectively, supported on the same interval,
then we write Z1 ≤lr Z2 (respectively, Z1 ≤lc Z2) if log(f1(z)/f2(z)) is decreasing (respectively,
concave) in z. For example, the Beta(τ s, τ (1 − s)) density increases in the likelihood ratio order
as s ∈ (0,1) increases, and decreases in the relative log-concavity order as τ increases. (We
use ≤st,≤cx,≤icx,≤lr and ≤lc with densities as well as random variables.) A basic property is
≤lr =⇒ ≤st. Assuming equal means, it also holds that ≤lc implies ≤cx. Intuitively, the relative
log-concavity order compares the amount of information as it is defined through curvatures of
the log density functions. Both ≤lr and ≤lc are preserved under the prior-to-posterior updating,
which makes them ideal for studying structural properties in parametric bandit problems. The
log-concavity order is also useful in other seemingly unrelated contexts [23,26–28].

The rest of the paper is organized as follows. In Section 2, we consider the parametric case
with exponential family distributions and conjugate priors. After setting up the exponential fam-
ily framework in Section 2.1, we present basic structural results such as a stay-on-a-winner rule
in Section 2.2. Section 2.3 contains the main results, including monotonicity of the value function
with respect to prior weights. Section 2.4 applies the results in Section 2.3 to one-armed bandits.
In particular, we show that the break-even value, or Gittins index, decreases as the prior weight
of the unknown arm increases. In Sections 2.5 and 2.6, we extend the monotonicity results to
nonconjugate priors for Bernoulli and normal bandits, respectively. Section 2.7 concludes the
parametric case with a brief discussion on an open problem. In Section 3, we consider the non-
parametric case with Dirichlet process priors where similar results are derived. We mention that
although the results are similar to the parametric case in form, the proofs are somewhat different
and are not straightforward extensions.
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2. The parametric case with exponential family distributions
and conjugate priors

2.1. Preliminaries

Let ν be a σ -finite measure on R that is not a point mass. Denote

ψ(θ) = log
∫

eθx dν(x), θ ∈ �,

where � is the natural parameter space defined as the set of θ ∈ R such that ψ(θ) is finite. We
assume that � has a non-empty interior. Suppose that given θi , observations from arm i are
independent and identically distributed (i.i.d.) according to the density (relative to ν)

f (x|θi) = eθix−ψ(θi ). (2)

Let us assume independent conjugate priors on θi, i = 1,2, with Lebesgue density

f (θi |γi, τi) ∝ eθiγi−τiψ(θi ), θi ∈ �. (3)

Let K denote the smallest open interval such that ν assigns no mass outside of the closure K̄. To
ensure that the priors are proper, we require τi > 0 and γi/τi ∈ K ([6], Chapter 4). As usual τi is
regarded as the “prior sample size” and γi the “prior sum of observations”. We refer to (3) as the
(γi, τi) prior and call this two-armed bandit with discount sequence An the (γ1, τ1;γ2, τ2;An)

bandit. Its value (i.e., maximum expected payoff) is denoted by V (γ1, τ1;γ2, τ2;An).
This framework unifies several well-studied bandit reward structures: (i) Bernoulli rewards

whose unknown parameter has a Beta(γ, τ − γ ) prior; (ii) normal rewards whose unknown
mean has a N(γ /τ,1/τ) prior; (iii) exponential rewards whose unknown rate parameter has a
Gamma(τ +1, γ ) prior; (iv) Poisson rewards whose unknown rate parameter has a Gamma(γ, τ )

prior. Extensions to general priors for (i) and (ii) are considered in Sections 2.5 and 2.6, respec-
tively.

Let V i(γ1, τ1;γ2, τ2;An) be the expected payoff when selecting arm i initially and using an
optimal strategy thereafter. Then

V (γ1, τ1;γ2, τ2;An) = max
{
V 1(γ1, τ1;γ2, τ2;An),V

2(γ1, τ1;γ2, τ2;An)
}
, (4)

and it is optimal to start with the arm whose V i is larger. Suppose arm 1 is selected, resulting in an
observation X. By conjugacy, the posterior for θ1 is again of the form of (3) with (γ1 +X,τ1 +1)

in place of (γ1, τ1). Thus, we have

V 1(γ1, τ1;γ2, τ2;An) = a1μ1 + E
[
V

(
γ1 + X,τ1 + 1;γ2, τ2;A1

n

)|γ1, τ1
]
, (5)

V 2(γ1, τ1;γ2, τ2;An) = a1μ2 + E
[
V

(
γ1, τ1;γ2 + Y, τ2 + 1;A1

n

)|γ2, τ2
]
, (6)

where A1
n = (a2, a3, . . . , an) and μi denotes the expected value of an observation from arm i

under the (γi, τi) prior. This μi is simply μi = γi/τi , which we refer to as the prior mean yield
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(this is not to be confused with Eθ ). In E[g(X)|γ1, τ1], we use X to denote a generic observation
from arm 1 under the (γ1, τ1) prior; similarly for Y . That is, the density of X relative to ν is

f (x) ∝
∫

�

eθ(γ1+x)−(τ1+1)ψ(θ) dθ. (7)

The dynamic programming equations (4)–(6) are crucial for both theoretical analysis and numer-
ical computation of the optimal strategy.

2.2. Stay-on-a-winner

This subsection derives a basic monotonicity property of the optimal strategy: as the observation
from an arm becomes larger, the inclination to pull that arm again also increases. Under suitable
conditions, we prove a generalized stay-on-a-winner rule, which is a natural extension of the
results for Bernoulli bandits [2,4,5].

Let us define the advantage of arm 1 over arm 2 as


(γ1, τ1;γ2, τ2;An) = V 1(γ1, τ1;γ2, τ2;An) − V 2(γ1, τ1;γ2, τ2;An).

Define 
+ = max{
,0} and 
− = min{
,0}. By considering the initial two pulls, one can
show [2]


(γ1, τ1;γ2, τ2;An) = (a1 − a2)

(
γ1

τ1
− γ2

τ2

)
(8)

+ E
[

+(

γ1 + X,τ1 + 1;γ2, τ2;A1
n

)|γ1, τ1
]

(9)

+ E
[

−(

γ1, τ1;γ2 + Y, τ2 + 1;A1
n

)|γ2, τ2
]
. (10)

Proposition 1 states that as the prior mean yield of arm 1 increases, so does the advantage
of arm 1 over arm 2, assuming An is decreasing. This can be extended to non-conjugate priors.
Specifically, 
 increases as the prior for arm 1 becomes larger in the likelihood ratio order.
Extensions to general Markov decision problems are also possible [21]. We provide a complete
proof which serves as an introduction to the derivation of the main results in Section 2.3.

Proposition 1. Suppose An is decreasing. Then 
(γ1, τ1;γ2, τ2;An) increases in γ1.

Proof. The n = 1 case is easy. Let us use induction for n ≥ 2. In view of (8)–(10), we only need
to show that

E
[

+(

γ1 + X,τ1 + 1;γ2, τ2;A1
n

)|γ1, τ1
]

and (11)

E
[

−(

γ1, τ1;γ2 + Y, τ2 + 1;A1
n

)|γ2, τ2
]

(12)

both increase in γ1. Monotonicity of (12) follows from the induction hypothesis. To handle (11),
let us consider γ1 < γ̃1. Let θ1 and θ̃1 have the (γ1, τ1) and (γ̃1, τ1) priors, respectively. Let
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g(x) (respectively, g̃(x)) be the marginal density of X if it is drawn according to (2) given θ1
(respectively, θ̃1). Note that θ1 ≤lr θ̃1. In view of (7), we know that g ≤lr g̃ by total positivity
considerations ([17], Chapter 3). It follows that g ≤st g̃. By the induction hypothesis,

φ(x) ≡ 
+(
x, τ1 + 1;γ2, τ2;A1

n

)
increases in x. Thus

E
[
φ(γ1 + X)|γ1, τ1

] ≤ E
[
φ(γ̃1 + X)|γ1, τ1

]
(13)

≤ E
[
φ(γ̃1 + X)|γ̃1, τ1

]
,

where (13) holds because g ≤st g̃. Hence, (11) increases in γ1. �

Corollary 1. Suppose An is a decreasing sequence, and an observation x is taken from arm 1
initially. Then, at the second stage, either arm 1 is optimal for all x, or arm 2 is optimal for all x,
or there exists some x∗ ∈ K such that arm 1 is optimal if x ≥ x∗ and arm 2 is optimal if x ≤ x∗.

Proof. We can show that 
(γ1 + x, τ1 + 1;γ2, τ2;A1
n) is continuous in x, which is treated as a

real number in K̄ even though an actual observation from arm 1 may be discrete. (One method
is to use the convexity arguments of Proposition 2 in Section 2.3.) The claim then follows from
Proposition 1. �

The next result, Theorem 1, is a generalized stay-on-a-winner rule: under suitable conditions
if an arm is optimal initially then it continues to be optimal at the next stage provided that the
initial observation from that arm is large enough.

Theorem 1. Assume An is decreasing, n ≥ 2, and either (i) a1 = a2 or (ii) γ1/τ1 ≤ γ2/τ2
holds. Assume 
(γ1, τ1;γ2, τ2;An) ≥ 0, that is, arm 1 is optimal initially. Then 
(γ1 + x, τ1 +
1;γ2, τ2;A1

n) ≥ 0 for sufficiently large x ∈ K̄.

Proof. We may assume ai > 0 for all i ≤ n. Let U be the upper end point of K. If U = ∞,
then using (8)–(10), it is easy to show by induction that 
(γ1 + x, τ1 + 1;γ2, τ2;A1

n) > 0 for
sufficiently large x. That is, the claim holds even without assuming that arm 1 is optimal initially.
Assume U < ∞ and 
(γ1, τ1;γ2, τ2;An) ≥ 0. By (8)–(10), we have

0 ≤ E
[

+(

γ1 +X,τ1 +1;γ2, τ2;A1
n

)|γ1, τ1
]+E

[

−(

γ1, τ1;γ2 +Y, τ2 +1;A1
n

)|γ2, τ2
]
. (14)

Suppose the claim does not hold, that is, 
(γ1 + x, τ1 + 1;γ2, τ2;A1
n) < 0 for all x ∈ K̄. In

particular,



(
γ1 + U,τ1 + 1;γ2, τ2;A1

n

)
< 0. (15)

Then it is necessary that both expectations in (14) are zero. That is,



(
γ1, τ1;γ2 + y, τ2 + 1;A1

n

) ≥ 0 for all y ∈K.
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By continuity, 
(γ1, τ1;γ2 + U,τ2 + 1;A1
n) ≥ 0. However, the (γ1 + U,τ1 + 1) prior is larger

than the (γ1, τ1) prior in the likelihood ratio order. The argument of Proposition 1 yields



(
γ1 + U,τ1 + 1;γ2, τ2;A1

n

) ≥ 

(
γ1, τ1;γ2, τ2;A1

n

)
≥ 


(
γ1, τ1;γ2 + U,τ2 + 1;A1

n

) ≥ 0,

which contradicts (15). �

2.3. Monotonicity

Proposition 2 shows that the maximum expected payoff is an increasing and convex function of
the prior mean yield of any arm. The convexity will be useful in proving Theorem 2 concerning
monotonicity with respect to the prior weight.

Proposition 2. V (γ1, τ1;γ2, τ2;An) is increasing and convex in each of γi, i = 1,2.

Proof. Monotonicity holds by the same argument that proves Proposition 1. Let us focus on the
convexity with respect to γ1. The n = 1 case is easy. For n ≥ 2 we use induction. Note that by
(4)–(6) it suffices to show that both

E
[
V

(
γ1 + X,τ1 + 1;γ2, τ2;A1

n

)|γ1, τ1
]

and (16)

E
[
V

(
γ1, τ1;γ2 + Y, τ2 + 1;A1

n

)|γ2, τ2
]

(17)

are convex in γ1. The claim for (17) follows from the induction hypothesis. To deal with (16),
suppose γ1 < γ̃1. Denote the marginal of X when the prior on θ is (γ1, τ1) (respectively, (γ̃1, τ1))
by g (respectively, g̃). Then g ≤st g̃ as in the proof of Proposition 1. By the induction hypothesis,

φ(x) ≡ V
(
x, τ1 + 1;γ2, τ2;A1

n

)
is convex in x. Moreover, for fixed ρ ∈ (0,1), we have

E
[
φ(γ1 + X)|γ1, τ1

] − E
[
φ
(
ργ1 + (1 − ρ)γ̃1 + X

)|γ1, τ1
]

≥ ρ−1(1 − ρ)E
[
η(X)|γ1, τ1

]
(18)

≥ ρ−1(1 − ρ)E
[
η(X)|γ̃1, τ1

]
, (19)

where

η(x) ≡ φ
(
ργ1 + (1 − ρ)γ̃1 + x

) − φ(γ̃1 + x).

The inequality (18) holds because φ is convex; (19) holds because η is decreasing and g ≤st g̃.
Rearranging, we get

ρE
[
φ(γ1 + X)|γ1, τ1

] + (1 − ρ)E
[
φ(γ̃1 + X)|γ̃1, τ1

] ≥ Eφ
(
ργ1 + (1 − ρ)γ̃1 + X∗),
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where X∗ has the following distribution. Given θ , X∗ is distributed according to (2); the prior
on θ is a mixture of (γ1, τ1) and (γ̃1, τ1) with weights ρ and 1 − ρ respectively. Denote this
mixture density by h∗(θ), and the (ργ1 + (1 − ρ)γ̃1, τ1) prior density by h(θ). Then h(θ) ≤lc

h∗(θ), because log-convexity is closed under mixtures [19]. Consider the difference between the
marginal densities

D(x) ≡
∫

�

exθ−ψ(θ)
[
h(θ) − h∗(θ)

]
dθ.

Relative log-concavity implies that, as θ traverses �,h(θ) − h∗(θ) changes signs at most twice
and, in the case of two changes, the sign sequence is −,+,−. By the variation-diminishing
properties of the Laplace transform ([17], Chapter 5), D(x) has at most two changes of sign, and
in the case of two changes, the sign sequence is −,+,−. Note that, when the prior is either h or
h∗, the marginal mean of X is the same, namely (ργ1 + (1 − ρ)γ̃1)/τ1. Hence it is not possible
for D(x) to change signs exactly once. Unless D(x) ≡ 0, its sign sequence must be −,+,−.
It follows that the marginal distribution of X becomes larger in the convex order when h∗(θ)

replaces h(θ) as the prior for θ (see, e.g., [28], Lemma 1). Using the convexity of φ again, we
obtain

Eφ
(
ργ1 + (1 − ρ)γ̃1 + X∗) ≥ E

[
φ
(
ργ1 + (1 − ρ)γ̃1 + X

)|ργ1 + (1 − ρ)γ̃1, τ1
]
.

It follows that E[φ(γ1 + X)|γ1, τ1], i.e., (16), is convex in γ1, as required. �

Our main result, Theorem 2, shows that the value of the bandit decreases as the prior weight
of an arm increases. That is, given the same immediate payoff, an arm becomes less desirable as
the amount of information about it increases.

Theorem 2. V (cγ1, cτ1;γ2, τ2;An) decreases in c ∈ (0,∞).

Proof. Let us use induction on n. The n = 1 case is easy. Suppose n ≥ 2. In view of (4)–(6), we
only need to show that

E
[
V

(
cγ1 + X,cτ1 + 1;γ2, τ2;A1

n

)|cγ1, cτ1
]

and (20)

E
[
V

(
cγ1, cτ1;γ2 + Y, τ2 + 1;A1

n

)|γ2, τ2
]

(21)

both decrease in c. By the induction hypothesis, (21) decreases in c. To deal with (20), suppose
0 < c < c̃ and denote ξ = (cτ1 + 1)/(c̃τ1 + 1). We get

E
[
V

(
cγ1 + X,cτ1 + 1;γ2, τ2;A1

n

)|cγ1, cτ1
]

≥ E
[
V

(
ξ(c̃γ1 + X), cτ1 + 1;γ2, τ2;A1

n

)|cγ1, cτ1
]

(22)

≥ E
[
V

(
c̃γ1 + X, c̃τ1 + 1;γ2, τ2;A1

n

)|cγ1, cτ1
]

(23)

≥ E
[
V

(
c̃γ1 + X, c̃τ1 + 1;γ2, τ2;A1

n

)|c̃γ1, c̃τ1
]
. (24)
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The inequality (22) holds by the convexity of V as shown by Proposition 2, noting

ξ(c̃γ1 + X) ≤cx cγ1 + X

(see Lemma 3 in Section 2.6, or [22], Theorem 3.A.18). The inequality (23) holds by the in-
duction hypothesis, as ξ < 1. The inequality (24) holds by an argument similar to the proof of
Proposition 2. Specifically, the prior (c̃γ1, c̃τ1) is log-concave relative to (cγ1, cτ1). Thus the
marginal of X increases in the convex order if (cγ1, cτ1) replaces (c̃γ1, c̃τ1) as the prior on θ

(the mean of X remains constant). Overall (20) decreases in c, as required. �

Remark. Proposition 2 and Theorem 2 extend naturally to bandits with more than two arms.
We present the two-armed version for simplicity. The discount sequence An is only required
to be nonnegative. By approximation, this can be further extended to the infinite-horizon case
assuming

∑∞
i=1 ai < ∞. Similar comments apply to Theorem 5 in Section 3.1 and Theorem 6 in

Section 3.2, which are our main results in the nonparametric case.

2.4. The one-armed case

In this subsection, we consider the one-armed bandit where we assume arm 2 yields a constant
payoff λ at each pull. We shall abuse the notation by calling this a (γ, τ ;λ;An) bandit, where
we drop the subscripts on γ1 and τ1 for convenience. Results in Section 2.3 are applied to derive
monotonicity properties of the break-even value. It is also shown (Proposition 3) that if both arms
are optimal initially, then an observation from arm 1 that is less than its prior mean yield would
make arm 2 optimal thereafter.

A discount sequence An = (a1, a2, . . .) is called regular if, letting bj = ∑
i≥j ai , we have

b2
j+1 ≥ bjbj+2 for all j ≥ 1 [3]. For regular discount sequences, our one-armed bandit is an

optimal stopping problem, that is, if at any stage the known arm becomes optimal then it remains
optimal in all subsequent stages. Moreover, if An is regular and a1 > 0, then there exists a break-
even value �(γ, τ ;An) for the (γ, τ ;λ;An) bandit, such that arm 1 is optimal initially if and only
if λ ≤ �(γ, τ ;An) and arm 2 is optimal initially if and only if λ ≥ �(γ, τ ;An). For infinite-
horizon geometric discounting, this break-even value is also known as the dynamic allocation
index or Gittins index [14]. The following result holds by the optimal stopping characterization.

Lemma 1. If An is regular and a1 > 0, then �(γ, τ ;An) is the smallest λ such that

V (γ, τ ;λ;An) ≤ λ

n∑
i=1

ai .

Corollary 2 summarizes some monotonicity properties of �(γ, τ ;An). It extends to infinite-
horizon regular discounting. As special cases, we recover the results of [15] on Bernoulli and
normal bandits with geometric discounting.

Corollary 2. If An is regular and a1 > 0, then �(cγ, cτ ;An) decreases in c > 0 and strictly
increases in γ .
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Proof. Monotonicity in c follows from Theorem 2 and Lemma 1. Monotonicity in γ follows
from Proposition 2 and Lemma 1. To show strict monotonicity, let us set c = 1 and assume that
γ, γ̃ satisfy γ < γ̃ and

�(γ, τ ;An) = �(γ̃ , τ ;An) ≡ λ∗.

Then, as in the proof of Proposition 1, we get

λ∗
n∑

i=1

ai = a1
γ

τ
+ E

[
V

(
γ + X,τ + 1;λ∗;A1

n

)|γ, τ
]

< a1
γ̃

τ
+ E

[
V

(
γ + X,τ + 1;λ∗;A1

n

)|γ, τ
]

≤ a1
γ̃

τ
+ E

[
V

(
γ̃ + X,τ + 1;λ∗;A1

n

)|γ̃ , τ
]

= λ∗
n∑

i=1

ai,

which is a contradiction. �

For a regular and positive discount sequence An, Proposition 3 shows that there exists a break-
even observation b(γ, τ ;An) for the (γ, τ ;λ;An) bandit such that if both arms are optimal ini-
tially, and an observation x is taken from arm 1, then arm 1 remains optimal if x ≥ b(γ, τ ;An)

and arm 2 becomes optimal if x ≤ b(γ, τ ;An). Moreover, this break-even observation is no
smaller than γ /τ , the prior mean yield. Note that b(γ, τ ;An) is a real number in the open inter-
val K even though an actual observation from arm 1 may be discrete.

Proposition 3. Suppose An is regular, n ≥ 2, and a1, a2 > 0. Then there exists a unique
b(γ, τ ;An) ∈K such that b(γ, τ ;An) ≥ γ /τ and

�(γ, τ ;An) ≥ �
(
γ + x, τ + 1;A1

n

)
, if x ≤ b(γ, τ ;An); (25)

�(γ, τ ;An) ≤ �
(
γ + x, τ + 1;A1

n

)
, if x ≥ b(γ, τ ;An). (26)

To prove Proposition 3 we need a continuity lemma. Its proof, taken from [10], is included for
completeness.

Lemma 2. Suppose An is regular and a1 > 0. Then �(γ, τ ;An) is continuous in γ .

Proof. Fix γ0 and note that λ = �(γ, τ ;An) is the unique root of

V 1(γ, τ ;λ;An) − V 2(γ, τ ;λ;An) = 0.

By continuity of V 1 and V 2, we have

0 = lim
γ↑γ0

[
V 1(γ, τ ;�(γ, τ ;An);An

) − V 2(γ, τ ;�(γ, τ ;An);An

)]
= V 1

(
γ0, τ ; lim

γ↑γ0
�(γ, τ ;An);An

)
− V 2

(
γ0, τ ; lim

γ↑γ0
�(γ, τ ;An);An

)
.
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By uniqueness of �, we have limγ↑γ0 �(γ, τ ;An) = �(γ0, τ ;An). Similarly, the limit holds
when γ ↓ γ0. �

Proof of Proposition 3. Let U be the upper end point of K. If U = ∞ then �(γ + x, τ +
1;A1

n) → ∞ as x → ∞ (the expected payoff by always selecting arm 1 becomes arbitrarily
large). If U < ∞ then we can show �(γ + U,τ + 1;A1

n) > �(γ, τ ;An) as follows. Assume the
contrary and consider the (γ, τ ;λ∗;An) bandit with λ∗ = �(γ + U,τ + 1;A1

n). We have

λ∗
n∑

i=1

ai ≤ a1
γ

τ
+ E

[
V

(
γ + X,τ + 1;λ∗;A1

n

)|γ, τ
]
.

Since γ /τ ∈ K and K is open, we have λ∗ ≥ (γ + U)/(τ + 1) > γ/τ . Thus

λ∗
n∑

i=2

ai < E
[
V

(
γ + X,τ + 1;λ∗;A1

n

)|γ, τ
]

≤ V
(
γ + U,τ + 1;λ∗;A1

n

)
= λ∗

n∑
i=2

ai,

which is a contradiction. We also have

�(γ, τ ;An) ≥ �
(
γ, τ ;A1

n

)
≥ �

(
γ + γ /τ, τ + 1;A1

n

)
,

where the first inequality holds by the optimal stopping characterization, and the second by
Corollary 2.

By Lemma 2 and Corollary 2, �(γ + x, τ + 1;A1
n) is continuous and strictly increasing in x.

Hence there exists a unique b(γ, τ ;An) ∈ [γ /τ,U) such that (25) and (26) hold. �

It is tempting to conjecture that b(γ, τ ;An) ≥ �(γ, τ ;An), which gives a tighter bound since
�(γ, τ ;An) ≥ γ /τ . However, our methods are not yet strong enough to resolve this conjecture.
Clayton and Berry [10] conjectured an analogous bound for Dirichlet bandits, which we will
prove in Section 3.

2.5. Bernoulli bandits with general priors

As noted earlier, results based on likelihood ratio orders, such as those in Section 2.2, may extend
to nonconjugate priors. This section shows that Theorem 2 can also be extended this way, at least
in the Bernoulli case.

Given pi, i = 1,2, let us assume that observations from arm i are i.i.d. Bernoulli(pi). Priors
on pi are independent with densities fi with respect to a σ -finite measure G on [0,1]. We shall
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denote the value of this Bernoulli bandit with discount sequence An by VB(f1;f2;An). Let μ(f )

denote the mean of any prior f , that is, μ(f ) = ∫
[0,1] pf (p)dG(p).

Theorem 3. If f1 ≤lc f̃1 and μ(f1) ≤ μ(f̃1), then VB(f1;f2;An) ≤ VB(f̃1;f2;An).

Note that the Beta(cα, cβ) prior (c,α,β > 0) decreases in the relative log-concavity order as
c increases. Theorem 3 therefore recovers the Bernoulli case of Theorem 2 for conjugate priors.

Let �B(f ;An) denote the break-even value of a one armed Bernoulli bandit whose unknown
arm has prior f . We obtain Corollary 3 as a consequence of Theorem 3 and Lemma 1.

Corollary 3. Assume An is regular and a1 > 0. If f ≤lc f̃ and μ(f ) ≤ μ(f̃ ), then �B(f ;An) ≤
�B(f̃ ;An).

Herschkorn [16] posed the problem of identifying a variability ordering between priors so that
both VB and �B are monotonic with respect to it. Theorem 3 and Corollary 3 show that there
is indeed such an ordering, namely the relative log-concavity order (assuming equal means).
A conjecture of [16] states that Corollary 3 holds under the weaker assumption f ≤cx f̃ . This
conjecture remains open.

Proof of Theorem 3. When μ(f1) < μ(f̃1), we may define the exponentially tilted density
f ∗(p) ∝ f̃1(p) exp(δp) for a suitable δ < 0 so that μ(f ∗) = μ(f1). We have f1 ≤lc f ∗ ≤lr f̃1.
In view of the likelihood ratio ordering, we can use arguments in the proof of Proposition 1 to
show that VB(f ∗;f2;An) ≤ VB(f̃1;f2;An). Hence, we only need to consider the case with equal
means.

Let us assume μ(f1) = μ(f̃1) and that f̃1 is nondegenerate. The n = 1 case is easy. For n ≥ 2
we use induction. The equations (4)–(6) become

VB(f1;f2;An) = max
{
V 1

B(f1;f2;An),V
2
B(f1;f2;An)

};
V 1

B(f1;f2;An) = μ(f1)
(
a1 + VB

(
σf1;f2;A1

n

)) + (
1 − μ(f1)

)
VB

(
φf1;f2;A1

n

); (27)

V 2
B(f1;f2;An) = μ(f2)

(
a1 + VB

(
f1;σf2;A1

n

)) + (
1 − μ(f2)

)
VB

(
f1;φf2;A1

n

)
.

We use σf (respectively, φf ) to denote the posterior density after observing one success (respec-
tively, one failure). That is,

(σf )(p) = f (p)p

μ(f )
; (φf )(p) = f (p)(1 − p)

1 − μ(f )
.

Because f1 ≤lc f̃1 and μ(f1) = μ(f̃1) we have f1 ≤cx f̃1 (see, e.g., [28], Theorem 12). Thus

μ(f1)μ(σf1) =
∫

[0,1]
p2f1(p)dG(p) ≤

∫
[0,1]

p2f̃1(p)dG(p) = μ(σ f̃1)μ(f̃1),
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yielding μ(σf1) ≤ μ(σ f̃1). Similarly, μ(φf1) ≥ μ(φf̃1). Define

ε∗ = μ(σ f̃1) − μ(σf1)

μ(σ f̃1) − μ(φf̃1)
; ε∗ = μ(φf1) − μ(φf̃1)

μ(σ f̃1) − μ(φf̃1)
.

Then ε∗, ε∗ ∈ [0,1). Define

g∗ = (
1 − ε∗)σ f̃1 + ε∗φf̃1; g∗ = ε∗σ f̃1 + (1 − ε∗)φf̃1.

Convexity of VB with respect to mixtures gives

VB
(
g∗;f2;A1

n

) ≤ (
1 − ε∗)VB

(
σ f̃1;f2;A1

n

) + ε∗VB
(
φf̃1;f2;A1

n

);
VB

(
g∗;f2;A1

n

) ≤ ε∗VB
(
σ f̃1;f2;A1

n

) + (1 − ε∗)VB
(
φf̃1;f2;A1

n

)
.

Noting μ(f1)ε
∗ = (1 − μ(f1))ε∗, we add μ(f1) times the first inequality to 1 − μ(f1) times the

second and get

μ(f1)VB
(
g∗;f2;A1

n

) + (
1 − μ(f1)

)
VB

(
g∗;f2;A1

n

)
(28)

≤ μ(f1)VB
(
σ f̃1;f2;A1

n

) + (
1 − μ(f1)

)
VB

(
φf̃1;f2;A1

n

)
.

The density g∗ is simply

g∗(p) =
[
p(1 − ε∗)

μ(f1)
+ (1 − p)ε∗

1 − μ(f1)

]
f̃1(p).

It is easy to check (1 − ε∗)/μ(f1) ≥ ε∗/(1 − μ(f1)), which leads to

σf1 ≤lc σ f̃1 ≤lc g∗.

Moreover, σf1 and g∗ have the same mean. By the induction hypothesis, we have

VB
(
σf1;f2;A1

n

) ≤ VB
(
g∗;f2;A1

n

)
. (29)

Similarly,

VB
(
φf1;f2;A1

n

) ≤ VB
(
g∗;f2;A1

n

)
. (30)

We combine (28)–(30) to get

μ(f1)VB
(
σf1;f2;A1

n

) + (
1 − μ(f1)

)
VB

(
φf1;f2;A1

n

)
≤ μ(f1)VB

(
σ f̃1;f2;A1

n

) + (
1 − μ(f1)

)
VB

(
φf̃1;f2;A1

n

)
.

Applying (27) then yields

V 1
B(f1;f2;An) ≤ V 1

B(f̃1;f2;An).

The rest of the proof is standard. �
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Remark. Theorem 3 focuses on the parameter p. If we still require equal prior means for p,
but impose the log-concavity order on θ = log(p/(1 − p)) rather than p, then VB is ordered by
virtually the same proof. This result is distinct from Theorem 3 because the relative log-concavity
order is usually not preserved by monotone transformations.

2.6. Normal bandits with general priors

The main result of this subsection (Theorem 4) extends Theorem 2 to general priors for normal
bandits. Similar to Theorems 3, 4 is based on the relative log-concavity order, although it is more
restrictive because we only compare a general prior with a normal prior.

Given θi, i = 1,2, let us assume that observations from arm i are i.i.d. N(θi,1). Priors on θi

are independent with Lebesgue densities fi . We shall denote the value of this normal bandit with
discount sequence An by VN(f1;f2;An). Denote the mean of any f by μ(f ) = ∫ ∞

−∞ θf (θ)dθ .

Theorem 4. Let f̃1 ≡ N(α,1/τ).

1. If f1 ≤lc f̃1 and μ(f1) ≤ α, then VN(f1;f2;An) ≤ VN(f̃1;f2;An).
2. If f̃1 ≤lc f1 and μ(f1) ≥ α, then VN(f̃1;f2;An) ≤ VN(f1;f2;An).

Let �N(f ;An) denote the break-even value of a one-armed normal bandit with prior f for the
mean of the unknown arm. We obtain Corollary 4 as a consequence of Theorem 4 and Lemma 1.

Corollary 4. Assume An is regular and a1 > 0. Define f̃ ≡ N(α,1/τ).

1. If f ≤lc f̃ and μ(f ) ≤ α, then �N(f ;An) ≤ �N(f̃ ;An).
2. If f̃ ≤lc f and μ(f ) ≥ α, then �N(f̃ ;An) ≤ �N(f ;An).

The condition f ≤lc N(α,1/τ) is essentially d2 logf (θ)/dθ2 ≤ −τ , which can be regarded
as a strong form of information ordering. The appearance of ≤lc is therefore especially intuitive
in Theorem 4 and Corollary 4. It is an open problem whether Theorem 4 and Corollary 4 hold
without assuming that one of the priors is normal.

The rest of this section proves Theorem 4. We need a technical result (Lemma 3) which may
be of independent interest.

Lemma 3. Let g be a differentiable function on R. Assume X is a random variable satisfying
Eg(X) = EX.

1. If 0 ≤ g′(x) ≤ 1, x ∈ R, then g(X) ≤cx X.
2. If g′(x) ≥ 1, x ∈R, then X ≤cx g(X).

Proof. We prove Part 1 only. Part 2 follows from Part 1 by considering the inverse function of g.
As Eg(X) = EX, one criterion for g(X) ≤cx X is

E max
{
0, g(X) − b

} ≤ E max{0,X − b}, b ∈R. (31)
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See, for example, [22], Theorem 3.A.1. Let us assume 0 ≤ g′(x) ≤ c for some 0 < c < 1. Oth-
erwise we consider cg(x) + (1 − c)E(X) and let c ↑ 1. As g(x) is a contraction, it has a unique
fixed point, say x0. Consider two cases.

Case (i): b ≥ x0. If x ≥ x0, then g(x) − g(x0) ≤ x − x0, that is, g(x) ≤ x, and max{0, g(x) −
b} ≤ max{0, x − b}. If x < x0, then g(x) ≤ g(x0) = x0 and max{0, g(x) − b} = 0 = max{0, x −
b}. In either case, max{0, g(x) − b} ≤ max{0, x − b}, which implies (31).

Case (ii): b < x0. Applying the argument of Case (i) to g̃(x) ≡ −g(−x) and X̃ ≡ −X yields
E max{0, b − g(X)} ≤ E max{0, b − X}, which reduces to (31) because Eg(X) = EX.

�

Proof of Theorem 4. We only prove Part 1; the second part is similar. If μ(f1) < α then by
decreasing the mean of f̃1 from α to μ(f1) we preserve the log-concavity ordering and reduce
the problem to the case of equal means. Let us assume μ(f1) = α throughout the proof.

The n = 1 case is easy. For n ≥ 2 we use induction. The equations (4)–(6) become

VN(f1;f2;An) = max
{
V 1

N(f1;f2;An),V
2
N(f1;f2;An)

};
V 1

N(f1;f2;An) = a1μ(f1) + E
[
VN

(
f X

1 ;f2;A1
n

)|�f1
]; (32)

V 2
N(f1;f2;An) = a1μ(f2) + E

[
VN

(
f1;f Y

2 ;A1
n

)|�f2
]
.

We denote the posterior f x
1 (θ) ∝ f1(θ) exp[−(x − θ)2/2]; similarly for f

y

2 . In E[g(X)|�f ],
the density of X, denoted by �f , is the convolution of f with the standard normal. (Note the
difference from the notation in Section 2.1.) Let m(x;f ) denote the posterior mean of θ when x

is observed and the prior is f , that is, m(x;f ) = ∫ ∞
−∞ θf x(θ)dθ . Direct calculation yields

dm(x;f )

dx
= Var

(
θ |f x

)
. (33)

That is, the derivative of m(x;f ) is simply the posterior variance of θ .
Suppose f1 ≤lc f̃1 ≡ N(α,1/τ) and μ(f1) = α. Then

f x
1 ≤lc N

(
m(x;f1),

1

τ + 1

)
. (34)

It can be shown that (i) if X is distributed as �f1, then m(X;f1) ≤cx (X + τα)/(τ + 1); (ii) �f1

is smaller than �f̃1 ≡ N(α,1 + 1/τ) in the convex order. To prove (i), note that (34) holds with
≤lc replaced by ≤cx as the two sides have equal means. By (33), we have

0 ≤ dm(x;f1)

dx
≤ 1

τ + 1
, x ∈ R.

If X is distributed as �f1 then both (X + τα)/(τ + 1) and m(X;f1) have mean μ(f1) = α. Thus
claim (i) holds by Lemma 3. Claim (ii) holds because f1 ≤cx f̃1 and the convex order is closed
under convolution.
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We have

E
[
VN

(
f X

1 ;f2;A1
n

)|�f1
] ≤ E

[
VN

(
N

(
m(X;f1),

1

τ + 1

)
;f2;A1

n

)∣∣∣�f1

]

≤ E
[
VN

(
f̃ X

1 ;f2;A1
n

)∣∣∣�f1
]

≤ E
[
VN

(
f̃ X

1 ;f2;A1
n

)∣∣∣�f̃1
]
,

where the first inequality holds by (34) and the induction hypothesis, the second by claim (i),
noting

f̃ X
1 = N

(
X + τα

τ + 1
,

1

τ + 1

)
,

and the third by claim (ii). The last two inequalities also use the convexity of VN with respect
to the mean of a normal prior, that is, Proposition 2. (Although Proposition 2 assumes normal
priors for both arms, this can be relaxed.) It follows from (32) that

V 1
N(f1;f2;An) ≤ V 1

N(f̃1;f2;An).

The rest of the proof is standard. �

Remark. We mention some related results of [25]. Given a density function g(θ), consider the
location-scale family fa,b(θ) = b−1g((θ − a)/b),−∞ < a < ∞, b > 0. For the normal ban-
dit, assume that observations from an arm with parameter θ are conditionally iid N(θ, σ 2) with
known noise variance σ 2. It follows from the location-scale structure that the break-even value
satisfies

�(N,σ 2)(a, b;An) = a + b�(N,σ 2/b2)(0,1;An),

where (a, b) refers to the prior fa,b and the subscript (N, σ 2) refers to the normal bandit
with noise variance σ 2. Furthermore, while Lemma 1 and Theorem 1 of [25] consider only
normal priors with geometric discounting, the method works more generally, yielding that
�(N,σ 2)(a, b;An) is nonincreasing in σ 2 and that �(N,σ 2)(0, b;An)/b is nondecreasing in b.
In particular, �(N,σ 2)(a, b;An) is nondecreasing in a and b. It seems difficult to extend these
results to non-normal bandits.

2.7. Discussion

Results in previous sections suggest the following conjecture. Consider a two-armed bandit in
the general exponential family setting with conjugate priors. Suppose the prior expected yield
of one pull from each arm is the same, but the prior weight of arm 1 is larger. Then it seems
reasonable that arm 2 is optimal at the first stage, that is, in the notation of Section 2.2,

γ1

τ1
= γ2

τ2
and τ1 > τ2 =⇒ 
(γ1, τ1;γ2, τ2;An) ≤ 0.
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This holds if the discount sequence is infinite-horizon geometric. Indeed, it is optimal to pull
arm 2 because, according to Corollary 2, arm 2 has a larger Gittins index. For non-geometric
discounting, we cannot apply Corollary 2 due to the lack of an index policy. In fact, [2] proposed
this conjecture for Bernoulli bandits with uniform discounting, and this special case is still open.

3. The nonparametric case with Dirichlet process priors

In the nonparametric case, associated with arms 1 and 2 are probability measures Pi, i = 1,2, re-
spectively. Observations from arm i are independent samples given Pi ; observations from differ-
ent arms are independent. The Pi ’s themselves are treated as random, with independent Dirichlet
process priors. Specifically, Pi ∼ DP(αi), where αi is a finite nonnull measure with a finite first
moment. It is often helpful to write αi = MiFi where Mi = αi(R) so that Fi is a probability
distribution. We refer to Fi and Mi as the prior mean distribution and prior weight of the Dirich-
let process, respectively. We use (α1, α2;An) to denote such a Dirichlet bandit with discount
sequence An.

3.1. Prior mean monotonicity

Let us denote the maximum expected payoff of a two-armed Dirichlet bandit (α1, α2;An) by
W(α1, α2;An). Let Wi(α1, α2;An) be the expected payoff when selecting arm i initially and
using an optimal strategy thereafter. Then

W(α1, α2;An) = max
{
W 1(α1, α2;An),W

2(α1, α2;An)
}
. (35)

Suppose arm 1 is selected initially, resulting in an observation X. Because the prior on P1 is a
Dirichlet process, the posterior is again a Dirichlet process DP(α1 + δX), where δx denotes a
point mass at x. Thus we have

W 1(α1, α2;An) = a1μ1 + E
[
W

(
α1 + δX,α2;A1

n

)|α1
]
, (36)

W 2(α1, α2;An) = a1μ2 + E
[
W

(
α1, α2 + δY ;A1

n

)|α2
]
, (37)

where A1
n = (a2, a3, . . . , an) and μi denotes the first moment of αi , which is also the expected

value of an observation from arm i. In E[g(X)|α], the distribution of X is α/M with M = α(R).
The quantities W,W 1 and W 2 are well defined and finite as long as αi, i = 1,2, have finite first
moments, which we assume throughout Section 3.

Lemma 4 reveals a convexity property of W which we shall use repeatedly.

Lemma 4. Let α be a finite measure on R with a finite mean. Then, for u,v ∈ R and r > 0, the
function W(α + ρδu + (r − ρ)δv,α2;An) is convex in ρ ∈ [0, r].

Proof. Let us use induction on n. It is easy to check that the claim holds for n = 1. For n ≥ 2,
we note that by (35) it suffices to show that each of Wi(α + ρδu + (r − ρ)δv,α2;An), i = 1,2,
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is convex in ρ ∈ [0, r]. Since the mean of α + ρδu + (r − ρ)δv is linear in ρ, by (36) and (37),
we only need to show that both

E
[
W

(
α + ρδu + (r − ρ)δv + δX,α2;A1

n

)|α + ρδu + (r − ρ)δv

]
and (38)

E
[
W

(
α + ρδu + (r − ρ)δv,α2 + δY ;A1

n

)|α2
]

(39)

are convex in ρ. Convexity of (39) follows from the induction hypothesis. To deal with (38), we
directly compute

E
[
W

(
α + ρδu + (r − ρ)δv + δX,α2;A1

n

)|α + ρδu + (r − ρ)δv

]
= M

M + r
E

[
W

(
α + ρδu + (r − ρ)δv + δX,α2;A1

n

)|α]
(40)

+ ρφ(ρ + 1) + (r − ρ)φ(ρ)

M + r
, (41)

where M = α(R) and

φ(ρ) = W
(
α + ρδu + (r + 1 − ρ)δv,α2;A1

n

)
.

By the induction hypothesis, φ(ρ) is convex in ρ ∈ [0, r + 1]. We claim that this implies that
ψ(ρ) ≡ ρφ(ρ + 1) + (r − ρ)φ(ρ) is convex in ρ ∈ [0, r]. In fact, if φ(ρ) is twice differentiable,
then we have

ψ ′′(ρ) = 2
(
φ′(ρ + 1) − φ′(ρ)

) + ρφ′′(ρ + 1) + (r − ρ)φ′′(ρ) ≥ 0, ρ ∈ [0, r],
by the convexity of φ. A standard limiting argument shows that ψ(ρ) is convex in ρ ∈ [0, r] as
long as φ(ρ) is convex in ρ ∈ [0, r + 1] without assuming differentiability. Hence the second
term (41) is convex. The first term (40) is convex in ρ ∈ [0, r] by the induction hypothesis, since
in this expectation X is distributed according to α/M independently of ρ. Thus the convexity of
(38) is established. �

Theorem 5 says that the value of the bandit increases as the mean of the Dirichlet process prior
for any arm becomes stochastically larger and more dispersed. This strengthens Proposition 2.2
of [10] who consider the usual stochastic order rather than the increasing convex order.

Theorem 5. If M > 0 and F ≤icx F̃ , both with finite means, then

W(MF,α2;An) ≤ W(MF̃ ,α2;An).

Proof. Let us use induction. The claim obviously holds for n = 1. For n ≥ 2 we have
W 2(MF,α2;An) ≤ W 2(MF̃ ,α2;An) by (37) and the induction hypothesis. Moreover,

W 1(MF,α2;An) = a1E(X|F) + E
[
W

(
MF + δX,α2;A1

n

)|F ]
≤ a1E(X|F̃ ) + E

[
W

(
MF̃ + δX,α2;A1

n

)|F ]



Bayesian bandits 3703

≤ a1E(X|F̃ ) + E
[
W

(
MF̃ + δX,α2;A1

n

)|F̃ ]
= W 1(MF̃ ,α2;An),

where the first inequality follows from F ≤icx F̃ and the induction hypothesis, noting that (MF +
δx)/(M + 1) ≤icx (MF̃ + δx)/(M + 1) for any x; the second inequality holds by the definition
of ≤icx, because W(MF̃ + δx,α2;A1

n) is an increasing, convex function of x. To show this, fix
−∞ < u < v < ∞. It is easy to show (MF̃ + δu)/(M + 1) ≤icx (MF̃ + δv)/(M + 1), which, by
the induction hypothesis, implies W(MF̃ + δu,α2;A1

n) ≤ W(MF̃ + δv,α2;A1
n). Moreover, for

fixed ρ ∈ (0,1), we have

ρW
(
MF̃ + δu,α2;A1

n

) + (1 − ρ)W
(
MF̃ + δv,α2;A1

n

)
≥ W

(
MF̃ + ρδu + (1 − ρ)δv,α2;A1

n

)
≥ W

(
MF̃ + δρu+(1−ρ)v, α2;A1

n

)
,

where the first inequality follows from Lemma 4, and the second inequality holds by the induc-
tion hypothesis, noting that

MF̃ + δρu+(1−ρ)v

M + 1
≤icx

MF̃ + ρδu + (1 − ρ)δv

M + 1
.

Hence W(MF̃ + δx,α2;A1
n) is convex in x as needed. �

When arm 2 has a known distribution P2 with mean λ, the problem reduces to a one-armed
bandit. Without loss of generality we may assume the known arm yields a constant payoff λ

at each stage, i.e., we consider the (α, δλ;An) bandit (the subscript on α1 is dropped for conve-
nience). Similar to the parametric case, assuming the discount sequence is regular, this one-armed
bandit is an optimal stopping problem. If An is regular and a1 > 0, then there exists a break-even
value �(α;An) for the (α, δλ;An) bandit, such that arm 1 is optimal initially if and only if
λ ≤ �(α;An) and arm 2 is optimal initially if and only if λ ≥ �(α;An). The following result is
the nonparametric counterpart of Lemma 1, and is stated for uniform discounting as Lemma 2.1
in [10].

Lemma 5. If An is regular and a1 > 0, then �(α;An) is the smallest λ such that W(α, δλ;An) ≤
λ

∑n
i=1 ai .

Lemma 5 and Theorem 5 yield the following result comparing �(α;An).

Corollary 5. For M > 0 and F ≤icx F̃ , both with finite means, we have �(MF ;An) ≤
�(MF̃ ;An), assuming An is regular and a1 > 0.

Suppose An is regular and a1 > 0. Analogous to the parametric case, one can show (see [10])
that, for the (α, δλ;An) bandit there exists a break-even observation b(α;An) such that if both
arms are optimal initially, and an observation x is taken from arm 1, then arm 1 remains optimal
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if x ≥ b(α;An) and arm 2 becomes optimal if x ≤ b(α;An). Note that b(α;An) is a real number
not necessarily in the support of α. That is,

�(α;An) ≥ �
(
α + δx;A1

n

)
, if x ≤ b(α;An);

�(α;An) ≤ �
(
α + δx;A1

n

)
, if x ≥ b(α;An).

Calculating this break-even observation is nontrivial. In the case of uniform discounting, [10]
prove an upper bound for b(α;An) and conjecture that b(α;An) ≥ �(α;An) based on numerical
evidence. We confirm this in Proposition 4.

Proposition 4. Suppose An is regular, n ≥ 2, and a1, a2 > 0. Then b(α;An) ≥ �(α;An).

As noted by [4]; page 131, Proposition 4 has an intuitive interpretation. Suppose both arms are
optimal initially, and arm 1 is selected. If the initial pull on arm 1 yields no more than �(α;An),
which is the yield of arm 2 per pull, the hope of getting higher payoff fades. Not surprisingly, arm
2 becomes optimal afterwards. This suggests that the break-even observation is at least �(α;An).

To prove Proposition 4, we need a lemma.

Lemma 6. For c > 0, λ ∈ R and an arbitrary discount sequence An, we have

W(α + cδλ, δλ;An) ≤ W(α, δλ;An).

Proof. We use induction on n. The n = 1 case is easy. Suppose n ≥ 2. Let us write M = α(R)

and let μ be the first moment of α. Direct calculation using (35)–(37) yields

W(α + cδλ, δλ;An) = max

{
Mφ0 + cφ1

M + c
,φ2

}
, (42)

where

φ0 = a1μ + E
[
W

(
α + cδλ + δX, δλ;A1

n

)|α];
φ1 = a1λ + W

(
α + (c + 1)δλ, δλ;A1

n

);
φ2 = a1λ + W

(
α + cδλ, δλ;A1

n

)
.

Applying the induction hypothesis, and then (35) and (36), we get

φ0 ≤ a1μ + E
[
W

(
α + δX, δλ;A1

n

)|α]
≤ W(α, δλ;An).

Applying the induction hypothesis, and then (35) and (37), we get

φ1 ≤ φ2 ≤ a1λ + W
(
α, δλ;A1

n

) ≤ W(α, δλ;An).

That is, φi ≤ W(α, δλ;An) for i = 0,1,2. Hence the claim holds by (42). �



Bayesian bandits 3705

Proof of Proposition 4. Suppose λ = �(α;An). By the optimal stopping characterization, we
have W(α, δλ;A1

n) = λ
∑n

i=2 ai . Lemma 6 yields W(α + δλ, δλ;A1
n) ≤ λ

∑n
i=2 ai . It follows

from Lemma 5 that λ ≥ �(α + δλ;A1
n). That is, �(α;An) ≥ �(α + δλ;A1

n), which implies
λ ≤ b(α;An) (under the assumptions one can show that b(α;An) is unique). �

3.2. Prior weight monotonicity

The main result of this subsection (Theorem 6) shows that the maximum expected payoff of a
bandit decreases as the prior weight for the Dirichlet process prior of an arm increases. When
arm 2 is known and the discount sequence is regular, this shows that the break-even value
�(M1F1;An) decreases as M1 (the prior weight associated with arm 1) increases. That is, given
the same immediate payoff, arm 1 becomes less desirable as the amount of information about it
increases. Theorem 6 is the nonparametric counterpart of Theorem 2.

Theorem 6. Let F be a probability distribution on R with a finite mean. If 0 < M < M̃ then

W(MF,α2;An) ≥ W(M̃F,α2;An). (43)

Lemma 5 and Theorem 6 yield the following result concerning the break-even value �(α;An)

for the one armed bandit (α, δλ;An), as conjectured by [10] in the case of uniform discounting.

Corollary 6. For 0 < M < M̃ we have �(MF ;An) ≥ �(M̃F ;An), assuming An is regular and
a1 > 0.

When F has only two support points, Corollary 2 says that for a Bernoulli one-armed bandit
with a Beta(Mu,Mv) prior, u,v > 0, for the unknown arm, the break-even value decreases in
M . This Bernoulli case was proved by [15] for infinite-horizon geometric discounting.

The rest of this section gives a proof of Theorem 6. We assume F has finite, and then bounded,
and finally arbitrary, support. The key step is summarized as Lemma 7.

Lemma 7. Assume n ≥ 2,L > 0. Assume α is a finite measure on R with a finite mean and
F is a probability distribution on R with s < ∞ support points. Then E[W(α + θF + (L −
θ)δX,α2;A1

n)|F ] decreases in θ ∈ [0,L].

Proof. We use induction on s. Although the induction may start at the trivial case s = 1, we
present the s = 2 case to illustrate the convexity arguments. Write F = pδ1 + (1 − p)δ0 where
p ∈ (0,1) and {0,1} are the support points without loss of generality. For fixed 0 ≤ θ1 < θ2 ≤ L,
let Z ∼ Bernoulli(p) and define

Zi = θip + (L − θi)Z, i = 1,2.

Then EZ1 = EZ2 = pL, and it is easy to verify Z2 ≤cx Z1 as θ1 < θ2 (see, e.g., [22], Theo-
rem 3.A.18). Let us define

φ(u) = W
(
α + uδ1 + (L − u)δ0, α2;A1

n

)
.



3706 Y. Yu

By direct calculation

E
[
W

(
α + θ1F + (L − θ1)δX,α2;A1

n

)|F ] = pφ(θ1p + L − θ1) + (1 − p)φ(θ1p)

= Eφ(Z1)

≥ Eφ(Z2)

= E
[
W

(
α + θ2F + (L − θ2)δX,α2;A1

n

)|F ]
,

where the inequality holds because Z2 ≤cx Z1 and, by Lemma 4, φ(u) is convex in u ∈ [0,L].
For s ≥ 3, write F = ∑s

j=1 pjδxj
, where {xj , j = 1, . . . , s} are the support points, pj > 0 and∑s

j=1 pj = 1. Consider the leave-one-out distributions

Fk =
∑
j �=k

pj

1 − pk

δxj
, k = 1, . . . , s.

Denote W(γ ) = W(γ,α2;A1
n) for convenience. For fixed 0 ≤ θ1 < θ2 ≤ L, we have

(s − 1)E
[
W

(
α + θ1F + (L − θ1)δX

)|F ]
=

s∑
k=1

(1 − pk)E
[
W

(
α + θ1F + (L − θ1)δX

)|Fk
]

=
s∑

k=1

(1 − pk)E
[
W

(
α + θ1pkδxk

+ θ1(1 − pk)F
k + (L − θ1)δX

)|Fk
]

(44)

≥
s∑

k=1

(1 − pk)E
[
W

(
α + θ1pkδxk

+ θ2(1 − pk)F
k + (

L − θ2(1 − pk) − θ1pk

)
δX

)|Fk
]

=
s∑

k=1

∑
j �=k

pjVjk,

where

Vjk = W
(
α + θ2γ

jk + θ1pkδxk
+ (

L − θ2(1 − pk − pj ) − θ1pk

)
δxj

)
,

γ jk =
∑
l �=j,k

plδxl
, j �= k.

The inequality (44) follows from the induction hypothesis; other steps are algebraic manipula-
tions.

For fixed j �= k, let Z ∼ Bernoulli(pk/(pj + pk)) and define

Z1 = θ1pk + Z
(
L − θ2 + (θ2 − θ1)(pj + pk)

);
Z2 = θ2pk + Z(L − θ2).
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It is easy to verify that

EZ1 = EZ2; Z2 ≤cx Z1.

We have

pjVjk + pkVkj = (pj + pk)EW
(
α + θ2γ

jk + Z1δxk
+ (

L − θ2(1 − pk − pj ) − Z1
)
δxj

)
≥ (pj + pk)EW

(
α + θ2γ

jk + Z2δxk
+ (

L − θ2(1 − pk − pj ) − Z2
)
δxj

)
= pjW

(
α + θ2F + (L − θ2)δxj

) + pkW
(
α + θ2F + (L − θ2)δxk

)
,

where the inequality holds by Lemma 4 as Z2 ≤cx Z1. Hence,

s∑
k=1

∑
j �=k

pjVjk =
∑

1≤j<k≤s

(pjVjk + pkVkj )

≥
∑

1≤j<k≤s

[
pjW

(
α + θ2F + (L − θ2)δxj

) + pkW
(
α + θ2F + (L − θ2)δxk

)]

= (s − 1)

s∑
j=1

pjW
(
α + θ2F + (L − θ2)δxj

)

= (s − 1)E
[
W

(
α + θ2F + (L − θ2)δX

)|F ]
.

Thus, we have shown that E[W(α + θF + (L − θ)δX)|F ] decreases in θ ∈ [0,L]. �

Proof of Theorem 6. (i) Assume F has finite support. The claim obviously holds for n = 1. For
n ≥ 2 we use induction. In view of (35)–(37), we only need to show

E
[
W

(
MF + δX,α2;A1

n

)|F ] ≥ E
[
W

(
M̃F + δX,α2;A1

n

)|F ]
and (45)

E
[
W

(
MF,α2 + δY ;A1

n

)|α2
] ≥ E

[
W

(
M̃F,α2 + δY ;A1

n

)|α2
]
. (46)

By the induction hypothesis, (46) holds. Define η = (M̃ + 1)/(M + 1) and θ = M̃/η. Noting
M < θ < M + 1, we may apply Lemma 7 and get

E
[
W

(
MF + δX,α2;A1

n

)|F ] ≥ E
[
W

(
θF + (M + 1 − θ)δX,α2;A1

n

)|F ]
≥ E

[
W

(
η
(
θF + (M + 1 − θ)δX

)
, α2;A1

n

)|F ]
(47)

= E
[
W

(
M̃F + δX,α2;A1

n

)|F ]
,

where (47) holds by the induction hypothesis, as η > 1. Thus (45) holds as required.
(ii) Assume F has bounded support. Then for arbitrary ε > 0 we can construct two distribu-

tions F ∗ and F∗ supported on {x1, . . . , xs} and {x0, . . . , xs−1} respectively, where xj = x0 + jε,
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such that F(x0) = 0,F (xs) = 1 and F∗(xj−1) = F ∗(xj ) = F(xj ), j = 1, . . . , s. By construction,
F∗ ≤st F ≤st F ∗. Theorem 5 yields

W(MF∗, α2;An) ≤ W(MF,α2;An) ≤ W
(
MF ∗, α2;An

)
.

Note that if X ∼ F ∗ then X − ε ∼ F∗. Therefore the bandits (MF ∗, α2;An) and (MF∗, α2;An)

can be coupled in an obvious way such that, for every strategy of (MF ∗, α2;An), there exists a
strategy of (MF∗, α2;An) under which the payoff at each stage is either the same (when arm 2
is selected), or exactly ε less (when arm 1 is selected). Thus, we have shown

W
(
MF ∗, α2;An

) − W(MF∗, α2;An) ≤ ε

n∑
i=1

ai.

Hence, W(MF ∗, α2;An) → W(MF,α2;An) as ε → 0, and the monotonicity of W(MF ∗, α2;
An) with respect to M implies the corresponding monotonicity of W(MF,α2;An).

(iii) Finally, assume F is an arbitrary distribution with a finite mean. Suppose X ∼ F . For
L > 0 let x0 ∈ (−L,L) be such that F {x0} = 0 and let F ∗ be the distribution of X∗, defined as
1|X|≤LX + 1|X|>Lx0. We construct a coupling between (MF,α2;An) and (MF ∗, α2;An). Let
Xk be the resulting observation when arm 1 of (MF,α2;An) is pulled for the kth time. If |X1| ≤
L then let X∗

1 = X1, otherwise X∗
1 = x0, yielding X∗

1 ∼ F ∗. For general k ≥ 1, suppose |Xi | ≤
L, i = 1, . . . , k, then let X∗

k+1 = Xk+1 if |Xk+1| ≤ L and X∗
k+1 = x0 otherwise. In this case the

conditional distribution of Xk+1 given Xi, i = 1, . . . , k, is (MF + ∑k
i=1 δXi

)/(M + k). Since
|Xi | ≤ L, i = 1, . . . , k, we have X∗

i = Xi, i = 1, . . . , k, and the conditional distribution of X∗
k+1

given X∗
i , i = 1, . . . , k, is precisely (MF ∗ + ∑k

i=1 δX∗
i
)/(M + k). That is, X∗

i , i = 1, . . . , k + 1,
can be regarded as successive pulls from arm 1 of (MF ∗, α2;An) as long as |Xi | ≤ L, i =
1, . . . , k. Let the kth pull from arm 2 be Yk for both bandits. In the event that all |Xi | ≤ L, i =
1, . . . , n, the optimal strategy for (MF,α2;An) can be adopted for (MF ∗, α2;An) throughout,
yielding identical pulls (not all Xi, i = 1, . . . , n, are realized). By considering a trivial upper
(respectively, lower) bound for the payoff of (MF,α2;An) (respectively, (MF ∗, α2;An)) when
at least one |Xi | > L, we have

W(MF,α2;An) − W
(
MF ∗, α2;An

) ≤ E

[
1⋃n

i=1{|Xi |>L}
n∑

i=1

(
ai

(|Yi | + |Xi |
) − ai

(−|Yi | − L
))]

≤ E

[
1⋃n

i=1{|Xi |>L}
n∑

i=1

a∗(2|Yi | + |Xi | + L
)]

≤ E

[(
n∑

i=1

1{|Xi |>L}

)
n∑

i=1

a∗(2|Yi | + |Xi | + L
)]

≡ a∗h(L),

where a∗ ≡ maxn
i=1 ai . Direct calculation using exchangeability yields

h(L) = n2 Pr
(|X1| > L

)(
2E|Y1| + L

) + nE
[
1|X1|>L|X1|

] + n(n − 1)E
[
1|X1|>L|X2|

]
.
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The first two terms tend to zero as L → ∞ by dominated convergence since E|X1| < ∞. For the
last term, by conditioning on X1 we have

E
[
1|X1|>L|X2|

] = E

[
1|X1|>L

(
M

M + 1
E|X| + 1

M + 1
|X1|

)]
,

which also vanishes as L → ∞. Thus

lim sup
L→∞

[
W(MF,α2;An) − W

(
MF ∗, α2;An

)] ≤ 0.

By a parallel argument, we get lim infL→∞[W(MF,α2;An) − W(MF ∗, α2;An)] ≥ 0. Thus
W(MF ∗, α2;An) tends to W(MF,α2;An) as L → ∞, and the monotonicity of W(MF,α2;An)

with respect to M is proved as before. �

Remark. Clayton and Berry [10] also conjecture that the monotonicity in Corollary 6 is strict if
n ≥ 2,An = (1,1, . . . ,1), and F is nondegenerate. This can be confirmed by a careful analysis
of the above results. Some modifications are needed. Using arguments similar to steps (ii) and
(iii) in the proof of Theorem 6, we can first establish that Lemma 7 holds without the finite
support restriction. Directly applying this strengthened Lemma 7 shows that (43) holds with strict
inequality assuming n ≥ 2,An = (1,1, . . . ,1),F is nondegenerate, and arm 1 is optimal initially
in (M̃F,α2;An). Under such conditions, the strictness of the inequality holds by induction as
one key step (47) holds with strict inequality. It follows that Corollary 6 can be strengthened to
strict monotonicity assuming uniform discounting, n ≥ 2, and a nondegenerate F .
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