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In a first part, we prove Bernstein-type deviation inequalities for bifurcating Markov chains (BMC) under
a geometric ergodicity assumption, completing former results of Guyon and Bitseki Penda, Djellout and
Guillin. These preliminary results are the key ingredient to implement nonparametric wavelet thresholding
estimation procedures: in a second part, we construct nonparametric estimators of the transition density of
a BMC, of its mean transition density and of the corresponding invariant density, and show smoothness
adaptation over various multivariate Besov classes under Lp-loss error, for 1 ≤ p < ∞. We prove that
our estimators are (nearly) optimal in a minimax sense. As an application, we obtain new results for the
estimation of the splitting size-dependent rate of growth-fragmentation models and we extend the statistical
study of bifurcating autoregressive processes.
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1. Introduction

1.1. Bifurcating Markov chains

Bifurcating Markov Chains (BMC) are Markov chains indexed by a tree (Athreya and Kang [2],
Benjamini and Peres [4], Takacs [44]) that are particularly well adapted to model and understand
dependent data mechanisms involved in cell division. To that end, bifurcating autoregressive
models (a specific class of BMC also considered in the paper) were first introduced by Cowan
and Staudte [15]. More recently Guyon [28] systematically studied BMC in a general framework.
In continuous time, BMC encode certain piecewise deterministic Markov processes on trees that
serve as the stochastic realisation of growth-fragmentation models (see, e.g., Doumic et al. [25],
Robert et al. [42] for modelling cell division in Escherichia coli and the references therein).

For m ≥ 0, let Gm = {0,1}m (with G0 = {∅}) and introduce the infinite genealogical tree

T =
∞⋃

m=0

Gm.
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For u ∈ Gm, set |u| = m and define the concatenation u0 = (u,0) ∈ Gm+1 and u1 = (u,1) ∈
Gm+1. A bifurcating Markov chain is specified by (1) a measurable state space (S,S) with a
Markov kernel (later called T-transition) P from (S,S) to (S × S,S ⊗ S) and (2) a filtered
probability space (�,F, (Fm)m≥0,P). Following Guyon, we have the following definition.

Definition 1. A bifurcating Markov chain is a family (Xu)u∈T of random variables with value in
(S,S) such that Xu is F|u|-measurable for every u ∈ T and

E

[ ∏
u∈Gm

gu(Xu,Xu0,Xu1)

∣∣∣Fm

]
=
∏

u∈Gm

Pgu(Xu)

for every m ≥ 0 and any family of (bounded) measurable functions (gu)u∈Gm
, where Pg(x) =∫

S×S g(x, y, z)P(x, dy dz) denotes the action of P on g.

The distribution of (Xu)u∈T is thus entirely determined by P and an initial distribution for
X∅. Informally, we may view (Xu)u∈T as a population of individuals, cells or particles indexed
by T and governed by the following dynamics: to each u ∈ T we associate a trait Xu (its size,
lifetime, growth rate, DNA content and so on) with value in S . At its time of death, the particle
u gives rise to two children u0 and u1. Conditional on Xu = x, the trait (Xu0,Xu1) ∈ S × S of
the offspring of u is distributed according to P(x, dy dz).

For n ≥ 0, let Tn =⋃n
m=0 Gm denote the genealogical tree up to the nth generation. Assume

we observe Xn = (Xu)u∈Tn
, that is, we have 2n+1 −1 random variables with value in S . There are

several objects of interest that we may try to infer from the data X
n. Similarly to fragmentation

processes (see, e.g., Bertoin [7]) a key role for both asymptotic and non-asymptotic analysis of
bifurcating Markov chains is played by the so-called tagged-branch chain, as shown by Guyon
[28] and Bitseki Penda et al. [9]. The tagged-branch chain (Ym)m≥0 corresponds to a lineage
picked at random in the population (Xu)u∈T: it is a Markov chain with value in S defined by
Y0 = X∅ and for m ≥ 1,

Ym = X∅ε1···εm,

where (εm)m≥1 is a sequence of independent Bernoulli variables with parameter 1/2, indepen-
dent of (Xu)u∈T. It has transition

Q = (P0 +P1)/2,

obtained from the marginal transitions

P0(x, dy) =
∫

z∈S
P(x, dy dz) and P1(x, dz) =

∫
y∈S

P(x, dy dz)

of P . Guyon proves in [28] that if (Ym)m≥0 is ergodic with invariant measure ν, then the conver-
gence

1

|Gn|
∑
u∈Gn

g(Xu) →
∫
S

g(x)ν(dx) (1)
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holds almost-surely as n → ∞ for appropriate test functions g. Moreover, we also have conver-
gence results of the type

1

|Tn|
∑
u∈Tn

g(Xu,Xu0,Xu1) →
∫
S
Pg(x)ν(dx) (2)

almost-surely as n → ∞. These results are appended with central limit theorems (Theorem 19
of [28]) and Hoeffding-type deviations inequalities in a non-asymptotic setting (Theorems 2.11
and 2.12 of Bitseki Penda et al. [9]).

1.2. Objectives

The observation of X
n enables us to identify ν(dx) as n → ∞ thanks to (1). Consequently,

convergence (2) reveals P and therefore Q is identified as well, at least asymptotically. The
purpose of the present work is at least threefold:

(1) Construct – under appropriate regularity conditions – estimators of ν,Q and P and study
their rates of convergence as n → ∞ under various loss functions. When S ⊆ R and when P
is absolutely continuous w.r.t. the Lebesgue measure, we estimate the corresponding density
functions under various smoothness class assumptions and build smoothness adaptive estimators,
that is, estimator that achieve an optimal rate of convergence without prior knowledge of the
smoothness class.

(2) Apply these constructions to investigate further specific classes of BMC. These include
binary growth-fragmentation processes, where we subsequently estimate adaptively the splitting
rate of a size-dependent model, thus extending previous results of Doumic et al. [25] and bi-
furcating autoregressive processes, where we complete previous studies of Bitseki Penda et al.
[10].

(3) For the estimation of ν,Q and P and the subsequent estimation results of (2), prove that
our results are sharp in a minimax sense.

Our smoothness adaptive estimators are based on wavelet thresholding for density estimation
(Donoho et al. [23] in the generalised framework of Kerkyacharian and Picard [34]). Implement-
ing these techniques requires concentration properties of empirical wavelet coefficients. To that
end, we prove new deviation inequalities for bifurcating Markov chains that we develop indepen-
dently in a more general setting, when S is not necessarily restricted to R. Note also that when
P0 = P1, we have Q = P0 = P1 as well and we retrieve the usual framework of nonparametric
estimation of Markov chains when the observation is based on (Yi)1≤i≤n solely. We are therefore
in the line of combining and generalising the study of Clémençon [13] and Lacour [35,36] that
both consider adaptive estimation for Markov chains when S ⊆R.

1.3. Main results and organisation of the chapter

In Section 2, we generalise the Hoeffding-type deviations inequalities of Bitseki Penda et al. [9]
for BMC to Bernstein-type inequalities: when P is uniformly geometrically ergodic (Assump-
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tion 3 below), we prove in Theorem 5 deviations of the form

P

(
1

|Gn|
∑
u∈Gn

g(Xu,Xu0,Xu1) −
∫

Pg dν ≥ δ

)
≤ exp

(
− κ|Gn|δ2

�n(g) + |g|∞δ

)

and

P

(
1

|Tn|
∑
u∈Tn

g(Xu,Xu0,Xu1) −
∫

Pg dν ≥ δ

)
≤ exp

(
− κ̃n−1|Tn|δ2

�n(g) + |g|∞δ

)
,

where κ, κ̃ > 0 only depend on P and �n(g) is a variance term which depends on a combina-
tion of the Lp-norms of g for p = 1,2,∞ w.r.t. a common dominating measure for the family
{Q(x, dy), x ∈ S}. The precise results are stated in Theorems 4 and 5.

Section 3 is devoted to the statistical estimation of ν,Q and P when S ⊆ R and the fam-
ily {P(x, dy dz), x ∈ S} is dominated by the Lebesgue measure on R

2. In that setting, abus-
ing notation slightly, we have ν(dx) = ν(x) dx, Q(x, dy) = Q(x, y) dy and P(x, dy dz) =
P(x, y, z) dy dz for some functions x � ν(x), (x, y) � Q(x, y) and (x, y, z) � P(x, y, z) that
we reconstruct nonparametrically. Our estimators are constructed in several steps:

(i) We approximate the functions ν(x), fQ(x, y) = ν(x)Q(x, y) and fP (x, y, z) = ν(x) ×
P(x, y, z) by atomic representations

ν(x) ≈
∑

λ∈V1(ν)

〈
ν,ψ1

λ

〉
ψ1

λ(x),

fQ(x, y) ≈
∑

λ∈V2(fQ)

〈
fQ,ψ2

λ

〉
ψ2

λ(x, y),

fP (x, y, z) ≈
∑

λ∈V3(fP )

〈
fP ,ψ3

λ

〉
ψ3

λ(x, y, z),

where 〈·, ·〉 denotes the usual L2-inner product (over R
d , for d = 1,2,3, respectively) and

(ψd
λ ,λ ∈ Vd(·)) is a collection of functions (wavelets) in L2(Rd) that are localised in time and

frequency, indexed by a set Vd(·) that depends on the signal itself (the precise meaning of the
symbol ≈ and the properties of the ψλ’s are stated precisely in Section 3.1).

(ii) We estimate 〈
ν,ψ1

λ

〉
by |Tn|−1

∑
u∈Tn

ψ1
λ(Xu),

〈
fQ,ψ2

λ

〉
by
∣∣T


n

∣∣−1 ∑
u∈T


n

ψ2
λ(Xu− ,Xu),

〈
fP ,ψ3

λ

〉
by |Tn−1|−1

∑
u∈Tn−1

ψ3
λ(Xu,Xu0,Xu1),
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where Xu− denotes the trait of the parent of u and T


n = Tn \ G0, and specify a selection rule

for Vd(·) (with the dependence in the unknown function somehow replaced by an estimator).
The rule is dictated by hard thresholding over the estimation of the coefficients that are kept
only if they exceed some noise level, tuned with |Tn| and prior knowledge on the unknown
function, as follows by standard density estimation by wavelet thresholding (Donoho et al. [24],
Kerkyacharian and Picard [34]).

(iii) Denoting by ν̂n(x), f̂n(x, y) and f̂n(x, y, z) the estimators of ν(x), fQ(x, y) and
fP (x, y, z) respectively constructed in step (ii), we finally take as estimators for Q(x, y) and
P(x, y, z) the quotient estimators

Q̂n(x, y) = f̂n(x, y)

ν̂n(x)
and P̂n(x, y, z) = f̂n(x, y, z)

ν̂n(x)

provided ν̂n(x) exceeds a minimal threshold, a classical idea that goes back to Roussas, see, for
example, [43].

Beyond the inherent technical difficulties of the approximation steps (i) and (iii), the crucial
novel part is the estimation step (ii), where Theorems 4 and 5 are used to estimate precisely the
probability that the thresholding rule applied to the empirical wavelet coefficient is close in effect
to thresholding the true coefficients.

When ν,Q or P (identified with their densities w.r.t. appropriate dominating measures) belong
to an isotropic Besov ball of smoothness s measured in Lπ over a domain Dd in R

d , with
s > d/π and d = 1,2,3 respectively, we prove in Theorems 8, 9 and 10 that if Q is uniformly
geometrically ergodic, then our estimators achieve the rate |Tn|−αd(s,p,π) in Lp(D)-loss, up to
additional log |Tn| terms, where

αd(s,p,π) = min

{
s

2s + d
,
s + d(1/p − 1/π)

2s + d(1 − 2/π)

}
is the usual exponent for the minimax rate of estimation of a d-variate function with order of
smoothness s measured in Lπ in Lp-loss error. This rate is nearly optimal in a minimax sense
for d = 1, as follows from particular case Q(x, dy) = ν(dy) that boils down to density estima-
tion with |Tn| data: the optimality is then a direct consequence of Theorem 2 in Donoho et al.
[24]. As for the case d = 2 and d = 3, the structure of BMC comes into play and we need to
prove a specific optimality result, stated in Theorems 9 and 10. We rely on classical lower bound
techniques for density estimation and Markov chains (Hoffmann [31], Clémençon [13], Lacour
[35,36]).

We apply our generic results in Section 4 to two illustrative examples. We consider in Sec-
tion 4.1 the growth-fragmentation model as studied in Doumic et al. [25], where we estimate the
size-dependent splitting rate of the model as a function of the invariant measure of an associated
BMC in Theorem 12. This enables us to extend the recent results of Doumic et al. in several
directions: adaptive estimation, extension of the smoothness classes and the loss functions con-
sidered, and also a proof of a minimax lower bound. In Section 4.2, we show how bifurcating
autoregressive models (BAR) as developed for instance in Bercu et al. [6] and in [11] which
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follows are embedded into our generic framework of estimation. A numerical illustration high-
lights the feasibility of our procedure in practice and is presented in Section 4.3. The proofs are
postponed to Section 5.

2. Deviations inequalities for empirical means

In the sequel, we fix a (measurable) subset D ⊆ S that will be later needed for statistical purposes.
We need some regularity on the T-transition P via its mean transition Q= 1

2 (P0 +P1).

Assumption 2. The family {Q(x, dy), x ∈ S} is dominated by a common sigma-finite measure
n(dy). We have (abusing notation slightly)

Q(x, dy) =Q(x, y)n(dy) for every x ∈ S,

for some Q : S2 → [0,∞) such that

|Q|D = sup
x∈S,y∈D

Q(x, y) < ∞.

An invariant probability measure for Q is a probability ν on (S,S) such that νQ = ν where
νQ(dy) = ∫

x∈S ν(dx)Q(x, dy). We set

Qr (x, dy) =
∫

z∈S
Q(x, dz)Qr−1(z, dy) with Q0(x, dy) = δx(dy)

for the r th iteration of Q. For a function g : Sd → R with d = 1,2,3 and 1 ≤ p ≤ ∞, we denote
by |g|p its Lp-norm w.r.t. the measure n⊗d , allowing for the value |g|p = ∞ if g /∈ Lp(n⊗d). The
same notation applies to a function g : Dd → R tacitly considered as a function from Sd → R

by setting g(x) = 0 for x ∈ S \D.

Assumption 3. The mean transition Q admits a unique invariant probability measure ν and there
exist R > 0 and 0 < ρ < 1/2 such that∣∣∣∣Qmg(x) −

∫
S

g dν

∣∣∣∣≤ R|g|∞ρm, x ∈ S,m ≥ 0,

for every g integrable w.r.t. ν.

Assumption 3 is a uniform geometric ergodicity condition that can be verified in most appli-
cations using the theory of Meyn and Tweedie [39]. The ergodicity rate should be small enough
(ρ < 1/2) and this point is crucial for the proofs: it guarantees that the exponential forgetting of
the mean transition Q balances the growth of the bifurcating structure. However this is some-
times delicate to check in applications and we refer to Hairer and Mattingly [29] for an explicit
control of the ergodicity rate.
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Our first result is a deviation inequality for empirical means over Gn or Tn. We need some
notation. Let

κ1 = κ1(Q,D) = 32 max
{|Q|D,4|Q|2D,4R2(1 + ρ)2},

κ2 = κ2(Q) = 16

3
max
{
1 + Rρ,R(1 + ρ)

}
,

κ3 = κ3(Q,D) = 96 max
{|Q|D,16|Q|2D,4R2(1 + ρ)2(1 − 2ρ)−2},

κ4 = κ4(Q) = 16

3
max
{
1 + Rρ,R(1 + ρ)(1 − 2ρ)−1},

where |Q|D = supx∈S,y∈DQ(x, y) is defined in Assumption 2. For g : Sd → R, define
�1,1(g) = |g|22 and for n ≥ 2,

�1,n(g) = |g|22 + min
1≤�≤n−1

(|g|212� + |g|2∞2−�
)
. (3)

Define also �2,1(g) = |Pg2|1 and for n ≥ 2,

�2,n(g) = |Pg2|1 + min
1≤�≤n−1

(|Pg|212� + |Pg|2∞2−�
)
. (4)

Theorem 4. Work under Assumptions 2 and 3. Then, for every n ≥ 1 and every g : D ⊆ S → R

integrable w.r.t. ν, the following inequalities hold true:

(i) For any δ > 0 such that δ ≥ 4R|g|∞|Gn|−1, we have

P

(
1

|Gn|
∑
u∈Gn

g(Xu) −
∫
S

g dν ≥ δ

)
≤ exp

( −|Gn|δ2

κ1�1,n(g) + κ2|g|∞δ

)
.

(ii) For any δ > 0 such that δ ≥ 4R(1 − 2ρ)−1|g|∞|Tn|−1, we have

P

(
1

|Tn|
∑
u∈Tn

g(Xu) −
∫
S

g dν ≥ δ

)
≤ exp

( −|Tn|δ2

κ3�1,n(g) + κ4|g|∞δ

)
.

Theorem 5. Work under Assumptions 2 and 3. Then, for every n ≥ 2 and for every g : D3 ⊆
S3 → R such that Pg is well defined and integrable w.r.t. ν, the following inequalities hold
true:

(i) For any δ > 0 such that δ ≥ 4R|Pg|∞|Gn|−1, we have

P

(
1

|Gn|
∑
u∈Gn

g(Xu,Xu0,Xu1) −
∫
S
Pg dν ≥ δ

)
≤ exp

( −|Gn|δ2

κ1�2,n(g) + κ2|g|∞δ

)
.
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(ii) For any δ > 0 such that δ ≥ 4(nR|Pg|∞ + |g|∞)|Tn−1|−1, we have

P

(
1

|Tn−1|
∑

u∈Tn−1

g(Xu,Xu0,Xu1) −
∫
S
Pg dν ≥ δ

)
≤ exp

( −n−1|Tn−1|δ2

κ1�2,n−1(g) + κ2|g|∞δ

)
.

A few remarks are in order:

(1) Theorem 4(i) is a direct consequence of Theorem 5(i) but Theorem 4(ii) is not a corollary
of Theorem 5(ii): we note that a slow term or order n−1 ≈ (log |Tn|)−1 comes in Theorem 5(ii).

(2) Bitseki Penda et al. in [9] study similar Hoeffding-type deviations inequalities for func-
tionals of bifurcating Markov chains under ergodicity assumption and for uniformly bounded
functions. In the present work and for statistical purposes, we need Bernstein-type deviations
inequalities which require a specific treatment than cannot be obtained from a direct adaptation
of [9]. In particular, we apply our results to multivariate wavelets test functions ψd

λ that are well
localised but unbounded, and a fine control of the conditional variance �i,n(ψ

d
λ ), i = 1,2 is of

crucial importance.
(3) For g such that |g|−1

1 |g|∞ ≤ 2n−1, the variance term �1,n(g) is controlled by |g|1|g|∞ up
to a constant. Similarly, for g such that |g|−1

1 |g|∞,1 ≤ 2n−1, assuming in addition that |P|D =
supD3 |P(x, y, z)| < ∞, the variance term �2,n(g) is controlled by max{|P|D, |P|2D}|g|1|g|∞,1

up to a constant, setting |g|∞,1 = supx∈S
∫
S2 |g(x, y, z)|dy dz for any g : S3 → R.

(4) Assumption 3 about the uniform geometric ergodicity is quite strong, although satisfied in
the two examples developed in Section 4 (at the cost however of assuming that the splitting rate
of the growth-fragmentation model has bounded support in Section 4.1). Presumably, a way to
relax this restriction would be to require a weaker geometric ergodicity condition of the form

∣∣∣∣Qmg(x) −
∫
S

g dν

∣∣∣∣≤ R|g|∞V (x)ρm, x ∈ S,m ≥ 0,

for some Lyapunov function V : S → [1,∞). Analogous results could then be obtained via
transportation information inequalities for bifurcating Markov chains with a similar approach as
in Gao et al. [27], but this lies beyond the scope of this work.

(5) Theorems 4 and 5 are in line with other recent approaches for deviation inequalities with
a view towards statistics, as those obtained by Wintenberger [45] using optimal transportation,
Merlevède et al. [37] using projective arguments or Paulin [40] and Alquier and Wintenberger
[1] based on coupling. However, all these approaches have to make a trade-off between gen-
erality and simplicity of the assumptions that one needs to check in order to apply them on a
specific model. They do not readily give an improvement on our results, as far as the crucial
bound involving �n(g) in terms of g are concerned for our subsequent statistical applications.
Although somewhat less sophisticated, our approach seems to apply more easily to the structure
of branching trees.
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3. Statistical estimation

In this section, we take (S,S) = (R,B(R)). As in the previous section, we fix a compact interval
D ⊆ S . The following assumption will be needed here.

Assumption 6. The family {P(x, dy dz), x ∈ S} is dominated w.r.t. the Lebesgue measure on
(R2,B(R2)). We have (abusing notation slightly)

P(x, dy dz) =P(x, y, z) dy dz for every x ∈ S

for some P : S3 → [0,∞) such that

|P|D = sup
(x,y,z)∈D3

∣∣P(x, y, z)
∣∣< ∞.

Under Assumptions 2, 3 and 6 with n(dy) = dy, we have (abusing notation slightly)

P(x, dy dz) =P(x, y, z) dy dz, Q(x, dy) =Q(x, y) dy and ν(dx) = ν(x) dx.

For some n ≥ 1, we observe Xn = (Xu)u∈Tn
and we aim at constructing nonparametric estimators

of x � ν(x), (x, y) � Q(x, y) and (x, y, z) � P(x, y, z) for x, y, z ∈ D. To that end, we use
regular wavelet bases adapted to the domain Dd for d = 1,2,3.

3.1. Atomic decompositions and wavelets

Wavelet bases (ψd
λ )λ adapted to a domain Dd in R

d , for d = 1,2,3 are documented in numerous
textbooks, see, for example, Cohen [14]. The multi-index λ concatenates the spatial index and the
resolution level j = |λ|. We set �j = {λ, |λ| = j} and � =⋃j≥−1 �j . Thus, for g ∈ Lπ(Dd)

for some π ∈ (0,∞], we have

g =
∑

j≥−1

∑
λ∈�j

gλψ
d
λ =
∑
λ∈�

gλψ
d
λ , with gλ = 〈g,ψd

λ

〉
,

where we have set j = −1 in order to incorporate the low frequency part of the decomposition
and 〈g,ψd

λ 〉 = ∫ gψd
λ denotes the inner product in L2(Rd). From now on, the basis (ψd

λ )λ is
fixed. For s > 0 and π ∈ (0,∞], g belongs to Bs

π,∞(D) if the following norm is finite:

‖g‖Bs
π,∞(D) = sup

j≥−1
2j (s+d(1/2−1/π))

(∑
λ∈�j

∣∣〈g,ψd
λ

〉∣∣π)1/π

(5)

with the usual modification if π = ∞. Precise connection between this definition of Besov norm
and more standard ones can be found in [14]. Given a basis (ψd

λ )λ, there exists σ > 0 such that
for π ≥ 1 and s ≤ σ the Besov space defined by (5) exactly matches the usual definition in
terms of moduli of smoothness for g. The index σ can be taken arbitrarily large. The additional
properties of the wavelet basis (ψd

λ )λ that we need are summarized in the next assumption.
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Assumption 7. For p ≥ 1, ∥∥ψd
λ

∥∥p
Lp ∼ 2|λ|d(p/2−1), (6)

for some σ > 0 and for all s ≤ σ , j0 ≥ 0,∥∥∥∥g −
∑
j≤j0

∑
λ∈�j

gλψ
d
λ

∥∥∥∥
Lp

� 2−j0s‖g‖Bs
p,∞(D), (7)

for any subset �0 ⊂ �, ∫
D

(∑
λ∈�0

∣∣ψd
λ (x)
∣∣2)p/2

dx ∼
∑
λ∈�0

∥∥ψd
λ

∥∥p
Lp . (8)

If p > 1, for any sequence (uλ)λ∈�,∥∥∥∥(∑
λ∈�

∣∣uλψ
d
λ

∣∣2)1/2∥∥∥∥
Lp

∼
∥∥∥∥∑

λ∈�

uλψ
d
λ

∥∥∥∥
Lp

. (9)

The symbol ∼ means inequality in both ways, up to a constant depending on p and D only.
The property (7) reflects that our definition (5) of Besov spaces matches the definition in term
of linear approximation. Property (9) reflects an unconditional basis property, see Kerkyacharian
and Picard [34], De Vore et al. [20] and (8) is referred to as a superconcentration inequality, or
Temlyakov property [34]. The formulation of (8)–(9) in the context of statistical estimation is
posterior to the original papers of Donoho and Johnstone [21,22] and Donoho et al. [23,24] and
is due to Kerkyacharian and Picard [34]. The existence of compactly supported wavelet bases
satisfying Assumption 7 is discussed in Meyer [38], see also Cohen [14].

3.2. Estimation of the invariant density ν

Recall that we estimate x � ν(x) for x ∈ D, taken as a compact interval in S ⊆ R. We approxi-
mate the representation

ν(x) =
∑
λ∈�

νλψ
1
λ(x), νλ = 〈ν,ψ1

λ

〉
by

ν̂n(x) =
∑
|λ|≤J

ν̂λ,nψ
1
λ(x),

with

ν̂λ,n = Tλ,η

(
1

|Tn|
∑
u∈Tn

ψ1
λ(Xu)

)
,
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and Tλ,η(x) = x1|x|≥η denotes the hard-threshold operator (with Tλ,η(x) = x for the low fre-
quency part when λ ∈ �−1). Thus ν̂n is specified by the maximal resolution level J and the
threshold η.

Theorem 8. Work under Assumptions 2 and 3 with n(dx) = dx. Specify ν̂n with

J = log2
|Tn|

log |Tn| and η = c
√

log |Tn|/|Tn|

for some c > 0. For every π ∈ (0,∞], s ∈ (1/π,σ ] and p ≥ 1, for large enough n and c, the
following estimate holds

(
E
[‖̂νn − ν‖p

Lp(D)

])1/p �
(

log |Tn|
|Tn|

)α1(s,p,π)

,

with α1(s,p,π) = min{ s
2s+1 ,

s+1/p−1/π
2s+1−2/π

}, up to a constant that depends on s,p,π,‖ν‖Bs
π,∞(D),

ρ, R and |Q|D and that is continuous in its arguments.

Two remarks are in order:

(1) The upper-rate of convergence is the classical minimax rate in density estimation. We infer
that our estimator is nearly optimal in a minimax sense as follows from Theorem 2 in Donoho et
al. [24] applied to the class Q(x, y) dy = ν(y) dy, i.e. in the particular case when we have i.i.d.
Xu’s. We highlight the fact that n represents here the number of observed generations in the tree,
which means that we observe |Tn| = 2n+1 − 1 traits.

(2) The estimator ν̂n is smooth-adaptive in the following sense: for every s0 > 0, 0 < ρ0 <

1/2, R0 > 0 and Q0 > 0, define the sets A(s0) = {(s,π), s ≥ s0, s0 ≥ 1/π} and

Q(ρ0,R0,Q0) = {Q such that ρ ≤ ρ0,R ≤ R0, |Q|D,≤ Q0
}
,

where Q is taken among mean transitions for which Assumption 3 holds. Then, for every C > 0,
there exists c
 = c
(D,p, s0, ρ0,R0,Q0,C) such that ν̂n specified with c
 satisfies

sup
n

sup
(s,π)∈A(s0)

sup
ν,Q

( |Tn|
log |Tn|

)pα1(s,p,π)

E
[‖̂νn − ν‖p

Lp(D)

]
< ∞,

where the supremum is taken among (ν,Q) such that νQ = ν with Q ∈ Q(ρ0,R0,Q0) and
‖ν‖Bs

π,∞(D) ≤ C. In particular, ν̂n achieves the (near) optimal rate of convergence over Besov
balls simultaneously for all (s,π) ∈ A(s0). Analogous smoothness adaptive results hold for The-
orems 9, 10 and 12 below.

3.3. Estimation of the density of the mean transition Q

In this section, we estimate (x, y) � Q(x, y) for (x, y) ∈ D2 and D is a compact interval in
S ⊆R. In a first step, we estimate the density

fQ(x, y) = ν(x)Q(x, y)
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of the distribution of (Xu− ,Xu) (when L(X∅) = ν, an assumption we do not need to make) by

f̂n(x, y) =
∑
|λ|≤J

f̂λ,nψ
2
λ(x, y),

with

f̂λ,n = Tλ,η

(
1

|T

n|
∑
u∈T


n

ψ2
λ(Xu− ,Xu)

)
,

and Tλ,η(·) is the hard-threshold operator defined in Section 3.2 and T


n = Tn \G0. We can now

estimate the density Q(x, y) of the mean transition probability by

Q̂n(x, y) = f̂n(x, y)

max{̂νn(x),� } (10)

for some threshold � > 0. Thus the estimator Q̂n is specified by J , η and � . Define also

m(ν) = inf
x

ν(x), (11)

where the infimum is taken among all x such that (x, y) ∈ D2 for some y.

Theorem 9. Work under Assumptions 2 and 3 with n(dx) = dx. Specify Q̂n with

J = 1

2
log2

|Tn|
log |Tn| and η = c

√(
log |Tn|

)2
/|Tn|

for some c > 0 and � > 0. For every π ∈ [1,∞], s ∈ (2/π,σ ] and p ≥ 1, for large enough n

and c and small enough � , the following estimate holds

(
E
[‖Q̂n −Q‖p

Lp(D2)

])1/p �
(

(log |Tn|)2

|Tn|
)α2(s,p,π)

, (12)

with α2(s,p,π) = min{ s
2s+2 ,

s/2+1/p−1/π
s+1−2/π

}, provided m(ν) ≥ � > 0 and up to a constant that
depends on s,p,π,‖Q‖Bs

π,∞(D2), m(ν) and that is continuous in its arguments.
This rate is moreover (nearly) optimal: define ε2 = sπ − (p − π). We have

inf
Q̂n

sup
Q

(
E
[‖Q̂n −Q‖p

Lp(D2)

])1/p �

⎧⎪⎨⎪⎩
|Tn|−α2(s,p,π), if ε2 > 0,(

log |Tn|
|Tn|

)α2(s,p,π)

, if ε2 ≤ 0,

where the infimum is taken among all estimators of Q based on (Xu)u∈Tn
and the supremum is

taken among all Q such that ‖Q‖Bs
π,∞(D2) ≤ C and m(ν) ≥ C′ for some C,C′ > 0.

Note that the calibration of the threshold � needed to define Q̂n requires an a priori bound
on m(ν). The (log |Tn|)2 comes from the slow term in the deviations inequality of Theorem 5(ii)
and from the wavelet thresholding procedure.
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3.4. Estimation of the density of the T-transition P

In this section, we estimate (x, y, z) � P(x, y, z) for (x, y, z) ∈ D3 and D is a compact interval
in S ⊆R. In a first step, we estimate the density

fP (x, y, z) = ν(x)P(x, y, z)

of the distribution of (Xu,Xu0,Xu1) (when L(X∅) = ν, an assumption we do not need to make)
by

f̂n(x, y, z) =
∑

|λ|≤J

f̂λ,nψ
3
λ(x, y, z),

with

f̂λ,n = Tλ,η

(
1

|Tn−1|
∑

u∈Tn−1

ψ3
λ(Xu,Xu0,Xu1)

)
,

and Tλ,η(·) is the hard-threshold operator defined in Section 3.2. In the same way as in the
previous section, we can next estimate the density P of the T-transition by

P̂n(x, y, z) = f̂n(x, y, z)

max{̂νn(x),� } (13)

for some threshold � > 0. Thus the estimator P̂n is specified by J , η and � .

Theorem 10. Work under Assumptions 2, 3 and 6. Specify P̂n with

J = 1

3
log2

|Tn|
log |Tn| and η = c

√(
log |Tn|

)2
/|Tn|

for some c > 0 and � > 0. For every π ∈ [1,∞], s ∈ (3/π,σ ] and p ≥ 1, for large enough n

and c and small enough � , the following estimate holds

(
E
[‖P̂n −P‖p

Lp(D3)

])1/p �
(

(log |Tn|)2

|Tn|
)α3(s,p,π)

, (14)

with α3(s,p,π) = min{ s
2s+3 ,

s/3+1/p−1/π
2s/3+1−2/π

}, provided m(ν) ≥ � > 0 and up to a constant that
depends on s,p,π,‖P‖Bs

π,∞(D3) and m(ν) and that is continuous in its arguments.

This rate is moreover (nearly) optimal: define ε3 = sπ
3 − p−π

2 . We have

inf
P̂n

sup
P

(
E
[‖P̂n −P‖p

Lp(D3)

])1/p �

⎧⎪⎨⎪⎩
|Tn|−α3(s,p,π), if ε3 > 0,(

log |Tn|
|Tn|

)α3(s,p,π)

, if ε3 ≤ 0,

where the infimum is taken among all estimators of P based on (Xu)u∈Tn
and the supremum is

taken among all P such that ‖P‖Bs
π,∞(D3) ≤ C and m(ν) ≥ C′ for some C,C′ > 0.
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4. Applications

4.1. Estimation of the size-dependent splitting rate in a
growth-fragmentation model

Recently, Doumic et al. [25] have studied the problem of estimating nonparametrically the size-
dependent splitting rate in growth-fragmentation models (see, e.g., the textbook of Perthame
[41]). Stochastically, these are piecewise deterministic Marvov processes on trees that model the
evolution of a population of cells or bacteria: to each node (or cell) u ∈ T, we associate as trait
Xu ∈ S ⊂ (0,∞) the size at birth of the cell u. The evolution mechanism is described as follows:
each cell grows exponentially with a common rate τ > 0. A cell of size x splits into two newborn
cells of size x/2 each (thus Xu0 = Xu1 here), with a size-dependent splitting rate B(x) for some
B : S → [0,∞). Two newborn cells start a new life independently of each other. If ζu denotes
the lifetime of the cell u, we thus have

P
(
ζu ∈ [t, t + dt

)|ζu ≥ t,Xu = x) = B
(
x exp(τ t)

)
dt (15)

and

Xu = 1

2
Xu− exp(τζu−) (16)

so that (15) and (16) entirely determine the evolution of the population. We are interested in
estimating x � B(x) for x ∈ D where D ⊂ S is a given compact interval. The process (Xu)u∈T
is a bifurcating Markov chain with state space S and T-transition any version of

PB(x, dy dz) = P(Xu0 ∈ dy,Xu1 ∈ dz|Xu− = x).

Moreover, using (15) and (16), (see for instance the derivation of equation (11) in [25]), it is not
difficult to check that

PB(x, dy dz) = QB(x, dy) ⊗ δy(dz),

where δy denotes the Dirac mass at y and

QB(x, dy) = B(2y)

τy
exp

(
−
∫ y

x/2

B(2s)

τ s
ds

)
1{y≥x/2} dy. (17)

If we assume moreover that x � B(x) is continuous, then we have Assumption 2 with Q = QB

and n(dx) = dx.
Now, let S be a bounded and open interval in (0,∞) such that infS = 0. Pick r ∈ S and L > 0

and introduce the function class

C(r,L) =
{
B : S → [0,∞),

∫ supS B(x)

x
dx = ∞,

∫ r

0

B(x)

x
dx ≤ L

}
.

The requirement
∫ supS B(x)

x
dx = ∞ is natural and leads to

∫
S QB(x, dy) = 1 via (17). We

comply with Assumption 3 for Q = QB as stated in the following lemma.
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Lemma 11. Let r ∈ S such that r > supS/2 and 0 < L < τ log 2. Then for every B ∈ C(r,L),
the mean transition QB admits a unique invariant probability measure νB absolutely continuous
with respect to the Lebesgue measure. Moreover, there exist R > 0 and 0 < ρ < 1/2 such that

sup
B∈C(r,L)

∣∣Qm
Bg(x) − νB(g)

∣∣≤ R|g|∞ρm, x ∈ S,m ≥ 0,

for every g : S →R.

Finally, we know by Proposition 2 in Doumic et al. [25] – see in particular equation (24) – that

B(x) = τx

2

νB(x/2)∫ x

x/2 νB(z) dz
,

where νB denotes the unique invariant probability of the transition Q = QB . This yields a strat-
egy for estimating x � B(x) via an estimator of x � νB(x). For a given compact interval D ⊂ S ,
define

B̂n(x) = τx

2

ν̂n(x/2)

( 1
|Tn|
∑

u∈Tn
1{x/2≤Xu<x}) ∨ �

, (18)

where ν̂n is the wavelet thresholding estimator given in Section 3.2 specified by a maximal res-
olution level J and a threshold η and � > 0 (that can be chosen given r and L, reproducing
Lemmas 3 and 4 of [25]). As a consequence of Theorem 8 we obtain the following theorem.

Theorem 12. Specify B̂n with

J = 1

2
log2

|Tn|
log |Tn| and η = c

√
log |Tn|/|Tn|

for some c > 0. For every B ∈ C(r,L), for every π ∈ (0,∞], s ∈ (1/π,σ ] and p ≥ 1, for large
enough n and c and small enough � , the following estimate holds

(
E
[‖B̂n − B‖p

Lp(D)

])1/p �
(

log |Tn|
|Tn|

)α1(s,p,π)

,

provided that infD ≤ r/2, with α1(s,p,π) = min{ 2s
2s+1 ,

s+1/p−1/π
2s+1−2/π

}, up to a constant that de-
pends on s,p,π,‖B‖Bs

π,∞(D), r and L and that is continuous in its arguments.

This rate is moreover (nearly) optimal: define ε1 = sπ − 1
2 (p − π). We have

inf
B̂n

sup
B

(
E
[‖B̂n − B‖p

Lp(D)

])1/p �

⎧⎪⎨⎪⎩
|Tn|−α1(s,p,π), if ε1 > 0,(

log |Tn|
|Tn|

)α1(s,p,π)

, if ε1 ≤ 0,

where the infimum is taken among all estimators of B based on (Xu)u∈Tn
and the supremum is

taken among all B ∈ C(r,L) such that ‖B‖Bs
π,∞(D) ≤ C.
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Two remarks are in order:

(1) We improve on the results of Doumic et al. [25] in two directions: we have smoothness-
adaptation (in the sense described in Remark 2) after Theorem 8 in Section 3 for several loss
functions over various Besov smoothness classes, while [25] constructs a non-adaptive estimator
for Hölder smoothness in squared-error loss; moreover, we prove that the obtained rate is (nearly)
optimal in a minimax sense.

(2) We unfortunately need to work under the quite stringent restriction that S is bounded in
order to obtain the uniform ergodicity Assumption 3, see Remark 3 after Theorem 5 in Section 2.

4.2. Bifurcating autoregressive process

Bifurcating autoregressive processes (BAR), first introduced by Cowan and Staudte [15], are yet
another stochastic model for understanding cell division. The trait Xu may represent the growth
rate of a bacteria u ∈ T in a population of Escherichia coli but other choices are obviously
possible. Contrary to the growth-fragmentation model of Section 4.1 the trait (Xu0,Xu1) of the
two newborn cells differ and are linked through the autoregressive dynamics{

Xu0 = f0(Xu) + σ0(Xu)εu0,

Xu1 = f1(Xu) + σ1(Xu)εu1,
(19)

initiated with X∅ and where

f0, f1 : R→R and σ0, σ1 :R→ (0,∞)

are functions and (εu0 , εu1)u∈T are i.i.d. noise variables with common density function G :R2 →
[0,∞) that specify the model.

The process (Xu)u∈T is a bifurcating Markov chain with state space S =R and T-transition

P(x, dy dz) = G
(
σ0(x)−1(y − f0(x)

)
, σ1(x)−1(z − f1(x)

))
dy dz. (20)

This model can be seen as an adaptation of nonlinear autoregressive model when the data have a
binary tree structure. The original BAR process in [15] is defined for linear link functions f0 and
f1 with f0 = f1. Several extensions have been studied from a parametric point of view, see, for
example, Basawa and Huggins [32,33] and Basawa and Zhou [3,46]. More recently, Delmas and
Marsalle [19] extend the study to a Galton–Watson tree and introduce asymmetry, de Saporta et
al. [6,16,17] take into account missing data while Blandin [12], Bercu and Blandin [5], and de
Saporta et al. [18] study an extension with random coefficients. Bitseki Penda and Djellout [8]
prove deviations inequalities and moderate deviations for estimators of parameters in linear BAR
processes. From a nonparametric point of view, we mention the applications of [10] (Section 4)
where deviations inequalities are derived for the Nadaraya–Watson type estimators of f0 and f1
with constant and known functions σ0 and σ1. A detailed nonparametric study of these estimators
is carried out in Bitseki Penda and Olivier [11].

We focus here on the nonparametric estimation of the characteristics of the tagged-branch
chain ν and Q and on the T-transition P , based on the observation of (Xu)u∈Tn

for some n ≥ 1.
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Such an approach can be helpful for the subsequent study of goodness-of-fit tests for instance,
when one needs to assess whether the data (Xu)u∈T are generated by a model of the form (19) or
not.

We set G0(x) = ∫S G(x,y)dy and G1(y) = ∫S G(x,y)dx for the marginals of G, and define,
for any M > 0,

δ(M) = min
{

inf|x|≤M
G0(x), inf|x|≤M

G1(x)
}
.

Assumption 13. For some � > 0 and σ > 0, we have

max
{

sup
x

∣∣f0(x)
∣∣, sup

x

∣∣f1(x)
∣∣}≤ � < ∞

and

min
{

inf
x

σ0(x), inf
x

σ1(x)
}

≥ σ > 0.

Moreover, G0 and G1 are bounded and there exist μ > 0 and M > �/σ such that δ((μ+�)/σ ) >

0 and 2(Mσ − �)δ(M) > 1/2.

Using that G0 and G1 are bounded, and (20), we readily check that Assumption 6 is satisfied.
We also have Assumption 2 with n(dx) = dx and

Q(x, y) = 1

2

(
G0
(
y − f0(x)

)+ G1
(
y − f1(x)

))
,

Assumption 13 implies Assumption 3 as well, as follows from an straightforward adaptation of
Lemma 25 in [11]. Denoting by ν the invariant probability of Q we also have m(ν) > 0 with m(ν)

defined by (11), for every D ⊂ [−μ,μ], see the proof of Lemma 24 in [11]. As a consequence,
the results stated in Theorems 8, 9 and 10 of Section 3 carry over to the setting of BAR processes
satisfying Assumption 13. We thus readily obtain smoothness-adaptive estimators for ν,Q and
P in this context and these results are new, despite the stringent Assumption 13. Extensions to
more general settings such as AR-ARCH models of [26] requires to relax the boundedness of the
autoregression functions, that we need here in order to guarantee uniform ergodicity.

4.3. Numerical illustration

We focus on the growth-fragmentation model and reconstruct its size-dependent splitting rate.
We consider a perturbation of the baseline splitting rate B̃(x) = x/(5 − x) over the range x ∈
S = (0,5) of the form

B(x) = B̃(x) + cT

(
2j

(
x − 7

2

))
with (c, j) = (3,1) or (c, j) = (9,4), and where T (x) = (1 +x)1{−1≤x<0} + (1 −x)1{0≤x≤1} is a
tent shaped function. Thus the trial splitting rate with parameter (c, j) = (9,4) is more localized
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Figure 1. Sample autocorrelation of ordered (Xu0, u ∈ Gn−1) for n = 15. Note: due to the binary tree
structure the lags are {4,6,6, . . .}. As expected, we observe a fast decorrelation.

around 7/2 and higher than the one associated with parameter (c, j) = (3,1). One can easily
check that both B̃ and B belong to the class C(r,L) for an appropriate choice of (r,L). For a
given B , we simulate M = 100 Monte Carlo trees up to the generation n = 15. To do so, we draw
the size at birth of the initial cell X∅ uniformly in the interval [1.25,2.25], we fix the growth
rate τ = 2 and given a size at birth Xu = x, we pick Xu0 according to the density y � QB(x, y)

defined by (17) using a rejection sampling algorithm (with proposition density y � QB̃(x, y))
and set Xu1 = Xu0. Figure 1 illustrates quantitatively how fast the decorrelation on the tree
occurs.

Computational aspects of statistical estimation using wavelets can be found in Härdle et
al., Chapter 12 of [30]. We implement the estimator B̂n defined by (18) using the Matlab
wavelet toolbox. We take a wavelet filter corresponding to compactly supported Daubechies
wavelets of order 8. As specified in Theorem 12, the maximal resolution level J is chosen as
1
2 log2(|Tn|/ log |Tn|) and we threshold the coefficients ν̂λ,n which are too small by hard thresh-
olding. We choose the threshold proportional to

√
log |Tn|/|Tn| (and we calibrate the constant to

10 or 15 for respectively the two trial splitting rates, mainly by visual inspection). We evaluate
B̂n on a regular grid of D = [1.5,4.8] with mesh �x = (|Tn|)−1/2. For each sample, we compute
the empirical error

ei = ‖B̂(i)
n − B‖�x

‖B‖�x

, i = 1, . . . ,M,

where ‖ · ‖�x denotes the discrete L2-norm over the numerical sampling and sum up the re-
sults through the mean-empirical error ē = M−1∑M

i=1 ei , together with the empirical standard
deviation (M−1∑M

i=1(ei − ē)2)1/2.
Table 1 displays the numerical results we obtained, also giving the compression rate (columns

%) defined as the number of wavelet coefficients put to zero divided by the total number of
coefficients. We choose a oracle-like error as benchmark: the oracle-like estimator is computed
by picking the best resolution level J ∗ with no coefficient threshold. We also display the results
when constructing B̂n with Gn (instead of Tn), in which case an analog of Theorem 12 holds.
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Table 1. Mean empirical relative error ē and its standard deviation (over M = 100 Monte-Carlo trees), with
respect to n, for the trial splitting rate B specified by (c, j) = (3,1) (large spike) or (c, j) = (4,9) (high
spike) reconstructed over the interval D = [1.5,4.8] by the estimator B̂n. Note: for n = 15, 1

2 |Tn| = 32 767

and 1
2 |Gn| = 16 384; for n = 12, 1

2 |Tn| = 4095 and 1
2 |Gn| = 2048

n = 12 n = 15

Oracle-like Threshold est. Oracle-like Threshold est.

ē (sd.) J ∗ ē (sd.) % ē (sd.) J ∗ ē (sd.) %

Large spike Tn 0.0677 5 0.1020 96.6 0.0324 6 0.0502 97.1
(0.0159) (0.0196) (0.0055) (0.0055)

Gn 0.0933 5 0.1454 97.9 0.0453 6 0.0728 96.7
(0.0202) (0.0267) (0.0081) (0.0097)

High spike Tn 0.1343 7 0.1281 97.4 0.0586 8 0.0596 97.7
(0.0180) (0.0163) (0.0059) (0.0060)

Gn 0.1556 7 0.1676 97.7 0.0787 8 0.0847 97.9
(0.0222) (0.0228) (0.0079) (0.0087)

For the large spike, the thresholding estimator behaves quite well compared to the oracle-like for
a large spike and achieves the same performance for a high spike.

Figures 2 and 3 show the reconstruction of the size-dependent splitting rate B and the invariant
measure νB in the two cases (large or high spike) for one typical sample of size 1

2 |Tn| = 32 767.

Figure 2. Large spike: reconstruction of the trial splitting rate B specified by (c, j) = (3,1) over
D = [1.5,4.8] and reconstruction of νB over D/2 based on one sample (Xu,u ∈ Tn) for n = 15 (i.e.
1
2 |Tn| = 32 767).
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Figure 3. High spike: reconstruction of the trial splitting rate B specified by (c, j) = (9,4) over
D = [1.5,4.8] and reconstruction of νB over D/2 based on one sample (Xu,u ∈ Tn) for n = 15 (i.e.
1
2 |Tn| = 32 767).

In both cases, the spike is well reconstructed and so are the discontinuities in the derivative
of B . As expected, the spike being localized around 7

2 for B , we detect it around 7
4 for the invari-

ant measure of the sizes at birth νB . The large spike concentrates approximately 50% of the mass
of νB whereas the large only concentrates 20% of the mass of νB . (Note that the reconstruction
of B on D requires the reconstruction of the invariant measure νB on D/2 only, recall (18).)

5. Proofs

5.1. Proof of Theorem 4(i)

Let g : S → R such that |g|1 < ∞. Set ν(g) = ∫S g(x)ν(dx) and g̃ = g − ν(g). Let n ≥ 2. By
the usual Chernoff bound argument, for every θ > 0, we have

P

(
1

|Gn|
∑
u∈Gn

g̃(Xu) ≥ δ

)
≤ exp

(−θ |Gn|δ
)
E

[
exp

(
θ
∑
u∈Gn

g̃(Xu)

)]
. (21)

Step 1. We have

E

[
exp

(
θ
∑
u∈Gn

g̃(Xu)

)∣∣∣Fn−1

]
= E

[ ∏
u∈Gn−1

exp
(
θ
(
g̃(Xu0) + g̃(Xu1)

))∣∣∣Fn−1

]

=
∏

u∈Gn−1

E
[
exp
(
θ
(
g̃(Xu0) + g̃(Xu1)

))|Fn−1
]
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thanks to the conditional independence of the (Xu0,Xu1)u∈Gn−1 given Fn−1, as follows from
Definition 1. We rewrite this last term as∏

u∈Gn−1

E
[
exp
(
θ
(
g̃(Xu0) + g̃(Xu1) − 2Qg̃(Xu)

))|Fn−1
]

exp
(
θ2Qg̃(Xu)

)
,

inserting the Fn−1-measurable random variable 2Qg̃(Xu) for u ∈ Gn−1. Moreover, the bifurcat-
ing structure of (Xu)u∈T implies

E
[
g̃(Xu0) + g̃(Xu1) − 2Qg̃(Xu)|Fn−1

]= 0, u ∈ Gn−1, (22)

since Q = 1
2 (P0 + P1). We will also need the following bound, proof of which is delayed until

Appendix.

Lemma 14. Work under Assumptions 2 and 3. For all r = 0, . . . , n−1 and u ∈ Gn−r−1, we have∣∣2r
(
Qr g̃(Xu0) +Qr g̃(Xu1) − 2Qr+1g̃(Xu)

)∣∣≤ c1|g|∞
and

E
[(

2r
(
Qr g̃(Xu0) +Qr g̃(Xu1) − 2Qr+1g̃(Xu)

))2|Fn−r−1
]≤ c2σ

2
r (g),

with c1 = 4 max{1 + Rρ,R(1 + ρ)}, c2 = 4 max{|Q|D,4|Q|2D,4R2(1 + ρ)2} and

σ 2
r (g) =

{
|g|22, r = 0,

min
{|g|2122r , |g|2∞(2ρ)2r

}
, r = 1, . . . , n − 1.

(23)

(Recall that |Q|D = supx∈S,y∈DQ(x, y) and R,ρ are defined via Assumption 3.)

In view of (22) and Lemma 14 for r = 0, we plan to use the bound

E
[
exp(θZ)

]≤ exp

(
θ2σ 2

2(1 − θM/3)

)
(24)

valid for any θ ∈ (0,3/M), any random variable Z such that |Z| ≤ M , E[Z] = 0 and E[Z2] ≤ σ 2.
Thus, for any θ ∈ (0,3/c1|g|∞) and any u ∈ Gn−1, with Z = g̃(Xu0) + g̃(Xu1) − 2Qg̃(Xu), we
obtain

E
[
exp
(
θ
(
g̃(Xu0) + g̃(Xu1) − 2Qg̃(Xu)

))|Fn−1
]≤ exp

(
θ2c2σ

2
0 (g)

2(1 − θc1|g|∞/3)

)
.

It follows that

E

[
exp

(
θ
∑
u∈Gn

g̃(Xu)

)∣∣∣Fn−1

]
≤ exp

(
θ2c2σ

2
0 (g)|Gn−1|

2(1 − θc1|g|∞/3)

) ∏
u∈Gn−1

exp
(
θ2Qg̃(Xu)

)
. (25)
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Step 2. We iterate the procedure in step 1. Conditioning with respect to Fn−2, we need to
control

E

[ ∏
u∈Gn−1

exp
(
θ2Qg̃(Xu)

)∣∣∣Fn−2

]
,

and more generally, for 1 ≤ r ≤ n − 1:

E

[ ∏
u∈Gn−r

exp
(
θ2rQr g̃(Xu)

)∣∣∣Fn−r−1

]

=
∏

u∈Gn−r−1

E
[
exp
(
θ2r
(
Qr g̃(Xu0) +Qr g̃(Xu1) − 2Qr+1g̃(Xu)

))|Fn−r−1
]

× exp
(
θ2r+1Qr+1g̃(Xu)

)
,

the last equality being obtained thanks to the conditional independence of the (Xu0,Xu1)u∈Gn−r−1

given Fn−r−1. We plan to use (24) again: for u ∈ Gn−r−1, we have

E
[
2r
(
Qr g̃(Xu0) +Qr g̃(Xu1) − 2Qr+1g̃(Xu)

)|Fn−r−1
]= 0

and the conditional variance given Fn−r−1 can be controlled using Lemma 14. Using recur-
sively (24), for r = 1, . . . , n − 1,

E

[ ∏
u∈Gn−1

exp
(
θ2Qg̃(Xu)

)∣∣∣F0

]
≤

n−1∏
r=1

exp

(
θ2c2σ

2
r (g)|Gn−r−1|

2(1 − θc1|g|∞/3)

)
exp
(
θ2nQng̃(X∅)

)
for θ ∈ (0,3/c1|g|∞). By Assumption 3,

exp
(
θ2nQng̃(X∅)

)≤ exp
(
θ2nR

(
2|g|∞

)
ρn
)≤ exp

(
θ2R|g|∞

)
since ρ < 1/2. In conclusion

E

[ ∏
u∈Gn−1

exp
(
θ2Qg̃(Xu)

)]≤ exp

(
θ2c2
∑n−1

r=1 σ 2
r (g)|Gn−r−1|

2(1 − θc1|g|∞/3)

)
exp
(
θ2R|g|∞

)
.

Step 3. Let 1 ≤ � ≤ n − 1. By definition of σ 2
r (g) – recall (23) – and using the fact that

(2ρ)2r ≤ 1, since moreover |Gn−r−1| = 2n−r−1, we successively obtain1

n−1∑
r=1

σ 2
r (g)2n−r−1 ≤ 2n−1

(
|g|21

�∑
r=1

2r + |g|2∞
n−1∑

r=�+1

2−r (2ρ)2r

)

≤ 2n
(|g|212� + |g|2∞2−�

)
≤ |Gn|φn(g)

1Putting 0 for the value of a sum when indexed by an empty set.
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for an appropriate choice of �, with φn(g) = min1≤�≤n−1(|g|212� + |g|2∞2−�). It follows that

E

[ ∏
u∈Gn−1

exp
(
θ2Qg̃(Xu)

)]≤ exp

(
θ2c2|Gn|φn(g)

2(1 − θc1|g|∞/3)
+ θ2R|g|∞

)
. (26)

Step 4. Putting together the estimates (25) and (26) and coming back to (21), we obtain

P

(
1

|Gn|
∑
u∈Gn

g̃(Xu) ≥ δ

)
≤ exp

(
−θ |Gn|δ + θ2c2|Gn|�1,n(g)

2(1 − θc1|g|∞/3)
+ θ2R|g|∞

)

with �1,n(g) = |g|22 + φn(g) for n ≥ 2 and �1,1(g) = σ 2
0 (g) = |g|22. Since δ is such that

2R|g|∞ ≤ |Gn|δ/2, we obtain

P

(
1

|Gn|
∑
u∈Gn

g̃(Xu) ≥ δ

)
≤ exp

(
−θ |Gn| δ

2
+ θ2c2|Gn|�1,n(g)

2(1 − θc1|g|∞/3)

)
.

The admissible choice2 θ = δ/( 2
3δc1|g|∞ + 2c2�1,n(g)) yields the result.

5.2. Proof of Theorem 4(ii)

Step 1. Similarly to (21), we plan to use

P

(
1

|Tn|
∑
u∈Tn

g̃(Xu) ≥ δ

)
≤ exp

(−θ |Tn|δ
)
E

[
exp

(
θ
∑
u∈Tn

g̃(Xu)

)]
(27)

for a specific choice of θ > 0. We first need to control

E

[
exp

(
θ
∑
u∈Tn

g̃(Xu)

)∣∣∣Fn−1

]
=
∏

u∈Tn−1

exp
(
θg̃(Xu)

)
E

[
exp

(
θ
∑
u∈Gn

g̃(Xu)

)∣∣∣Fn−1

]
.

Using (25) to control E[exp(θ
∑

u∈Gn
g̃(Xu))|Fn−1], we obtain

E

[
exp

(
θ
∑
u∈Tn

g̃(Xu)

)∣∣∣Fn−1

]

≤ exp

(
θ2c2σ

2
0 (g)|Gn−1|

2(1 − θc1|g|∞/3)

) ∏
u∈Gn−1

exp
(
θ2Qg̃(Xu)

) ∏
u∈Tn−1

exp
(
θg̃(Xu)

)
.

2Indeed, for α,β, γ > 0 and h(x) = −αx + βx2

2(1−γ x)
we have h(x∗) = −α2

2(β+αγ )
for the choice x∗ = α

2αγ+β
∈ (0,1/γ ).
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Step 2. We iterate the procedure. At the second step, conditioning w.r.t. Fn−2, we need to
control

E

[ ∏
u∈Tn−2

exp
(
θg̃(Xu)

) ∏
u∈Gn−1

exp
(
θg̃(Xu) + 2θQg̃(Xu)

)∣∣∣Fn−2

]
and more generally, at the (r + 1)th step (for 1 ≤ r ≤ n − 1), we need to control

E

[ ∏
u∈Tn−r−1

exp
(
θg̃(Xu)

) ∏
u∈Gn−r

exp

(
θ

r∑
m=0

2mQmg̃(Xu)

)∣∣∣Fn−r−1

]

=
∏

u∈Tn−r−2

exp
(
θg̃(Xu)

) ∏
u∈Gn−r−1

exp

(
θ

r+1∑
m=0

2mQmg̃(Xu)

)

×E
[
exp
(
θϒr(Xu,Xu0,Xu1)

)|Fn−r−1
]
,

where we set

ϒr(Xu,Xu0,Xu1) =
r∑

m=0

2m
(
Qmg̃(Xu0) +Qmg̃(Xu1) − 2Qm+1g̃(Xu)

)
.

This representation successively follows from the Fn−r−1-measurability of the random variable∏
u∈Tn−r−1

exp(θ g̃(Xu)), the identity∏
u∈Gn−r

exp
(
F(Xu)

)= ∏
u∈Gn−r−1

exp
(
F(Xu0) + F(Xu1)

)
,

the independence of (Xu0,Xu1)u∈Gn−r−1 conditional on Fn−r−1 and finally the introduction of
the term 2

∑r
m=0 2mQm+1g̃(Xu).

We have, for u ∈Gn−r−1

E
[
ϒr(Xu,Xu0,Xu1)|Fn−r−1

]= 0,

and we prove in Appendix the following bound.

Lemma 15. For any r = 1, . . . , n − 1, u ∈ Gn−r−1, we have∣∣ϒr(Xu,Xu0,Xu1)
∣∣≤ c3|g|∞

and

E
[
ϒr(Xu,Xu0,Xu1)

2|Fn−r−1
]≤ c4σ

2
r (g) < ∞,

where c3 = 4R(1 + ρ)(1 − 2ρ)−1, c4 = 12 max{|Q|D,16|Q|2D,4R2(1 + ρ)2(1 − 2ρ)−2} and

σ 2
r (g) = |g|22 + min

�≥1

(|g|2122(�∧r) + |g|2∞(2ρ)2�1{r>�}
)
. (28)

(Recall that |Q|D = supx∈S,y∈DQ(x, y) and R,ρ are defined via Assumption 3.)
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In the same way as for step 2 in the proof of Theorem 4(i), we apply recursively (24) for r =
1, . . . , n − 1 to obtain

E

[
exp

(
θ
∑
u∈Tn

g̃(Xu)

)∣∣∣F0

]
≤

n−1∏
r=0

exp

(
c4θ

2σ 2
r (g)|Gn−r−1|

2(1 − c′
3θ |g|∞/3)

)
exp

(
θ

n∑
m=0

2mQmg̃(X∅)

)
,

if θ ∈ (0,3/c′
3|g|∞) with c′

3 = max{c1, c3} = 4 max{1 + Rρ,R(1 + ρ)(1 − 2ρ)−1} and σ 2
0 (g) =

|g|22 in order to include step 1 (we use c4 ≥ c2 as well). Now, by Assumption 3, this last term can
be bounded by

exp

(
θ

n∑
m=0

2m
(
R|̃g|∞ρm

))≤ exp
(
θ2R(1 − 2ρ)−1|g|∞

)
since ρ < 1/2. Since |Gn−r−1| = 2n−r−1, by definition of σ 2

r (g) – recall (28) – for any 1 ≤ � ≤
n − 1 and using moreover that (2ρ)� ≤ 1, we obtain

n−1∑
r=0

σ 2
r (g)|Gn−r−1|

≤ 2n−1

(
|g|22

n−1∑
r=0

2−r + |g|21
(

�∑
r=1

22r2−r +
n−1∑

r=�+1

22�2−r

)
+ |g|2∞

n−1∑
r=�+1

2−r

)
≤ |Tn|�1,n(g),

where �1,n(g) is defined in (3). Thus,

E

[
exp

(
θ
∑
u∈Tn

g̃(Xu)

)]
≤ exp

(
c4θ

2|Tn|�1,n(g)

2(1 − c′
3θ |g|∞/3)

+ θ2R(1 − 2ρ)−1|g|∞
)

.

Step 3. Coming back to (27), for δ > 0 such that 2R(1 − 2ρ)−1|g|∞ ≤ |Tn|δ/2, we obtain

P

(
1

|Tn|
∑
u∈Tn

g̃(Xu) ≥ δ

)
≤ exp

(
−θ |Tn| δ

2
+ c4θ

2|Tn|�1,n(g)

2(1 − c′
3θ |g|∞/3)

)
.

We conclude in the same way as in step 4 of the proof of Theorem 4(i).

5.3. Proof of Theorem 5(i)

The strategy of proof is similar as for Theorem 4. Let g : S3 → R such that |g|1 < ∞ and set
g̃ = g − ν(Pg). Let n ≥ 2 (if n = 1, set �2,1(g) = |Q(Pg)|∞). Introduce the notation �u =
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(Xu,Xu0,Xu1) for simplicity. For every θ > 0, the usual Chernoff bound reads

P

(
1

|Gn|
∑
u∈Gn

g̃(�u) ≥ δ

)
≤ exp

(−θ |Gn|δ
)
E

[
exp

(
θ
∑
u∈Gn

g̃(�u)

)]
. (29)

Step 1. We first need to control

E

[
exp

(
θ
∑
u∈Gn

g̃(�u)

)∣∣∣Fn−1

]
= E

[ ∏
u∈Gn−1

exp
(
θ
(
g̃(�u0) + g̃(�u1)

))∣∣∣Fn−1

]

=
∏

u∈Gn−1

E
[
exp
(
θ
(
g̃(�u0) + g̃(�u1)

))|Fn−1
]

using the independence of (�u0,�u1)u∈Gn−1 conditional on Fn−1. Inserting the term
2Q(P g̃)(Xu), this last quantity ia also equal to∏

u∈Gn−1

E
[
exp
(
θ
(
g̃(�u0) + g̃(�u1) − 2Q(P g̃)(Xu)

))|Fn−1
]

exp
(
θ2Q(P g̃)(Xu)

)
.

For u ∈ Gn−1 we successively have

E
[
g̃(�u0) + g̃(�u1) − 2Q(P g̃)(Xu)|Fn−1

] = 0,∣∣̃g(�u0) + g̃(�u1) − 2Q(P g̃)(Xu)
∣∣ ≤ 4(1 + Rρ)|g|∞

and

E
[(

g̃(�u0) + g̃(�u1) − 2Q(P g̃)(Xu)
)2|Fn−1

]≤ 4|Q|D
∣∣Pg2

∣∣
1,

with |Q|D = supx∈S,y∈DQ(x, y) and R,ρ defined via Assumption 3. The first equality is
obtained by conditioning first on Fn then on Fn−1. The last two estimates are obtained
in the same line as the proof of Lemma 14 for r = 0, using in particular Q(Pg2)(x) =∫
S Pg2(y)Q(x, y)n(dy) ≤ |Q|D|Pg2|1 since Pg2 vanishes outside D.

Finally, thanks to (24) with Z = g̃(�u0) + g̃(�u1) − 2Q(P g̃)(Xu), we infer

E

[
exp

(
θ
∑
u∈Gn

g̃(�u)

)∣∣∣Fn−1

]
(30)

≤ exp

(
θ24|Q|D|Pg2|1

2(1 − θ4(1 + Rρ)|g|∞/3)

) ∏
u∈Gn−1

exp
(
θ2Q(P g̃)(Xu)

)
for θ ∈ (0,3/(4(1 + Rρ)|g|∞)).

Step 2. We wish to control E[∏u∈Gn−1
exp(θ2Q(P g̃)(Xu))]. We are back to step 2 and

step 3 of the proof of Theorem 4(i), replacing g̃ by P g̃, which satisfies ν(P g̃) = 0. Equation (26)
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entails

E

[ ∏
u∈Gn−1

exp
(
θ2Q(P g̃)(Xu)

)]≤ exp

(
θ2c2|Gn|φn(Pg)

2(1 − θc1|Pg|∞/3)
+ θ2R|Pg|∞

)
(31)

with φn(Pg) = min1≤�≤n−1(|Pg|212� + |Pg|2∞2−�) and c1 = 4 max{1 + Rρ,R(1 + ρ)}, c2 =
4 max{|Q|D,4|Q|2D,4R2(1 + ρ)2}.

Step 3. Putting together (30) and (31), we obtain

E

[
exp

(
θ
∑
u∈Gn

g̃(�u)

)]
≤ exp

(
θ2c2|Gn|�2,n(g)

2(1 − θc1|g|∞/3)
+ θ2R|Pg|∞

)
(32)

with �2,n(g) = |Pg2|1 + φn(Pg) and using moreover |g|∞ ≥ |Pg|∞ and c1 ≥ 4(1 + Rρ). Back
to (29), since 2R|Pg|∞ ≤ |Gn|δ/2 we finally infer

P

(
1

|Gn|
∑
u∈Gn

g(�u) − ν(Pg) ≥ δ

)
≤ exp

(
−θ |Gn| δ

2
+ θ2c2|Gn|�2,n(g)

2(1 − θc1|g|∞/3)

)
.

We conclude in the same way as in step 4 of the proof of Theorem 4(i).

5.4. Proof of Theorem 5(ii)

In the same way as before, for every θ > 0,

P

(
1

|Tn−1|
∑

u∈Tn−1

g̃(�u) ≥ δ

)
≤ exp

(−θ |Tn−1|δ
)
E

[
exp

(
θ
∑

u∈Tn−1

g̃(�u)

)]
. (33)

Introduce �′
2,0(g) = |Pg2|1 and

�′
2,n(g) = ∣∣Pg2

∣∣
1 + inf

�≥1

(|Pg|212�∧(n−1) + |Pg|2∞2−�1{�<n−1}
)
, for n ≥ 1.

It is not difficult to check that (32) is still valid when replacing �2,n by �′
2,n. We plan to suc-

cessively expand the sum over the whole tree Tn−1 into sums over each generation Gm for
m = 0, . . . , n− 1, apply Hölder inequality, apply inequality (32) repeatedly (with �′

2,m) together
with the bound

n−1∑
m=0

|Gm|�′
2,m(g) ≤ |Tn−1|�2,n−1(g).

We thus obtain

E

[
exp

(
θ
∑

u∈Tn−1

g̃(�u)

)]

= E

[
n−1∏
m=0

exp

(
θ
∑

u∈Gm

g̃(�u)

)]
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≤
(
E
[
exp
(
nθg̃(�∅)

)] n−1∏
m=1

E

[
exp

(
nθ
∑

u∈Gm

g̃(�u)

)])1/n

≤
(

exp
(
nθ2|g|∞

) n−1∏
m=1

exp

(
(nθ)2c2|Gm|�′

2,m(g)

2(1 − (nθ)c1|g|∞/3)
+ (nθ)2R|Pg|∞

))1/n

≤ exp

(
θ2c2n|Tn−1|�2,n−1(g)

2(1 − c1(nθ)|g|∞/3)
+ 2θ
(
nR|Pg|∞ + |g|∞

))
.

Coming back to (33) and using 2(nR|Pg|∞ + |g|∞) ≤ |Tn−1|δ/2, we obtain

P

(
1

|Tn−1|
∑

u∈Tn−1

g̃(�u) ≥ δ

)
≤ exp

(
−θ |Tn−1| δ

2
+ θ2c2n|Tn−1|�2,n−1(g)

2(1 − (nθ)c1|g|∞/3)

)
.

We conclude in the same way as in step 4 of the proof of Theorem 4(i).

5.5. Proof of Theorem 8

Put c(n) = (log |Tn|/|Tn|)1/2 and note that the maximal resolution J = Jn is such that 2Jn ∼
c(n)−2. Theorem 8 is a consequence of the general theory of wavelet threshold estimators, see
Kerkyacharian and Picard [34]. We first claim that the following moment bounds and moderate
deviation inequalities hold: for every p ≥ 1,

E
[|̂νλ,n − νλ|p

]
� c(n)p for every |λ| ≤ Jn (34)

and

P
(|̂νλ,n − νλ| ≥ pκc(n)

)≤ c(n)2p for every |λ| ≤ Jn (35)

provided κ > 0 is large enough, see condition (37) below. In turn, we have conditions (5.1)
and (5.2) of Theorem 5.1 of [34] with �n = Jn (with the notation of [34]). By Corollary 5.1 and
Theorem 6.1 of [34] we obtain Theorem 8.

It remains to prove (34) and (35). We plan to apply Theorem 4(ii) with g = ψ1
λ and δ = δn =

pκc(n). First, we have |ψ1
λ |p ≤ Cp2|λ|(1/2−1/p) for p = 1,2,∞ by (6), so one readily checks

that for

κ ≥ 4

p
R(1 − 2ρ)−1C∞

(
log |Tn|

)−1
,

the condition δn ≥ 4R(1 − 2ρ)−1|ψ1
λ |∞|Tn|−1 is satisfied, and this is always true for large

enough n. Furthermore, since 2|λ| ≤ 2Jn ≤ c(n)−2 it is not difficult to check that

�1,n

(
ψ1

λ

) = ∣∣ψ1
λ

∣∣2
2 + min

1≤�≤n−1

(∣∣ψ1
λ

∣∣2
12� + ∣∣ψ1

λ

∣∣2∞2−�
)≤ C (36)
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for some C > 0 and thus κ3�1,n(ψλ) ≤ κ3C = C′ say. Also κ4|ψ1
λ |∞δn ≤ κ4C∞2|λ|/2c(n)pκ ≤

C′′pκ, where C′′ > 0 does not depend on n since 2|λ|/2 ≤ c(n)−1. Theorem 4(ii) yields

P
(|̂νλ,n − νλ| ≥ pκc(n)

)≤ 2 exp

(
−|Tn|p2

κ
2c(n)2

C′ + C′′pκ

)
≤ c(n)2p

for κ such that

κ ≥ 1

2
C′′ +

√(
C′′)2 + 4

p
C′ (37)

and large enough n. Thus, (35) is proved. Straightforward computations show that (34) follows
using E[|̂νλ,n −νλ|p] = ∫∞

0 pup−1P(|̂νλ,n −νλ| ≥ u)du and (35) again. The proof of Theorem 8
is complete.

5.6. Preparation for the proof of Theorem 9

For h : S2 →R, define |h|∞,1 = supx∈S
∫
S |h(x, y)|dy. For n ≥ 2, set also

�3,n(h) = |h|22 + min
1≤�≤n−1

(|h|212� + |h|2∞,12−�
)
. (38)

Recall that under Assumption 3 with n(dx) = dx, we set fQ(x, y) = ν(x)Q(x, y). Before prov-
ing Theorem 9, we first need the following preliminary estimate

Lemma 16. Work under Assumption 2 with n(dx) = dx and Assumption 3. Let h : D2 ⊆ S2 →
R be such that |hfQ|1 < ∞. For every n ≥ 1 and for any δ ≥ 4|h|∞(Rn + 1)|T


n|−1, we have

P

(
1

|T

n|
∑
u∈T


n

h(Xu− ,Xu) − 〈h,fQ〉 ≥ δ

)
≤ exp

( −n−1|T

n|δ2

κ5�3,n(h) + κ2|h|∞δ

)

where T


n = Tn \ {∅} and κ5 = max{|Q|D, |Q|2D}κ1(Q,D).

Proof. We plan to apply Theorem 5(ii) to g(x, x0, x1) = 1
2 (h(x, x0) + h(x, x1)). Since Q =

1
2 (P0 +P1) we readily have Pg(x) = ∫S h(x, y)Q(x, y) dy. Moreover, in that case,

1

|Tn−1|
∑

u∈Tn−1

g(Xu,Xu0,Xu1) = 1

|T

n|
∑
u∈T


n

h(Xu− ,Xu)

and
∫
S Pg(x)ν(x) dx = ∫S×S h(x, y)Q(x, y)ν(x) dx dy = 〈h,fQ〉. We then simply need to es-

timate �2,n(g) defined by (4). It is not difficult to check that the following estimates hold

|Pg|21 ≤ |Q|2D|h|21, |Pg|2∞ ≤ |Q|2D|h|2∞,1 and
∣∣Pg2

∣∣
1 ≤ |Q|D|h|22
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since (Pg2)(x) ≤ ∫S h(x, y)2Q(x, y) dy and h vanishes outside D2. This entails

�2,n(g) ≤ max
{|Q|D, |Q|2D

}
�3,n(h)

and the result follows. �

5.7. Proof of Theorem 9, upper bound

Step 1. We proceed as for Theorem 8. Putting c(n) = (n log |T

n|/|T


n|)1/2 and noting that the
maximal resolution J = Jn is such that 2dJn ∼ c(n)−2 with d = 2, we only have to prove that for
every p ≥ 1,

E
[∣∣f̂λ,n − fλ

∣∣p]� c(n)p for every |λ| ≤ Jn (39)

and

P
(|f̂λ,n − fλ| ≥ pκc(n)

)≤ c(n)2p for every |λ| ≤ Jn. (40)

We plan to apply Lemma 16 with h(x, y) = ψd
λ (x, y) = ψ2

λ(x, y) and δ = δn = pκc(n). With
the notation used in the proof of Theorem 8 one readily checks that for

κ ≥ 4

p
(1 − 2ρ)−1C∞(Rn + 1)

(
log
∣∣T


n

∣∣)−1

the condition δn ≥ 4|ψ2
λ |∞(Rn + 1)|T


n|−1 is satisfied, and this is always true for large enough n

and

κ ≥ 4

p
(1 − 2ρ)−1C∞(2R + 1). (41)

Furthermore, since |ψd
λ |p ≤ Cp2d|λ|(1/2−1/p) for p = 1,2,∞ and 2d|λ| ≤ 2dJn ≤ c(n)−2 we

can easily check

�3,n

(
ψd

λ

)= ∣∣ψd
λ

∣∣2
2 + min

1≤�≤n−1

(∣∣ψd
λ

∣∣2
12� + ∣∣ψd

λ

∣∣∞,12−�
)≤ C

for some C > 0, and thus κ5�3,n(g) ≤ κ5C = C′ say. Also, κ2|ψd
λ |∞δn ≤ κ2C∞2d|λ|/2c(n)pκ ≤

C′′pκ, where C′′ does not depend on n. Applying Lemma 16, we derive

P
(|f̂λ,n − fλ| ≥ pκc(n)

)≤ 2 exp

(
−n−1|Tn−1|p2

κ
2c(n)2

C′ + C′′pκ

)
≤ c(n)2p

as soon as κ satisfies (41) and (37) (with appropriate changes for C′ and C′′). Thus, (40) is
proved and (39) follows likewise. By [34] (Corollary 5.1 and Theorem 6.1), we obtain

E
([‖f̂n − fQ‖p

Lp(D2)

])1/p �
(

n log |Tn|
|Tn|

)α2(s,p,π)

(42)
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as soon as ‖fQ‖Bs
π,∞(D2) is finite, as follows from fQ(x, y) = Q(x, y)ν(x) and the fact that

‖ν‖Bs
π,∞(D) is finite too. The last statement can be readily seen from the representation ν(x) =∫

S ν(y)Q(y, x) dy and the definition of Besov spaces in terms of moduli of continuity, see, for
example, Meyer [38] or Härdle et al. [30], using moreover that π ≥ 1.

Step 2. Since Q(x, y) = fQ(x, y)/ν(x) and Q̂n(x, y) = f̂n(x, y)/max{̂νn(x),� }, we readily
have∣∣Q̂n(x, y) −Q(x, y)

∣∣p � 1

�p

(∣∣f̂n(x, y) − fQ(x, y)
∣∣p + |fQ|p∞

m(ν)p

∣∣max
{̂
νn(x),�

}− ν(x)
∣∣p),

where the supremum for fQ can be restricted over D2. Since m(ν) ≥ � , we have |max{̂νn(x),

� } − ν(x)| ≤ |̂νn(x) − ν(x)| for x ∈ D, therefore

‖Q̂n −Q‖p

Lp(D2)
� 1

�p

(
‖f̂n − fQ‖p

Lp(D2)
+ |fQ|p∞

m(ν)p
‖ν − νn‖p

Lp(D)

)
holds as well. We conclude by applying successively the estimate (42) and Theorem 8.

5.8. Proof of Theorem 9, lower bound

We only give a brief sketch: the proof follows classical lower bounds techniques, bounding ap-
propriate statistical distances along hypercubes, see [24,30] and more specifically [13,31,36] for
specific techniques involving Markov chains. We separate the so-called dense and sparse case.

The dense case ε2 > 0. Let ψλ : D2 → R a family of (compactly supported) wavelets adapted
to the domain D and satisfying Assumption 7. For j such that |Tn|−1/2 � 2−j (s+1), consider the
family

Qε,j (x, y) = ∣∣D2
∣∣−11D2(x, y) + γ |Tn|−1/2

∑
λ∈�j

ελψ
2
λ(x, y),

where ε ∈ {−1,1}�j and γ > 0 is a tuning parameter (independent of n). Since |ψ2
λ |∞ ≤

C∞2|λ| = C∞2j and since the number of overlapping terms in the sum is bounded (by some
fixed integer N ), we have

γ |Tn|−1/2|
∑
λ∈�j

ελψ
2
λ(x, y)| ≤ γ |Tn|−1/2NC∞2j � γ.

This term can be made smaller than |D2|−1 by picking γ sufficiently small. Hence, Qε,j (x,

y) ≥ 0 and since
∫

ψλ = 0, the family Qε,j (x, y) are all admissible mean transitions with
common invariant measure ν(dx) = 1D(x) dx and belong to a common ball in Bs

π,∞(D2). For
λ ∈ �j , define Tλ : {−1,1}�j → {−1,1}|�j | by Tλ(ελ) = −ελ and Tλ(εμ) = εμ if μ �= λ. The
lower bound in the dense case is then a consequence of the following inequality

lim sup
n

max
ε∈{−1,1}�j ,λ∈�j

∥∥Pn
ε,j − P

n
Tλ(ε),j

∥∥
TV < 1, (43)



Adaptive estimation for bifurcating Markov chains 3629

where Pn
ε,j is the law of (Xu)u∈Tn

specified by the T-transition Pε,j =Qε,j ⊗Qε,j and the initial
condition L(X∅) = ν.

We briefly show how to obtain (43). By Pinsker’s inequality, it is sufficient to prove that

E
n
ε,j [log

dPn
ε,j

dPn
Tλ(ε),j

] can be made arbitrarily small uniformly in n (but fixed). We have

E
n
ε,j

[
− log

dPn
Tλ(ε),j

dPn
ε,j

]
= −

∑
u∈Tn

E
n
ε,j

[
log

PTλ(ε),j (Xu,Xu0,Xu1)

Pε,j (Xu,Xu0,Xu1)

]

= −
∑

u∈T

n+1

E
n
ε,j

[
log

QTλ(ε),j (Xu− ,Xu)

Qε,j (Xu− ,Xu)

]

= −∣∣T

n+1

∣∣ ∫
D2

log

(QTλ(ε),j (x, y)

Qε,j (x, y)

)
Qε,j (x, y)ν(dx)dy

≤ ∣∣T

n+1

∣∣ ∫
D2

(QTλ(ε),j (x, y)

Qε,j (x, y)
− 1

)2

Qε,j (x, y)ν(dx)dy

using − log(1 + z) ≤ z2 − z valid for z ≥ −1/2 and the fact that ν(dx) is an invariant measure
for both QTλ(ε),j and Qε,j . Noting that

QTλ(ε),j (x, y) =Qε,j (x, y) − 2γ |Tn|−1/2ελψ
2
λ(x, y),

we derive ∣∣∣∣QTλ(ε),j (x, y)

Qε,j (x, y)
− 1

∣∣∣∣≤ 2γ |Tn|−1/2C∞2j

1 − γ |Tn|−1/2NC∞2j
� γ |Tn|−1/2

hence the squared term within the integral is of order γ 2|Tn|−1 so that, by picking γ sufficiently

small, our claim about En
ε,j [log

dPn
ε,j

dPn
Tλ(ε),j

] is proved and (43) follows.

The sparse case ε2 ≤ 0. We now consider the family

Qλ,j (x, y) = ∣∣D2
∣∣−11D2(x, y) + γ

(
log |Tn|

|Tn|
)1/2

ελψ
2
λ(x, y)

with ελ ∈ {−1,+1} and λ ∈ �j , with j such that (
log |Tn|

|Tn| )1/2 � 2−j (s+1−2/π). The lower bound
then follows from the representation

log
dPn

λ,j

dPn
ν

= Un
λ − ωλ log 2j ,

where Pn
λ,j and P

n
ν denote the law of (Xu)u∈Tn

specified by the T-transitions Qλ,j ⊗Qλ,j and ν⊗
ν respectively (and the initial condition L(X∅) = ν); the ω’s are such that supn maxλ∈�j

ωλ < 1,
and Un

λ are random variables such that Pn
λ,j (Un

λ ≥ −C1) ≥ C2 > 0 for some C1,C2 > 0. We omit
the details, see, for example, [13,31,36].
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5.9. Proof of Theorem 10

Proof of Theorem 10, upper bound. We closely follow the proof of Theorem 9, choosing
c(n) = (n log |Tn−1|/|Tn−1|)1/2 and J = Jn such that 2dJn ∼ c(n)−2 with d = 3 now. With δ =
δn = pκc(n), for κ ≥ 4

p
(1 − 2ρ)−1C∞(2R + 1), we have δn ≥ 4|ψ3

λ |∞(Rn + 1)|T

n|−1.

Furthermore, since |ψd
λ |p ≤ Cp2d|λ|(1/2−1/p) for p = 1,2,∞ and 2d|λ| ≤ 2dJn ≤ c(n)−2 it is

not difficult to check that

�2,n(ψλ) ≤ max
{|P|D, |P|2D

}(∣∣ψd
λ

∣∣2
2 + min

1≤�≤n−1

(∣∣ψd
λ

∣∣2
12� + ∣∣ψd

λ

∣∣∞,12−�
))≤ C

thanks to Assumption 6, where |ψd
λ |∞,1 = supx∈D

∫
D2 |ψd

λ (x, y, z)|dy dz, and thus κ1�2,n(g) ≤
κ1C = C′. We also have κ2|ψd

λ |∞δn ≤ κ2C∞2|λ|d/2c(n)pκ ≤ C′′pκ, where C′′ does not depend
on n. Noting that fλ = 〈fP ,ψd

λ 〉 = ∫ Pψd
λ dν, we apply Theorem 5(ii) to g = ψλ and derive

P
(|f̂λ,n − fλ| ≥ pκc(n)

)≤ 2 exp

(
−n−1|Tn−1|p2

κ
2c(n)2

C′ + C′′pκ

)
≤ c(n)2p

for every |λ| ≤ Jn as soon as κ is large enough and the estimate

E
([‖f̂n − fP‖p

Lp(D3)

])1/p �
(

n log |Tn|
|Tn|

)α3(s,p,π)

follows thanks to the theory of [34]. The end of the proof follows step 2 of the proof of Theorem 9
line by line, substituting fQ by fP . �

Proof of Theorem 10, lower bound. This is a slight modification of the proof of Theorem 9,
lower bound. For the dense case ε3 > 0, we consider an hypercube of the form

Pε,j (x, y, z) = ∣∣D3
∣∣−11D3(x, y, z) + γ |Tn|−1/2

∑
λ∈�j

ελψ
3
λ(x, y, z),

where ε ∈ {−1,1}�j with j such that |Tn|−1/2 � 2−j (s+3/2) and γ > 0 a tuning parameter, while
for the sparse case ε3 ≤ 0, we consider the family

Pλ,j (x, y, z) = ∣∣D3
∣∣−11D3(x, y, z) + γ

(
log |Tn|

|Tn|
)1/2

ελψ
3
λ(x, y, z)

with ελ ∈ {−1,+1}, λ ∈ �j , and j such that (
log |Tn|

|Tn| )1/2 � 2−j (s+3(1/2−1/π)). The proof then
goes along a classical line. �

5.10. Proof of Theorem 12

Proof of Theorem 12, upper bound. Set v̂n(x) = 1
|Tn|
∑

u∈Tn
1{x/2≤Xu≤x} and vν(x) =∫ x

x/2 νB(y) dy. Mimicking Lemmas 3 and 4 in Doumic et al. [25], one can check that
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supx∈D νB(x) < ∞ and infx∈D vν(x) > 0 uniformly in B ∈ C(r,L) provided that infD ≤ r/2.
For x ∈ D, we have∣∣B̂n(x) − B(x)

∣∣p � 1

�p

∣∣̂νn(x) − νB(x)
∣∣p + supx∈D νB(x)p

infx∈D vν(x)p

∣∣max
{̂
vn(x),�

}− vν(x)
∣∣p

�
∣∣̂νn(x) − νB(x)

∣∣p + ∣∣̂vn(x) − vν(x)
∣∣p.

By Theorem 4(ii) with g = 1{x/2≤·≤x}, one readily checks

E
[∣∣̂vn(x) − vν(x)

∣∣p]= ∫ ∞

0
pup−1

P
(∣∣̂vn(x) − vν(x)

∣∣≥ u
)
du � |Tn|−p/2

and this term is negligible. Finally, it suffices to note that ‖νB‖Bs
π,∞(D) is finite as soon as

‖B‖Bs
π,∞(D) is finite. This follows from

νB(x) =
∫
S

νB(y)QB(y, x) dy = B(2x)

τx

∫ 2x

0
νB(y) exp

(
−
∫ x

y/2

B(2z)

τz
dz

)
dy.

We conclude by applying Theorem 8. �

Proof of Theorem 12, lower bound. This is again a slight modification of the proof of Theo-
rem 9, lower bound. For the dense case ε1 > 0, we consider an hypercube of the form

Bε,j (x) = B0(x) + γ |Tn|−1/2
∑
λj

εkψ
1
λ(x)

where ε ∈ {−1,1}�j with j such that |Tn|−1/2 � 2−j (s+1/2) and γ > 0 a tuning parameter. By
picking B0 and γ in an appropriate way, we have that B0 and Bε,j belong to a common ball in
Bs

π,∞(D) and also belong to C(r,L). The associated T-transition PBε,j
defined in (17) admits as

mean transition

QBε,j
(x, dy) = Bε,j (2y)

τy
exp

(
−
∫ y

x/2

Bε,j (2z)

τz
dz

)
1{y≥x/2} dy

which has a unique invariant measure νBε,j
. Establishing (43) is similar to the proof of Theorem 9,

lower bound, using the explicit representation for QBε,j
with a slight modification due to the fact

that the invariant measures νBε,j
and νBTλ(ε),j

do not necessarily coincide. We omit the details.
For the sparse case ε1 ≤ 0, we consider the family

Bλ,j (x) = B0(x) + γ

(
log |Tn|

|Tn|
)1/2

ελψ
1
λ(x)

with ελ ∈ {−1,+1}, λ ∈ �j , with j such that (
log |Tn|

|Tn| )1/2 � 2−j (s+1/2−1/π). The proof is then
similar. �
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Appendix

A.1. Proof of Lemma 11

Pick B : S → [0,∞) in the class C(r,L) for well-chosen r and L, as specified in Lemma 11.
Recall that S is a bounded open interval such that infS = 0, and set S = (0, xM) for a positive
xM . We shall use Theorem 1.3 in Hairer and Mattingly [29].

We first check Assumptions 1 and 2 of [29]. Let us define V (x) = xp for x ∈ S and p > 1.
For any x ∈ S , we have QBV (x) ≤ V (xM/2) since the size at birth of cell u is at most xM/2,
the size at division of its parents u− being at most xM for our choice of B . Thus Assumption 1
of [29] is satisfied with γ = 0 and K = (xM/2)p (with the notation of [29], noting that picking
γ = 0 is actually possible). Let us denote

ϕB(y) = B(2y)

τy
exp

(
−
∫ y

0

B(2s)

τ s
ds

)
, y ∈ S.

For any A ∈ S and x ∈ (0, r],

QB(x,A) ≥
∫

A∩( r
2 ,

xM
2 )

B(2y)

τy
exp

(
−
∫ y

x/2

B(2s)

τ s
ds

)
1{y≥x/2} dy

≥
∫

A∩( r
2 ,

xM
2 )

ϕB(y) dy,

since the indicator is equal to one for y > r/2 and x ≤ r . We obtain

inf
x∈C

QB(x, ·) ≥ αBηB(·)

setting C = (0, r], αB = ∫
( r

2 ,
xM

2 )
ϕB and ηB(A) = α−1

B

∫
A∩( r

2 ,
xM

2 )
ϕB for any A ∈ S. Noting that

C can be written {x ∈ S;V (x) ≤ R} with some R > 2K/(1−γ ) as soon as r > 21/p−1xM , which
is true by picking p large enough, we deduce that Assumption 2 of [29] is satisfied.

The existence and uniqueness of an invariant probability measure νB follows from Theo-
rem 1.2 of [29]. Moreover, νB is absolutely continuous with respect to the Lebesgue measure
since QB(x, dy) itself is (see (17)). Note that αB can be rewritten αB = exp(− ∫ r/2

0
B(2s)

τs
ds), so

that

inf
B∈C(r,L)

αB ≥ exp

(
−L

τ

)
>

1

2
.

For some α0 ∈ (0,1/2) such that infB∈C(r,L) αB > 1/2 + α0, we set β = α0/K . We apply The-
orem 1.3 of [29] recursively, picking Qm

Bδx and νB for μ1 and μ2, with m ≥ 0 and x ∈ S . We
conclude that for any function g : S →R such that |g(x)| ≤ 1 + βxp , we have∣∣Qm

Bg(x) − νB(g)
∣∣≤ CBρm

B

(
1 + βxp

)
, x ∈ S,m ≥ 0, (44)



Adaptive estimation for bifurcating Markov chains 3633

with CB = 1 + ∫S(1 + βxp)νB(x) dx and ρB > 0. Note that supB∈C(r,L) CB ≤ 2 + βx
p
M . In

addition, Theorem 1.3 of [29] gives a precise control of ρB with respect to γ , K , R, αB , α0, β

defined previously and one can check that supB∈C(r,L) ρB < 1/2. Finally, we apply (44) to the
test function g/|g|∞ and use x < xM to get the announced result, uniformly over B ∈ C(r,L).

A.2. Proof of Lemma 14

The case r = 0. By Assumption 3,∣∣̃g(Xu0) + g̃(Xu1) − 2Qg̃(Xu)
∣∣≤ 2
(|̃g|∞ + R|̃g|∞ρ

)≤ 4(1 + Rρ)|g|∞.

This proves the first estimate in the case r = 0. For u ∈Gn−1,

E
[(

g̃(Xu0) + g̃(Xu1) − 2Qg̃(Xu)
)2|Fn−1

]
= E
[(

g(Xu0) + g(Xu1) − 2Qg(Xu)
)2|Fn−1

]
≤ E
[(

g(Xu0) + g(Xu1)
)2|Fn−1

]≤ 2
(
P0g

2(Xu) +P1g
2(Xu)

)= 4Qg2(Xu)

and for x ∈ S , by Assumption 2,

Qg2(x) =
∫
S

g(y)2Q(x, y)n(dy) ≤ |Q|D|g|22

since g vanishes outside D. Thus

E
[(

g̃(Xu0) + g̃(Xu1) − 2Qg̃(Xu)
)2|Fn−1

]≤ 4|Q|D|g|22 (45)

hence the result for r = 0.

The case r ≥ 1. On the one hand, by Assumption 3,∣∣2r
(
Qr g̃(Xu0) +Qr g̃(Xu1) − 2Qr+1g̃(Xu)

)∣∣ ≤ 2r
(
2R|̃g|∞

(
ρr + ρr+1))

(46)
≤ 4R(1 + ρ)|g|∞(2ρ)r .

On the other hand, since∣∣Qg(x)
∣∣≤ ∫

S

∣∣g(y)
∣∣Q(x, y)n(dy) ≤ |Q|D|g|1,

we also have

2r
∣∣Qr g̃(Xu0) +Qr g̃(Xu1) − 2Qr+1g̃(Xu)

∣∣
(47)

= 2r
∣∣Qrg(Xu0) +Qrg(Xu1) − 2Qr+1g(Xu)

∣∣≤ 2r4|Q|D|g|1.
Putting together these two estimates yields the result for the case r ≥ 1.
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A.3. Proof of Lemma 15

By Assumption 3,

∣∣ϒr(Xu,Xu0,Xu1)
∣∣≤ 2

r∑
m=0

2mR|̃g|∞ρm(1 + ρ) ≤ 4R|g|∞(1 + ρ)(1 − 2ρ)−1

since ρ < 1/2. This proves the first bound. For the second bound, we balance the estimates (46)
and (47) obtained in the proof of Lemma 14. Let � ≥ 1. For u ∈Gn−r−1, we have∣∣ϒr(Xu,Xu0,Xu1)

∣∣≤ I + II + III,

with

I = ∣∣̃g(Xu0) + g̃(Xu1) −Qg̃(Xu)
∣∣,

II =
�∧r∑
m=1

2m
∣∣Qmg̃(Xu0) +Qmg̃(Xu1) − 2Qm+1g̃(Xu)

∣∣,
III =

r∑
m=�∧r+1

2m
∣∣Qmg̃(Xu0) +Qmg̃(Xu1) − 2Qm+1g̃(Xu)

∣∣,
with III = 0 if � > r . For u ∈ Gn−r−1, by (45), we successively have

E
[
I 2|Fn−r−1

] ≤ 4|Q|D|g|22,

II ≤ 4|Q|D|g|1
�∧r∑
m=1

2m ≤ 8|Q|D|g|12�∧r

by (47), while for � ≤ r ,

III ≤ 4R(1 + ρ)|g|∞
r∑

m=�+1

(2ρ)m ≤ 4R(1 + ρ)(1 − 2ρ)−1|g|∞(2ρ)�+1

by (46). The result follows.

Acknowledgements

We are grateful to A. Guillin for helpful discussions. The research of S.V. Bitseki Penda is sup-
ported by the Hadamard Mathematics Labex of the Fondation Mathématique Jacques Hadamard.
The research of M. Hoffmann is partly supported by the Agence Nationale de la Recherche
(Blanc SIMI 1 2011 project CALIBRATION).



Adaptive estimation for bifurcating Markov chains 3635

References

[1] Alquier, P. and Wintenberger, O. (2012). Model selection for weakly dependent time series forecast-
ing. Bernoulli 18 883–913. MR2948906

[2] Athreya, K.B. and Kang, H.-J. (1998). Some limit theorems for positive recurrent branching Markov
chains. I. Adv. in Appl. Probab. 30 693–710. MR1663545

[3] Basawa, I.V. and Zhou, J. (2004). Non-Gaussian bifurcating models and quasi-likelihood estimation.
J. Appl. Probab. 41A 55–64. MR2057565

[4] Benjamini, I. and Peres, Y. (1994). Markov chains indexed by trees. Ann. Probab. 22 219–243.
MR1258875

[5] Bercu, B. and Blandin, V. (2015). A Rademacher–Menchov approach for random coefficient bifurcat-
ing autoregressive processes. Stochastic Process. Appl. 125 1218–1243. MR3310345

[6] Bercu, B., de Saporta, B. and Gégout-Petit, A. (2009). Asymptotic analysis for bifurcating autoregres-
sive processes via a martingale approach. Electron. J. Probab. 14 2492–2526. MR2563249

[7] Bertoin, J. (2006). Random Fragmentation and Coagulation Processes. Cambridge Studies in Ad-
vanced Mathematics 102. Cambridge: Cambridge Univ. Press. MR2253162

[8] Bitseki Penda, S.V. and Djellout, H. (2014). Deviation inequalities and moderate deviations for esti-
mators of parameters in bifurcating autoregressive models. Ann. Inst. Henri Poincaré Probab. Stat. 50
806–844. MR3224290

[9] Bitseki Penda, S.V., Djellout, H. and Guillin, A. (2014). Deviation inequalities, moderate deviations
and some limit theorems for bifurcating Markov chains with application. Ann. Appl. Probab. 24 235–
291. MR3161647

[10] Bitseki Penda, S.V., Escobar-Bach, M. and Guillin, A. Transportation cost-information and concen-
tration inequalities for bifurcating Markov chains. Available at arXiv:1501.06693.

[11] Bitseki Penda, S.V. and Olivier, A. Nonparametric estimation of the autoregressive functions in bifur-
cating autoregressive models. Available at arXiv:1506.01842.

[12] Blandin, V. (2014). Asymptotic results for random coefficient bifurcating autoregressive processes.
Statistics 48 1202–1232. MR3269731

[13] Clémençon, S.J.M. (2000). Adaptive estimation of the transition density of a regular Markov chain.
Math. Methods Statist. 9 323–357. MR1827473

[14] Cohen, A. (2000). Handbook of Numerical Analysis. Vol. VII (P.G. Ciarlet and J.L. Lions, eds.). Hand-
book of Numerical Analysis, VII. Amsterdam: North-Holland.

[15] Cowan, R. and Staudte, R.G. (1986). The bifurcating autoregressive model in cell lineage studies.
Biometrics 42 769–783.

[16] de Saporta, B., Gégout-Petit, A. and Marsalle, L. (2011). Parameters estimation for asymmetric bifur-
cating autoregressive processes with missing data. Electron. J. Stat. 5 1313–1353. MR2842907

[17] de Saporta, B., Gégout-Petit, A. and Marsalle, L. (2012). Asymmetry tests for bifurcating auto-
regressive processes with missing data. Statist. Probab. Lett. 82 1439–1444. MR2929798

[18] de Saporta, B., Gégout-Petit, A. and Marsalle, L. (2014). Random coefficients bifurcating autoregres-
sive processes. ESAIM Probab. Stat. 18 365–399. MR3333995

[19] Delmas, J.-F. and Marsalle, L. (2010). Detection of cellular aging in a Galton–Watson process.
Stochastic Process. Appl. 120 2495–2519. MR2728175

[20] DeVore, R.A., Konyagin, S.V. and Temlyakov, V.N. (1998). Hyperbolic wavelet approximation. Con-
str. Approx. 14 1–26. MR1486387

[21] Donoho, D.L. and Johnstone, I.M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika
81 425–455. MR1311089

[22] Donoho, D.L. and Johnstone, I.M. (1995). Adapting to unknown smoothness via wavelet shrinkage.
J. Amer. Statist. Assoc. 90 1200–1224. MR1379464

http://www.ams.org/mathscinet-getitem?mr=2948906
http://www.ams.org/mathscinet-getitem?mr=1663545
http://www.ams.org/mathscinet-getitem?mr=2057565
http://www.ams.org/mathscinet-getitem?mr=1258875
http://www.ams.org/mathscinet-getitem?mr=3310345
http://www.ams.org/mathscinet-getitem?mr=2563249
http://www.ams.org/mathscinet-getitem?mr=2253162
http://www.ams.org/mathscinet-getitem?mr=3224290
http://www.ams.org/mathscinet-getitem?mr=3161647
http://arxiv.org/abs/arXiv:1501.06693
http://arxiv.org/abs/arXiv:1506.01842
http://www.ams.org/mathscinet-getitem?mr=3269731
http://www.ams.org/mathscinet-getitem?mr=1827473
http://www.ams.org/mathscinet-getitem?mr=2842907
http://www.ams.org/mathscinet-getitem?mr=2929798
http://www.ams.org/mathscinet-getitem?mr=3333995
http://www.ams.org/mathscinet-getitem?mr=2728175
http://www.ams.org/mathscinet-getitem?mr=1486387
http://www.ams.org/mathscinet-getitem?mr=1311089
http://www.ams.org/mathscinet-getitem?mr=1379464


3636 S.V. Bitseki Penda, M. Hoffmann and A. Olivier

[23] Donoho, D.L., Johnstone, I.M., Kerkyacharian, G. and Picard, D. (1995). Wavelet shrinkage: Asymp-
topia? J. Roy. Statist. Soc. Ser. B 57 301–369. MR1323344

[24] Donoho, D.L., Johnstone, I.M., Kerkyacharian, G. and Picard, D. (1996). Density estimation by
wavelet thresholding. Ann. Statist. 24 508–539. MR1394974

[25] Doumic, M., Hoffmann, M., Krell, N. and Robert, L. (2015). Statistical estimation of a growth-
fragmentation model observed on a genealogical tree. Bernoulli 21 1760–1799. MR3352060

[26] Francq, C. and Zakoïan, J.-M. (2010). GARCH Models: Structure, Statistical Inference and Financial
Applications. Chichester: Wiley. MR3186556

[27] Gao, F., Guillin, A. and Wu, L. (2014). Bernstein-type concentration inequalities for symmetric
Markov processes. Theory Probab. Appl. 58 358–382. MR3403002

[28] Guyon, J. (2007). Limit theorems for bifurcating Markov chains. Application to the detection of cel-
lular aging. Ann. Appl. Probab. 17 1538–1569. MR2358633

[29] Hairer, M. and Mattingly, J.C. (2011). Yet another look at Harris’ ergodic theorem for Markov chains.
In Seminar on Stochastic Analysis, Random Fields and Applications VI. Progress in Probability 63
109–117. Basel: Birkhäuser. MR2857021

[30] Härdle, W., Kerkyacharian, G., Picard, D. and Tsybakov, A. (1998). Wavelets, Approximation, and
Statistical Applications. Lecture Notes in Statistics 129. New York: Springer. MR1618204

[31] Hoffmann, M. (1999). Adaptive estimation in diffusion processes. Stochastic Process. Appl. 79 135–
163. MR1670522

[32] Huggins, R.M. and Basawa, I.V. (1999). Extensions of the bifurcating autoregressive model for cell
lineage studies. J. Appl. Probab. 36 1225–1233. MR1746406

[33] Huggins, R.M. and Basawa, I.V. (2000). Inference for the extended bifurcating autoregressive model
for cell lineage studies. Aust. N. Z. J. Stat. 42 423–432. MR1802966

[34] Kerkyacharian, G. and Picard, D. (2000). Thresholding algorithms, maxisets and well-concentrated
bases. Test 9 283–344. MR1821645

[35] Lacour, C. (2007). Adaptive estimation of the transition density of a Markov chain. Ann. Inst. Henri
Poincaré Probab. Stat. 43 571–597. MR2347097

[36] Lacour, C. (2008). Nonparametric estimation of the stationary density and the transition density of a
Markov chain. Stochastic Process. Appl. 118 232–260. MR2376901

[37] Merlevède, F., Peligrad, M. and Rio, E. (2009). Bernstein inequality and moderate deviations under
strong mixing conditions. In High Dimensional Probability V: The Luminy Volume. Inst. Math. Stat.
Collect. 5 273–292. Beachwood, OH: IMS. MR2797953

[38] Meyer, Y. (1990). Ondelettes et Opérateurs. I. Actualités Mathématiques. [Current Mathematical Top-
ics]. Paris: Hermann. MR1085487

[39] Meyn, S.P. and Tweedie, R.L. (1993). Markov Chains and Stochastic Stability. Communications and
Control Engineering Series. London: Springer. MR1287609

[40] Paulin, D. (2015). Concentration inequalities for Markov chains by Marton couplings and spectral
methods. Electron. J. Probab. 20 no. 79, 32. MR3383563

[41] Perthame, B. (2007). Transport Equations in Biology. Frontiers in Mathematics. Basel: Birkhäuser.
MR2270822

[42] Robert, L., Hoffmann, M., Krell, N., Aymerich, S., Robert, J. and Doumic, M. Division control in
Escherichia coli is based on a size-sensing rather than a timing mechanism. BMC Biol. 02/2014 12(1)
17.

[43] Roussas, G.G. (1991). Estimation of transition distribution function and its quantiles in Markov pro-
cesses: Strong consistency and asymptotic normality. In Nonparametric Functional Estimation and
Related Topics (Spetses, 1990). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 335 443–462. Dordrecht:
Kluwer Academic. MR1154345

http://www.ams.org/mathscinet-getitem?mr=1323344
http://www.ams.org/mathscinet-getitem?mr=1394974
http://www.ams.org/mathscinet-getitem?mr=3352060
http://www.ams.org/mathscinet-getitem?mr=3186556
http://www.ams.org/mathscinet-getitem?mr=3403002
http://www.ams.org/mathscinet-getitem?mr=2358633
http://www.ams.org/mathscinet-getitem?mr=2857021
http://www.ams.org/mathscinet-getitem?mr=1618204
http://www.ams.org/mathscinet-getitem?mr=1670522
http://www.ams.org/mathscinet-getitem?mr=1746406
http://www.ams.org/mathscinet-getitem?mr=1802966
http://www.ams.org/mathscinet-getitem?mr=1821645
http://www.ams.org/mathscinet-getitem?mr=2347097
http://www.ams.org/mathscinet-getitem?mr=2376901
http://www.ams.org/mathscinet-getitem?mr=2797953
http://www.ams.org/mathscinet-getitem?mr=1085487
http://www.ams.org/mathscinet-getitem?mr=1287609
http://www.ams.org/mathscinet-getitem?mr=3383563
http://www.ams.org/mathscinet-getitem?mr=2270822
http://www.ams.org/mathscinet-getitem?mr=1154345


Adaptive estimation for bifurcating Markov chains 3637

[44] Takacs, C. (2002). Strong law of large numbers for branching Markov chains. Markov Process. Re-
lated Fields 8 107–116. MR1897607

[45] Wintenberger, O. (2015). Weak transport inequalities and applications to exponential and oracle in-
equalities. Electron. J. Probab. 20 no. 114, 27. MR3418546

[46] Zhou, J. and Basawa, I.V. (2005). Maximum likelihood estimation for a first-order bifurcating autore-
gressive process with exponential errors. J. Time Ser. Anal. 26 825–842. MR2203513

Received October 2015 and revised April 2016

http://www.ams.org/mathscinet-getitem?mr=1897607
http://www.ams.org/mathscinet-getitem?mr=3418546
http://www.ams.org/mathscinet-getitem?mr=2203513

	Introduction
	Bifurcating Markov chains
	Objectives
	Main results and organisation of the chapter

	Deviations inequalities for empirical means
	Statistical estimation
	Atomic decompositions and wavelets
	Estimation of the invariant density nu
	Estimation of the density of the mean transition Q
	Estimation of the density of the T-transition P

	Applications
	Estimation of the size-dependent splitting rate in a growth-fragmentation model
	Bifurcating autoregressive process
	Numerical illustration

	Proofs
	Proof of Theorem 4(i)
	Proof of Theorem 4(ii)
	Proof of Theorem 5(i)
	Proof of Theorem 5(ii)
	Proof of Theorem 8
	Preparation for the proof of Theorem 9
	Proof of Theorem 9, upper bound
	Proof of Theorem 9, lower bound
	Proof of Theorem 10
	Proof of Theorem 12

	Appendix
	Proof of Lemma 11
	Proof of Lemma 14
	Proof of Lemma 15

	Acknowledgements
	References

