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We investigate the transportation inequality for bifurcating Markov chains which are a class of processes
indexed by a regular binary tree. Fitting well models like cell growth when each individual gives birth to ex-
actly two offsprings, we use transportation inequalities to provide useful concentration inequalities. We also
study deviation inequalities for the empirical means under relaxed assumptions on the Wasserstein contrac-
tion for the Markov kernels. Applications to bifurcating nonlinear autoregressive processes are considered
for point-wise estimates of the non-linear autoregressive function.
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1. Introduction

Roughly speaking, a bifurcating Markov chain (BMC) is a Markov chain indexed by a regular
binary tree. Introduced by Guyon [25] in application of the Escherichia coli cellular aging, this
class of processes is well adapted for the study of lineage data where individuals give birth
to exactly two descendants. Several models of BMC have been recently studied [13,18,25,27,
28] with a great interest in cell division topics. There is now an important literature covering
asymptotic results for BMC [4,7,13,14,16,25,26]. These limit theorems are particularly useful
when applied to the statistics of bifurcating processes, enabling to provide efficient test to assert if
the cell aging is different for the two offspring (see [26] for real case study). Of course, they may
be considered only in the “ergodic” case, that is, when the law of the random lineage chain has
an unique invariant measure. However, this could be unusable in practice since one is often faced
to study limited sized data. Thus, natural questions arise about the control of statistics outside
the limits. Such control could be reach with deviation inequalities (or concentration inequalities)
and have been recently the subject of many studies. We refer to the books of Ledoux [29] and
Massart [33] for nice introductions on the subject, developing both i.i.d. and dependent cases
with a wide variety of tools (Laplace controls, functional inequalities, Efron–Stein, . . .). It was
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one of the goal of Bitseki et al. [7] to investigate deviation inequalities for additive functionals
of BMC. In their work, one of the main hypothesis is that the Markov chain associated to a
random lineage of the population is uniformly ergodic in a geometric point of view. It is clearly
a very strong assumption, nearly reducing interesting models to the compact case. The purpose
of this paper is to considerably weaken this hypothesis. More specifically, we obtain deviation
inequalities for BMC when the auxiliary Markov chain may satisfy some contraction properties
in Wasserstein distance and some (uniform) integrability properties. This will be done with the
help of transportation cost inequalities and direct Laplace controls. In order to present our results,
we may now define properly the model of BMC and transportation inequalities.

1.1. Bifurcating Markov chains

First, we introduce some useful notations. Let T be a regular binary tree in which each vertex is
seen as a positive integer different from 0. For n ∈ N, let

Gn = {2n,2n + 1, . . . ,2n+1 − 1
}
, Tn =

n⋃
k=0

Gk,

denote respectively the nth column and the first (n + 1) columns of the tree. The whole tree is
thus defined by

T =
∞⋃

n=0

Gn.

Reversely, any vertex n belongs to the column Grn with rn = �log2 n�, where �x� denotes the
integer part of the real number x. A vertex n represents an individual as well as the ancestor of
the individuals 2n and 2n + 1. Ones who belong to 2N (resp. 2N + 1) will be called of type 0
(resp. type 1). The initial individual will be denoted 1 (see Figure 1).

For each individual n, we associate a random variable Xn, defined on a probability space
(�,F,P) which takes values in a metric space (E,d) endowed with its Borel σ -algebra
E . We assume that each pair of random variables (X2n,X2n+1) depends of the past values
{Xm,m ∈ Trn} only through Xn. In order to describe this dependance, let us introduce the fol-
lowing notion.

Definition 1.1 (T-transition probability, see [25]). We call T-transition probability any mapping
P : E × E2 → [0,1] such that:

• P(·,A) is measurable for all A ∈ E2,
• P(x, ·) is a probability measure on (E2,E2) for all x ∈ E.

In particular, for all x, y, z ∈ E, P(x, dy, dz) represents the probability that the quantities
associated to a children pair (from same mother) are in the neighbourhood of y and z given that
the quantity associated to their ancestor is x.
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Figure 1. A regular binary tree T.

For a T-transition probability P on E × E2, we denote by P0, P1 the first and the second
marginal of P , that is P0(x,A) = P(x,A × E), P1(x,A) = P(x,E × A) for all x ∈ E and
A ∈ E . Then, P0 (resp. P1) can be seen as the transition probability associated to individual of
type 0 (resp. type 1).

For N ≥ 1, we denote by B(EN) (resp. Bb(E
N)), the set of all EN -measurable (resp. EN -

measurable and bounded) mappings f : EN → R. For f ∈ B(E3), we denote by Pf ∈ B(E) the
function

x �→ Pf (x) =
∫

S2
f (x, y, z)P (x, dy, dz), when it is defined.

We are now in position to give a precise definition for a BMC.

Definition 1.2 (BMC, see [25]). Let (Xn,n ∈ T) be a family of E-valued random variables
defined on a filtered probability space (�,F, (Fr , r ∈ N),P). Let ν be a probability on (E,E)

and P be a T-transition probability. We say that (Xn,n ∈ T) is a (Fr )-bifurcating Markov chain
with initial distribution ν and T-transition probability P if:

• Xn is Frn -measurable for all n ∈ T,
• L(X1) = ν,
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• for all r ∈N and for all family {fn,n ∈Gr } ⊆ Bb(E
3)

E

[ ∏
n∈Gr

fn(Xn,X2n,X2n+1)

∣∣∣Fr

]
=
∏

n∈Gr

Pfn(Xn).

In the following, when unprecise, the filtration implicitly used will be Fr = σ(Xi, i ∈ Tr ).

Remark 1.1. We may also consider BMC’s on a a degree tree (with a ≥ 2) without any additional
technicalities but heavy additional notations. In the same spirit, Markov chains of higher order
(such as BAR processes considered in [6]) could be handled by the same techniques. A nontrivial
extension would be the case of BMC on a Galton–Watson tree (see, for example, [5] under very
strong assumptions) but this will be considered in future works.

1.2. Transportation inequality

We recall that (E,d) is a metric space endowed with its Borel σ -algebra E . Given p ≥ 1, the
Lp-Wasserstein distance between two probability measures μ and ν on E is defined by

Wd
p (ν,μ) = inf

(∫ ∫
d(x, y)p dπ(x, y)

)1/p

,

where the infimum is taken over all probability measures π on the product space E × E with
marginal distributions μ and ν, called coupling of (μ, ν). This infimum is finite as soon as μ

and ν have finite moments of order p. When d(x, y) = 1x 
=y (the trivial measure), 2Wd
1 (μ, ν) =

‖μ − ν‖T V , the total variation of μ − ν.
The Kullback information (or relative entropy) of ν with respect to μ is defined as

H(ν|μ) =
⎧⎨⎩
∫

log
dν

dμ
dν, if ν � μ,

+∞, else.

Definition 1.3 (Lp-transportation inequality). We say that the probability measure μ satisfies
the Lp-transportation inequality Tp on (E,d), denoted μ ∈ Tp(C), if there is some constant
C > 0 such that for any probability measure ν,

Wd
p (ν,μ) ≤√2CH(ν|μ).

This transportation inequality has been introduced by Marton [30,31] as a tool for (Gaussian)
concentration measure property. Transportation inequality should be called transportation cost-
information inequality (as noted in Villani [35]), the transportation cost being the Wasserstein
distance and the information Kullback–Leibler information. One may change the information for
Fisher information to get other type of concentration result. The following result will be crucial
in the sequel. It gives a characterization of L1-transportation inequality in term of concentration
inequality. This is one of the main tool to get deviation inequalities (via Markov inequality).



Transportation and concentration inequalities for bifurcating Markov chains 3217

Theorem 1.4 ([9]). The measure μ satisfies the L1-transportation inequality T1(C) on (E,d)

with constant C > 0 if and only if for any Lipschitzian function F : (E,d) → R, F is μ-
integrable and ∫

E

exp
(
λ
(
F − 〈F 〉μ

))
dμ ≤ exp

(
λ2

2
C‖F‖2

Lip

)
, ∀λ ∈ R,

where 〈F 〉μ = ∫
E

F dμ and

‖F‖Lip = sup
x 
=y

|F(x) − F(y)|
d(x, y)

< +∞.

In particular, we have the concentration inequality

μ
(
F − 〈F 〉μ ≤ −t

)∨ μ
(
F − 〈F 〉μ ≥ t

)≤ exp

(
− t2

2C‖F‖2
Lip

)
∀t ∈R.

In this work, we will mainly focus on transportation cost inequality T1 where a considerable
literature already exists. As a flavor, let us first cite the characterization of T1 as a Gaussian
integrability property [17] (see also [20]).

Theorem 1.5 ([17]). μ satisfies the L1-transportation inequality T1(C) on (E,d) if and only if
there exists δ > 0 and x0 ∈ E such that

μ
(
eδd2(x,x0)

)
< ∞,

where the constant C can be made explicit.

There is also a large deviations characterization [22]. Recent striking results on transportation
inequalities have been obtained for T2, namely that they are equivalent to dimension free Gaus-
sian concentration [21], or to a restricted class of logarithmic Sobolev inequalities [24]. See also
[11] or [12] for practical application based on Lyapunov type criterion and we refer for example
to [23] or [35] for surveys on transportation inequality. One of it main aspect is the tensorization
property, that is, μ⊗n will satisfy some transportation measure if μ does (with dependence on
the dimension n). One important development was to consider such a property for dependent
sequences such as Markov chains. In [17], Djellout et al. have generalized Marton’s [32] result
providing conditions under which the law of a homogeneous Markov chain (Yk)1≤k≤N on EN

satisfies the Lp-transportation inequality Tp with respect to the metric

dlp (x, y) :=
(

N∑
i=1

d(xi, yi)
p

)1/p

.

We will follow similar ideas here to establish the Lp-transportation inequality for the law of a
BMC (Xi)1≤i≤N on EN . This will allow us to obtain concentration inequalities under hypotheses
largely weaker than those of Bitseki et al. [7].
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Remark 1.2. There are natural generalizations of the T1(C) inequality often denoted α − T1(C)

inequality, where α is a nonnegative convex lower semi continuous function vanishing at 0. We
say that the probability measure μ satisfies α − T1(C) if for any probability measure ν

α
(
W1(ν,μ)

)≤ 2CH(ν/μ).

The usual T1(C) inequality is then the case where α(t) = t2. Gozlan [20] has generalized
Bobkov–Götze’s Laplace transform control [9] and Djellout–Guillin–Wu [17] integrability cri-
terion to this setting enabling to recover sub or super Gaussian concentration. The results of the
following section can be generalized to this setting, however adding technical details and heavy
notations. Details will thus be left to the reader.

1.3. Objectives and plan of the paper

Our main goal is to furnish easy to verify, and less stringent than uniform ergodicity, conditions to
get transportation inequalities and particular concentration inequalities. Let us be more precise.

1. First, we will prove transportation cost inequality for the law P of the process up to gener-
ation n, that is, for every probability measure ν

W
dlp
p (ν,P) ≤

√
2C
(|Tn|,p

)
H(ν|P),

for some function C(n,p) with a “good behaviour” with respect to the dimension n. From
this, we may deduce general deviation inequalities: for every 1-Lipschitzian functions F

(w.r.t. dlp ) and t > 0

P
(
F(Xi)i≤|Tn| −E

(
F(Xi)i≤|Tn|

)≥ t
)≤ e

− t2
2C(|Tn|,p) .

This will be proved under a contraction assumption in Wasserstein distance of the Markov
kernel, and uniform Gaussian integrability property. It is the purpose of Section 2. To get a
good dimensional behaviour, the contraction has to be a strict contraction.

2. However transportation inequalities may for some example be too general as it leads to de-
viation inequalities for all Lipschitzian functions. For statistical purposes, it is more likely
to get a functional of interest empirical mean, for which one can hope to get an “averaging”
effect between marginal kernels P0 and P1. We will prove in Section 3, that it is indeed
possible to relax slightly the contraction assumption on each kernel. This allows one kernel
to have expanding bounds (rather than strict contraction).

3. We finally apply these deviation inequalities in the nonparametric statistical problem of ker-
nel estimation of the leading function in (nonlinear) bifurcating autoregressive processes. It
is the subject of Section 4. It enables us to give nonasymptotic deviation inequalities (sharp
wrt the dimension) for these estimators.
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2. Transportation cost inequalities for bifurcating Markov
chains

Let (Xi, i ∈ T) be a BMC on E with T-probability transition P and initial measure ν. For p ≥ 1
and C > 0, we consider the following assumption that we shall call Hp(C) in the sequel.

Assumption 2.1 (Hp(C)). There exists q > 0 with the following statements:

(a) ν ∈ Tp(C);
(b) P(x, ·, ·) ∈ Tp(C) on (E2, dlp ), ∀x ∈ E;

(c) W
dlp
p (P (x, ·, ·),P (x̃, ·, ·)) ≤ qd(x, x̃), ∀x, x̃ ∈ E.

Recall that P0 and P1 are the margin measures of P . It is important to remark that under
Hp(C), condition (b) implies that P0 and P1 also satisfies (uniformly) a transportation inequality.
Moreover, condition (c) implies that there exist positive constants q0 and q1 smaller than q such
that P0 and P1 fit the same condition. Furthermore, if P(x, dy, dz) = P0(x, dy)P1(x, dz), we
have q ≤ (q

p

0 + q
p

1 )1/p .
As a proof for these comments, let us state the following proposition.

Proposition 2.2. Assume C > 0 and p ≥ 1 two constants such that Hp(C) is available with an
associated constant q > 0, then there exists q0 and q1 in (0, q) such that for any b = 0,1:

(i) Pb(x, ·) ∈ Tp(C) on (E,d), ∀x ∈ E;
(ii) Wd

p (Pb(x, ·),Pb(x̃, ·)) ≤ qbd(x, x̃), ∀x, x̃ ∈ E.

Furthermore, if P(x, dy, dz) = P0(x, dy)P1(x, dz), then q ≤ (q
p

0 + q
p

1 )1/p .

Proof. Assume π be any coupling of (P (x, ·, ·),P (x̃, ·, ·)) for x, x̃ ∈ E fixed:∫
E4

dlp (y, z)p dπ(dy, dz) :=
∫

E4
d(y0, z0)

p + d(y1, z1)
pπ(dy0, dy1, dz0, dz1)

=
∫

E2
d(y0, z0)

pπ0(dy0, dz0) +
∫

E2
d(y1, z1)

pπ1(dy1, dz1),

where π0(dy0, dz0) = π(dy0,E,dz0,E) and π1(dy1, dz1) = π(E,dy1,E,dz1). Thus, π1 and
π2 are both respectively, coupling of (P0(x, ·),P0(x̃, ·)) and (P1(x, ·),P1(x̃, ·)). Firstly for b =
0,1, if π is an optimal coupling, that is, π realizes the minimum overall possible couplings (see
[35] for existence):

W
dlp
p

(
P(x, ·, ·),P (x̃, ·, ·))p ≥

∫
E2

d(yb, zb)
pπb(dyb, dzb)

(2.1)
≥ Wd

p

(
Pb(x, ·),Pb(x̃, ·))p.

Thus, existence of qb is proven.
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Again, if both π0 and π1 realize the minimums, then with π = π0 ⊗ π1 coupling for
(P (x, ·, ·),P (x̃, ·, ·)) when P(x, ·, ·) = P0(·, dy)P1(·, dz):

Wd
p

(
P0(x, ·),P0(x̃, ·))p + Wd

p

(
P1(x, ·),P1(x̃, ·))p =

∫
E4

dlp (y, z)pπ(dy, dz)

≥ W
dlp
p

(
P(x, ·, ·),P (x̃, ·, ·))p,

and the last assertion of the Proposition 2.2 then follows from this inequality.
For the first statement, we focus on b = 0 since the same arguments hold for b = 1. Let denote

P 1(x, ·|x0) the conditional probability measure according to the first coordinate from its coupling
P(x, ·, ·). Assume ν be any probability measure on E and π(dx0, dx1) = ν(dx0)P

1(x, dx1|x0)

a coupling of (ν,P 1(x, ·|x0)). Similarly to (2.1)

Wd
p

(
Pb(x, ·), ν) ≤ W

dlp
p

(
P(x, ·, ·),π)≤

√
2CH

(
π |P(x, ·, ·)).

Now according to lemma 2.4 (below)

H
(
π |P(x, ·, ·))= H

(
ν|P0(x, ·))+ ∫

E

H
(
P 1(x, ·|x0)|P 1(x, ·|x0)

)
ν(dx0).

Result comes naturally since H(μ|μ) = 0 whatever the probability measure μ is. �

Let us note thanks to the Hölder inequality that Hp(C) implies H1(C).
We do not suppose here that q , q0 and q1 are strictly less than 1, and thus the two marginal

chains, as well as the bifurcating one, are not in principle strict contractions. We are thus consid-
ering here both “stable” and “unstable” cases, that is, the case where the two marginal Markov
chains with transition P0 and P1 are ergodic and the case where only one of them is ergodic.
We deduce now the following result for the law of the whole trajectory on the binary tree. In
the sequel, the symbol “�” will denote equality up to a multiplicative constant which does not
depend on the size of the sample.

Theorem 2.3. Let n ∈ N and let P be the law of (Xi)i∈Tn
and denote N = |Tn|. We assume

Hp(C) for 1 ≤ p ≤ 2 and C > 0. Then P ∈ Tp(CN) where

CN�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
N2/p−1

(1 − q)2
, if q < 1,

C exp

(
2 − 2

p

)
N2/p+1, if q = 1,

C(N + 1)

(
exp(q − 1)rpN

rp − 1

)2/p

, if q > 1.

Before the proof of this result, let us make the following notations.
Let χ be any Polish space and denote M1(χ) the space of probability measures on χ . We

assume now E separable meaning that whatever N ∈ N
∗, EN is also a Polish space. For any
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element x ∈ EN and 1 ≤ i ≤ N , we denote xi := (x1, . . . , xi). Let (X1, . . . ,XN) ∈ EN be a
random vector with joint distribution μ ∈ M1(E

N).
Similarly we denote:

• for 1 ≤ i ≤ N , μi the law of Xi ,
• for 1 ≤ j < i ≤ N , μi

xj the conditional law of (Xi,Xi−1, . . . ,Xj+1) given Xj = xj with

the convention μ1
x0 = μ1, where x0 = x0 is some fixed point.

In particular, if μ is the law of a BMC with T-probability transition P , then μ2i+1
x2i−1 = P(xi, ·, ·).

For the convenience of the readers, we recall the formula of additivity of entropy (see, for exam-
ple, [35], Lemma 22.8).

Lemma 2.4. Let N ∈ N, let χ1, . . . , χN be Polish spaces and P,Q ∈ M1(χ) where χ =∏N
i=1 χi . Then

H(Q|P) =
N∑

i=1

∫
χ

H
(
Qi

xi−1 |P i
xi−1

)
Q(dx).

We can now prove the theorem.

Proof of the Theorem 2.3. Let ε > 0 and Q ∈ M1(E
N). Assume that H(Q|P) < ∞ (trivial

otherwise). The idea is to conditionally study each generation by pairs w.r.t the previous Gn−1.
Conditionally to their ancestors, every pair of offsprings of an individual is independent of the
others from the same generation. Let i be a member of generation Gj−1, and define for a real-
ization x on the tree Ti (x) := (x1, . . . , x|Tj |). By the definition of the Wasserstein distance, there

is a coupling π2i+1
y2i−1,x2i−1 of (Q2i+1

y2i−1 ,P2i+1
x2i−1) such that

Ai :=
∫ (

d(y2i , x2i )
p + d(y2i+1, x2i+1)

p
)
dπ2i+1

y2i−1,x2i−1

≤ (1 + ε)W
dlp
p

(
Q2i+1

y2i−1 ,P2i+1
x2i−1

)p
≤ (1 + ε)

[
W

dlp
p

(
Q2i+1

y2i−1 ,P2i+1
y2i−1

)+ W
dlp
p

(
P2i+1

y2i−1 ,P2i+1
x2i−1

)]p
= (1 + ε)

[
W

dlp
p

(
Q2i+1

y2i−1 ,P (yi, ·, ·)
)+ W

dlp
p

(
P(yi, ·, ·),P (xi, ·, ·)

)]p
,

where the second inequality is obtained thanks to the triangle inequality for the Wd
p distance

and the equality is a consequence of the Markov property. By Hp(C) and the convexity of the
function x �→ xp , we obtain, for a, b > 1 such that 1/a + 1/b = 1,

Ai ≤ (1 + ε)
(√

2CHi

(
y2i−1

)+ qd(yi, xi)
)p

≤ (1 + ε)
(
ap−1(√2CHi

(
y2i−1

))p + bp−1qpdp(yi, xi)
)
,

where Hi(x) = H(Q2i+1
x |P2i+1

x ).
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By recurrence on i, this entails that E[d(Yi,Xi)
p] < +∞ for all i ∈ {1, . . . ,N} where

(Yi)1≤i≤N is distributed as Q. Taking the expected value under Q and summing on i, we ob-
tain

|Tn−1|∑
i=0

E[Ai] ≤ (1 + ε)

(
ap−1(2C)p/2

|Tn−1|∑
i=1

E
[
Hi

(
Y 2i−1)p/2])+

(
bp−1qp

|Tn−2|∑
i=0

E[Ai]
)

.

Letting ε goes to 0+, we are led to

|Tn−1|∑
i=0

E[Ai] ≤
N∑

i=1

(
ap−1(2C)p/2

E
[
Hi

(
Y 2i−1)p/2])+(bp−1qp

|Tn−2|∑
i=0

E[Ai]
)

.

Now, in the same way as before, one can show that

|Tn−2|∑
i=0

E[Ai] ≤
N−1∑
i=1

(
ap−1(2C)p/2

E
[
Hi

(
Y 2i−1)p/2])+(bp−1qp

|Tn−3|∑
i=0

E[Ai]
)

,

and more generally, for all k ∈ {1, . . . , n}, we have

|Tn−k |∑
i=0

E[Ai] ≤
N−k+1∑

i=1

(
ap−1(2C)p/2

E
[
Hi

(
Y 2i−1)p/2])+(bp−1qp

|Tn−k−1|∑
i=0

E[Ai]
)

.

We set hi = ap−1(2C)p/2
E[Hi(Y

2i−1)p/2]. Then, using the previous inequalities, we obtain

|Tn−1|∑
i=0

E[Ai] ≤
N∑

i=N−n

(
i∑

j=1

hj

)(
bp−1qp

)N−i

≤
N∑

i=1

(
i∑

j=1

hj

)(
bp−1qp

)N−i

=
N∑

i=1

hi

N−i∑
j=0

(
bp−1qp

)j

≤
(

N∑
i=1

h
2/p
i

)p/2( N∑
i=1

(
N−i∑
j=0

(
bp−1qp

)j) 2
2−p
) 2−p

2

,

where the second inequality was obtained using the fact that the quantities hi are non-negative
and the last inequality was obtained thanks to Hölder inequality. By the definition of the Wasser-
stein distance, the additivity of entropy and using the concavity of the function x �→ xp/2 for
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p ∈ [1,2], we obtain

W
dlp
p (Q,P)p ≤ ap−1(2CH(Q|P)

)p/2

(
N∑

i=1

(
N−i∑
j=0

(
bp−1qp

)j) 2
2−p
) 2−p

2

≤ ap−1(2CH(Q|P)
)p/2

N1− p
2

N−1∑
j=0

(
bp−1qp

)j
.

When q < 1, we take b = q−1, so that bp−1qp = r < 1 and the desired result follows easily.
When q ≥ 1, we take b = 1 + 1/N and the results follow from simple analysis and this ends the
proof. �

Remark 2.1. For q < 1 and p = 1, the constant CN increases linearly on the dimension N .
However, for p = 2 this constant is independent of the dimension as in the i.i.d. case.

Remark 2.2. As we will see in the next section, still when q < 1, Theorems 2.3 and 1.4 applied
to F(X1, . . . ,XN) = (1/N)

∑N
i=1 f (Xi), where f is a Lipschitzian function defined on E, gives

us deviation inequalities with a good order of N . But, without any averaging effect as for example
for F(X1, . . . ,XN) = f (XN), deviation inequalities are not anymore efficient as a function of
N . The same remark holds when F(X1, . . . ,XN) = g(Xn,X2n,X2n+1) with n ∈ {1, . . . , (N −
N [2])} and g a Lipschitzian function defined on E3. Since this last question is of great interest for
L1-transportation cost inequality of the BMC invariant measure, we give the following results.

Proposition 2.5. Under H1(C), for any n ∈ T and x ∈ E

L(Xn|X1 = x) ∈ T1(cn),

where

cn = C

rn−1∑
k=0

q
2(k−ak)
0 q

2ak

1 ; a0 = 0,

and for all k ∈ {1, . . . , rn − 1}, ak is the number of ancestor of type 1 of Xn which are between
the rn − k + 1th generation and the rnth generation.

Before the proof, we introduce some additional notations. Let n ∈ T, we denote (b1, . . . , brn) ∈
{0,1}rn the type representation of the unique path from 1 to n. More precisely, recall that each
individual belongs to type 0 or 1. Since T is a regular binary tree, one can find only one path
between two individuals where each individual within has a type b. The type representation for a
path is thus the types of the individuals within it. Note that we keep the chronological order, that
is, the ith type represents the ith individual in the path.
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Then, for all i ∈ {1, . . . , rn}, bi is the ancestor’s type of n which is in the ith generation and
the quantities ak defined in the Proposition 2.5 are given by

ak =
rn∑

i=rn−k+1

bi.

For all k ∈ {1, . . . , rn}, we denote by P k and P −k the iterated of the transition probabilities
redP0 and redP1 defined ∀f ∈ B(Ep):

P kf := Pb1 ◦ · · · ◦ Pbk
f and P −kf := Pbrn−k

◦ · · · ◦ Pbrn
f.

Proof of the Proposition 2.5. First, note that since

Wd
1 (ν,μ) = sup

f :‖f ‖Lip≤1

∣∣∣∣∫
S

f dμ −
∫

S

f dν

∣∣∣∣,
condition (c) of H1(C) implies that

‖Pbf ‖Lip ≤ qb‖f ‖Lip ∀b ∈ {0,1}.
Now let f be a Lipschitzian function defined on E. By (b)–(c) of H1(C) and Theorem 1.4 applied
to Pbrn

(ef ), we have

P rn
(
ef
)≤ P rn−1

(
exp

(
Pbrn

f + C‖f ‖2
Lip

2

))
.

Once again, applying Theorem 1.4 on Pbrn−1 ◦ Pbrn
(ef ), we obtain

P rn
(
ef
)≤ P rn−2

(
exp

(
P −1f + C‖f ‖2

Lip

2
+ C‖Pbrn

f ‖2
Lip

2

))
.

By iterating this method, we are led to

P rn
(
ef
)≤ exp

(
P −rn+1f +

(
1 + q2

brn
+ q2

brn
q2
brn−1

+ · · · +
rn∏

i=2

q2
bi

)
C‖f ‖2

Lip

2

)
.

Since

1 + q2
brn

+ q2
brn

q2
brn−1

+ · · · +
qn∏
i=2

q2
bi

=
rn−1∑
k=0

q
2(k−ak)
0 q

2ak

1 and P −rn+1f = P rnf,

we conclude the proof thanks to Theorem 1.4. �

The next result is a consequence of the previous proposition.
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Corollary 2.6. Assume H1(C) and m := max{q0, q1} < 1. Then, ∀x1 ∈ E

L(Xn|X1 = x1) ∈ T1(c∞) and L
(
(Xn,X2n,X2n+1)|X1 = x1

) ∈ T1
(
c′∞
)
,

where

c∞ = C

1 − m2
and c′∞ = C

(
1 + (1 + q)2

1 − m2

)
.

Proof. That L(Xn|X1 = x) ∈ T1(c∞) is a direct consequence of Proposition 2.5 bounding q0
and q1 by m.

In order to deal with the ancestor-offspring case (Xn,X2n,X2n+1), we first focus on genera-
tions r2n and rn. Let f : (E3, dl1) → R be a Lipschitzian function. We have

‖Pf ‖Lip = sup
x,x̃∈E

| ∫ f (x, y, z)P (x, dy, dz) − ∫ f (x̃, y, z)P (x̃, dy, dz)|
d(x, x̃)

.

Thanks to condition (c) of H1(C), we have the following inequalities∣∣∣∣∫ f (x, y, z)P (x, dy, dz) −
∫

f (x̃, y, z)P (x̃, dy, dz)

∣∣∣∣
≤ ‖f ‖Lip

(
d(x, x̃) + W

dl1
1

(
P(x, ·),P (x̃, ·)))

≤ (q + 1)‖f ‖Lipd(x, x̃),

and then

‖Pf ‖Lip ≤ (q + 1)‖f ‖Lip.

By definition, we have

E
[
exp
(
f (Xn,X2n,X2n+1)

)]= P rn
(
Pef

)
.

Now, associating the latter remark and H1(C), we use the same strategy as proof of Proposi-
tion 2.5 for the other generations, we are led to

E
[
exp
(
f (Xn,X2n,X2n+1)

)]
≤ exp

(
Pb1 · · ·Pbrn

Pf + C‖f ‖2
Lip

2
+ C(1 + q)2‖f ‖2

Lip

2

rn−1∑
i=0

m2i

)
.

Since Pb1 · · ·Pbrn
Pf = E[f (Xn,X2n,X2n+1)] and

∑rn−1
i=0 m2i ≤ 1/(1 − m2), we obtain

E
[
exp
(
f (Xn,X2n,X2n+1)

)]≤ exp
(
E
[
f (Xn,X2n,X2n+1)

]+ c′∞
)
,

with c′∞ given in the corollary. We then conclude the proof thanks to Theorem 1.4. �
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3. Concentration inequalities for bifurcating Markov chains

3.1. Direct applications of the Theorem 2.3

We will now focus our attention on concentration inequalities for additive functional applied to
BMC. Specifically, let N ∈ N

∗ and I be a subset of {1, . . . ,N} with cardinality |I |. Let f be a
real function on E or E3 and set

MI(f ) = 1

|I |
∑
i∈I

f (�i),

where �i = Xi if f is defined on E or �i = (Xi,X2i ,X2i+1) if f is defined on E3.
In statistical applications, the cases N = |Tn| and I = Gm (for m ∈ {0, . . . , n}) or I = Tn are

the more relevant ones (see, for example, [7]). First, we will establish concentration inequal-
ities when f is a real Lipschitzian function defined on E. Then, for p ≥ 1, MI(f ) is also a
Lipschitzian function on (EN,dlp ) and we have∥∥MI(f )

∥∥
Lip ≤ |I |−1/p‖f ‖Lip.

The following result is a direct consequence of Theorem 2.3.

Proposition 3.1. Let n ∈ N and let P be the law of (Xi)1≤i≤N where we denote N = |Tn|. Let
f be a real Lipschitzian function on (E,d). Then, under Hp(C) for 1 ≤ p ≤ 2,

P ◦ MI(f )−1 ∈ Tp

(
CN |I |−2/p‖f ‖2

Lip

)
,

where CN is given in the Theorem 2.3 and P ◦ MI(f )−1 is the push forward measure of P by
MI(f ). In particular, for all t > 0 we have

P
(
MI(f )

(
XN

)≤ −t +E
[
MI(f )

(
XN

)])∨ P
(
MI(f )

(
XN

)≥ t +E
[
MI(f )

(
XN

)])
≤ exp

(
− t2|I |2/p

2CN‖f ‖2
Lip

)
.

Proof. The first part is a direct consequence of Theorem 2.3 and Lemma 2.1 of [17]. The second
part is an application of Theorem 1.4. �

For the next concentration inequality, we assume that f is a real Lipschitzian function defined
on (E3, dl1), which means that

∣∣f (x) − f (y)
∣∣≤ ‖f ‖Lip

3∑
i=1

d(xi, yi) ∀x, y ∈ E3.
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We assume that N is an odd number. Let I be a subset of {1, . . . , (N − 1)/2}. Now, we denote
by MI(f ) the real function defined on EN

MI (f )
(
xN
)= 1

|I |
∑
i∈I

f (xi, x2i , x2i+1).

For all xN,yN ∈ EN we have

∣∣MI(f )
(
xN
)− MI(f )

(
yN
)∣∣ ≤ ‖f ‖Lip

|I |
∑
i∈I

(
d(xi, yi) + d(x2i , y2i ) + d(x2i+1, y2i+1)

)
≤ 2‖f ‖Lip

|I |1/p
dlp

(
xN,yN

)
.

The constant 2 comes from the fact that one can count at most 2 times the distance between a
pair (xi, yi) since we sum along triplets. Distance dlp comes from the convexity of x → xp .

This implies that MI(f ) is a Lipschitzian function on (EN,dlp ) and ‖MI(f )‖Lip ≤
2‖f ‖Lip/|I |1/p . We then have the following result.

Proposition 3.2. Let n ∈ N and let P be the law of (Xi)1≤i≤N where we denote N = |Tn|. Let
f be a real Lipschitzian function on (E3, dl1). Then, under Hp(C) for 1 ≤ p ≤ 2,

P ◦ MI(f )−1 ∈ Tp

(
2CN |I |−2/p‖f ‖2

Lip

)
,

where CN is given in the Theorem 2.3 and P ◦ MI(f )−1 is the push forward measure of P by
MI(f ). In particular, for all t > 0 we have

P
(
MI(f )

(
XN

)≤ −t +E
[
MI(f )

(
XN

)])∨ P
(
MI(f )

(
XN

)≥ t +E
[
MI(f )

(
XN

)])
≤ exp

(
− t2|I |2/p

4CN‖f ‖2
Lip

)
.

Proof. The proof is a direct consequence of Theorem 2.3, Lemma 2.1 of [17] and Theo-
rem 1.4. �

In the case p = 1, q < 1 and f Lipschitzian, the previous results applied to the empirical
means MGn

(f ) and MTn
(f ) give us relevant concentration inequalities, that is with good or-

der size w.r.t cardinality subset. However, when q ≥ 1, only a global effect is considered and
no compensation between the contraction of P0 and P1 comes into play. The goal of the next
subsection is to obtain relevant concentration inequalities for the empirical means MGn

(f ) and
MTn

(f ) when q ≥ 1 when one of the marginal Markov chain may be “unstable” but however
compensated by a strict contraction of the other one.
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3.2. Gaussian concentration inequalities for the empirical means MGn(f )

and MTn(f )

Throughout this section, we will focus only in the case p = 1, and will assume H1(C). We set
s = q0 + q1.

The main goal of this subsection is to broaden the range of application of deviation inequal-
ities of MGn

(f ) and MTn
(f ) to cases where s > 1, namely when it is possible that one of the

two marginal Markov chains is not a strict contraction, that is, q0 or q1 < 1. The transporta-
tion inequality of Theorem 2.3 is a very powerful tool to get deviation inequalities for all Lips-
chitzian functions of the whole trajectory (up to generation n), and may thus concern for example
Lipschitzian function exclusively applied to offspring generated by P0 or P1. Consequently, to
get “consistent” deviation inequalities, both marginal Markov chains have to be contractions in
Wasserstein distance.

However when dealing with MGn
(f ) or MTn

(f ), we may hope for an averaging effect, that
is, if one is not a contraction and the other one a strong contraction it may in a sense compensate.
Such averaging effect have been observed at the level of the LLN and CLT in [16,25] but only
asymptotically. Our purpose here will be then to show that such averaging effect will also affect
deviation inequalities.

We will use, directly inspired by Bobkov-Götze’s Laplace transform control, what we call
Gaussian Concentration property: for κ > 0, we will say that a random variable X satisfies
GC(κ) if

E
[
exp
(
t
(
X −E[X]))]≤ exp

(
κt2/2

) ∀t ∈R.

Using Markov’s inequality and optimization, this Gaussian concentration property immedi-
ately implies that

P
(
X −E(X) ≥ r

)≤ e− r2
2κ .

We may thus focus here only on the Gaussian concentration property (GC).

Proposition 3.3. Let f be a real Lipschitzian function on E and n ∈ N. Assume that H1(C)

holds. Then MGn
(f ) satisfies GC(γn) where

γn�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2C‖f ‖2

Lip

|Gn|
(

1 − (s2/2)n+1

1 − s2/2

)
, if s 
= √

2,

2C‖f ‖2
Lip(n + 1)

|Gn| , if s = √
2.

We recall that here s = q0 + q1.

Remark 3.1. One can observe that for s <
√

2, the previous inequalities are on the same order
of magnitude that the inequalities obtained thanks to Proposition 3.1 with q < 1. For

√
2 ≤ s < 2

the above inequalities remain relevant since we just have a negligible loss with respect to |Gn|.
But for s ≥ 2, these inequalities are not significant (see the same type of limitations at the CLT
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level in [16]) and reflects that the non-contracting Markov kernel entails a quite different and
explosive behaviour.

Proof. Let f be a real Lipschitzian function on E, n ∈N and t ∈R. We have

E

[
exp

(
t2−n

∑
i∈Gn

f (Xi)

)]

= E

[
exp

(
t2−n

∑
i∈Gn−1

(P0 + P1)f (Xi)

)

×E

[
exp

(
t2−n

∑
i∈Gn−1

(
f (X2i ) + f (X2i+1) − (P0 + P1)f (Xi)

))∣∣∣Fn−1

]]
.

Thanks to the Markov property, we have

E

[
exp

(
t2−n

∑
i∈Gn−1

(
f (X2i ) + f (X2i+1) − (P0 + P1)f (Xi)

))∣∣∣Fn−1

]

=
∏

i∈Gn−1

P
(
exp
(
t2−n

(
f ⊕ f − (P0 + P1)f

)))
(Xi),

where f ⊕f is the function on E2 defined by (f ⊕f )(x, y) = f (x)+f (y). We recall that from
H1(C) we have P(x, ·, ·) ∈ T1(C) for all x ∈ E. Now, thanks to Theorem 1.4, we have

∏
i∈Gn−1

P
(
exp
(
t2−n

(
f ⊕ f − (P0 + P1)f

)))
(Xi) ≤

∏
i∈Gn−1

exp

(
t2C‖f ⊕ f ‖2

Lip

2 × 22n

)
.

Since ‖f ⊕ f ‖Lip ≤ 2‖f ‖Lip, we are led to

E

[
exp

(
t2−n

∑
i∈Gn

f (Xi)

)]
≤ exp

(22t22n−1C‖f ‖2
Lip

2 × 22n

)
E

[
exp

(
t2−n

∑
i∈Gn−1

(P0 + P1)f (Xi)

)]
.

Doing the same for E[exp(t2−n
∑

i∈Gn−1
(P0 + P1)f (Xi))] with (P0 + P1)f replacing f and

using the inequality ∥∥(P0 + P1)f ⊕ (P0 + P1)f
∥∥

Lip ≤ 2s‖f ‖Lip,

we are led to

E

[
exp

(
t2−n

∑
i∈Gn

f (Xi)

)]
≤ E

[
exp

(
t2−n

∑
i∈Gn−2

(P0 + P1)
2f (Xi)

)]

× exp

(22t2C‖f ‖2
Lip2n−1

2 × 22n

)
exp

(22t2C‖f ‖2
Lips

22n−2

2 × 22n

)
.
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Iterating this method and using the inequalities∥∥(P0 + P1)
kf ⊕ (P0 + P1)

kf
∥∥

Lip ≤ 2sk‖f ‖Lip ∀k ∈ {1, . . . , n − 1},

we obtain

E

[
exp

(
t2−n

∑
i∈Gn

f (Xi)

)]

≤ exp

(
22t2C‖f ‖2

Lip

2 × 22n

n−1∑
k=0

s2k2n−k−1

)
E
[
exp
(
t2−n(P0 + P1)

nf (X1)
)]

.

Since E[t2−n(P0 + P1)
nf (X1)] = E[t2−n

∑
i∈Gn

f (Xi)] = t2−nν(P0 + P1)
nf , we obtain

E

[
exp

(
t2−n

(∑
i∈Gn

f (Xi) − ν(P0 + P1)
nf

))]

≤ exp

(
22t2C‖f ‖2

Lip

2 × 22n

n−1∑
k=0

s2k2n−k−1

)
E
[
exp
(
t2−n

(
(P0 + P1)

nf (X1)
)− ν(P0 + P1)

nf
)]

.

Thanks to H1(C), we conclude that

E

[
exp

(
t2−n

(∑
i∈Gn

f (Xi) − ν(P0 + P1)
nf

))]

≤ exp

(
22t2C‖f ‖2

Lip

2 × 22n

n∑
k=0

s2k2n−k−1

)

and the results of the proposition follows from this last inequality. �

For the ancestor-offspring triangle (Xi,X2i ,X2i+1), we have the following result which can
be seen as a consequence of the Proposition 3.3.

Corollary 3.4. Let f be a real Lipschitzian function on E3 and n ∈N. Assume that H1(C) holds.
Then MGn

(f ) satisfies GC(γ ′
n) where

γ ′
n�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2C(1 + q)2‖f ‖2

Lip

s2|Gn|
(

1 − (s2/2)n+2

1 − s2/2

)
, if s 
= √

2,

2C(1 + q)2‖f ‖2
Lip(n + 2)

|Gn| , if s = √
2.
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Proof. Let f be a real Lipschitzian function on E3, n ∈N and t ∈R. We have

E

[
exp

(
t2−n

∑
i∈Gn

f (Xi,X2i ,X2i+1)

)]

= E

[
exp

(
t2−n

∑
i∈Gn

Pf (Xi)

)
E

[
exp

(
t2−n

∑
i∈Gn

(
f (Xi,X2i ,X2i+1) − Pf (Xi)

))∣∣∣Fn

]]
.

By the Markov property and thanks to the Proposition 2.3 and the Theorem 1.4, we have

E

[
exp

(
t2−n

∑
i∈Gn

(
f (Xi,X2i ,X2i+1) − Pf (Xi)

))∣∣∣Fn

]
≤ exp

(
t2C‖f ‖2

Lip2n

2 × 22n

)
.

Now, using Pf instead of f in the proof of the Proposition 3.3 and using the fact that ‖Pf ‖Lip ≤
(1 + q)‖f ‖Lip and

E

[
2−n

∑
i∈Gn

f (Xi,X2i ,X2i+1)

]
= E

[
2−n

∑
i∈Gn

Pf (Xi)

]
= 2−nν(P0 + P1)

nPf,

we are led to

E

[
exp

(
t2−n

(∑
i∈Gn

f (Xi,X2i ,X2i+1) − ν(P0 + P1)
nPf

))]

≤ exp

(
4t2C(1 + q)2‖f ‖2

Lip

22 × 2n

n∑
k=−1

(
s2

2

)k
)

.

The results then follows by easy calculations. �

For the subtree Tn, we have the following result.

Proposition 3.5. Let f be a real Lipschitzian function on E and n ∈ N. Assume that H1(C)

holds. Then MTn
(f ) satisfies GC(τn) where

τn�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2C‖f ‖2
Lip

(s − 1)2|Tn|
(

1 + 1 − (s2/2)n+1

1 − s2/2

)
, if s 
= √

2, s 
= 1,

2C‖f ‖2
Lip

(s − 1)2|Tn|
(
s2(n + 1) + 1

)
, if s = √

2,

2C‖f ‖2
Lip

|Tn|2
(

|Tn| − n + 1

2

)
, if s = 1.
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Proof. Let f be a real Lipschitzian function on E and n ∈N. Note that

E

[∑
i∈Tn

f (Xi)

]
= ν

(
n∑

m=0

(P0 + P1)
mf

)
.

We have

E

[
exp

(
t

|Tn|
∑
i∈Tn

f (Xi)

)]

= E

[
exp

(
t

|Tn|
∑

i∈Tn−2

f (Xi)

)
exp

(
t

|Tn|
∑

i∈Gn−1

(
f + (P0 + P1)f

)
(Xi)

)

×E

[
exp

(
t

|Tn|
∑

i∈Gn−1

(
f (X2i ) + f (X2i+1) − (P0 + P1)f (Xi)

))∣∣∣Fn−1

]]
.

As in the proof of Proposition 3.3, we have

E

[
exp

(
t

|Tn|
∑

i∈Gn−1

(
f (X2i ) + f (X2i+1) − (P0 + P1)f (Xi)

))∣∣∣Fn−1

]

≤ exp

(22Ct2‖f ‖2
Lip2n−1

2|Tn|2
)

.

This leads us to

E

[
exp

(
t

|Tn|
∑
i∈Tn

f (Xi)

)]
≤ exp

(22Ct2‖f ‖2
Lip2n−1

2|Tn|2
)

×E

[
exp

(
t

|Tn|
∑

i∈Tn−2

f (Xi)

)

× exp

(
t

|Tn|
∑

i∈Gn−1

(
f + (P0 + P1)f

)
(Xi)

)]
.

Iterating this method, we are led to

E

[
exp

(
t

|Tn|
∑
i∈Tn

f (Xi)

)]
≤ exp

(
22t2C‖f ‖2

Lip

2|Tn|2
n−1∑
k=0

(
k∑

l=0

sl

)2

2n−k−1

)

×E

[
exp

(
t

|Tn|
n∑

m=0

(P0 + P1)
mf (X1)

)]
,
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and we then obtain thanks to (a) of H1(C) and Theorem 1.4

E

[
exp

(
t

|Tn|

(∑
i∈Tn

f (Xi) − ν

(
n∑

m=0

(P0 + P1)
mf

)))]

≤ exp

(
22t2C‖f ‖2

Lip

2|Tn|2
n∑

k=0

(
k∑

l=0

sl

)2

2n−k−1

)
.

In the last inequality, we have used∥∥∥∥∥
n∑

m=0

(P0 + P1)
mf

∥∥∥∥∥
Lip

≤
(

n∑
k=0

sk

)
‖f ‖Lip.

The results then easily follows. �

For the ancestor-offspring triangle we have the following results which can be seen as a con-
sequence of the Proposition 3.5.

Corollary 3.6. Let f be a real Lipschitzian function on E3 and n ∈ N. Assume that H1(C) holds.
Then MTn

(f ) satisfies GC(τ ′
n) where

τ ′
n�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

23C(1 + q)2‖f ‖2
Lip

|Tn|
(

1 + 1

(s − 1)2

(
1 + s2(1 − (s2/2)n+1)

1 − s2/2

))
, if s 
= √

2, s 
= 1,

23C(1 + q)2‖f ‖2
Lip

|Tn|
(

1 + 1 + s2(n + 1)

(s − 1)2

)
, if s = √

2,

23C(1 + q)2‖f ‖2
Lip

|Tn|2
(

2|Tn| − n + 1

2

)
, if s = 1.

Proof. Let f be a real Lipschitzian function on E3 and n ∈ N. By Hölder inequality and using
the fact that

E

[∑
i∈Tn

f (�i)

]
= E

[∑
i∈Tn

Pf (Xi)

]
,

we have

E

[
exp

(
t

|Tn|
(∑

i∈Tn

f (�i) −E

[∑
i∈Tn

f (�i)

]))]

≤
(
E

[
exp

(
2t

|Tn|
(∑

i∈Tn

(
f (�i) − Pf (Xi)

)))])1/2

×
(
E

[
exp

(
2t

|Tn|
(∑

i∈Tn

Pf (Xi) −E

[∑
i∈Tn

Pf (Xi)

]))])1/2

.
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We bound the first term of the right-hand side of the previous inequality by using the same
calculations as in the first iteration of the proof of Corollary 3.4. We then have(

E

[
exp

(
2t

|Tn|
(∑

i∈Tn

(
f (�i) − Pf (Xi)

)))])1/2

≤ exp

(2t2C‖f ‖2
Lip|Tn|

2|Tn|2
)

.

For the second term, we use the proof of the Proposition 3.5 with Pf instead of f . We then have(
E

[
exp

(
2t

|Tn|
(∑

i∈Tn

Pf (Xi) −E

[∑
i∈Tn

Pf (Xi)

]))])1/2

≤ exp

(
23t2C(1 + q)2‖f ‖2

Lip

2|Tn|2
n∑

k=0

(
k∑

l=0

sl

)2

2n−k−1

)
.

The results follows by easy analysis and this ends the proof. �

3.3. Deviation inequalities towards the invariant measure of the randomly
drawn chain

All the previous results do not assume any “stability” of the Markov chain on the binary tree,
whereas for usual asymptotic theorem the convergence is towards mean of the function with re-
spect to the invariant probability measure of the random lineage chain. To reinforce this asymp-
totic result by nonasymptotic deviation inequality, it is thus fundamental to be able to replace for
example E(MTn

(f )) by some asymptotic quantity. This random lineage chain is a Markov chain
with transition kernel Q = (P0 + P1)/2. We shall now suppose the existence of a probability
measure π such that πQ = π . We will consider a slight modification of our main assumption
and as we are mainly interested in concentration inequalities, let us focus in the p = 1 case:

Assumption 3.7 (H ′
1(C)). There exist q, q1, q0 > 0, q0 + q1 < 2 such that:

(a) ν ∈ T1(C);
(b) Pb(x, ·) ∈ T1(C), ∀x ∈ E, b = 0,1;

(c) W
dl1
1 (P (x, ·, ·),P (x̃, ·, ·)) ≤ qd(x, x̃), ∀x, x̃ ∈ E.

(c′) Wd
1 (Pb(x, ·),Pb(x̃, ·)) ≤ qbd(x, x̃), ∀x, x̃ ∈ E, b = 0,1.

Remark 3.2. We have already remarked (see Proposition 2.2) that (c) implies (c′) but we require
moreover that q0 + q1 < 2.

Under this assumption, using the convexity of W1 (see [35]), we easily see that

Wd
1

(
Q(x, ·),Q(x̃, ·))≤ q0 + q1

2
d(x, x̃), ∀x, x̃
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ensuring the strict contraction of Q, and then the exponential convergence towards π in Wasser-
stein distance, namely (assuming that π has a first moment)

Wd
1

(
Qn(x, ·),π)≤

(
q0 + q1

2

)n ∫
d(x, y)π(dy).

Let us show that we may now control easily the distance between E(MTn
(f )) and π(f ). Indeed,

we may first remark that

E

(∑
k∈Gn

f (Xk)

)
= ν(P0 + P1)

nf

so that assuming that f is 1-lipschitzian, and by the dual version of the Wasserstein distance

∣∣E(MTn
(f )
)− π(f )

∣∣ = 1

|Tn|

∣∣∣∣∣
n∑

j=1

(∑
k∈Gj

(
f (Xk) − π(f )

))∣∣∣∣∣
= 1

|Tn|

∣∣∣∣∣
n∑

j=1

2j ν

(
P0 + P1

2

)j (
f − π(f )

)∣∣∣∣∣
≤ 1

|Tn|
n∑

j=1

2jWd
1

(
νQj ,π

)

≤ 1

|Tn|
n∑

j=1

(q0 + q1)
j

≤ cn :=

⎧⎪⎪⎨⎪⎪⎩
c

(
q0 + q1

2

)n+1

, if q0 + q1 
= 1,

c
n

2n+1
, if q0 + q1 = 1

for some universal constant c. The sequence cn goes to 0 exponentially fast as soon as q0 +q1 < 2
which was assumed in H ′

1(C). We may then see that for r > cn

P
(
MTn

(f ) − π(f ) > r
)≤ P

(
MTn

(f ) −E
(
MTn

(f )
)
> r − cn

)
and one then applies the result of the previous subsection.

4. Application to nonlinear bifurcating autoregressive models

The setting will be here the case of the nonlinear bifurcating autoregressive models. It has been
considered as a particular realistic model to study cell aging [34], and the asymptotic behavior
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of parametric estimators as well as nonparametric estimators has been considered in an impor-
tant series of work, see, for example, [1–4,6,14–16,25,27,28] (and for example, in the random
coefficient setting in [13]).

We will then consider the following simplified model where E = R and L(X1) = μ0 satis-
fies T1. We recursively define on the binary tree as before{

X2k = f0(Xk) + ε2k;
X2k+1 = f1(Xk) + ε2k+1,

(4.1)

with the following assumptions:

Assumption 4.1 (NL). f0 and f1 are Lipschitz continuous functions.

Assumption 4.2 (No). (εk)k≥1 are centered i.i.d.r.v. and for all k ≥ 0, εk have law με and satisfy

for some positive constant δε , με(e
δεx

2
) < ∞. Equivalently, με satisfies T1(Cε).

It is then easy to deduce that under these two assumptions, we perfectly match the previous
framework. Denoting P0 and P1 as previously, we see that H ′

1 is verified, with the additional fact
that P = P0 ⊗ P1. We will do the proof for P0, being the same for P1. The conclusion follows
for P by conditional independence of X2k and X2k+1. Let us first prove that P0(x, ·) satisfies T1.
Indeed P0(x, ·) is the law of f0(x) + ε2k , and we have thus to verify the Gaussian integrability
property of Theorem 1.5. To this end, consider x0 = f (x), and choose δε of condition (No) to
verify the Gaussian integrability property. We have thus that P0 satisfies T1(CP ).

We prove now the Wasserstein contraction property. P0(x, ·) is of course the law of f0(x)+εk .
Here εk denotes a generic random variable and thus the law of P0(y, ·) is the law of f0(y) + εk .
An upper bound of the Wasserstein distance between P0(x, ·) and P0(y, ·) can thus be obtained
using a proper coupling where we choose the same noise εk for the realization of the two marginal
laws. Let f be any Lipschitz function such that ‖f ‖Lip ≤ 1∣∣∣∣∫

S

f (z)P0(x, dz) −
∫

S

f (z)P0(y, dz)

∣∣∣∣ = E
[
f
(
f0(x) + ε1

)− f
(
f0(y) + ε1

)]
≤ ‖f ‖Lip

∣∣f0(x) − f0(y)
∣∣.

By the Monge–Kantorovitch duality expression of the Wasserstein distance (see, for example,
[35], Chapter 6), one has then

W1
(
P0(x, ·),P0(y, ·))≤ ∣∣f0(x) − f0(y)

∣∣≤ ‖f0‖Lip|x − y|.
Thus under (NL) and (No), our model fits the framework of the previous section with q =

‖f0‖Lip + ‖f1‖Lip, q0 = ‖f0‖Lip and q1 = ‖f1‖Lip. We stress that Assumption 4.2 is valid in
particular for Gaussian and bounded random variables.

We will be interested here in the nonparametric estimation of the autoregression functions f0
and f1, and we will use Nadaraya–Watson kernel type estimator, as considered in [8]. Let K be
a kernel satisfying the following assumption.
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Assumption 4.3 (Ker). The function K is nonnegative, has compact support [−R,R], is Lips-
chitz continuous with constant ‖K‖Lip and such that

∫
K(z)dz = 1.

Let us also introduce as usual a bandwidth hn which will be taken to simplify as hn := |Tn|−α

for some 0 < α < 1. The Nadaraya–Watson estimators are then defined for x ∈R as

f̂0,n(x) :=
1

|Tn|hn

∑
k∈Tn

K(
Xk−x

hn
)X2k

1
|Tn|hn

∑
k∈Tn

K(
Xk−x

hn
)

,

f̂1,n(x) :=
1

|Tn|hn

∑
k∈Tn

K(
Xk−x

hn
)X2k+1

1
|Tn|hn

∑
k∈Tn

K(
Xk−x

hn
)

.

Let us focus on f0, as it will be exactly the same for f1 and fix x ∈R. We will be interested here
in deviation inequalities of f̂0,n(x) with respect to f0(x). One has to face two problems. First,
it is an autonormalized estimator. It will be dealt with considering deviation inequalities for the
numerator and denominator separately before reunite them. Second, (x, y) → K(x)y is in fact
not Lipschitzian in general state space, so that the result of the previous section for deviation
inequalities for Lipschitzian function of ancestor-offspring may not be applied directly. Let us
tackle this problem. By definition

f̂0,n(x) − f0(x) =
1

|Tn|hn

∑
k∈Tn

K(
Xk−x

hn
)[f0(Xk) − f0(x) + ε2k]

1
|Tn|hn

∑
k∈Tn

K(
Xk−x

hn
)

:= Nn + Mn

Dn

,

where

Nn :=
∑
k∈Tn

K

(
Xk − x

hn

)[
f0(Xk) − f0(x)

];
Mn :=

∑
k∈Tn

K

(
Xk − x

hn

)
ε2k;

Dn :=
∑
k∈Tn

K

(
Xk − x

hn

)
.

Denote also Ñn = Nn/(|Tn|hn), M̃n = Mn/(|Tn|hn), D̃n = Dn/(|Tn|hn). Let us remark that Dn

and Mn completely enter the framework of Proposition 3.5. We may thus prove

Proposition 4.4. Let us assume that (NL), (No) and (Ker) holds, and q = ‖f0‖Lip +‖f1‖Lip <√
2. Let us also suppose that α < 1/4. Then for all r > 0 such that r > E(Ñn)/E(D̃n), there exists
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constants C,C′,C′′ > 0 such that

P
(∣∣f̂0,n(x) − f0(x)

∣∣> r
) ≤ 2 exp

(−C
(
rE(D̃n) −E(Ñn)

)2|Tn|h2
n

)
+ 2 exp

(
−C′ (rE(D̃n) −E(Ñn))

2|Tn|h2
n

1 + C′′ r2

h2
n

)
.

Proof. Remark first that, by (Ker), K is Lipschitz continuous so that y → K(
y−x
hn

) is also
Lipschitzian with constant ‖K‖Lip/hn. The mapping

H : y → K

(
y − x

hn

)(
f0(y) − f0(x)

)
,

as K has a compact support and f0 is Lipschitzian, is also Lipschitzian with constant

R‖K‖Lip‖f0‖Lip + ‖f0‖Lip‖K‖∞.

Indeed, let y and z be two reals numbers. Since the support of K is [−R,R], we can assume that
|y − x| ≤ Rhn and |z − x| ≤ Rhn. Now we have∣∣∣∣K(y − x

hn

)(
f0(y) − f0(x)

)− K

(
z − x

hn

)(
f0(z) − f0(x)

)∣∣∣∣
≤
∣∣∣∣K(y − x

hn

)∣∣∣∣∣∣f0(y) − f0(z)
∣∣+ ∣∣f0(z) − f0(x)

∣∣∣∣∣∣K(y − x

hn

)
− K

(
z − x

hn

)∣∣∣∣.
By the Lipschitzianity of f0, we have∣∣∣∣K(y − x

hn

)∣∣∣∣∣∣f0(y) − f0(z)
∣∣≤ ‖f0‖Lip‖K‖∞|y − z|.

Next, by the Lipschitzianity of f0 and K , and since |z − x| ≤ Rhn, we have

∣∣f0(z) − f0(x)
∣∣∣∣∣∣K(y − x

hn

)
− K

(
z − x

hn

)∣∣∣∣≤ R‖K‖Lip‖f0‖Lip.

It therefore follows that H is a Lipschitzian function. We can then use Proposition 3.5 to get
deviation inequalities for Dn. For all positive r there exists a constant L (explicitly given through
Proposition 3.5), such that

P
(∣∣Dn −E(Dn)

∣∣> r|Tn|hn

)≤ 2 exp
(−Lr2|Tn|h4

n/‖K‖2
Lip

)
.

For Nn + Mn we cannot directly apply Proposition 3.5 due to the successive dependence of Xk

at generation n and ε2k of generation n− 1. But as we are interested in deviation inequalities, we
may split the deviation coming from each term. For Nn, it is once again a simple application of
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Proposition 3.5,

P
(∣∣Nn −E(Nn)

∣∣> r|Tn|hn

)≤ 2 exp

( −Lr2|Tn|h2
n

(R‖K‖Lip‖f0‖Lip + ‖f0‖Lip‖K‖∞)2

)
.

Note that ε2k is independent of Xk , and centered so that E(Mn) = 0, and satisfies a transporta-
tion inequality. Note also that K is bounded. By simple conditioning argument (as in the proof
of Proposition 3.3), we may control the Laplace transform of Mn quite simply. We then have for
all positive r

P
(|Mn| > r|Tn|hn

)≤ 2 exp

(
−r2 |Tn|h2

n‖K‖2∞
2Cε

)
.

However, we cannot use directly these estimations as the estimator is autonormalized. Instead

P
(
f̂0,n(x) − f0(x) > r

)
≤ P(Ñn + M̃n > rD̃n)

≤ P
(
Ñn −E(Ñn) − r

(
D̃n −E(D̃n)

)+ M̃n > rE(D̃n) −E(Ñn)
)

≤ P
(
Ñn −E(Ñn) − r

(
D̃n −E(D̃n)

)
>
(
rE(D̃n) −E(Ñn)

)
/2
)

+ P
(
M̃n >

(
rE(D̃n) −E(Ñn)

)
/2
)
.

Remark now to conclude that K((y − x)/hn)(f (y) − f (x)) + K((y − x)/hn) is(
R‖K‖Lip‖f0‖Lip + ‖f0‖Lip‖K‖∞ + ‖K‖Lip/hn

)
-Lipschitzian,

and we may then proceed as before. �

Remark 4.1. In order to get fully practical deviation inequalities, let us remark that

E[D̃n] = 1

|Tn|hn

n∑
m=0

2mμ0Q
mH −→

n→+∞ν(x),

where H(y) = K((y − x)/hn), ν(·) is the invariant density of the Markov chain associated to a
random lineage and

E[Ñn] = 1

|Tn|hn

n∑
m=0

2m
(
μ0Q

m(Hf0) − f0(x)μ0Q
mH

) −→
n→+∞0.

We refer to [8] for quantitative versions of these limits.

Remark 4.2. Of course this nonparametric estimation is in some sense incomplete, as we would
have liked to consider a deviation inequality for supx |f̂0,n(x)−f0(x)|. The problem is somewhat
much more complicated here, as the estimator is self normalized. However, it is a crucial problem
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that we will consider in the near future. For some ideas which could be useful here, let us cite the
results of [10] for (uniform) deviation inequalities for estimators of density in the i.i.d. case, and
to [19] for control of the Wasserstein distance of the empirical measure of i.i.d.r.v. or of Markov
chains.

Remark 4.3 (Estimation of the T-transition probability). We assume that the process has as
initial law, the invariant probability ν. We denote by f the density of (X1,X2,X3). For the
estimation of f , we propose the estimator f̂n defined by

f̂n(x, y, z) = 1

|Tn|hn

∑
k∈Tn

K

(
x − Xk

hn

)
K

(
y − X2k

hn

)
K

(
z − X2k+1

hn

)
.

An estimator of the T-probability transition is then given by

P̂n(x, y, z) = f̂n(x, y, z)

D̃n

.

For x, y, z ∈R, one can observe that the function G defined on R
3 by

G(u,v,w) = K

(
x − u

hn

)
K

(
y − v

hn

)
K

(
z − w

hn

)
,

is Lipschitzian with ‖G‖Lip ≤ (‖K‖2∞‖K‖Lip)/hn. We have

P̂n(x, y, z) − P(x, y, z) = f̂n(x, y, z) − f (x, y, z)

D̃n

+ f (x, y, z)(ν(x) − D̃n)

ν(x)D̃n

.

Now using the decomposition

f̂n(x, y, z) − f (x, y, z) = (f̂n(x, y, z) −E
[
f̂n(x, y, z)

])+ (E[f̂n(x, y, z)
]− f (x, y, z)

)
,

and the convergence of E[f̂n(x, y, z)] to f (x, y, z), we obtain a deviation inequality for
|P̂n(x, y, z) − P(x, y, z)| similar to that obtained at the Proposition 4.4.

When the density gε of (ε2, ε3) is known, another strategy for the estimation of the T-transition
probability is to observe that P(x, y, z) = gε(y − f0(x), z − f1(x)). An estimator of P(x, y, z)

is then given by P̂n(x, y, z) = gε(y − f̂0,n(x), z − f̂1,n(x)) where f̂0,n and f̂1,n are estimators
defined above. If gε is Lipschitzian, we have∣∣P̂n(x, y, z) − P(x, y, z)

∣∣≤ ‖gε‖Lip
(∣∣f̂0,n(x) − f0(x)

∣∣+ ∣∣f̂1,n(x) − f1(x)
∣∣),

and the deviation inequalities for |P̂n(x, y, z) − P(x, y, z)| are thus of the same order that those
given by the Proposition 4.4.
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