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In this paper we consider the product of two independent random matrices X(1) and X(2). Assume

that X
(q)
jk

,1 ≤ j, k ≤ n,q = 1,2, are i.i.d. random variables with EX
(q)
jk

= 0,VarX(q)
jk

= 1. Denote by

s1(W), . . . , sn(W) the singular values of W := 1
n X(1)X(2). We prove the central limit theorem for linear

statistics of the squared singular values s2
1 (W), . . . , s2

n(W) showing that the limiting variance depends on

κ4 := E(X
(1)
11 )4 − 3.

Keywords: central limit theorem; characteristic functions; Fuss–Catalan distributions; products of random
matrices

1. Introduction and main result

One of the main questions studied in Random Matrix Theory (RMT) is the asymptotic analysis
of spectra of random matrices when the dimension goes to infinity. For example, it is well known
since the pioneering work of Wigner [28] that the empirical spectral distribution function weakly
converges to the semicircle law. Another well known case is the sample covariance matrices W =
XXT, where X is a matrix with independent entries, which was first studied in Marčenko and
Pastur [21]. The distribution of singular values of products of random matrices with independent
entries has been intensively studied, see, for example, Alexeev et al. [3,4] and Akemann et al. [1].

All these results may be regarded as laws of large numbers for linear eigenvalue statistics.
Thus fluctuations of such linear statistics of eigenvalues around its mean are of interest. There is
a vast literature on this question. We mention the results Jonsson [19], Bai and Silverstein [7],
Sinai and Soshnikov [25], Anderson and Zeitouni [5], Lytova and Pastur [20], Shcherbina [24],
where the central limit theorem was proved. The aim of this paper is to investigate the case of
singular values of products of random matrices with independent entries. It will be shown that
in this case the central limit theorem holds as well and the limiting variance will be explicitly
determined.
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For any m,n ≥ 1 we consider a family of independent real random variables X
(q)
j,k , 1 ≤ j, k ≤

n,q = 1, . . . ,m, defined on some probability space (�,F,P). Assume that the following condi-
tions (C0) are fulfilled:

(a) X
(q)
jk are independent and identically distributed for 1 ≤ j, k ≤ n,q = 1, . . . ,m;

(b) for any 1 ≤ j, k ≤ n

EX
(q)
jk = 0 and E

(
X

(q)
jk

)2 = 1;

(c) E(X
(q)
jk )4 =: μ4 < ∞.

The random variables X
(q)
jk may depend on n, but for simplicity we shall not make this explicit

in our notations.
We introduce m independent random matrices X(q), q = 1, . . . ,m, as follows

X(q) := 1√
n

[
X

(q)
jk

]n
j,k=1.

Denote by s2
1(W), . . . , s2

n(W) the eigenvalues of WWT, where W :=∏m
q=1 X(q). We will often

omit the notation W from s2
k (W) and write s2

k . Define the empirical spectral measure by

F W
n (x) = 1

n

n∑
k=1

1
(
s2
k ≤ x

)
.

Here and in what follows 1(B) denotes the indicator of the event B .
A fundamental problem in the theory of random matrices is to determine the limiting distribu-

tion of Fn as the size of the random matrix tends to infinity. It was shown in Alexeev et al. [4]
that there exists a function Gm(x) such that

lim
n→∞ sup

x∈R

∣∣EF W
n (x) − Gm(x)

∣∣= 0 (1.1)

and Gm(x) are defined by its moments Mk,k ∈N,

Mk =
∫ ∞

0
xkdGm(x) = 1

mk + 1

(
k

mk + k

)
,

which are Fuss–Catalan numbers. For m = 1, we get the well-known result of Marchenko and
Pastur for sample covariance matrices Marčenko and Pastur [21]. The Fuss–Catalan numbers
satisfy the following simple recurrence relation

Mk =
∑

k0+···+km=k−1

m∏
ν=0

Mkν .
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An explicit analytical formula for the density function, say Pm, whose moment sequence is given
by Fuss–Catalan numbers, that is, ∫ Km

0
xkPm(x)dx = Mk

for some positive numbers Km ≥ 1 was given in Penson and Życzkowski [23]. For this formula,
see the Appendix A. Furthermore, it was shown in Penson and Życzkowski [23] that

Km := (m + 1)m+1

mm
. (1.2)

The limiting distribution Gm(x) may be also described in terms of its Stieltjes transform, say
sm(z),

sm(z) :=
∫ ∞

−∞
1

x − z
dGm(x), z = u + iv, v > 0.

It was proved, see Götze et al. [15], that sm(z) satisfies the following equation

1 + zsm(z) + (−1)m+1zmsm+1
m (z) = 0. (1.3)

The result (1.1) was proved under more general conditions than (C0), it was assumed that the
random variables may be non-identically distributed and satisfy a Lindeberg type condition for
the second moments, for details see Alexeev et al. [4]. Under conditions (C0) the result (1.1)
may be generalized and it can be shown that Fn weakly converges to Gm in probability. The
latter may be rewritten in the following way. For all for all continuous and bounded real functions
f (λ),λ ∈ R+, in probability

lim
n→∞

∫ ∞

0
f (λ)dF W

n (λ) = lim
n→∞

1

n

n∑
k=1

f
(
s2
k

)=
∫ ∞

0
f (λ)dGm(λ). (1.4)

We may interpret (1.4) as the law of large numbers. The natural question is to investigate a
fluctuation of linear statistic

SW[f ] :=
n∑

k=1

f
(
s2
k

)
around its mean for an appropriate and broad class of test functions f (·).

1.1. Main result

To formulate the main result of this paper, we need to specify the class of test function. Let f (λ)

be a smooth function with the Fourier transform given by

f̂ (t) = 1

2π

∫ ∞

−∞
f (λ)e−itλ dλ. (1.5)
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We say that an arbitrary function f (λ) belongs to the class F if it satisfies the following regularity
condition ∫ ∞

−∞
(
1 + |t |5)∣∣f̂ (t)

∣∣dt < ∞. (1.6)

We will concentrate on the case of two random matrices, m = 2, and prove the following theorem
which is the main result of this paper.

Theorem 1.1. Let m = 2 and assume that the conditions (C0) hold. For any function f ∈F the
centralized linear statistic

S
(0)
W [f ] := SW[f ] −ESW[f ]

weakly converges to a Gaussian random variable G with zero mean and variance given by

Var[G] = κ4

2

[∫ a

−a

f
(
λ2)[p(λ) + λp′(λ)

]
dλ

]2

+ 1

2π2

∫ a

−a

∫ a

−a

(f (λ2) − f (μ2))2

(λ − μ)2
(1.7)

× [p(λ) − p′(λ)(λ − μ)]
3p(μ)

[4p1(μ)4 + 11p1(μ)2 + 4]
4p2

1(μ) + 3
dλdμ,

where κ4 := μ4 − 3, p1(λ) := πp(λ), p(λ) := |λ|P2(λ
2) is the symmetrized Fuss–Catalan den-

sity, and a := √
K2.

Remark 1.1. Let us complement the results of this theorem by the following remarks.

1. Obviously the result of Theorem 1.1 depends on the distribution of X
(q)
jk ,1 ≤ j, k ≤ n,q =

1,2, in terms of the fourth cumulant rather than the second moment only. This means that the
limiting behaviour is not universal in the usual sense, a fact which is typical for the central limit
theorems of linear eigenvalue statistics.

2. The result of Theorem 1.1 may be extended on the case X
(q)
jk ,1 ≤ j, k ≤ n,q = 1,2 are non-

identically distributed. Here one has to impose additional assumptions, for example Lindeberg’s
condition on the tails of fourth moments of X

(q)
jk , see Section 3 for details.

3. The case m > 2 is much more difficult to analyse. One may derive a formula for Y(x, t)

(see the definition below). But it is not yet clear whether this expression is positive, due to the
fact that the formula for Pm(x),m > 3 is rather complicated. We plan to study this case in a
subsequent paper.

1.2. Structure of the paper

We divide the proof of Theorem 1.1 into two parts. In Section 2, we consider the Gaussian case
and prove an analogue of Theorem 1.1 (see Theorem 2.1). Our method will be based on the
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results Lytova and Pastur [20], Tikhomirov [26] and [27]. Namely, we will apply the method of
characteristic functions and show that the limiting characteristic function satisfies a differential
equation of the type (2.11). The idea used in Lytova and Pastur [20] was to reformulate the
problem in terms of the process Yn(x, t) (see definition (2.16)) and derive an equation for its
limit (see (2.32)). This equation is of Volterra type, which may be solved applying a generalized
Fourier transform method (see Statement D.1 in the Appendix). To implement this strategy we
will often apply the following well-known Stein identity which is valid for a Gaussian random
variable ξ with zero mean

Eξf (ξ) = Eξ2Ef ′(ξ). (1.8)

We mention here that the idea to derive an equation for the limiting characteristic function was
first applied in Tikhomirov [26,27] for sums of weakly dependent random variables, where the
author derived the equation (2.11) using (1.8). In addition, we use empirical Poincaré inequalities
(see Section 2.2) to estimate the variance of some quantities (see Lemma 2.3).

In the Section 3, we investigate the difference between the case of arbitrary standardized
random variables and the case of Gaussian variables proving Theorem 1.1. Here we will use
the methods of Bentkus [8] who introduced the following ’variance stable’ comparison pro-
cedure. For studying the limiting behavior of some functional Ef (X1, . . . ,Xn) depending on
arbitrary r.v. X1, . . . ,Xn Bentkus suggested to compare Eϕ(X1, . . . ,Xn) with Eϕ(Y1, . . . , Yn).
Here Y1, . . . , Yn is some special sequence of standardized r.v. (for example, Gaussian) for which
Eϕ(Y1, . . . , Yn) may be easily calculated. To compare the distance he suggested to use the in-
terpolation Zj (φ) := Xj sinφ +Yj cosφ,φ ∈ [0, π

2 ], j = 1, . . . , n (see (3.2)). Applying this pro-
cedure and ideas from Tikhomirov [26,27] mentioned above we show that the limiting charac-
teristic function for S

(0)
W [f ] for arbitrary r.v. satisfies some equation and may be expressed via

the characteristic function for the Gaussian case (see Theorem 3.1). The proof is based on the
differential equation (3.6) for the large n limit of the interpolated process (depending on φ) (3.3).
Actually this technique simplifies the approach of Lytova and Pastur [20], where the authors ap-
ply a comparison procedure to derive an equation for Yn(x, t), which is similar to the Gaussian
case.

All auxiliary facts about Fuss–Catalan distribution, unitary matrix decomposition and its
derivatives are collected in Appendix A–D.

1.3. Applications

One motivation for investigating the asymptotic distribution of products of random matrices fol-
lows from recent applications in wireless telecommunication, see, for example, Müller [22]. One
may consider a toy model of MIMO channel, where the output vector y ∈ Cn, at a given time,
equals

y = Hx + z,

where x ∈ Cn is the transmit vector, H ∈ Cn×n is a channel matrix and z ∈ Cn is a random
noise. Matrix H may be random and represented as a product of m,m ≥ 1, independent random
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matrices, that is, H = W. For example, if m = 2 we may assume that there exist transmit and
receive antennas and scatters. The instance capacity of the MIMO channel is given by

In := log det
(
I + γ WWT)=

n∑
j=1

log
(
1 + γ s2

j (W)
)= n

∫ ∞

0
f (x)dF W

n (x),

where f (x) := log(1 + γ x) and γ denotes the Signal to Noise Ratio per received antenna. This
means that we rewrite capacity I in terms of linear statistics of singular values of W. It is nat-
ural question to investigate the limiting behavior of In as n goes to infinity. Other possible ap-
plications are in finance Bouchaud et al. [10] and quantum entanglement Collins et al. [13],
Zyczkowski et al. [30].

1.4. History

There are many papers on the CLT for linear eigenvalue statistics of random matrices. We men-
tion the results Jonsson [19], Bai and Silverstein [7], Sinai and Soshnikov [25], Anderson and
Zeitouni [5], Lytova and Pastur [20], Shcherbina [24]. In our setting, the result for m = 1 was
derived in Lytova and Pastur [20]. We will use their ideas in the proof of Theorem 1.1. One
may also find a lot of information about the CLT for linear eigenvalues statistics in the book
Bai and Silverstein [6]. We also believe that one may apply the result of Bai and Silverstein [7]
together with Zheng [29] to derive Theorem 1.1 when restricting oneself to the class of analytic
test functions with a different (implicit) representation for the variance using Cauchy integrals.

The distribution of singular values of products of random matrices with independent entries
has been intensively studied in many papers. The relevant literature is much to extensive in order
to describe it here in detail, see, for example, Alexeev et al. [3,4], Penson and Życzkowski [23],
Akemann et al. [1], Götze et al. [15] and very recent result Forrester and Liu [14]. The central
limit theorem for product of complex Ginibre matrices for polynomial test functions was derived
in Breuer and Duits [11]. It is known that in the complex Ginibre case the squares of singular
values of W form a determinantal point process and the joint density function is a bi-orthogonal
ensemble, see Akemann et al. [2].

1.5. Notations

In what follows, we will use the following notations. Denote by ‖A‖,‖A‖2 the operator and
Hilbert–Schmidt norms of A, respectively. As usual Tr A =∑n

i=1 Aii . We assume that all random
variables are defined on a common probability space (�,F,P). By Var(ξ) we mean Eξ2 −(Eξ)2,
where E is the mathematical expectation with respect to P. By C and c we denote some constants
which do not depend on n. We introduce the symmetrized version of f , that is,

f̃ (x) =
{

f (x), if x ≥ 0,

f (−x), if x < 0.

By ∗ we denote the convolution operation, that is, f ∗ g(t) = ∫ t

0 f (s)g(t − s) ds.
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Let us denote by ej a unit vector with all zeros except 1 in the position given by the index j .
We define the following matrices Ej,k := ej eT

k . To denote an element of arbitrary matrix M in
the position j, k, we will use either Mjk or [M]jk depending on convenience. By I we denote an
identity matrix, omitting the dependence on dimension. By I, we denote an identity matrix. We
omit the dependence on dimension.

Together with a random variable, say ξ , we will often use the following notation ξ (0) := ξ −
Eξ .

2. The Gaussian case

In this section, we consider the special case when X
(q)
jk ,1 ≤ j, k ≤ n,q = 1,2 has the Gaussian

distribution. We change our notations of matrices and denote by Y(q), q = 1,2 the matrix X(q)

with X
(q)
jk replaced by the Gaussian random variables. The main result of this section is the

following theorem.

Theorem 2.1 (Gaussian case). Let Y(q) = n−1/2[Y (q)
jk ]nj,k=1, q = 1,2, be independent random

matrices such that the entries Y
(q)
jk , j, k = 1, . . . , n, q = 1,2, are Gaussian and satisfy the condi-

tions (C0). Then for any f ∈ F the normalized linear statistic S
(0)
W [f ] weakly converges to the

Gaussian random variable G with zero mean and variance given by

V̂ar[G] = 1

2π2

∫ a

−a

∫ a

−a

(f (λ2) − f (μ2))2

(λ − μ)2

(2.1)

× [p(λ) − p′(λ)(λ − μ)]
3p(μ)

[4p1(μ)4 + 11p1(μ)2 + 4]
4p2

1(μ) + 3
dλdμ,

where p1(λ) := πp(λ), p(λ) := |λ|P2(λ
2) is the symmetrized Fuss–Catalan density, and a :=√

K2.

2.1. Symmetrization

To prove Theorem 2.1, it will be convenient for the further analysis to introduce the following
symmetrization. Let ξ be a positive random variable and F(x) be the distribution function of ξ2.
Define ξ̃ := εξ , where ε denotes a Rademacher random variable with P{ε = ±1} = 1/2 which
is independent of ξ . Let F̃ (x) denote the distribution function of ξ̃ . It satisfies the following
equation

F̃ (x) = 1

2

[
1 + sgn(x)F

(
x2)]. (2.2)

Lemma 2.1. For any one-sided distribution function F(x) and G(x) we have

sup
x≥0

∣∣F(x) − G(x)
∣∣= 2 sup

x

∣∣F̃ (x) − G̃(x)
∣∣,
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where F̃ (x) (G̃(x)) denotes the symmetrization of F(x) (G(x) respectively) according to (2.2).

Proof. By (2.2), we have for any x ≥ 0

F(x) = 2F̃ (
√

x) − 1,

G(x) = 2G̃(
√

x) − 1.

This implies

sup
x≥0

∣∣F(x) − G(x)
∣∣= 2 sup

x≥0

∣∣F̃ (
√

x) − G̃(
√

x)
∣∣= 2 sup

x

∣∣F̃ (x) − G̃(x)
∣∣.

Thus lemma is proved. �

We apply this lemma to the distribution of the squared singular values of the matrix W. Let us
denote

H(ν) =
(

Y(ν) O
O

[
Y(m−ν+1)

]T
)

and J :=
(

O I
I O

)
. (2.3)

Recall that I (with sub-index or without it) denotes the unit matrix of corresponding order, and
O is a zero matrix. For any 1 ≤ a, b ≤ m, put

V[a,b] :=

⎧⎪⎪⎨⎪⎪⎩
b∏

k=a

H(k), for a ≤ b,

I otherwise,

(2.4)

and V := V[1,m], Ṽ := VJ. Note that Ṽ is a symmetric matrix. The eigenvalues of the matrix Ṽ
are ±s1(W), . . . ,±sn(W). Note that the symmetrization of the distribution function F W

n (x) is a

function F Ṽ
n (x) which is the empirical distribution function of the eigenvalues of the matrix Ṽ.

In the similar way, we define G̃m. According to Lemma 2.1, we get

sup
x

∣∣EF W
n (x) − Gm(x)

∣∣= 2 sup
x

∣∣EF Ṽ
n (x) − G̃m(x)

∣∣,
and (1.4) may be rewritten as follows. In probability

lim
n→∞

∫ ∞

−∞
f̃ (x) dF Ṽ

n (x) = lim
n→∞

1

2n

n∑
k=1

[
f (sk) + f (−sk)

]=
∫ ∞

−∞
f̃ (x) dG̃m(x).

Let us denote by s̃m(z) the Stieltjes of G̃m(x). Applying s̃m(z) = zsm(z2) and equation (1.3) it is
straightforward to check that s̃m(z) satisfies the following equation

1 + z̃sm(z) + (−1)m+1zm−1̃sm+1
m (z) = 0. (2.5)
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To conclude this “linearization” procedure, we mention that

SW[f ] =
∫ ∞

0
f (x)dF W

n (x) =
∫ ∞

−∞
f̃
(
x2)dF Ṽ

n (x) =: SṼ[f̃ ◦ g],

where g(x) := x2. This means that we may substitute f (·) by f ◦ g(·) and consider its sym-
metrization f̃ ◦ g(·). In what follows we will consider symmetrized distribution functions only
and omit the symbol “̃·” in the corresponding notations. We also omit the argument f and index
Ṽ from the notations of SṼ[f ] and S

(0)

Ṽ
[f ] writing S,S(0), respectively.

2.2. Empirical Poincaré inequalities

Assume that the random variables X1, . . . ,Xn have a joint distribution μ on Rn, satisfying the
Poicare-type inequality (2.7). Let Fn be the empirical measure, defined for observations X1 =
x1, . . . ,Xn = xn. Given a bounded smooth complex-valued function ϕ(x) on the real line we
shall estimate the variance

E

∣∣∣∣∫ ∞

−∞
ϕ(x)dFn(x) −

∫ ∞

−∞
ϕ(x)dF (x)

∣∣∣∣2, (2.6)

where F(x) := EFn(x). In the next subsection, we will often use such bounds for various func-
tions ϕ.

Following Bobkov et al. [9], we say that a probability measure μ on Rd satisfies a Poincaré-
type inequality with constant σ 2 if for any bounded smooth function g on Rd with gradient �g,

Var(g) ≤ σ 2
∫
Rd

| � g|2 dμ, (2.7)

where Var(g) = ∫
Rd g2 dμ − (

∫
Rd g dμ)2. In this case, we write PI(σ 2) for short. We apply (2.7)

to the following function

g(x1, . . . , xn) = ϕ(x1) + · · · + ϕ(xn)

n
=
∫ ∞

−∞
ϕ(x)dFn(x).

Calculating | � g|2 we obtain the following formula

| � g|2 = |ϕ′(x1)|2 + · · · + |ϕ′(xn)|2
n2

= 1

n

∫ ∞

−∞
∣∣ϕ′(x)

∣∣2 dFn(x).

Together (2.7) this yields an estimate for the variance (2.6) (see Bobkov et al. [9], Proposi-
tion 4.3).

Statement 2.1. Assume that the joint distribution of r.v. X1, . . . ,Xn satisfies PI(σ 2). Then for
any smooth F -integrable function ϕ :R→ C,

E

∣∣∣∣∫ ∞

−∞
ϕ(x)dFn(x) −

∫ ∞

−∞
ϕ(x)dF (x)

∣∣∣∣2 ≤ σ 2

n

∫ ∞

−∞
∣∣ϕ′(x)

∣∣2 dF(x).
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We will use the following linearization trick from Burda et al. [12]. Let us consider the matrix
Ṽ = [∏m−1

j=1 H(j)]H(m)J. We form the following mn × mn matrix

M =

⎡⎢⎢⎢⎢⎣
O H(1) O O . . . O
O O H(2) O . . . O

. . .

O O O O . . . H(m−1)

H(m)J O O O . . . O

⎤⎥⎥⎥⎥⎦ .

Then the mth power of M is a diagonal block matrix, there the first block is equal to V̂, the
second – H(2)H(3) · · ·H(m)JH(1) and so on. The eigenvalues of Mm are the eigenvalues of Ṽ with
multiplicity m. We denote the eigenvalues of M by λ1, . . . , λmn and their empirical distribution
function by Gn(λ). Then we have for an even function f

∫
ϕ(x)dFn(x) = 1

n

n∑
j=1

ϕ(sj ) = 1

2nm

2mn∑
j=1

ϕ
(
λm

i

)=
∫

ϕ
(
λm
)
dGn(λ).

Without loss of generality, we assume that λ1, . . . , λn are real positive eigenvalues s
1/m

1 , . . . ,

s
1/m
n . All other eigenvalues may be derived by a rotation on an angle θk = kπ

m
, k = 1, . . . ,2m−1.

Let θ0 = 0. We denote the empirical spectral distribution of eiθkλ1, . . . , e
iθkλn by Gn,k . It is easy

to see that ∫
ϕ
(
λm
)
dGn(λ) = 1

2m

2m−1∑
k=0

∫
Tk

ϕ
(
λm
)
dGn,k(λ), (2.8)

where Tk = eiθkR.
The joint distribution Py of the collection {Y (q)

jk , j, k = 1, . . . , n, q = 1, . . . ,m} represents a

product probability measure on the Euclidean space RN of dimension N = mn2, while the joint
distribution μ of the spectral values λ1, . . . , λn is a probability measure on Rn, obtained from Py

as the image under the map T = � ◦ �, where � is the map from matrices to their eigenvalues
and � is the projector on the subspace of the dimension n. We will apply the following result.

Lemma 2.2. Let μ1, . . . ,μN be probability measures on R, satisfying PI(σ 2). The image of the
product measure μ1 ⊗ · · · ⊗ μN under any Lipshitz map T : RN → Rn satisfies PI(σ 2‖T ‖2

Lip),
where

‖g‖Lip := sup
x �=y

ρ2(g(x), g(y))

ρ1(x, y)

and ρ1, ρ2 are metrics in RN and Rn, respectively.

Proof. See Bobkov et al. [9], Lemma 7.1. �
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Let us denote by M̂ a perturbation of M and introduce similar notations for Ŷ
(q)
jk . Applying the

Hoffman–Wielandt inequality (see, for example, Hoffman and Wielandt [18]) we obtain

n∑
j=1

∣∣λj (M) − λj (M̂)
∣∣2 ≤ ‖M − M̂‖2

2 = 2

n

m∑
q=1

n∑
j,k=1

∣∣Y (q)
jk − Ŷ

(q)
jk

∣∣2,
thus ‖T ‖Lip =

√
2√
n

. Since the distribution of Y
(q)

11 satisfies PI(σ 2) it follows from (2.8) and State-
ment 2.1 that

E

∣∣∣∣∫ ∞

−∞
ϕ(x)dFn(x) −

∫ ∞

−∞
ϕ(x)dF (x)

∣∣∣∣2
(2.9)

≤ σ 2m2

n2

∫ ∞

−∞
|x| 2m−2

m

∣∣ϕ′(x)
∣∣2 dF(x).

2.3. Proof of CLT in the Gaussian case

In this subsection, we give the proof of Theorem 2.1.

Proof of Theorem 2.1. For the proof, we shall use the method of characteristic functions. Recall
the convention made in Section 2.1 to use S and S(0) instead of SṼ[f ] and S

(0)

Ṽ
[f ], respectively.

Let us denote the characteristic function of S(0) by Zn(x), that is,

Zn(x) := EeixS0
.

To prove Theorem 2.1, it is sufficient to derive that

lim
n→∞Zn(x) = Z(x),

where Z(x) is a characteristic function of the Gaussian random variable G with zero mean and
variance given by the formula (2.1), that is,

Z(x) := EeixG = e−V̂ar[G] x2
2 . (2.10)

One has to show that

Z(x) = 1 − V̂ar[G]
∫ x

0
yZ(y)dy. (2.11)

It is obvious that

Zn(x) = 1 +
∫ x

0
Z′

n(y) dy.
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Similarly to Lytova and Pastur [20] it is sufficient to prove that any converging subsequences
{Znl

} and {Z′
nl

} satisfy

lim
nl→∞Znl

(x) = Z(x), lim
nl→∞Z′

nl
(x) = −xZ(x)V̂ar[G] (2.12)

and show that V̂ar[G] is given by the formula (2.1).
We now implement the approach outlined before. Using the derivative of Zn(x) and applying

the Fourier inverse formula

f (λ) =
∫ ∞

−∞
f̂ (t)eitλ dt (2.13)

we obtain the following representation for Z′
n(x)

Z′
n(x) = iES(0)eixS(0) = i

2

∫ ∞

−∞
f̂ (t)E

[
Tr U(t) −ETr U(t)

]
eixS(0)

dt, (2.14)

where U(t) denotes unitary transform of W, that is,

U(t) := eitṼ. (2.15)

Furthermore, we use the notations

un(t) := 1

2
Tr U(t), u(0)

n (t) := un(t) −Eun(t), en(x) := eixS(0)

,

(2.16)
Yn(x, t) := Eu(0)

n (t)en(x).

From the unitary matrix representation, see (B.5) in the Appendix, it follows that

un(t) =
n∑

j=1

Ujj (t) =
n∑

j=1

Uj+n,j+n(t).

In these notations we may rewrite (2.14) as follows

Z′
n(x) = i

∫ ∞

−∞
f̂ (t)Yn(x, t) dt. (2.17)

The next lemma gives estimates for the variance of un(t) and its derivative u′
n(t) with respect

to the argument t , and Yn(x, t).

Lemma 2.3. Under condition of Theorem 2.1, we have

Var
(
un(t)

)≤ C1t
2, Var

(
u′

n(t)
)≤ C2

(
1 + t2), ∣∣Yn(x, t)

∣∣≤√C1t.
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Proof. The statement of this lemma for un(t) and u′
n(t) follows from (2.9) applied to ϕ(x) =

cos(tx) and ϕ(x) = −x sin(tx) respectively. From the Cauchy–Schwarz inequality, we conclude
that ∣∣Yn(x, t)

∣∣= ∣∣E((un(t) −Eun(t)
)
en(x)

)∣∣≤ Var1/2(un(t)
)≤√C1t.

�

From Lemma 2.3, we may conclude that∣∣∣∣∂Yn(x, t)

∂t

∣∣∣∣≤ Var1/2(u′
n(t)

)≤ C
1/2
2

√
1 + t2

and ∣∣∣∣∂Yn(x, t)

∂x

∣∣∣∣≤ Var1/2(un(t)
)

Var1/2(S0)≤ C
1/2
1 t sup

λ∈R
f ′(λ).

One may see that Yn(x, t) is bounded and equicontinues on any finite set of R2. Similarly to
Lytova and Pastur [20] it is sufficient to show that any uniformly converging subsequence of
{Yn} has the same limit Y , together with (2.17) leading to (2.12). In the rest of the proof, we
derive an equation for Y(x, t) and solve it.

We start from the Duhamel formula

U(t) = I + i

∫ t

0
ṼU(s) ds

and obtain the following representation for Yn(x, t)

Yn(x, t) = i

2

∫ t

0
E
[
Tr ṼU(s) −ETr ṼU(s)

]
en(x) ds = 1

2
A1 + 1

2
A2,

where

A1 := i√
n

∫ t

0

n∑
j,k=1

E
[
Y

(1)
jk

[
H(2)JU(s)

]
kj

−EY
(1)
jk

[
H(2)JU(s)

]
kj

]
en(x) ds,

A2 := i√
n

∫ t

0

n∑
j,k=1

E
[
Y

(2)
jk

[
H(2)JU(s)

]
j+n,k+n

−EY
(2)
jk

[
H(2)JU(s)

]
j+n,k+n

]
en(x) ds.

Let us consider the term A1. We will often apply the following well-known identity which is
valid for a Gaussian random variable ξ with zero mean

Eξf (ξ) = Eξ2Ef ′(ξ). (2.18)

Applying (2.18) to A1 we rewrite it as a sum of two terms

A1 = I1 + I2, (2.19)
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where

I1 := i√
n

∫ t

0

n∑
j,k=1

E

[[
H(2)J

∂U(s)

∂Y
(1)
jk

]
kj

−E

[
H(2)J

∂U(s)

∂Y
(1)
jk

]
kj

]
en(x) ds,

I2 := − x√
n

∫ t

0

n∑
j,k=1

E
[
H(2)JU(s)

]
kj

∂S

∂Y
(1)
jk

en(x) ds.

From Lemma B.3 in the Appendix it follows that

n∑
j,k=1

[
H(2)J

∂U(s)

∂Y
(1)
jk

]
kj

= i√
n

n∑
j,k=1

2n∑
l=1

[
H(2)J

]
kl

[
UH(1)

]
l,k+n

∗ [U]jj (s)

+ i√
n

n∑
j,k=1

2n∑
l=1

[
H(2)J

]
kl

[
UH(1)

]
j,k+n

∗ [U]lj (s)

= i√
n

∫ s

0
un(s − s1)

n∑
k=1

[
H(2)JU(s1)H(1)

]
k,k+n

ds1

+ i√
n

∫ s

0

n∑
j,k=1

[
H(2)JU(s1)

]
kj

[
U(s − s1)H(1)

]
j,k+n

ds1,

where we used convolution notation ∗ given in Section 1.5. We introduce further notations

tn(s) :=
n∑

k=1

[
H(2)JU(s)H(1)

]
k,k+n

, t(0)
n (s) := tn(s) −Etn(s).

In these notations we may write, applying Lemma C.1 in the Appendix,

I1 = −1

n

∫ t

0
ds

∫ s

0
E
[
un(s − s1)tn(s1) −Eun(s − s1)tn(s1)

]
en(x) ds1 + rn(t),

where ∣∣rn(t)∣∣≤ C
t3

√
n
.

In what follows for simplicity we will not specify the term rn(t), but one should have in mind
that rn(t) goes to zero as n goes to infinity. Let us rewrite the difference tn(s1)un(s − s1) −
Etn(s1)un(s − s1). We obtain

tn(s1)un(s − s1) = t (0)
n (s1)u

(0)
n (s − s1) + t (0)

n (s1)Eun(s − s1)
(2.20)

+ u(0)
n (s − s1)Etn(s1) +Etn(s1)Eun(s − s1).
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Substituting Etn(s1)un(s − s1) from both sides of (2.20) we arrive at the identity

tn(s1)un(s − s1) −Etn(s1)un(s − s1)

= t (0)
n (s1)u

(0)
n (s − s1) + t (0)

n (s1)Eun(s − s1) + u(0)
n (s − s1)Etn(s1) (2.21)

−Et (0)
n (s1)u

(0)
n (s − s1).

Applying (2.21), we may rewrite the term I1 as follows

I1 = −1

n

∫ t

0
ds

∫ s

0
Eun(s − s1)Et (0)

n (s1)en(x) ds1

− 1

n

∫ t

0
ds

∫ s

0
Etn(s − s1)Yn(x, s1) ds1 + rn(t) =: I11 + I12 + rn(t).

Let us investigate tn(s). Using (2.18), we obtain

Etn(s) = 1√
n

n∑
j,k=1

EY
(2)
jk

[
U(s)H(1)

]
k+n,j+n

= 1√
n

n∑
j,k=1

E

[
∂U(s)

∂Y
(2)
jk

H(1)

]
k+n,j+n

(2.22)

+ 1√
n

n∑
j,k=1

E

[
U(s)

∂H(1)

∂Y
(2)
jk

]
k+n,j+n

.

From Lemma B.4 in the Appendix, we conclude

n∑
j,k=1

[
∂U(s)

∂Y
(2)
jk

H(1)

]
k+n,j+n

= i√
n

∫ s

0

n∑
j,k=1

2n∑
l=1

[
U(s1)

]
k+n,k+n

[
H(2)JU(s − s1)

]
j+n,l

[
H(1)

]
l,j+n

ds1

+ i√
n

∫ s

0

n∑
j,k=1

2n∑
l=1

[
U(s1)

]
l,k+n

[
H(2)JU(s − s1)

]
j+n,k+n

[
H(1)

]
l,j+n

ds1 (2.23)

= i√
n

∫ s

0
un(s1)

n∑
j=1

[
H(2)JU(s − s1)H(1)

]
j+n,j+n

ds1

+ is√
n

n∑
k=1

[
U(s)Ṽ

]
k+n,k+n

.
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It is easy to see that

n∑
j=1

[
H(2)JU(s − s1)H(1)

]
j+n,j+n

=
n∑

j=1

[
ṼU(s − s1)

]
j+n,j+n

(2.24)

= −i

n∑
j=1

[
U′(s − s1)

]
j+n,j+n

= −iu′
n(s − s1)

and
n∑

k=1

[
U(s)Ṽ

]
k+n,k+n

= −iu′
n(s). (2.25)

For the second term in (2.22), we have

n∑
j,k=1

E

[
U(s)

∂H(1)

∂Y
(2)
jk

]
k+n,j+n

= √
nEun(s).

It follows from (2.22)–(2.25) that

Etn(s) = 1

n

∫ s

0
Eun(s1)u

′
n(s − s1) ds1 +Eun(s) + s

n
Eu′

n(s). (2.26)

Using (2.26), we may rewrite the term I12 as follows

I12 = − 1

n2

∫ t

0
ds

∫ s

0
Yn(x, s1) ds1

∫ s−s1

0
Eun(s2)u

′
n(s − s1 − s2) ds2

− 1

n

∫ t

0
ds

∫ s

0
Yn(x, s1)Eun(s − s1) ds1

− 1

n2

∫ t

0
ds

∫ s

0
Yn(x, s1)Eu′

n(s − s1) ds1.

Since |Yn(x, s)| ≤ C (see Lemma 2.3) and E|u′
n(s − s1)| ≤ n

√
n we get

I12 = − 1

n2

∫ t

0
ds

∫ s

0
Yn(x, s1) ds1

∫ s−s1

0
Eun(s2)u

′
n(s − s1 − s2) ds2

− 1

n

∫ t

0
ds

∫ s

0
Yn(x, s1)Eun(s − s1) ds1 + rn(t).
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Applying Lemma 2.3, we obtain

I12 = − 1

n2

∫ t

0
ds

∫ s

0
Yn(x, s1) ds1

∫ s−s1

0
Eun(s2)Eu′

n(s − s1 − s2) ds2

− 1

n

∫ t

0
ds

∫ s

0
Yn(x, s1)Eun(s − s1) ds1 + rn(t).

Changing the limits of integration, we get

I12 = − 1

n2

∫ t

0
Yn(x, s) ds

∫ t−s

0
Eun(s1)Eun(t − s − s1) ds1 + rn(t).

We investigate now the quantity Et
(0)
n (s)en(x). Applying (2.18) we come to the following repre-

sentation

Et (0)
n (s)en(x) = 1√

n

n∑
j,k=1

E
[
Y

(2)
jk

[
U(s)H(1)

]
k+n,j+n

−EY
(2)
jk

[
U(s)H(1)

]
k+n,j+n

]
en(x)

= 1√
n

n∑
j,k=1

E

[[
∂U(s)

∂Y
(2)
jk

H(1)

]
k+n,j+n

−E

[
∂U(s)

∂Y
(2)
jk

H(1)

]
k+n,j+n

]
en(x)

+ 1√
n

n∑
j,k=1

E

[[
U(s)

∂H(1)

∂Y
(2)
jk

]
k+n,j+n

−E

[
U(s)

∂H(1)

∂Y
(2)
jk

]
k+n,j+n

]
en(x)

+ ix√
n

n∑
j,k=1

E
[
U(s)H(1)

]
k+n,j+n

∂S

∂Y
(2)
jk

en(x) =: J1 +J2 +J3.

For the first term J1 we may use (2.23) and get

J1 =1

n

∫ s

0
E
[
un(s1)u

′
n(s − s1) −Eun(s1)u

′
n(s − s1)

]
en(x) ds1

+ s

n
E
[
u′

n(s) −Eu′
n(s)

]
en(x).

Repeating the step (2.20) and (2.21) the last relation may be rewritten in the following way

J1 = 1

n

∫ s

0

[
Eun(s1)E

(
u(0)

n

)′
(s − s1)en(x) +Eu′

n(s − s1)Eu(0)
n (s1)en(x)

]
ds1

+ s

n
E
[
u′

n(s) −Eu′
n(s)

]
en(x).

For the second term J2 we have

J2 = Yn(x, s).
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Let us consider now the term J3. We may write

J3 = ix√
n

n∑
j,k=1

E
[
U(s)H(1)

]
k+n,j+n

∂S

∂Y
(2)
jk

en(x)

= ix

n

n∑
j,k=1

E
[
U(s)H(1)

]
k+n,j+n

[
H(2)Jf ′(Ṽ)

]
j+n,k+n

en(x)

= x

2n
ETr U′(s)f ′(Ṽ)en(x),

where we applied the unitary matrix block decomposition (B.5) in the Appendix and used the
following fact ∫ ∞

−∞
uf̂ (u)

n∑
k=1

[
U3(s)WH

(
�(u) + �(−u)

)
H∗]

kk
= 0,

which is valid since f (λ) is an even function. Finally, we will have

I11 = − 1

n2

∫ t

0
ds

∫ s

0
Eun(s − s1)

∫ s1

0

[
Eun(s2)E

(
u(0)

n

)′
(s1 − s2)en(x)

+Eu′
n(s1 − s2)Eu(0)

n (x, s2)en(x)
]
ds2 ds1

− 1

n2

∫ t

0
ds

∫ s

0
s1Eun(s − s1)E

(
u(0)

n (s1)
)′

ds1

− 1

n

∫ t

0
ds

∫ s

0
Eun(s1)Yn(x, s − s1) ds1

− x

2n2

∫ t

0
ds

∫ s

0
Eun(s1)ETr U′(s − s1)f

′(Ṽ)en(x) ds1.

Changing the limits of integration, applying Lemma 2.3 and E|un(t)| ≤ n, we get

I11 = − 2

n2

∫ t

0
Yn(x, s) ds

∫ t−s

0
Eun(s1)Eun(t − s − s1) ds1

(2.27)

− x

2n2

∫ t

0
Eun(s)ETr

(
U(t − s) − I

)
f ′(V̂)en(x) ds + rn(t).

Using (2.27) we may write the following representation for the term I1

I1 = − 3

n2

∫ t

0
Yn(x, s) ds

∫ t−s

0
Eun(s1)Eun(t − s − s1) ds1

− xZn(x)

2n2

∫ t

0
Eun(s)ETr

(
U(t − s) − I

)
f ′(Ṽ) ds + rn(t).
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It remains to calculate the term I2. From Lemma B.5, we conclude that

I2 = − x√
n

∫ t

0

n∑
j,k=1

E
[
H(2)JU(s)

]
kj

∂S

∂Y
(1)
jk

en(x) ds

= −x

n

∫ t

0

n∑
j,k=1

E
[
H(2)JU(s)

]
kj

[
f ′(Ṽ)H(1)

]
j,k+n

en(x) ds

= −xZn(x)

n

∫ t

0

n∑
k=1

E
[
H(2)JU(s)f ′(Ṽ)H(1)

]
k,k+n

ds,

where we used the following observation. First, we may write[
H(2)JU(s)U(u)H(1)

]
k,k+n

=
2n∑

j=1

[
H(2)JU(s)

]
kj

[
U(u)H(1)

]
j,k+n

= Tr
[(

Y(2)
)TY(2)U3(s)U2(u)

]+ Tr
[(

Y(2)
)TY(2)U4(s)U4(u)

]
=

n∑
j=1

E
[
H(2)JU(s)

]
kj

[
U(u)H(1)

]
j,k+n

+ Tr
[(

Y(2)
)TY(2)U4(s)U4(u)

]
.

From the representation (B.5) in the Appendix it follows that

U4(s)U4(u) = 4HD(s, u)H∗,

where D(s, u) is a diagonal matrix with Djj (s, u) = cos(sj s) cos(sju), j = 1, . . . , n. Since f̂ (t)

is an even function we obtain∫ ∞

−∞
uf̂ (u)

∫ t

0
ETr

[(
Y(2)

)TY(2)HD(s, u)H∗]ds du = 0.

We investigate now the behavior of

n∑
k=1

[
H(2)JU(t)f ′(Ṽ)H(1)

]
k,k+n

. (2.28)

Applying the same arguments as before, we get

E

n∑
k=1

[
H(2)JU(t)f ′(V̂)H(1)

]
k,k+n

= 1√
n

n∑
j,k=1

EY
(2)
jk

[
U(t)f ′(Ṽ)H(1)

]
k+n,j+n
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= 1√
n

n∑
j,k=1

E

[
∂U(t)

∂Y
(2)
jk

f ′(Ṽ)H(1)

]
k+n,j+n

+ 1√
n

n∑
j,k=1

E

[
U(t)f ′(Ṽ)

∂H(1)

∂Y
(2)
jk

]
k+n,j+n

=: T1 + T2.

The term T1 may be expanded in the sum of two terms

T1 = 1√
n

n∑
j,k=1

2n∑
l=1

E

[
∂U(t)

∂Y
(2)
jk

]
k+n,l

[
f ′(Ṽ)H(1)

]
l,j+n

= i

n

∫ t

0

n∑
k=1

EUk+n,k+n(s)

n∑
j=1

[
H(2)JU(t − s)f ′(Ṽ)H(1)

]
j+n,j+n

ds

+ i

n

∫ t

0

n∑
k,j=1

E
[
U(s)f ′(Ṽ)H(1)

]
k+n,j+n

[
H(2)JU(t − s)

]
j+n,k+n

ds

= 1

2n

∫ t

0
Eun(s)Tr U′(t − s)f ′(Ṽ) ds

+ i

n

∫ t

0

n∑
k,j=1

E
[
U(s)f ′(Ṽ)H(1)

]
k+n,j+n

[
H(2)JU(t − s)

]
j+n,k+n

ds.

For the term T2 we get

T2 =
n∑

k=1

E
[
U(t)f ′(Ṽ)

]
k+n,k+n

= 1

2
ETr U(t)f ′(Ṽ).

We get the following decomposition for (2.28)

E

n∑
k=1

[
H(2)JU(t)f ′(Ṽ)H(1)

]
k,k+n

= 1

n

∫ t

0
Eun(s)Tr U′(t − s)f ′(Ṽ) ds

+ 1

2
Tr U(t)f ′(Ṽ)

+ i

n

∫ t

0

n∑
k,j=1

E
[
U(s)f ′(Ṽ)H(1)

]
k+n,j+n

[
H(2)JU(t − s)

]
j+n,k+n

ds.
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Inserting this equation to I2 we will have

I2 = −xZn(x)

2n2

∫ t

0

∫ s

0
Eun(s1)Tr U′(s − s1)f

′(Ṽ) ds1 ds

− xZn(x)

2n

∫ t

0
Tr U(s)f ′(Ṽ) ds + rn(t).

Changing the limits of integration and applying Lemma 2.3, we get

I2 = −xZn(x)

2n2

∫ t

0
Eun(s)ETr

[
U(t − s)f ′(Ṽ)

]
ds

− xZn(x)

2n

∫ t

0
Tr U(s)f ′(Ṽ) ds + rn(t),

where we also used that f (λ) and Eu(s) are even functions. It follows from (2.19) that we have
derived representation for A1. The same arguments are valid for A2.

To simplify our notations let us introduce the following quantity

An(t) : = − 1

2n
ETr

[
U(t)f ′(Ṽ)

]
.

One may see that An(t) depends on t only, but Zn(x) depends on x only. We derive an equation
for Yn(x, t):

Yn(x, t) + 3
∫ t

0
Yn(x, s)v2∗

n (t − s) ds

(2.29)

= xZn(x)

∫ t

0

[
vn(s)An(t − s) + An(s)

]
ds + rn(x, t),

where

vn(t) := 1

n
Eun(t).

As n goes to infinity the sequence vn(t) uniformly converges to the following function

v(t) =
∫ a

−a

eitxp(x) dx, (2.30)

where

p(x) := |x|P2
(
x2) and a := √

K2, (2.31)

with P2(x),K2 defined in Appendix A (see also the Introduction). This function is a characteris-
tic function of the Fuss–Catalan distribution. The same arguments lead to

A(t) := lim
n→∞An(t) = −

∫ a

−a

eitλf ′(λ)p(λ)dλ.
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Taking a limit in (2.29) with respect to nl → ∞, we get

Y(x, t) + 3
∫ t

0
Y(x, s)v2∗(t − s) ds = xZ(x)

∫ t

0

[
2v(s)A(t − s) + A(s)

]
ds. (2.32)

Denote by F(z),V (z) and R(z) the generalized Fourier transform of Y(x, t), v(t) and A(t) re-
spectively (see Appendix D). Applying Statement D.1 in the Appendix, we get from (2.32)

F(z) − 3F(z)V 2(z) = −2ixZ(x)R(z)V (z) + ixZ(x)R(z)

z

and it follows that

F(z) = ixZ(x)(−2R(z)V (z) + R(z)/z)

1 − 3V 2(z)
. (2.33)

It is easy to check that

V (z) = s(z),

where s(z) is the Stieltjes transform of p(x). In these notations, we may rewrite (2.33) as follows

F(z) = ixZ(x)(−2R(z)s(z) + R(z)/z)

1 − 3s2(z)
. (2.34)

By Lemma D.1 in the Appendix, the inverse Fourier transform of

1/z − 2s(z)

1 − 3s2(z)

is given by

T (t) = 1

π

∫ a

−a

eitμ

3p1(μ)

4p1(μ)4 + 11p1(μ)2 + 4

4p1(μ)2 + 3
dμ, (2.35)

where p1(μ) := πp(λ). From (2.34) and (2.35), we conclude

Y(x, t) = −xZ(x)

π2

∫ t

0

∫ a

−a

eisλf ′(λ)p(λ)dλ

×
∫ a

−a

ei(t−s)μ

3p(μ)

4p1(μ)4 + 11p1(μ)2 + 4

4p1(μ)2 + 3
dv.

Simple calculation yields

Y(x, t) = ixZ(x)

π2

∫ a

−a

p(λ)dλ

(2.36)

×
∫ a

−a

eitλ − eitμ

λ − μ
f ′(λ)

1

3p(μ)

4p1(μ)4 + 11p1(μ)2 + 4

4p1(μ)2 + 3
dμ.
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Finally, we get from (2.17) and (2.36)

lim
nl→∞Z′

n(x, t) = −xZ(x)

π2

∫ a

−a

p(λ)dλ

(2.37)

×
∫ a

−a

f (λ) − f (μ)

λ − μ
f ′(λ)

1

3p(μ)

4p1(μ)4 + 11p1(μ)2 + 4

4p1(μ)2 + 3
dμ.

One may see that (
f (λ) − f (μ)

)
f ′(λ) = 1

2

∂

∂λ

(
f (λ) − f (μ)

)2
,

and (2.37) may be rewritten applying integration by parts in the following way

lim
nl→∞Z′

n = −xZ(x)

2π2

∫ a

−a

∫ a

−a

(f (λ) − f (μ))2

(λ − μ)2

× [p(λ) − p′(λ)(λ − μ)]
3p(μ)

[4p1(μ)4 + 11p1(μ)2 + 4]
4p1(μ)2 + 3

dλdμ.

Comparing this with (2.12), we may conclude the proof of Theorem 2.1. �

3. The general case

In this section, we finish the proof of Theorem 1.1. Applying the method from Bentkus [8]
and the method from Tikhomirov [26,27] we show that one may substitute the general matrix
by the matrix with i.i.d. Gaussian random variables and express the characteristic function in
the general case via the characteristic function in the Gaussian case. These methods have been
applied several times in random matrix theory, see, for example, Götze et al. [17] and Götze et
al. [16].

3.1. Truncation

In this subsection, we show by standard arguments that we may truncate the entries of
X(q), q = 1,2. For all 1 ≤ j, k ≤ n,q = 1,2, we introduce truncated random variables X

(q,c)
jk :=

X
(q)
jk 1(|X(q)

jk | ≤ τ
√

n). Denote by X(q,c) := [X(q,c)
jk ]nj,k=1. One checks that

P
(
X(q,c) �= X(q)

)≤
n∑

j,k=1

E1
(∣∣X(q)

jk

∣∣≥ τ
√

n
)≤ 1

τ 4
EX4

111
(∣∣X(q)

11

∣∣≥ τ
√

n
)
. (3.1)

Let Ŝ(0) denote S(0) with all entries X
(q)
jk replaced by X

(q,c)
jk . It follows from (3.1) and the exis-

tence of the fourth moment of X
(q)

11 that

lim
n→∞

∣∣Een(x) −EeixŜ(0) ∣∣= 0.
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By standard arguments one may also show that we may assume that EX
(q,c)
jk = 0 and

Var(X(q,c)
jk ) = 1. We omit the details. In what follows, we will assume that X

(q)
jk satisfy the

assumptions (C0) and |X(q)
jk | ≤ τ

√
n for all 1 ≤ j, k ≤ n,q = 1,2.

Remark 3.1. It is easy to see that one may assume X
(q)
jk are non i.i.d., but satisfy the following

Lendeberg type condition on the fourth moments

for all τ > 0 lim
n→∞

1

τ 4n2

n∑
j,k=1

E
(
X

(q)
jk

)41(∣∣X(q)
jk

∣∣≥ τ
√

n
)= 0.

3.2. From the general case to the Gaussian case

Let Y(1),Y(2) be n × n independent random matrices with independent Gaussian entries
n−1/2Y

(q)
jk such that

EY
(q)
jk = 0, E

(
Y

(q)
jk

)2 = 1 for any q = 1,2, j, k = 1, . . . , n.

Following Bentkus [8] for any φ ∈ [0, π
2 ] and any ν = 1,2, we introduce the following matrices

Z(q)(φ) := X(q) sinφ + Y(q) cosφ,

where [
Z(q)(φ)

]
jk

:= 1√
n
Z

(q)
jk (φ) := 1√

n

(
X

(q)
jk sinφ + Y

(q)
jk cosφ

)
. (3.2)

We remark here that in Lytova and Pastur [20] the so called Slepian interpolant is used, that is,
Z

(q)
jk (t) := 1√

n
(tX

(q)
jk + √

1 − t2Y
(q)
jk ), t ∈ [0,1]. Since we are going to differentiate with respect

to the parameter, in this case w.r. to t , up to fourth order, we get rather involved expressions. In
this respect the parametrization of Bentkus (3.2), see (3.8)–(3.10) below, is much more conve-
nient.

We define the matrices H(q)(φ), V(φ), V̂(φ), U(φ, t) as follows (compare with (2.3) and (2.4))

H(q)(φ) =
[

Z(q)(φ) O
O

[
Z(m−q+1)(φ)

]T
]

, V(φ) =
2∏

q=1

H(q)(φ),

Ṽ(φ) = V(φ)J, U(φ, t) = eitṼ(φ).

Let S(φ) := Trf (Ṽ(φ)), S(0)(φ) = S(φ) −ES(φ) and

Zn(x,φ) = EeixS(0)(φ). (3.3)
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We also define the limiting characteristic function Z(x,φ) := limn→∞ Zn(x,φ). To simplify all
notations, we will often omit the argument φ. The following theorem is the main result of this
section.

Theorem 3.1. Assume that the conditions (C0) hold. For an arbitrary function f ∈F the limit-
ing characteristic function Z(x,φ) satisfies the following equation

Z(x,π/2) = Z(x,0)e−x2κ4�
2/4,

where

� =
∫ a

−a

f (λ)
[
p(λ) + λp′(λ)

]
dλ (3.4)

and κ4 := μ4 − 3.

Proof of Theorem 1.1. Applying Theorem 3.1, we get

Z(x,π/2) = Z(x,0)e−x2κ4�
2/4. (3.5)

We know that in the Gaussian case (see (2.10))

Z(x,0) = e−V̂ar[G] x2
2

and V̂ar[G] is given by (2.1). From the last equation and (3.5), it follows that

Z(x,π/2) = e−Var[G] x2
2 ,

where

Var[G] := V̂ar[G] + κ4�
2/2.

�

Proof of Theorem 3.1. We prove that the function Z(x,φ) satisfies the following equation

∂Z(x,φ)

∂φ
= −κ4x

2 sin3 φ cosφ�2Z(x,φ). (3.6)

It follows from this equation that

Z(x,π/2) = Z(x,0) exp

{
−κ4x

2�2
∫ π/2

0
sin3 α cosα dα

}
.

Note that

Zn(x,π/2) − Zn(x,0) =
∫ π/2

0

∂Zn(x,φ)

∂φ
dφ.
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Similarly to the Section 2 it is sufficient to prove that any converging subsequences {Znl
} and

{ ∂Znl

∂φ
} satisfy

lim
nl→∞Znl

(x,φ) = Z(x,φ), lim
nl→∞

∂Znl
(x,φ)

∂φ
= −κ4x

2 sin3 φ cosφ�2Z(x,φ).

By Lemma B.5, we get

∂Zn(x,φ)

∂φ
= ix√

n

2∑
q=1

n∑
j,k=1

EẐ
(q)
jk

[
V[m−q+2,m]Jf ′(Ṽ)V[1,m−q]

]
j+n,k+n

en(x), (3.7)

where

Ẑ
(q)
jk := d

dφ
Z

(q)
jk = X

(q)
jk cosφ − Y

(q)
jk sinφ.

It is straightforward to check that

EẐ
(q)
jk

(
Z

(q)
jk

)p = 0 for p = 0,1; (3.8)

EẐ
(q)
jk

(
Z

(q)
jk

)2 = E
(
X

(q)
jk

)3 cos3 φ; (3.9)

EẐ
(q)
jk

(
Z

(q)
jk

)3 = κ4 sin3 φ cosφ. (3.10)

Let us introduce further notations. Denote by Vj,k,q
[α,β](y) the corresponding matrix V[α,β] with

Z
(q)
jk replaced by y. Let us also denote

�jkq(y) := [V(j,k,q)

[m−q+2,m](y)Jf ′(Ṽ(j,k,q)(y)
)
V(j,k,q)

[1,m−q](y)
]
j+n,k+n

eitS(0)(V(j,k,q)(y)).

Applying Taylor’s formula, we get

�jkq

(
Z

(q)
jk

)=
3∑

p=0

1

p!
(
Z

(q)
jk

)p
�

(p)
jkq(0) + 1

3!
(
Z

(q)
jk

)4
Eθ (1 − θ)3�

(4)
jkq

(
θZ

(q)
jk

)
.

This equation and (3.7) together imply

∂Zn(x,φ)

∂φ
= ix

n1/2

3∑
p=1

1

p!
2∑

q=1

n∑
j,k=1

EẐ
(q)
jk

(
Z

(q)
jk

)p
E�

(p)
jkq(0)

+ ix

3!n1/2

2∑
q=1

n∑
j,k=1

E(1 − θ)3Ẑ
(q)
jk

(
Z

(q)
jk

)4
�

(4)
jkq

(
θZ

(q)
jk

)
=: T1 + · · · + T4.
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It follows from (3.8) that T1 = 0. In the next subsections we will investigate the term Tk, k =
2,3,4.

3.3. The second derivative

First, we note that[
V(j,k,q)

[m−q+2,m]JAV(j,k,q)

[1,m−q]
]
j+n,k+n

= [V[m−q+2,m]JAV[1,m−q]]j+n,k+n.

for an arbitrary matrix A. It is straightforward to check that

�
(2)
jkq(0) = L1

jkq + L2
jkq + L3

jkq ,

where

L1
jkq :=

[
V[m−q+2,m]J

∂2f ′(Ṽ)

∂(Z
(q)
jk )2

∣∣∣
Z

(q)
jk =0

V[1,m−q]
]

j+n,k+n

en(x),

L2
jkq := 3ix√

n

[
V[m−q+2,m]J

∂f ′(Ṽ)

∂Z
(q)
jk

∣∣∣
Z

(q)
jk =0

V[1,m−q]
]

j+n,k+n

× [V[m−q+2,m]Jf ′(Ṽ)|
Z

(q)
jk =0

V[1,m−q]
]
j+n,k+n

en(x),

L3
jkq := −x2

n

[
V[m−q+2,m]Jf ′(Ṽ)|

Z
(q)
jk =0

V[1,m−q]
]3
j+n,k+n

en(x).

Let us consider, for example, the term 1√
n
L2

jkq . We have, for q = 1,

1

n1/2

n∑
j,k=1

EL2
jkq = I1 + I2,

where

I1 := 3x

n3/2

∫
R2

uvf̂ (u)f̂ (v)

∫ u

0
E

n∑
j,k=1

[
U(s)H(1)

]
j,k+n

× [U(u − s)H(1)
]
j,k+n

[
U(v)H(1)

]
j,k+n

ds dudv,

I2 := 3x

n3/2

∫
R2

uvf̂ (u)f̂ (v)

∫ u

0
E

n∑
j,k=1

[(
H(1)

)TU(s)H(1)
]
k+n,k+n

× [U(u − s)
]
jj

[
U(v)H(1)

]
j,k+n

ds dudv.
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We estimate the term I1. Applying the Cauchy–Schwarz inequality and orthogonality properties
of U, we get

1

n3/2
E

∣∣∣∣∣
n∑

j,k=1

[
U(s)H(1)

]
j,k+n

[
U(u − s)H(1)

]
j,k+n

[
U(v)H(1)

]
j,k+n

∣∣∣∣∣
≤ 1

n3
E

[
n∑

l1,l2,l3=1

(
n∑

k=1

Z
(2)
kl1

Z
(2)
kl2

Z
(2)
kl3

)(
n∑

j=1

[U2]j l1(s)[U2]j l2(u − s)[U2]j l3(v)

)]

≤ 1

n5/2
E1/2

[
n∑

l1,l2,l3=1

(
n∑

k=1

Z
(2)
kl1

Z
(2)
kl2

Z
(2)
kl3

)2]
≤ C(τ + 1)n−1/2.

For the term I2 we may apply the same arguments. Finally

|I1 + I2| ≤ Cx(τ + 1)

n1/2

∫ ∞

∞
|u|3∣∣f̂ (u)

∣∣du

∫ ∞

∞
|v|∣∣f̂ (v)

∣∣dv.

Analogously one may show that 1
n1/2

∑n
j,k=1 L1

jkq and 1
n1/2

∑n
j,k=1 L3

jkq goes to zero as n goes
to infinity. It follows that T2 = o(1).

3.4. The third derivative

We investigate now the term T3. Direct computations yield

�
(3)
jkq(0) =

[
V[m−q+2,m]J

∂3f ′(Ṽ)

∂(Z
(q)
jk )3

∣∣∣
Z

(q)
jk =0

V[1,m−q]
]

j+n,k+n

en(x)

+ 4ix√
n

[
V[m−q+2,m]J

∂2f ′(Ṽ)

∂(Z
(q)
jk )2

∣∣∣
Z

(q)
jk =0

V[1,m−q]
]

j+n,k+n

× [V[m−q+2,m]Jf ′(Ṽ)|
Z

(q)
jk =0

V[1,m−q]
]
j+n,k+n

en(x)

+ 3ix√
n

[
V[m−q+2,m]J

∂f ′(Ṽ)

∂Z
(q)
jk

∣∣∣
Z

(q)
jk =0

V[1,m−q]
]2

j+n,k+n

en(x)

− 6x2

n

[
V[m−q+2,m]Jf ′(Ṽ)

∣∣∣
Z

(q)
jk =0

V[1,m−q]
]2
j+n,k+n

×
[

V[m−q+2,m]J
∂f ′(Ṽ)

∂Z
(q)
jk

∣∣∣
Z

(q)
jk =0

V[1,m−q]
]

j+n,k+n

en(x)

− ix3

n3/2

[
V[m−q+2,m]Jf ′(Ṽ)|

Z
(q)
jk =0

V[1,m−q]
]4
j+n,k+n

en(x).
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It is straightforward to check that all terms except the third are of order o(1). These may be done
similarly to the previous section. Let us denote

�
q
n = 1

n

n∑
j,k=1

E

[
V[m−q+2,m]J

∂f ′(Ṽ)

∂Z
(q)
jk

∣∣∣
Z

(q)
jk =0

V[1,m−q]
]2

j+n,k+n

.

Our aim is to show that

lim
nl→∞�

q
nl

=
[∫ a

−a

f (λ)
[
p(λ) + λp′(λ)

]
dλ

]2

, (3.11)

where p(λ) is defined in (2.31). Consider the case q = 1. By Lemma B.3 in the Appendix, we
get [

∂f ′(Ṽ)

∂Z
(1)
jk

H(1)

]
j,k+n

=
2n∑
l=1

[
∂f ′(Ṽ)

∂Z
(1)
jk

]
j l

[
H(1)

]
l,k+n

= − 1√
n

∫ ∞

−∞
sf̂ (s)

[
2n∑
l=1

[
UH(1)

]
j,k+n

∗ [U]lj (s)
[
H(1)

]
l,k+n

+
2n∑
l=1

[
UH(1)

]
l,k+n

∗ [U]j,j (s)
[
H(1)

]
l,k+n

]
ds

= − 1√
n

∫ ∞

−∞
sf̂ (s)

[[
UH(1)

]
j,k+n

∗ [UH(1)
]
j,k+n

(s)

+ [[H(1)
]TUH(1)

]
k+n,k+n

∗ [U]jj (s)
]
ds.

Similarly to the previous sections we may show that the first term in the last equation has the
zero impact. It is straightforward to check[[

H(1)
]TU(s)H(1)

]
k+n,k+n

= [H(2)JU(s)H(1)
]
k,k+n

=: Tn,k(s). (3.12)

Let us investigate the following integral∫ ∞

−∞
sf̂ (s)ETn,k ∗E[U]jj (s) ds.

Applying (2.18) we obtain

ETn,k(s) = 1√
n

n∑
l=1

EZ
(2)
kl

[
U(s)H(1)

]
l+n,k+n

= 1√
n

n∑
l=1

E

[
∂U(s)

∂Z
(2)
kl

H(1)

]
l+n,k+n

+ 1√
n

n∑
l=1

E

[
U(s)

∂H(1)(s)

∂Z
(2)
kl

]
l+n,k+n

.
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It follows from Lemma B.4 in the Appendix that

n∑
l=1

E

[
∂U(s)

∂Z
(2)
kl

H(1)

]
l+n,k+n

=
n∑

l=1

2n∑
p=1

E

[
∂U(s)

∂Z
(2)
kl

]
l+n,p

[
H(1)

]
p,k+n

= i√
n

n∑
l=1

2n∑
p=1

E[U]l+n,l+n ∗ [H(2)JU
]
k+n,p

[
H(1)

]
p,k+n

+ i√
n

n∑
l=1

2n∑
p=1

E[U]p,l+n ∗ [H(2)JU
]
k+n,l+n

[
H(1)

]
p,k+n

= i√
n

n∑
l=1

E[U]l+n,l+n ∗ [H(2)JUH(1)
]
k+n,k+n

+ i√
n

n∑
l=1

E
[
H(2)JU

]
k+n,l+n

∗ [UH(1)
]
l+n,k+n

.

It is straightforward to check that the second term has the zero impact. Hence,

ETn,k(s) = i

n
Eun ∗E

[
H(2)JUH(1)

]
k+n,k+n

(s) + 1

n
Eun(s) + rn(s), (3.13)

where we applied Lemma C.2. Here and in what follows limn→∞ rn(s) = 0 and rn(s) depends
polynomially on s. Finally, we will have for q = 1

�
q
n = 1

n2

n∑
j,k=1

{∫ ∞

−∞
sf̂ (s)

[
1

n
Eun ∗E[U]j,j (s)

(3.14)

+ i

n
Eun ∗E

[
H(2)JUH(1)

]
k+n,k+n

∗E[U]j,j (s)
]

ds

}2

+ o(1).

Let us introduce further notations and denote

Vn,k(s) := E
[
H(2)JU(s)H(1)

]
k+n,k+n

. (3.15)

We may write, applying Lemma B.3 in the Appendix and (2.18) that

Vn,k(s) = 1√
n

n∑
j=1

EZ
(1)
jk

[
UH(1)

]
j,k+n

=
n∑

j=1

E

[
∂U(s)

∂Z
(1)
jk

]
j,k+n
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= i

n

n∑
j=1

2n∑
l=1

E
[
UH(1)

]
j,k+n

∗ [U]l,j (s)
[
H(1)

]
l,k+n

+ i

n

n∑
j=1

2n∑
l=1

E
[
UH(1)

]
l,k+n

∗ [U]j,j (s)
[
H(1)

]
l,k+n

.

The same arguments as before yield that

Vn,k(s) = i

n
Eun(s) ∗ETn,k(s) + rn(s). (3.16)

Applying (3.13), we get

Vn,k(s) = i

n2
Eun ∗Eun(s) − 1

n2
Eun ∗Eun ∗ Vn,k(s) + rn(s).

This means that limn→∞ Vn,k(s) satisfies the following equation

h(s) = iu ∗ u(s) − u ∗ u ∗ h(s).

The same equation holds for limn→∞ 1
n

∑n
k=1 Vn,k(s). It is easy to see that

lim
n→∞

1

n

n∑
k=1

Vn,k(s) = −iv′(s),

where v(s) was defined in (2.30). That means that

lim
n→∞Vn,k(vs) = −iv′(s).

Taking the limit with respect to nl → ∞ we get in (3.14)

lim
nl→∞�

q
nl

=
{∫ ∞

−∞
sf̂ (s)

[
v ∗ v(s) + v ∗ v ∗ v′(s)

]
ds

}2

. (3.17)

Let us consider the following integral∫ ∞

−∞
sf̂ (s)

[
v ∗ v(s) + v ∗ v ∗ v′(s)

]
ds.

Let us denote the Stieltjes transform of p(x) by s(z). The Fourier transform of v ∗ v(s) + v ∗ v ∗
v′(s) is given by

is2(z) − i
(
1 + zs(z)

)
s2(z) = −izs3(z).

By Proposition D.1 in the Appendix, we obtain

v ∗ v(t) + v ∗ v ∗ v′(s) = 1

2π

∫
L

eiszzs3(z) dz. (3.18)
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It follows from (2.5) with m = 2 that s(z) satisfies an equation 1 + zs(z) = zs3(z). Hence, the
right-hand side of (3.18) may be rewritten as

1

2π

∫
L

eisz
(
1 + zs(z)

)
dz.

Similarly to the proof of Lemma D.1 in the Appendix, we get

1

2π

∫
L

eisz
(
1 + zs(z)

)
dz = i

∫ a

−a

eisλλp(λ)dλ.

Integrating by parts, we will have

i

∫ a

−a

eisλλp(λ)dλ = −1

s

∫ a

−a

eisλ
[
p(λ) + λp′(λ)

]
dλ.

Finally, we conclude that∫ ∞

−∞
t f̂ (t)

[
v ∗ v(s) + v ∗ v ∗ v′(s)

]
ds =

∫ a

−a

f (λ)
[
p(λ) + λp′(λ)

]
dλ

and finish the proof of (3.11). If we show that for all 1 ≤ j, k ≤ n

lim
n→∞E

[∫ ∞

−∞
sf̂ (s)

[
Tk ∗ [U]jj (s) −ETk ∗E[U]jj (s)

]
ds

]2

en(x) = 0 (3.19)

then from (3.10) and (3.11) we will have

lim
nl→∞

ix

3!n1/2
l

2∑
q=1

nl∑
j,k=1

EẐ
(q)
jk

(
Z

(q)
jk

)3
E�

(p)
jkq(0) = −κ4x

2 sin3 φ cosφ�2Z(x,φ),

where � is given by (3.4). To prove (3.19), it is enough to show that for all k = 1, . . . , n,

Var
[
Tn,k(s)

]= rn(s), Var(Ukk) = rn(s).

These bounds follow from Lemma C.2 in the Appendix.

3.5. The remainder term

To conclude the proof of Theorem 3.1 it remains to estimate the remainder term T4. One checks
that EẐ

(q)
jk (Z

(q)
jk )4 ≤ Cτ

√
nμ4. Let Z be a random variable which has the same distribution as

Z
(1)
11 . We estimate E supZ �

(3)
jkq(Z). Simple calculations yield that

�
(3)
jkq(Z) = L1

jkq + · · · + L7
jkq,
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where

L1
jkq := 1

n2

[
V[m−q+2,m]J

∂4f ′(Ṽ)

∂(Z
(q)
jk )4

∣∣∣
Z

(q)
jk =Z

V[1,m−q]
]

j+n,k+n

en(x),

L2
jkq := 5ix√

n

[
V[m−q+2,m]J

∂3f ′(Ṽ)

∂(Z
(q)
jk )3

∣∣∣
Z

(q)
jk =Z

V[1,m−q]
]

j+n,k+n

× [V[m−q+2,m]Jf ′(Ṽ)|
Z

(q)
jk =Z

V[1,m−q]
]
j+n,k+n

en(x),

L3
jkq := 10ix√

n

[
V[m−q+2,m]J

∂2f ′(Ṽ)

∂(Z
(q)
jk )2

∣∣∣
Z

(q)
jk =Z

V[1,m−q]
]

j+n,k+n

×
[

V[m−q+2,m]J
∂f ′(Ṽ)

∂Z
(q)
jk

∣∣∣
Z

(q)
jk =Z

V[1,m−q]
]

j+n,k+n

en(x),

L4
jkq := −10x2

n

[
V[m−q+2,m]J

∂2f ′(Ṽ)

∂(Z
(q)
jk )2

∣∣∣
Z

(q)
jk =Z

V[1,m−q]
]

j+n,k+n

× [V[m−q+2,m]Jf ′(Ṽ)|
Z

(q)
jk =Z

V[1,m−q]
]2
j+n,k+n

en(x),

L5
jkq := −15x2

n

[
V[m−q+2,m]J

∂f ′(Ṽ)

∂Z
(q)
jk

∣∣∣
Z

(q)
jk =Z

V[1,m−q]
]2

j+n,k+n

× [V[m−q+2,m]Jf ′(Ṽ)|
Z

(q)
jk =Z

V[1,m−q]
]
j+n,k+n

en(x),

L6
jkq := −10ix3

n3/2

[
V[m−q+2,m]J

∂f ′(Ṽ)

∂Z
(q)
jk

∣∣∣
Z

(q)
jk =Z

V[1,m−q]
]

j+n,k+n

× [V[m−q+2,m]Jf ′(Ṽ)|
Z

(q)
jk =Z

V[1,m−q]
]3
j+n,k+n

en(x),

L7
jkq := x4

n2

[
V[m−q+2,m]Jf ′(Ṽ)|

Z
(q)
jk =Z

V[1,m−q]
]5
j+n,k+n

en(x).

Applying the same arguments as before in Sections 3.3 and 3.4 we get that

|T4| ≤ Cτ.

It is possible to change τ in the definition of X(c) by a sequence τn, such that limn→∞ τn = 0
and limn→∞

√
nτn = ∞. This fact finishes the proof of Theorem 3.1. �
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Appendix A: Fuss–Catalan distribution

For any m ∈N let us consider the sequence of numbers

Mk = 1

mk + 1

(
k

mk + k

)
, k ∈N∪ {0}.

These numbers are called Fuss–Catalan numbers. In Penson and Życzkowski [23] the density
function Pm(x) which satisfies

∫ Km

0
xkPm(x)dx = Mk,

was found. Here Km := (m+ 1)m+1/mm. The explicit formula for Pm(x) is given by the follow-
ing formula in terms of hypergeometric functions

Pm(x) =
m∑

k=1

�k,mx
k

m+1 −1

× mFm−1

([{
1 − 1 + j

m
+ k

m + 1

}m

j=1

]
,

[{
1 + k − j

m + 1

}k−1

j=1
,

{
1 + k − j

m + 1

}m

j=k+1

]
; mm

(m + 1)m+1
x

)
,

where the coefficients �k,m are given for k = 1,2, . . . ,m by

�k,m := m−3/2

√
m + 1

2π

(
mm/(m+1)

m + 1

)k [∏k−1
j=1 �(

j−k
m+1 )][∏m

j=k+1 �(
j−k
m+1 )]∏m

j=1 �(
j+1
m

− k
m+1 )

.

For example,

P1(x) =
√

1 − x/4

π
√

x

and

P2(x) =
3
√

2
√

3

12π

[ 3
√

2(27 + 3
√

81 − 12x)
2
3 − 6 3

√
x]

x
2
3 (27 + 3

√
81 − 12x)

1
3

,

valid for x ∈ [0,27/4].
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Appendix B: Unitary matrix derivatives

In this section, we collect useful facts about matrix derivatives and exponential functions of
matrices. Let us consider a function f (λ) and recall the definition (1.5) of its Fourier transform

f̂ (t) = 1

2π

∫ ∞

−∞
f (λ)e−itλ dλ.

The function f (λ) may be reconstructed from f̂ (t) via the inverse Fourier transform (see (2.13))

f (λ) =
∫ ∞

−∞
f̂ (t)eitλ dt. (B.1)

Let f (k)(λ) denote the kth derivative of f (λ). Then

f (k)(λ) = ik
∫ ∞

−∞
tkf̂ (t)eitλ dt. (B.2)

Recall the definition of the matrix U(t), see (2.15), U(t) := eitṼ. Applying (B.1) we get the
following representation for f (Ṽ),

f (Ṽ) =
∫ ∞

−∞
f̂ (t)U(t) dt. (B.3)

Using Duhamel’s formula (see, for example, Lytova and Pastur [20]), we arrive at

e(M1+M2)t = eM1t +
∫ t

0
eM1(t−s)M2e

(M1+M2)s ds, (B.4)

valid for arbitrary matrices M1,M2 and t ∈R.
In what follows, we shall use matrix notation (2.3) and (2.4). Consider the singular value

decomposition of the matrix X (or Y in the Gaussian case) of dimension n × n. Let L and H be
unitary matrices of dimension n × n. Let � be a diagonal matrix whose entries are the singular
values of the matrix X. We have the following representation

X = L�H∗.

We introduce the following matrix

Z∗ = 1√
2

[
L∗ H∗
L∗ −H∗

]
.

It is straightforward to check that

Z∗VZ =
[
� O
O −�

]
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and

Z∗U(s)Z = Z∗
[
�(s) O

O �(−s)

]
Z,

where �(s) is a diagonal matrix such that [�(s)]jj = e[is�jj ], j = 1, . . . , n. A simple calculation
yields that

U(s) =
[

U1 U2
U3 U4

]
=
[

L
(
�(s) + �(−s)

)
L∗ L

(
�(s) − �(−s)

)
H∗

H
(
�(s) − �(−s)

)
L∗ H

(
�(s) + �(−s)

)
H∗
]

. (B.5)

We also denote by M(j,k) or [M](j,k) a matrix M with Mjk removed. To calculate derivatives
of U(s), we need the following lemma.

Lemma B.1. Let 1 ≤ j, k ≤ n and m ≥ 2. Then[
∂V̂

∂Y
(1)
jk

]
ab

= 1√
n
[V[1,m−1]]a,k+n1(b = j) + 1√

n
[V[2,m]J]kb1(a = j) (B.6)

for any 1 ≤ a, b ≤ 2n.

Proof. We decompose V̂ in the following way

V̂ =
([

H(1)
](j,k) + Y

(1)
jk√
n

Ej,k

)
V[2,m−1]

([
H(m)

](j,k) + Y
(1)
jk√
n

Ek+n,j+n

)
J.

It is easy to see

[V[1,m−1]Ek+n,j+nJ]ab = [V[1,m−1]]a,k+n1(b = j),

[Ej,kV[2,m]J]ab = [V[2,m]J]kb1(a = j)

and

[Ej,kV[2,m−1]Ek+n,j+nJ]ab = [V[2,m−1]]k,k+n1(a = b = j) = 0. �

We may generalize the last lemma to the case where the derivatives are taken with respect to
Y

(q)
jk , q = 2, . . . ,m. We have the following lemma.

Lemma B.2. Let 1 ≤ j, k ≤ n and m ≥ 2. Then[
∂Ṽ

∂Y
(q)
jk

]
ab

= 1√
n
[V[1,m−q]]a,k+n[V[m−q+2,m]J]j+n,b

(B.7)

+ 1√
n
[V[1,q−1]]aj [V[q+1,m]J]kb.
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Proof. The proof is similar. �

Lemma B.3. Let 1 ≤ j, k ≤ n and m ≥ 2. Then[
∂U(t)

∂Y
(1)
jk

]
xy

= i√
n
[UV[1,m−1]]x,k+n ∗ [U]yj (t) + i√

n
[UV[1,m−1]]y,k+n ∗ [U]xj (t).

Proof. Using the chain rule, we will have

∂U(t)

∂Y
(1)
jk

=
n∑

a=1

2n∑
b=n+1

∂U(t)

∂Ṽab

∂Ṽab

∂Y
(1)
jk

+
2n∑

a=n+1

n∑
b=1

∂U(t)

∂Ṽab

∂Ṽab

∂Y
(1)
jk

.

Applying Lemma B.1, we will have

∂U(t)

∂Y
(1)
jk

= 1√
n

2n∑
b=n+1

∂U(t)

∂Ṽjb

[V[2,m]J]k,b + 1√
n

2n∑
a=n+1

∂U(t)

∂Ṽaj

[V[1,m−1]]a,k+n.

From (B.4), it follows that

∂U(t)

∂Y
(1)
jk

= i√
n

2n∑
b=n+1

Uxj ∗ Uby(t)[V[2,m]J]kb

+ i√
n

2n∑
a=n+1

Uxa ∗ Ujy(t)[V[1,m−1]]a,k+n.

Since [UV[1,m−1]]y,k+n = [V[2,m]JU]k,y we get the statement of lemma. �

Lemma B.4. Let 1 ≤ j, k ≤ n and m ≥ 2. Then[
∂U(t)

∂Y
(q)
jk

]
x,y

= i√
n
[UV1,[m−q]]x,k+n ∗ [V[m−q+2,m]JU]j+n,y(t)

+ i√
n
[UV1,[m−q]]y,k+n ∗ [V[m−q+2,m]JU]j+n,x(t).

Proof. The proof is similar. �

The following lemma gives an expression for the derivative of S(V̂) := 1
2 Trf (V̂) with respect

to Y
(1)
jk .

Lemma B.5. Let 1 ≤ j, k ≤ n and m ≥ 2. Then

∂S

∂Y
(1)
jk

= 1√
n

[
f ′(Ṽ)V[1,m−1]

]
j,k+n

. (B.8)
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Proof. It is easy to see that

∂S

∂Y
(1)
jk

= 1

2

∫ ∞

−∞
f̂ (u)Tr

∂U(u)

∂Y
(1)
jk

du.

Applying Lemma B.3, we get

∂S

∂Y
(1)
jk

= i

2
√

n

∫ ∞

−∞
sf̂ (s)

[
U(s)V[1,m−1]

]
j,k+n

ds

+ i

2
√

n

∫ ∞

−∞
sf̂ (s)

[
V[2,m]JU(s)

]
kj

ds.

Applying the properties of V and U, we get (B.8). �

Lemma B.6. Let 1 ≤ j, k ≤ n and m ≥ 2. Then

∂S

∂Y
(q)
jk

= 1√
n

[
V[m−q+2,m]Jf ′(Ṽ)V[1,m−q]

]
j+n,k+n

. (B.9)

Proof. The proof is similar to the proof of the previous lemma. �

Appendix C: Auxiliary lemmas

In this section, we prove some auxiliary lemmas. The following lemma gives an estimate for the
variance of

Tn(s, t) := 1

n

n∑
j,k=1

[
H(2)JU(s)

]
kj

[
U(t − s)H(1)

]
j,k+n

.

Lemma C.1. Under condition of Theorem 2.1, we have

Var
(
Tn(t, s)

)≤ C max(t2, (t − s)2)

n
.

Proof. Let us introduce the following matrices removing r th row and column

H(q,l) = H(q) − El,lH(q) − H(q)El,l , H̃(q,l) = H(q) − El+n,l+nH(q) − H(q)El+n,l+n,

where q = 1,2 and l = 1, . . . , n. We define the following filtration

F1,l := σ
{
Y

(1)
j,k , l < j, k ≤ n,Y (2)

pq ,p, q = 1, . . . , n
}
, F2,l := σ

{
Y

(2)
j,k , l < j, k ≤ n

}
.
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We may rewrite the difference

E

n∑
j,k=1

[
H(2)JU(s)

]
kj

[
U(t − s)H(1)

]
j,k+n

−
n∑

k=1

[
H(2)JU(s)

]
k,j

[
U(t − s)H(1)

]
j,k+n

=
2∑

q=1

n∑
l=1

(Eq,l −Eq,l−1),

where Eq,l denotes the mathematical expectation with respect to Fq,l . It is easy to see that F1,n =
F2,0 and

E1,l

n∑
j,k=1

[
H̃(2,l)JU(1,l)(s)

]
kj

[
U(1,l)(t − s)H(1,l)

]
j,k+n

= E1,l−1

n∑
j,k=1

[
H̃(2,l)JU(1,l)(s)

]
kj

[
U(1,l)(t − s)H(1,l)

]
j,k+n

,

E2,l

n∑
j,k=1

[
H(2,l)JU(2,l)(s)

]
k,j

[
U(2,l)(t − s)H̃(1,l)

]
j,k+n

= E2,l−1

n∑
j,k=1

[
H(2,l)JU(2,l)(s)

]
kj

[
U(2,l)(t − s)H̃(1,l)

]
j,k+n

.

We consider the case q = 1 only. The case q = 2 is similar. We may write

n∑
j,k=1

[
H(2)JU(s)

]
kj

[
U(t − s)H(1)

]
j,k+n

−
n∑

j,k=1

[
H̃(2,l)J

]
kj

[
U(1,l)(t − s)H(1,l)

]
j,k+n

= �1,l + �2,l + �3,l + �4,l ,

where we denoted

�1,l :=
n∑

j,k=1

[(
H(2) − H̃(2,l)

)
JU(s)

]
kj

[
U(t − s)H(1)

]
j,k+n

,

�2,l :=
n∑

j,k=1

[
H̃(2,l)J

(
U(s) − U(1,l)(s)

)]
jk

[
U(t − s)H(1)

]
j,k+n

,

�3,l :=
n∑

j,k=1

[
H̃(2,l)JU(1,l)(s)

]
jk

[(
U(t − s) − U(1,l)(t − s)

)
H(1)

]
j,k+n

,
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�4,l :=
n∑

j,k=1

[
H̃(2,l)JU(1,l)(s)

][
U(1,l)(t − s)

(
H(1) − H(1,l)

)]
k,k+n

.

It is easy to check that �1,l = �4,l = 0. We consider the term �2,l . The term �3,l is similar.
Applying (B.4) we get

�2,l = I1,l + I2,l ,

where

I1,l :=
∫ s

0

n∑
j,k=1

[
H̃(2,l)JU(1,l)(s1)El,lVJU(s − s1)

]
kj

[
U(t − s)H(1)

]
j,k+n

ds1,

I2,l :=
∫ s

0

n∑
j,k=1

[
H̃(2,l)JU(1,l)(s1)VJEl,lU(s − s1)

]
kj

[
U(t − s)H(1)

]
j,k+n

ds1.

By simple calculations, we get

I1,l =
∫ s

0

[
WU3(s − s1)U2(t − s)

[
Y(2)

]TY(2)U(1,l)
3 (s1)

]
ll

ds1.

It is easy to derive the following estimate

n∑
l=1

EI2
1,l ≤ Cs2E

∥∥W
[
Y(2)

]TY(2)
∥∥2

2 ≤ Cs2n.

The same is true for
∑n

l=1 EI2
2,l . This fact finishes the proof of the lemma. �

Recall that, see definitions (3.15) and (3.13),

Vn,j (t) := E
[
H(2)JU(t)H(1)

]
j+n,j+n

,

Tn,j (t) := [H(2)JU(t)H(1)
]
j,j+n

.

The following lemma gives an estimate for the variance of 1
n
un(t), Vn,j (t) and Tn,j (t).

Lemma C.2. Under conditions of Theorem 1.1 we have

Var

[
1

n
un(t)

]
≤ Ct2

n
, (C.1)

and for all j = 1, . . . , n,

Var
[
Vn,j (t)

]≤ C
(
1 + t2)εn, (C.2)

Var
[
Tn,j (t)

]≤ C
(
1 + t2)εn, (C.3)
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where limn→∞ εn = 0.

Proof. The proof of the first statement (C.1) is similar to the proof of Lemma C.1. Here one uses
the results for the matrix resolvent and the Stieltjes transforms as well. We present the proof of
(C.3) only. The proof of (C.2) is similar. Let us denote

Kj,n(t1, t2) := E
[
Tn,j (t1)

(
Tn,j (t2) −ETn,j (t2)

)]= ETn,j (t1)T
(0)
n,j (t2),

where T
(0)
n,j (t) := Tn,j (t) −ETn,j (t). We have

Kj,n(t1, t2) = 1√
n

n∑
k=1

Y
(2)
jk

[
U(t1)H(2)

]
k+n,j+n

T
(0)
n,j (t2).

By Taylor’s formula,

Kj,n(t1, t2) = 1√
n

n∑
k=1

E

[
∂U(t1)

∂Y
(2)
jk

H(1)

]
k+n,j+n

T
(0)
n,j (t2)

+ 1√
n

n∑
k=1

E

[
U(t1)

∂H(1)

∂Y
(2)
jk

]
k+n,j+n

T
(0)
n,j (t2)

+ 1√
n

n∑
k=1

E
[
U(t1)H(1)

]
k+n,j+n

[
∂H(2)

∂Y
(2)
jk

JU(t2)H(1)

]
j,j+n

+ 1√
n

n∑
k=1

E
[
U(t1)H(1)

]
k+n,j+n

[
H(2)J

∂U(t2)

∂Y
(2)
jk

H(1)

]
j,j+n

+ 1√
n

n∑
k=1

E
[
U(t1)H(1)

]
k+n,j+n

[
H(2)JU(t2)

∂H(1)

∂Y
(2)
jk

]
j,j+n

+ rn(t1, t2),

where rn(t1, t2) denotes a remainder term, which polynomially depends on t1, t2. It is straight-
forward to check limn→∞ rn(t1, t2) = 0. By Lemma B.3, we get

Kj,n(t1, t2) = i

n
Eun ∗ [H(2)JU(t1)H(1)

]
j+n,j+n

T
(0)
n,j (t2)

+ i

n

n∑
k=1

E
[
UH(1)

]
k+n,j+n

∗ [U(t1)H(1)
]
k+n,j+n

T
(0)
n,j (t2)

+ 1

n
Eun(t1)T

(0)
n,j (t2)
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+ 2

n

n∑
k=1

E
[
U(t1)H(1)

]
k+n,j+n

[
U(t2)H(1)

]
k+n,j+n

+ 2i

n

n∑
k=1

E
[
U(t1)H(1)

]
k+n,j+n

[
H(2)JU

]
j,k+n

∗ [H(2)JU(t2)H(1)
]
j+n,j+n

+ rn(t1, t2).

Similarly to the previous estimates it is not very difficult to check that all terms except the first
one are of order o(1). Let us consider the first term

i

n
Eun ∗ [H(2)JU(t1)H(1)

]
j+n,j+n

T
(0)
n,j (t2)

= i

n
Eun ∗E

[
H(2)JU(t1)H(1)

]
j+n,j+n

T 0
n,j (t2) + rn(t1, t2).

From (3.16), we have

Vn,k(s) = i

n
Eun(s) ∗ETn,k(s) + rn(s).

We may conclude that

i

n

n∑
k=1

E[U]k+n,k+n ∗E
[
H(2)JU(t1)H(1)

]
j+n,j+n

T 0
n,j (t2)

= − 1

n2
(Eun)

∗2 ∗ETn,j (t1)T
0
n,j (t2) + rn(t1, t2).

Taking the limit with respect to nl → ∞ we get that Kj := limnl→∞ Kj,nl
satisfies the following

equation

Kj(t1, t2) = −
∫ t1

0
v∗2(t1 − s)Kj (s, t2) ds.

Since Kj(t1, t2) = 0 is a unique solution of the last equation this means that

Kj,n(t1, t2) = rn(t1, t2).

Taking t2 = t1 finishes the proof of the lemma. �

Appendix D: Laplace transform

In this section, we recall several results from the theory of Laplace transforms. We will follow
Lytova and Pastur [20], Proposition 2.1.
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Statement D.1. Let f :R+ → C denote a local Lipshitz function such that for some δ > 0

sup
t≥0

e−δt
∣∣f (t)

∣∣< ∞

and let f̆ : {z ∈ C : Im z < −δ} → C denotes its generalized Fourier transform

f̆ (z) = 1

i

∫ ∞

0
e−izt f (t) dt.

The inversion formula is given by

f (t) = i

2π

∫
L

eizt f̆ (z) dz, t ≥ 0,

where L = (−∞ − iε,∞ − iε), ε > δ, and the principal value of the integral at infinity is used.
Denote the correspondence between functions and their generalized Fourier transforms by f ↔
f̆ . Then we have

f ′(t) ↔ i
(
f (+0) + zf̆ (z)

);∫ t

0
f (s) ds ↔ (iz)−1f̆ (z);

f ∗ g(t) ↔ if̆ (z)ğ(z).

Recall that, see definition (2.31), p(x) := |x|P2(x
2) and a := √

K2. Let s(z) be the Stieltjes
transform of p(x). It satisfies the following equation (see (2.5) with m = 2)

1 + zs(z) = zs3(z). (D.1)

Lemma D.1. The inverse Fourier transform of

K(z) = 1/z − 2s(z)

1 − 3s2(z)

is given by

T (t) = 1

π

∫ a

−a

eitx

3p1(x)

4p4
1(x) + 11p2

1(x) + 4

4p2
1(x) + 3

dx,

where p1(x) := πp(x).

Proof. By definition, see Statement D.1,

T (t) = i

2π

∫
L

eitzK(z) dz,
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where L = (−∞ − iε,∞ − iε), ε > 0. We introduce the following contour K:

K := K1 ∪ · · · ∪ K8,

where

K1 := {z = u + iv, |u| ≤ T ,v = −ε
}
, K2 := {z = u + iv : |z| = T ,v ≥ 0

}
,

K3,4 := {z = u + iv : |u| ≤ a + ε/2, v = ±ε/2
}
,

K5,6 := {z = u + iv : u = ±(a + ε/2),−ε/2 ≤ v ≤ ε/2
}
,

K7,8 := {z = u + iv : u = ±T ,−ε ≤ v ≤ 0}.
We may write

T (t) = lim
T →∞

i

2π

∫
K1

eitzK(z) dz

and ∫
K

eitzK(z) dz = 0.

Furthermore, we note

lim
T →∞

∫
K2∪K7∪K8

eitzK(z) dz = 0.

We compute the integrals

K1 :=
(∫

K3

−
∫

K4

)
eitzK(z) dz.

Let s(z) := if (z) + g(z) for z = u + iv. Note that by definition

Im s(z) =
{

f (z), if Im z > 0,

−f (z), if Im z < 0.

Let us calculate K(z) for z ∈ K3. Applying (D.1) we obtain that

K(z) = s(z)(s2(z) − 3)

1 − 3s2(z)
= 1

3

(g + if )(f 2 + 1 − 3f 2 + 6ifg − 9)

2f (f − 3ig)

= 1

6f

(g + if )(6ifg − 2f 2 − 8)

f − 3ig
= 1

6f

(g + if )(6ifg − 2f 2 − 8)(f + 3ig)

|f − 3ig|2 .

The enumerator is equal to

(g + if )
(
6ifg − 2f 2 − 8

)
(f + 3ig) = −2

(
3if + 4f 2g + 4g

)
(f + 3ig).
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The imaginary part of the enumerator is given by

−6f 2 − 24f 2g2 − 24g2 = −6f 2 − 8f 2 − 8f 4 − 8 − 8f 2 = −2
(
4f 4 + 11f 2 + 4

)
.

Finally,

ImK(z) = − 1

3f

4f 4 + 11f 2 + 4

4f 2 + 3
.

The real part is equal to

ReK(z) = −1

3

g(5 − 4f 2)

4f 2 + 3
.

It is easy to see that for z ∈ K4 we will have

ImK(z) = 1

3f

4f 4 + 11f 2 + 4

4f 2 + 3
, ReK(z) = −1

3

g(5 − 4f 2)

4f 2 + 3
.

Since ε is an arbitrary number and

lim
ε→0

f (u + iε) = πp(u)

then integrating ReK(z) in the opposite directions we get zero. Finally

T (t) = 1

π

∫ a

−a

eitx

3πp(x)

4(πp(x))4 + 11(πp(x))2 + 4

4(πp(x))2 + 3
dx. �
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