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The concept of the autoregressive (AR) sieve bootstrap is investigated for the case of spatial processes in Z
2.

This procedure fits AR models of increasing order to the given data and, via resampling of the residuals,
generates bootstrap replicates of the sample. The paper explores the range of validity of this resampling
procedure and provides a general check criterion which allows to decide whether the AR sieve bootstrap
asymptotically works for a specific statistic of interest or not. The criterion may be applied to a large class
of stationary spatial processes. As another major contribution of this paper, a weighted Baxter-inequality for
spatial processes is provided. This result yields a rate of convergence for the finite predictor coefficients, i.e.
the coefficients of finite-order AR model fits, towards the autoregressive coefficients which are inherent to
the underlying process under mild conditions. The developed check criterion is applied to some particularly
interesting statistics like sample autocorrelations and standardized sample variograms. A simulation study
shows that the procedure performs very well compared to normal approximations as well as block bootstrap
methods in finite samples.
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1. Introduction

We consider stationary real-valued spatial processes in the plane (Xt )t∈Z2 with zero mean and
finite second moments. By imposing only very mild regularity conditions on the processes
the framework of this paper remains very general. Particularly, without making any paramet-
ric/linearity assumptions on the process (Xt )t∈Z2 , we are interested in fitting spatial autoregres-
sive models of the form

Xt =
∑

k∈�(p)

ak(p)Xt−k + et (1.1)

to data, where �(p) denotes some suitable finite index set and (et ) is some white noise process.
In few words, this paper has two main purposes: First, we will show that models of the form (1.1)
are well-suited to describe the behaviour of very general stationary spatial processes since a very
large class of these processes possesses an inherent autoregressive structure. This structure can
be approximated well by models such as (1.1), which will be shown by proving a generalization
of Baxter’s inequality, cf. [4], to the spatial setting. As a second major contribution of this paper,
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the concept of the autoregressive sieve bootstrap scheme will be transferred to the case of spatial
processes. In the following, the aforementioned purposes will be explained in more detail.

By classical results going back to the work of [40], general spatial processes in the plane Z
2

always possess half-plane representations with respect to each half-plane of Z2 that might be
chosen, as long as mild assumptions are fulfilled. More precisely, there exist one-sided autore-
gressive (AR) as well as moving-average (MA) representations

Xt =
∑
k∈�

akXt−k + εt , and Xt =
∑
k∈�

bkεt−k + εt (1.2)

with respect to some (weak) white noise process (εt ), where � can be any half-plane in the
sense of [17]. Throughout this paper, we stick to the so-called lower half-plane representation
corresponding to lexicographical ordering of the plane Z

2 as described by [21], among others.
It is important to note that choosing this particular half-plane representation is not restrictive
at all because any other choice of the half-plane would be fine as well. It has to be understood
as a suitable vehicle to establish meaningful theory in this paper and the lower half-plane is just
chosen for notational convenience. During the course of this paper, we will also clarify a common
misunderstanding in the discussion of spatial and time series autoregressions, that should at least
be mentioned briefly at this point: It is often criticized that, for spatial processes, one has to
choose a concept of “past” values for one-sided autoregressions, that is, choose a direction from
which the random variables Xt are influenced. This choice is of course arbitrary. Hence, one
might come to the conclusion that the whole concept of one-sided autoregressions implies a very
specific model assumption which is not fulfilled for real-world data. However, the opposite is
true since our assumptions do not constrain the class of processes any further than demanding
the spectral density to be positive and smooth.

In contrast to our framework, most of the existing literature on autoregressive modeling in
the plane is heavily based on the assumption that the underlying spatial process actually fulfills
some specific model structure. Autoregressive processes in the plane have been pioneered in
[40], where unilateral and bilateral autoregressive models are studied. Correlation properties of
these processes have been studied in [6] and for some special cases in [3]. Spatial autoregres-
sive processes with a “quarter-plane past” form a popular sub-class of unilateral processes in the
plane. These processes have been investigated in detail by [37,38] and [39]. However, although
the class of spatial AR processes with a quarter-plane past appears to be appealing at first sight
due to its simple structure, we still consider half-plane instead of quarter-plane representations
in this paper. This is due to the fact that, under very mild assumptions, general spatial processes
are always assured to have half-plane representations as in (1.2), which is in general not true
for quarter-plane representations (at least not with uncorrelated innovations). Hence, imposing a
quarter-plane past structure on the process (Xt )t∈Z2 turns out to be very restrictive and is there-
fore omitted in this paper. The same is true for models considered in [12], who discuss the proper-
ties of models with several regions of support. Yule–Walker type estimation of spatial AR models
has been investigated by [2,16] and [18], who particularly addressed an inaccuracy in [38].

The crucial property that spatial processes can always be represented as in (1.2) is also well-
known for time series processes (Xt )t∈Z, cf. among others [35]. Here, the AR representation
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corresponding to (1.2) reads

Xt =
∞∑

k=1

akXt−k + εt . (1.3)

To deal with these infinite dimensional autoregressive representations in the time series case,
the famous Baxter-inequality (cf. [4] for univariate processes and [20] or [11] for the multivari-
ate case) plays a fundamental role and allows for meaningful asymptotic theory. When fitting
AR models of finite order p to time series, for instance by Yule–Walker estimation, one typi-
cally estimates the so-called finite predictor coefficients a1(p), . . . , ap(p), which are simply the
coefficients of the L2-projection of Xt onto the finite past sp{Xt−1, . . . ,Xt−p}. Here, and in the
following, if A is an arbitrary subset of some vector space over R or C, sp(A) denotes the span of
all vectors a ∈ A. Baxter’s inequality provides a connection between these finite predictor coeffi-
cients and the AR coefficients from (1.3) and reads as follows: Under mild smoothness conditions
on the spectral density of the process, there exist a constant C < ∞ and p0 ∈ N such that

p∑
k=1

ν(k)
∣∣ak(p) − ak

∣∣≤ C ·
∞∑

k=p+1

ν(k)|ak|, ∀p ≥ p0. (1.4)

Here, ν(·) denotes a weight function which is connected to the smoothness condition on the
spectral density. Notice that the right-hand side of (1.4) is finite and therefore converges to zero
as p → ∞. Hence, the left-hand side also vanishes for p → ∞ which yields convergence for
the predictors ak(p) towards the AR coefficients ak . In fact, the weights ν(k) determine the rate
of convergence. If this rate is fast enough, then even autoregressive fits of rather small order p

are suitable to describe the process (Xt ) properly. The goal in this paper is to derive a similar
inequality for the AR fits of shape (1.1) in connection with representations (1.2).

The original proof of (1.4) for univariate time series is mainly based on the analytical result of
[5]. One might think that the original proof of [5] transfers straightforwardly from time series to
the spatial case, but this is not the case. Heuristically, this is due to the following observations.
The proof of Baxter’s inequality for time series is heavily based on the fact that by predicting
Xt based on sp{Xt−1, . . . ,Xt−p}, the two sets {s : s < t − p} and {s : s ≥ t} can be separated
arbitrarily far apart, for sufficiently large p, by the set M(p) := {s : t − p ≤ s ≤ t − 1}. Thus,
|Cov(Xr,Xq)| becomes arbitrarily small for sufficiently large p and for Xr ∈ {Xs, s < t − p}
and Xq ∈ {Xs, s ≥ t}. For the spatial case such a separation is no longer possible as no finite
subset analogous to M(p) exists that is capable to separate Z

2 in this fashion. As one major
contribution of this paper, we come up with a different approach to prove a version of Baxter’s
inequality that is suitable for spatial processes. This result allows to derive rigorous asymptotic
theory for AR fits of increasing order for spatial processes.

For time series, Baxter’s inequality is a key ingredient when establishing validity of the AR
sieve bootstrap scheme. This procedure was introduced for stationary univariate linear time se-
ries by [22,23] and [9] who established validity for different statistics including autocovariances
and autocorrelations. The main contribution of the AR sieve methodology is to allow the au-
toregressive order p = p(n) to increase with the sample size n. Thus, the AR sieve bootstrap
extends the model-based (parametric) AR bootstrap – first considered by [14] – to the much
richer (nonparametric) class of AR(∞)-processes.



Baxter’s inequality and sieve bootstrap for random fields 2991

Paparoditis and Streitberg [33] established asymptotic validity of the AR sieve bootstrap to
infer properties of high order autocorrelations, and [31] established its validity in a multivariate
linear time series context. Furthermore, the AR sieve bootstrap is used for testing for unit roots in
[10] and [32], and in econometrics literature for several purposes such as for example, forecasting
in [1] or in the setup of time series panels in [36].

However, while all the aforementioned results were derived under the explicit assumption of an
underlying AR(∞) process, [24] extended the range of applicability of the AR sieve significantly.
Under very mild conditions and without having to assume any autoregressive structure of the
underlying process, they were able to show that the AR sieve remains valid whenever the so-
called companion process mimics the proper limiting distribution, which constitutes a simple
and general check criterion. Recently, [28] extended the results of [24] to the multivariate case.
To generalize their concept, as a second main contribution of this paper, we introduce a spatial
AR sieve methodology in the spirit of [24] and provide rigorous theory.

The proposed AR sieve bootstrap performs favourably compared to block bootstrap tech-
niques, as will be shown in a simulation study in this paper. Block bootstrap and subsampling for
random fields were proposed by [19] and [25], whereas [34] addressed block resampling schemes
for general statistics. Zhu and Lahiri [41] proved bootstrap consistency for the empirical process
of a non-overlapping block bootstrap. Optimal block size and subsample size selection have been
addressed in [30] and [29], respectively.

The remainder of this paper is organised as follows: In Section 2, we will introduce the basic
notations and definitions and formulate the algorithm of the AR sieve bootstrap procedure pre-
cisely. In addition, we will show how the rate of decay of the autocovariances of a spatial process
carries over to its cepstral coefficients – the Fourier coefficients of the logarithm of the spectral
density – and then to the AR coefficients.

In Section 3, we will establish sufficiently fast convergence of the finite-order AR models that
are fitted in the course of the sieve bootstrap procedure, to the aforementioned AR coefficients.
Here, we will derive a generalisation of Baxter’s inequality, cf. [4], to the case of random fields.
Beyond its application in connection with the AR sieve bootstrap, this result may be of its own
interest.

The conditions for AR sieve bootstrap validity are given in Section 4, and the result will
be a check-criterion which allows to decide whether the procedure is asymptotically consistent
or not; with the criterion being solely based on the asymptotics of the particular test statistic
one is looking at. This result closely resembles the concept of the so-called companion process
introduced by [24]. We will apply the derived check criterion in Section 5 to some particularly
interesting statistics, including variogram estimators. It follows a simulation study in Section 6
which compares the performance of the AR sieve bootstrap to normal approximations and the
block bootstrap. Section 7 contains the proofs of the two central theorems, Baxter’s inequality
and the result about bootstrap validity, while all other proofs of auxiliary results are deferred to
the corresponding technical report [27].

2. Preliminaries

Consider a stationary real-valued spatial process (Xt )t∈Z2 with mean zero and finite second mo-
ments. In the following we will switch between the two equivalent notations Xt = Xt1,t2 . While



2992 M. Meyer, C. Jentsch and J.-P. Kreiss

the vector index notation Xt allows for a more compact presentation of the results, the notation
Xt1,t2 is sometimes necessary if we want to describe operations on the components of the index
vector. For convenience reasons, we will also sometimes use a mixed notation, for example, in
expressions such as

∑
t1∈A

∑
t2∈B Xt .

The autocovariance function of (Xt ) at lag h = (h1, h2)
T is denoted by γ (h) = E(Xt+hXt ).

We assume to have a square-shaped data sample {Xt : 1 ≤ t1, t2 ≤ n} consisting of n2 observa-
tions at hand. Define � := {t ∈ Z

2 : 1 ≤ t1, t2 ≤ n} and �h := {t ∈ Z
2 : 1 ≤ t1, t2, t1 + h1, t2 +

h2 ≤ n}; that is, �h describes the set of vectors t ∈ Z
2 such that both t and t + h are elements

of �. The empirical autocovariance function can then be stated as

γ̂ (h) := 1

|�h|
∑
t∈�h

(Xt+h − X)(Xt − X), (2.1)

where X = n−2∑
t∈� Xt denotes the sample mean.

We now turn to the algorithm of the autoregressive sieve bootstrap for random fields. Our
proposal depends on fitting an autoregressive model of finite order p ∈ N to the data. Since it is
not obvious how such an AR fit would look like in the spatial setting, we first define the following
set of vectors in Z

2 which characterises the collection of sites for the pth order AR fit:

�(p) := {
k ∈ Z

2 : (1 ≤ k1 ≤ p and k2 = 0) or (−p ≤ k1 ≤ p and 1 ≤ k2 ≤ p)
}
. (2.2)

An autoregressive model with sites given by �(p) could be stated as

Xt =
∑

k∈�(p)

akXt−k + et (2.3)

for some white noise (et ). Figure 1 illustrates the shape of these types of AR models with an
example of order p = 3; the index vectors t − k from (2.3) are marked by the black dots while
t can be found at the center. The AR model from (2.3) is one-sided in the sense of so-called
lexicographical ordering of the plane Z

2; we will discuss this property extensively further along
the line in this section, but first formulate the AR sieve bootstrap algorithm.

Let Tn = Tn({Xt : t ∈ �}) be an estimator for some unknown parameter θ of the process, based
on the given data sample. For an appropriately increasing sequence of real numbers (cn)n∈N,
we assume that the distributions Ln = L(cn(Tn − θ)) converge to a non-degenerated limiting
distribution as n → ∞. Our goal is to estimate the distribution Ln for some finite number n ∈N.
We propose the following procedure:

The autoregressive sieve bootstrap algorithm for random fields:

(1) Select an order p = p(n) ∈ N,p � n and fit a pth order autoregressive model of
shape (2.3) to the given observations, for example, by Yule–Walker estimation. Denote
the estimated coefficients by {̂ak(p) : k ∈ �(p)}.

(2) Let �(n,p) := {(t1, t2) ∈ Z
2 : p + 1 ≤ t1 ≤ n − p,p + 1 ≤ t2 ≤ n}, that is, �(n,p) is

the set of all vectors t ∈ � such that (t − k) ∈ � for all k ∈ �(p). Denote the residuals
of the autoregressive fit by ε′

t (p) = Xt − ∑
k∈�(p) âk(p)Xt−k for all t ∈ �(n,p), and
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Figure 1. Illustration of the shape of an AR(3)-model with respect to �(3), cf. (2.3); locations of sites
t − k marked by the black dots.

let F̂n be the empirical distribution function of the centered residuals ε̂t (p) = ε′
t (p) − ε,

where ε = (n−2p)−1(n−p)−1∑
t∈�(n,p) ε

′
t (p). Generate independent random variables

ε∗
j having identical distribution F̂n, for example, by drawing with replacement from the

set of centered residuals. Use these resampled residuals and the parameter estimators to
calculate a bootstrap sample {X∗

t : t ∈ �} according to the generating equation

X∗
t =

∑
k∈�(p)

âk(p)X∗
t−k + ε∗

t , (2.4)

that is, the X∗
t are generated recursively, as t increases lexicographically through �.

(3) Let T ∗
n,(1) := Tn({X∗

t : t ∈ �}) be the same estimator as Tn based on the pseudo sample
{X∗

t : t ∈ �} and θ∗ the analogue of θ associated with the bootstrap process (X∗
t ).

(4) Repeat steps (1)–(3) M times, where M is sufficiently large, in order to obtain independent
realisations T ∗

n,(1), . . . , T
∗
n,(M) of the plug-in estimator.

(5) The estimator for Ln is then given by the empirical distribution of L∗
n = L∗(cn(T

∗
n − θ∗)),

based on the observations T ∗
n,(1), . . . , T

∗
n,(M).

Here, L∗ and E∗ denote probability law and expectation, conditional on the given data sample.
In the following, we will investigate under which conditions the underlying process (Xt )

possesses one-sided autoregressive representations, since this property is crucial for show-
ing asymptotic validity of the AR sieve bootstrap. For the remainder of this chapter, we will
be working with spatial processes fulfilling the following assumptions. We use the notation
|k|∞ := max{|k1|, |k2|} for the maximum vector norm of each k ∈ Z

2. For any arbitrary sub-
set A of some vector space over R or C, sp(A) denotes the closed span of all vectors a ∈ A.
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Assumption 1. Let (Xt )t∈Z2 be a strictly stationary real-valued spatial process with mean
zero and finite second moments. The autocovariance function γ (·) of (Xt ) fulfils

∑
k∈Z2(1 +

|k|∞)r |γ (k)| < ∞ for some r ∈N0 to be specified in the respective results later on. The spectral
density of (Xt ),

f (λ) = 1

4π2

∑
k∈Z2

γ (k)e−i〈k,λ〉, λ ∈ (−π,π]2,

fulfils the so-called boundedness condition: There exists a constant c > 0 such that f (λ) ≥ c

uniformly for all frequencies λ ∈ (−π,π]2.

It can be seen, that the representation of X̂t , the projection of Xt onto sp{Xs, s = t}, is closely
related to the Fourier coefficients dk of 1/f (compare to [35], Section 1.4). More precisely, one
can show that

E|Xt − X̂t |2 =
∫

(−π,π]2

∣∣1 − (
1 − d−1

0 f −1(λ)
)∣∣2f (λ)dλ =

∫
(−π,π]2

d−2
0 f −1(λ) dλ > 0,

by the boundedness condition, which implies that (Xt )t∈Z2 is a so-called basic process, that is,
Xt /∈ sp{Xs, s = t}.

Furthermore, Assumption 1 merely requires the spectral density to be positive and smooth,
because the weighted summability condition on the autocovariances just implies that certain
partial derivatives of f exist. For u,v ∈ N with u+ v ≤ r , we get from differentiating the Fourier
series of f :

∂u+vf

∂λu
1∂λv

2
(λ) = 1

4π2

∑
k∈Z2

(−ik1)
u(−ik2)

vγ (k)e−i〈k,λ〉.

The derivative of the Fourier series of f on the right-hand side of the latter equation is absolutely
summable because |(−ik1)

u(−ik2)
v| ≤ (1 + |k|∞)r and because of Assumption 1. Therefore,

the derivative of f itself, given by the left-hand side, exists and is equal to the derivative of the
Fourier series.

We will now establish the aforementioned one-sided autoregressive and moving average repre-
sentations for all processes that fulfil Assumption 1. Here, one-sided refers to the lexicographical
ordering of the plane Z

2, cf. [17]. Defining

� := {
(k1, k2) ∈ Z

2 : (k1 ≥ 1 and k2 = 0) or (k1 arbitrary and k2 ≥ 1)
}

one can observe that Z2 can be partitioned as {0} ∪ � ∪ (−�). � is commonly referred to as
the upper half-plane with respect to the origin while −� is the lower half-plane, cf. [21]. An
illustration is given by Figure 2; the upper half-plane � is given by the white dots, the lower
half-plane by the black dots. Obviously, it holds �(p) → �, as p → ∞.

We now get the following result on one-sided representations for spatial processes.
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Figure 2. Illustration of the upper (white dots) and lower (black dots) half-plane of Z2.

Lemma 2.1. Let (Xt )t∈Z2 be a spatial process that fulfils Assumption 1 with some r ≥ 1. Then
there exist uniquely determined autoregressive (AR) coefficients (ak)k∈�, uniquely determined
moving average (MA) coefficients (bk)k∈� and a uniquely determined uncorrelated white noise
process (εt ), t ∈ Z

2, such that (Xt ) possesses the one-sided AR and MA representations

Xt =
∑
k∈�

akXt−k + εt , Xt =
∑
k∈�

bkεt−k + εt , (2.5)

respectively, and
∑

k∈� akXt−k represents the L2-projection of Xt onto sp{Xt−k : k ∈ �}. The
white noise process (εt ) is called the innovation process of (Xt ). The coefficients in (2.5) fulfil
the summability conditions∑

k∈�

(
1 + |k|∞

)r−1|ak| < ∞,
∑
k∈�

(
1 + |k|∞

)r−1|bk| < ∞. (2.6)

It should be noted that the existence of representations (2.5) has already been proven by [40].
However, we are especially interested in the summability conditions (2.6), which are not available
in the literature. Hence, we derive these conditions in the proof of Lemma 2.1, which can be
found [27].

Remark 2.2. At this point, we should clarify a common misunderstanding in the discussion of
spatial and time series autoregressions: For time series, the “past” and the “future” of a time
value t ∈ Z are naturally defined, and it is generally accepted that random variables Xt are in-
fluenced by its past values Xt−1,Xt−2, . . .. Since this is not the case for spatial processes, it is
often criticized that one has to choose a concept of “past” values, that is, choose a direction from
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which the random variable Xt is influenced, such as the lower half-plane illustrated by Figure 2.
This choice is of course arbitrary, which is why one might come to the conclusion that the whole
concept of one-sided autoregressions implies a very specific model assumption which is not ful-
filled for real-world data. However, the opposite is true: The AR sieve bootstrap, as an example,
only uses the one-sided autoregressions as a vehicle in the proof of bootstrap validity. Under the
mild conditions from Assumption 1, which only depend on the spectral density and which do not
include any choice of direction whatsoever, the process (Xt ) possesses autoregressive representa-
tions with respect to each half-plane of Z2 that might be chosen. Therefore, the whole procedure
is by no means arbitrary; and the concept of approximating a particular one-sided autogression
does not constrain the class of processes any further than demanding the spectral density to be
positive and smooth.

In order to prove the summability conditions from Lemma 2.1, we need the following auxiliary
result. The AR and MA coefficients are strongly connected to the so-called cepstral coefficients of
the process, that is the Fourier coefficients of the logarithm of the spectral density. The following
lemma provides a result that carries over the summability condition from the Fourier coefficients
of a function f to the Fourier coefficients of its logarithm. The result holds not only for spectral
densities but for arbitrary integrable functions, and seems not to be available in the literature so
far, at least not in this explicit form.

Lemma 2.3. Denote for every integrable function f : (−π,π]2 → R its Fourier coefficients
by f̃k = (1/4π2)

∫
(−π,π]2 f (λ)e−i〈k,λ〉 dλ and by

∑
k∈Z2 f̃ke

i〈k,λ〉 its formal Fourier series. We
define the following classes of functions:

Cr :=
{
f : (−π,π]2 → R,‖f ‖r :=

∑
k∈Z2

(
1 + |k|∞

)r |f̃k| < ∞
}
,

Dr1,r2 :=
{
f : (−π,π]2 → R,‖f ‖r1,r2 :=

∑
k∈Z2

(
1 + |k1|

)r1
(
1 + |k2|

)r2 |f̃k| < ∞
}
.

Assume that f (λ) ≥ c > 0 for all λ ∈ (−π,π]2. Then it holds:

(i) If f ∈ Cr for some r ≥ 2, it follows logf ∈ Cr−1.
(ii) If f ∈ Dr1,r2 for some r1, r2 ≥ 1, it follows logf ∈ Dr1,r2 .

Remark 2.4. In Assumption 1 and Lemma 2.3(i), we use the weight function ν(k) = (1+|k|∞)r .
This is due to the fact that we will later establish a weighted version of a Baxter-inequality for
spatial processes, cf. Theorem 3.2. The proof of this Baxter-inequality requires the weights to be
strictly non-decreasing in |k|∞, that is, ν(k) ≥ ν(j) whenever |k|∞ ≥ |j |∞ or, in other words,
whenever j ∈ �(p) and k ∈ �\�(p). Other weights one might think of, like replacing the | · |∞-
norm in ν(k) by the Euclidean norm, the 1-norm or letting ν̃(k) = (1 + |k1|)r1(1 + |k2|)r2 , do not
fulfil the property of being strictly non-decreasing in |k|∞ and are, therefore, not suitable in order
to establish a weighted Baxter-inequality. However, for Assumption 1 to be fulfilled, it suffices
to check whether

∑
k∈Z2(1 +|k|)r |γ (k)| < ∞ for any vector norm |k|, since all vector norms are
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equivalent. One could also switch to any other vector norm | · |α , but in this case the projection
set �(p) has to be modified such that |k|α ≥ |j |α whenever j ∈ �(p) and k ∈ � \ �(p).

Remark 2.5. Classes of functions with weighted absolutely summable Fourier coefficients, such
as Cr and Dr1,r2 from Lemma 2.3, are commonly referred to as Beurling algebras; Cr represents
the special case for the weight function ν(k) = (1 + |k|∞)r . Remark 2.4 explains why we are
looking at these particular weights, although we get the somehow unsatisfactory result that f ∈
Cr does not imply logf ∈ Cr , but instead logf ∈ Cr−1. While we will only work with assertion
(i) from Lemma 2.3 for the remainder of this paper, it is still worthwile to consider the class Dr1,r2

from (ii). Here, we get with analogous arguments as in (i) that f ∈ Dr1,r2 implies logf ∈ Dr1,r2 ,
i.e. the Fourier coefficients of logf fulfil the same summability condition as the ones of f .
This result is strongly connected to the well-known Wiener–Lévy-theorem (cf. [42], Chapter VI,
Theorem 5.2); and, for the special case of φ(f ) = logf , our result even represents a slight
generalisation of the latter, with respect to functions in several variables. We will shed some light
on this situation:

Originally, Norbert Wiener proved for functions in one variable that if f = 0 has absolutely
summable Fourier coefficients, then the same holds true for 1/f . This assertion, also known as
Wiener’s lemma, can be transferred to functions in several variables; and, moreover, weighted
summability versions in the spirit of Lemma 2.3 are available, cf. Theorem 6.2 in [15]. For func-
tions in one variable, Paul Lévy generalised Wiener’s result, concluding that if f has absolutely
summable Fourier coefficients, the same holds true for φ(f ), where φ is a smooth functional.
This assertion became known as the Wiener–Lévy-theorem. In contrast to what happens for
φ(f ) = 1/f , weighted versions in several variables are much harder to come by for general
functions φ. Typically, one only gets that φ(f ) is the element of a Beurling algebra with weights
increasing at a slower rate than the ones of f , cf. [7].

Our proof of Lemma 2.3(ii) shows that a generalisation to functions in several variables for
the special case of φ(f ) = logf is possible. However, the proof relies heavily on the structure
of the logarithmic function and cannot be generalised to other functions.

3. Convergence of finite-order model fits

In this section, we will establish results that ensure convergence of the estimated parameters
{̂ak(p) : k ∈ �(p)} from step (1) of the AR sieve bootstrap procedure, cf. Section 2, towards the
autoregressive coefficients {ak : k ∈ �} of the underlying process given by Lemma 2.1. We will
split up the results in two subsections: The first one will be concerned with convergence of the
finite predictor coefficients of the process (Xt )t∈Z2 towards {ak : k ∈ �}. The finite predictors are

the L2-projection coefficients of random variable Xt to the finite-dimensional space sp{Xt−k :
k ∈ �(p)}. In this context, we will introduce a Baxter-inequality for spatial processes. Section 3.2
deals with conditions which ensure that the difference between the estimators {̂ak(p) : k ∈ �(p)}
and the finite predictor coefficients vanishes asymptotically in probability. The results from both
subsections combined then yield the desired convergence of the finite-order AR model fits.
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3.1. Convergence of finite predictor coefficients

The finite predictor coefficients with respect to the set �(p) are the coefficients of the L2-
projection of Xt onto sp{Xt−k : k ∈ �(p)}, and will be denoted by {ak(p) : k ∈ �(p)}. They
can be obtained from solving the minimization problem

{
ak(p) : k ∈ �(p)

} := arg min
{ck(p):k∈�(p)}

E

(
Xt −

∑
k∈�(p)

ck(p)Xt−k

)2

. (3.1)

Solving (3.1) leads to the well-known Yule–Walker equations. We now want to introduce the
notation which allows us to write the Yule–Walker equations in a convenient form: The number
of elements in �(p) is p̄ := 2p(p +1). Let k1, . . . , kp̄ be an arbitrary enumeration of the vectors

k ∈ �(p). Define a(p) := (ak1
(p), . . . , akp̄

(p))T ∈ Rp̄ and Y t := (Xt−k1
, . . . ,Xt−kp̄

)T . Note
that the indices kj appear in the same order in both vectors. Due to the projection property, it is
easy to see that any solution of (3.1) fulfils

E
((

Xt − a(p)T Y t

) · YT
t ej

) = 0, j = 1, . . . , p̄, (3.2)

where ej denotes the j th unit vector. Using the notation (p) := E(Y tY
T
t ) and γ (p) :=

E(XtY t ), system (3.2) is equivalent to

(p)a(p) =
⎛⎜⎝γ (k1 − k1) · · · γ (k1 − kp̄)

...
. . .

...

γ (kp̄ − k1) · · · γ (kp̄ − kp̄)

⎞⎟⎠ ·
⎛⎜⎝ak1

(p)
...

akp̄
(p)

⎞⎟⎠=
⎛⎜⎝γ (k1)

...

γ (kp̄)

⎞⎟⎠= γ (p). (3.3)

System (3.3) is called the Yule–Walker equations. Note that the matrix (p) is symmetric, re-
gardless of the order of indices in the vectors Y t and a(p). The following result ensures the
existence of a unique solution of (3.3). Moreover, we establish a uniform bound for the spectral
norms of the inverse matrices (p)−1, which will turn out to be crucial for proving the Baxter-
inequality. The spectral norm of a real-valued quadratic matrix A is defined as the square root
of the largest eigenvalue of AT A, denoted by ‖A‖spec =√

σmax(AT A). For symmetric positive
definite matrices, this formula can be simplified to ‖A‖spec = σmax(A).

Lemma 3.1. Let (Xt )t∈Z2 be a process that fulfils Assumption 1. Then the matrix (p) from the

Yule–Walker equations (3.3) is invertible for all p ∈ N. Furthermore, it holds ‖(p)−1‖spec ≤
(4π2c)−1 for all p ∈ N, where c is the lower bound of the spectral density from Assumption 1,
and ‖ · ‖spec denotes the spectral norm.

The previous lemma justifies calling the unique solution {ak(p) : k ∈ �(p)} of (3.3) the finite
predictor coefficients of the process for order p. As already mentioned, it is of critical importance
for our sieve bootstrap scheme that the ak(p) converge towards the autoregressive coefficients
{ak : k ∈ �} of the underlying process from (2.5), as p tends to infinity. In particular, we have
to ensure that this convergence is fast enough. Therefore, we introduce the following version of
Baxter’s inequality for random fields.
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Theorem 3.2 (Baxter’s inequality). Let (Xt )t∈Z2 be a process that fulfils Assumption 1 with
some r ≥ 2 and c > 0. Let {ak(p) : k ∈ �(p)} be its finite predictor coefficients as defined above,
and {ak : k ∈ �} be its autoregressive coefficients given by (2.5). Denote by K :=∑

k∈Z2 |γ (k)|.
Then it holds for all s ∈ N0 with s + 1 < r and for all p ∈ N:∑

k∈�(p)

(
1 + |k|∞

)s∣∣ak(p) − ak

∣∣≤ K

2
√

2π2c
·

∑
k∈�\�(p)

(
1 + |k|∞

)s+1|ak|.

Due to Lemma 2.1 the right-hand side converges to zero as p → ∞.

The established convergence of the autoregressive coefficients in Baxter’s inequality is closely
related to a similar convergence of moving average parameters, which shall be derived in the next
step. To do this, we take a look at so-called z-transforms, also called transfer functions, cf. [8],
Section 4.4. Based on the AR and MA representations from (2.5) with the coefficients (ak) and
(bk), we define the z-transforms

A(z) = 1 −
∑
k∈�

akz
k1
1 z

k2
2 , B(z) = 1 +

∑
k∈�

bkz
k1
1 z

k2
2 ∀z ∈ S, (3.4)

where

S := {
z ∈ C

2 : |z1| = 1, |z2| ≤ 1
}
.

The series A(z) and B(z) converge absolutely on its domain S because of Lemma 2.1. It is worth
noting that we have to make the distinction between z1 and z2 in S. Since z2 shows up exclusively
with exponents k2 ≥ 0 in (3.4), as can be seen from the definition of � in Section 2, we have
|z2|k2 ≤ 1 for the entire closed disk |z2| ≤ 1, while z1 shows up with both positive and negative
exponents k1. Hence we get |z1|k1 ≤ 1, and thus absolute convergence of the series A(z) and
B(z), only for the circle |z1| = 1.

In analogy to the definition of A(z), we now define the z-transform of the finite predictor
coefficients {ak(p) : k ∈ �(p)} by

Ap(z) = 1 −
∑

k∈�(p)

ak(p)z
k1
1 z

k2
2 ∀z ∈ Sp, (3.5)

where

Sp :=
{
z ∈ C

2 : p

p + 1
≤ |z1| ≤ p + 1

p
,0 ≤ |z2| ≤ p + 1

p

}
.

Note that Ap(z) is defined on an extended domain compared to A(z), but for p → ∞ the domains
Sp converge to S.

From the proof of Lemma 2.1 we already have B(z) = 1/A(z) for all z ∈ S. In particular, both
A(z) and B(z) are non-zero on their domain S. The next lemma shows that, for p large enough,
the inverse of Ap(z) has a z-transform similar to the one of B(z).
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Lemma 3.3. Let (Xt )t∈Z2 be a process that fulfils the conditions of Theorem 3.2 with some r ≥ 2.
Then there exist δ > 0 and p0 ∈ N such that for all p ≥ p0 it holds |Ap(z)| ≥ δ uniformly for all
z ∈ Sp . For those p ≥ p0, Bp(z) := 1/Ap(z) can be expressed as a convergent series of the form

Bp(z) = 1 +
∑
k∈�

bk(p)z
k1
1 z

k2
2 ∀z ∈ Sp, (3.6)

for suitable coefficients {bk(p) : k ∈ �}.

We conclude this section with a result which transfers the convergence of the autoregressive
parameters from Baxter’s inequality to the moving average parameters {bk(p) : k ∈ �} and {bk :
k ∈ �}:

Lemma 3.4. Let (Xt )t∈Z2 be a process that fulfils the conditions of Theorem 3.2 with some r ≥ 2.
For all p large enough such that Ap(z) = 0 for all z ∈ Sp , let {bk(p) : k ∈ �} be the coefficients
as defined in (3.6) and let (ak)k∈� and (bk)k∈� be the AR and MA coefficients of (Xt ) given
by (2.5). Then there exists a constant C < ∞ such that it holds for all p large enough, and for
all s ∈ N0 with s + 1 < r :∑

k∈�

(
1 + |k|∞

)s∣∣bk(p) − bk

∣∣≤ C ·
∑

k∈�\�(p)

(
1 + |k|∞

)s+1|ak|.

Due to Lemma 2.1, the right-hand side converges to zero as p → ∞.

The proof of Theorem 3.2 can be found in Section 7, while the proofs of the remaining results
of this section are deferred to [27].

3.2. Conditions on the fitted-model order p(n) and convergence of
estimated coefficients

It is important for the validity of the AR sieve bootstrap scheme that the parameter estimators
{̂ak(p) : k ∈ �(p)} used in step 1 of the procedure converge towards the finite predictor coeffi-
cients {ak(p) : k ∈ �(p)} at a sufficient rate. At this point, one has to keep in mind that the order
p of the autoregressive fits actually depends on the sample size n, which is suppressed in the
notation for most parts of this paper due to convenience reasons. In order to use the results from
the previous section, we need p = p(n) → ∞ as n → ∞. This implies that the dimension of the
Yule–Walker matrices (p) given by (3.3) also increases for n → ∞.

Probably the most popular form of fitting an AR model as in step (1) of the sieve bootstrap
procedure, is Yule–Walker estimation: One replaces the autocovariances in (p) by its empirical
versions, cf. (2.1), and solves the linear system. Informally speaking, we then have to make sure
that p(n) increases slowly enough such that for n large enough all autocovariances showing
up in (p) can be estimated sufficiently well, in order to obtain a small difference between
{̂ak(p) : k ∈ �(p)} and {ak(p) : k ∈ �(p)}.
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The following assumption formalizes this condition. Essentially it contains two assertions:
First, the underlying process allows for consistent estimation of the finite predictor coefficients
{ak(p) : k ∈ �(p)}. Second, by restricting the rate of increase of p = p(n), we can achieve
sufficiently fast uniform convergence of the estimators {̂ak(p) : k ∈ �(p)}.

Assumption 2. For p = p(n), with p(n) → ∞ as n → ∞, assume for the following sequence
in n:

p4 ·
∑

k∈�(p)

∣∣̂ak(p) − ak(p)
∣∣=OP (1).

In the remainder of this section, we will investigate whether the fitted AR models can also be
represented as moving averages of possibly infinite order, which will be crucial for asymptotic
inference later on. Based on the parameter estimators âk(p) we can define the z-transform Âp(z)

analogously to Ap(z) in (3.5) as

Âp(z) = 1 −
∑

k∈�(p)

âk(p)z
k1
1 z

k2
2 ∀z ∈ Sp.

The following calculations will make sure that Âp(z) is bounded away from zero for n large
enough. Assumption 2 implies

sup
z∈Sp

∣∣Âp(z) − Ap(z)
∣∣ ≤ ∑

k∈�(p)

∣∣̂ak(p) − ak(p)
∣∣(p + 1

p

)|k1|+k2

≤
(

p + 1

p

)2p ∑
k∈�(p)

∣∣̂ak(p) − ak(p)
∣∣ (3.7)

= 1

p4
OP (1) = oP (1),

because ((p + 1)/p)2p is a bounded sequence (convergent with limit e2), and because the defi-
nition of Sp yields

|z1|k1 ≤

⎧⎪⎪⎨⎪⎪⎩
(

p + 1

p

)k1

, for k1 ≥ 0,(
p

p + 1

)k1

, for k1 < 0

⎫⎪⎪⎬⎪⎪⎭=
(

p + 1

p

)|k1|
,

|z2|k2 ≤
(

p + 1

p

)k2

,

for all z ∈ Sp . Assumption 2 ensures p → ∞, as n → ∞, which implies that Ap(z) is bounded
away from zero for all n large enough, cf. Lemma 3.3. It follows from (3.7) that Âp(z) is uni-
formly bounded away from zero in probability for all z ∈ Sp and for all n large enough. For all
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those n large enough, the inverse of Âp(z) possesses the expansion

B̂p(z) = 1

Âp(z)
= 1 +

∑
k∈�

b̂k(p)z
k1
1 z

k2
2 ∀z ∈ Sp, (3.8)

in probability, following the same arguments as for (3.6). Hence, the bootstrap process given
by (2.4), which can be described by the transfer function Âp(z), has the moving average repre-
sentation

X∗
t =

∑
k∈�

b̂k(p)ε∗
t−k + ε∗

t (3.9)

for all n large enough, in probability. The convergence of the parameter estimators âk(p) towards
ak(p) in Assumption 2 carries over to the corresponding moving average parameters, as shows
the following lemma.

Lemma 3.5. Let (Xt )t∈Z2 be a process that fulfils the conditions of Theorem 3.2 and Assump-

tion 2. Then, for all n large enough (and thus p large enough) such that Ap(z) and Âp(z) are
bounded away from zero (the latter in probability), it holds uniformly for all k ∈ � and for some
C < ∞:

∣∣̂bk(p) − bk(p)
∣∣≤ C ·

(
1 + 1

p

)−|k1|−k2 1

p4
in probability.

The proof can be found in [27].

4. Asymptotic validity of the bootstrap

In this section, we will derive asymptotic validity of the AR sieve bootstrap procedure under ap-
propriate conditions for a class of statistics which will be specified in Assumption 3. Similar to
what happens in the time series case, cf. [24], it turns out that the bootstrap procedure asymptoti-
cally mimics the behaviour of the so-called companion process, a modification of the underlying
process (Xt )t∈Z2 . This yields a check criterion which basically says that the bootstrap procedure
works asymptotically for a test statistic Tn, whenever the asymptotic distributions of Tn applied
to the underlying and the companion process coincide. We will elaborate this, and start with the
definition of the companion process:

Based on representation (2.5) for the underlying process, we define the companion process of
(Xt ) as the stationary spatial process (X̃t )t∈Z2 , generated by

X̃t =
∑
k∈�

akX̃t−k + ε̃t , (4.1)

where the coefficients ak are exactly the ones from (2.5) and (̃εt )t∈Z2 is an i.i.d. white noise pro-
cess with identical marginal distribution as (εt ), that is, L(̃εt ) = L(εt ). Therefore, the companion
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process also possesses the moving average representation

X̃t =
∑
k∈�

bkε̃t−k + ε̃t , (4.2)

with the exact same coefficients bk as in (2.5). The only difference between (Xt ) and (X̃t ) is the
dependence structure of the respective noise processes (εt ) and (̃εt ). While (̃εt ) is i.i.d., (εt ) is
strictly stationary but not necessarily independent, the random variables εs and εt in general are
only uncorrelated for s = t . Nevertheless, it is easy to see from (4.2) that all second order prop-
erties of (Xt ) and (X̃t ) are identical, that is, the two processes possess identical autocovariances
and spectral densities.

In our main theorem, we will establish bootstrap validity for a class of statistics which will
be specified in the following Assumption 3. This class is a natural extension of the so-called
functions of generalized means, introduced by [25], to the case of random fields. These statistics
will be based on smooth functions g applied to rectangular-shaped subsamples of the available
data sample {Xt : t ∈ �}, with � := {t ∈ Z

2 : 1 ≤ t1, t2 ≤ n}. We first specify the necessary
notation: For 1 ≤ m1,m2 ≤ n let

S(m1,m2) : = {
s = (s1, s2)

T ∈N
2
0 : 0 ≤ s1 ≤ m1 − 1,0 ≤ s2 ≤ m2 − 1

}
= {

s(1), . . . , s(m1m2)
}
,

i.e., s(1), . . . , s(m1m2) is any fixed enumeration of the m1m2 vectors in S(m1,m2). We define
the m1m2-dimensional random vector

Yt := (Xt+s(1), . . . ,Xt+s(m1m2))
T .

Observe that for each t with 1 ≤ t1 ≤ n − m1 + 1 and 1 ≤ t2 ≤ n − m2 + 1, the components of
Yt form a rectangular-shaped subsample of dimension m1 × m2 of the original data sample. We
can now specify the class of statistics we will be investigating.

Assumption 3. Let n̄1 := n − m1 + 1, n̄2 := n − m2 + 1 for some 1 ≤ m1,m2 ≤ n, and let
m := m1m2. Define the statistic Tn as

Tn = f

(
1

n̄1n̄2

n̄1∑
t1=1

n̄2∑
t2=1

g(Yt )

)
,

where the functions g : Rm → R
k and f : Rk → R, with k ≥ 1, fulfil the following smoothness

conditions: f is continuously differentiable in a neighborhood of θ := Eg(Yt ) and the gradient
of f at θ does not vanish, that is,

∇f (θ) =
(

∂f (x)

∂x1
, . . . ,

∂f (x)

∂xk

)∣∣∣
x=θ

= (0, . . . ,0).

For some h ≥ 1 all component functions g1, . . . , gk of g are h times continuously differentiable
and all hth-order derivatives satisfy a Lipschitz condition, that is, for all i = 1, . . . , k and for all
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(h1, . . . , hm) ∈N
m
0 with

∑m
u=1 hu = h the derivative

∂hgi(x)

∂h1x1 · · ·∂hmxm

is Lipschitz.

Remark 4.1. The conditions from the previous assumption should be explained at this point: The
class of statistics from Assumption 3 contains, among other things, the sample mean and versions
of the sample autocovariance and sample autocorrelation. To obtain the latter two statistics, one
typically uses a function g which is not Lipschitz. For example, in the case of sample autocovari-
ances at lag h = (h1, h2)

T , one may choose m1 = h1 +1, m2 = h2 +1 and g(x1, . . . , xm) = x1xm.
Then Tn from Assumption 3 translates to taking the empirical mean of observations Xt+hXt .
Now observe that g itself is not Lipschitz, but all of its first order partial derivatives are. This
is the why we allow for non-Lipschitz functions g in Assumption 3, and merely assume that
there exists a number 1 ≤ h < ∞ such that all derivatives of order h (but not up to order h) are
Lipschitz.

In order to state the main theorem, we define T̃n and T ∗
n as the statistic Tn applied to samples

from the companion process (X̃t ) and the bootstrap process (X∗
t ), respectively, that is,

T̃n := f

(
1

n̄1n̄2

n̄1∑
t1=1

n̄2∑
t2=1

g(Ỹt )

)
, T ∗

n := f

(
1

n̄1n̄2

n̄1∑
t1=1

n̄2∑
t2=1

g
(
Y∗

t

))
,

where

Ỹt := (X̃t+s(1), . . . , X̃t+s(m1m2))
T , Y∗

t := (
X∗

t+s(1), . . . ,X
∗
t+s(m1m2)

)T
.

We can prove bootstrap validity under the following assumptions, which ensure convergence
of empirical moments and the empirical distribution function to their theoretical counterparts for
the innovations.

Assumption 4. For all continuity points x ∈R of the distribution function F of ε0 it holds

Fn(x)
P−→ F(x) as n → ∞,

where Fn(x) is the empirical distribution function

Fn(x) = 1

|�(n,p)|
∑

t∈�(n,p)

1{εt ≤ x},

and where �(n,p) := {(t1, t2) ∈ Z
2 : p + 1 ≤ t1 ≤ n − p,p + 1 ≤ t2 ≤ n}.
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Furthermore, it holds E(ε
2(h+2)
t ) < ∞, where h is the constant specified in Assumption 3, as

well as the following convergence of empirical moments:

1

|�(n,p)|
∑

t∈�(n,p)

(εt )
2w P−→ E

(
(ε0)

2w
) ∀w ≤ h + 2.

Theorem 4.2. Let (Xt )t∈Z2 be a process fulfilling Assumptions 2–4, as well as Assumption 1
with r = 4.

Then, for T̃n and T ∗
n as defined above, it holds

dK

(
L∗(n(T ∗

n − f
(
θ∗))),L(n(T̃n − f (̃θ)

)))= oP (1)

as n → ∞, where θ∗ = E∗(g(Y∗
t )), θ̃ = E(g(Ỹt )) and dK denotes the Kolmogorov distance.

This result shows for all statistics from Assumption 3 that the sieve bootstrap procedure
asymptotically approximates the distribution T̃n instead of the one of Tn. Therefore, the bootstrap
procedure works asymptotically if and only if the limiting distributions of Tn and T̃n coincide.
We will give a few examples of the application of this check criterion in the following section.
The proof of Theorem 4.2 can be found in Section 7.

5. Applications

In this section, we will give a few examples of prominent statistics to which the check crite-
rion derived in the previous section can be applied. For a simulation study concerning sample
autocorrelations, see Section 6.

Example 5.1 (Sample mean). We can use the AR sieve bootstrap procedure for the sample
mean, even for processes which are not centered as required per Assumption 1. Let (Zt )t∈Z2

be a strictly stationary process with mean μ which, other than being non-centered, fulfils the
conditions stated in Assumption 1. Since all autocovariances of (Zt ) and the centered process
(Xt ) := (Zt − μ) coincide, (Xt ) obviously fulfils Assumption 1. Now let {Zt , t ∈ �} be a data
sample generated by (Zt ). We apply the bootstrap procedure described in Section 2 to the data
{Zt , t ∈ �}, which produces bootstrap samples {X∗

t , t ∈ �}, generated by

X∗
t =

∑
k∈�(p)

âk(p)X∗
t−k + ε∗

t .

Then, compute Z∗
t := Z + X∗

t for all t ∈ �, where Z := |�|−1∑
t∈� Zt (for the bootstrap data,

Z
∗

is analogously defined). We can approximate the distribution of n(Z − μ) by the one of
n(Z

∗ − Z). Asymptotic validity of this approach can be established via Theorem 4.2 in the
following way:

The companion process associated with (Xt ) is denoted by (X̃t ) and we define Z̃t := X̃t + μ.
The functions f and g in Assumption 3 can be chosen appropriately such that Tn is the sample
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mean of {Xt, t ∈ �}, and T̃n = X̃ is the mean of {X̃t , t ∈ �}. For the linear process (Z̃t ), with an

obvious notation for Z̃, it is known that

n(Z̃ − μ) = n(X̃) = nT̃n
d−→ N

(
0,
∑
h∈Z2

γZ̃(h)

)
,

where γZ̃ denotes the autocoavariance function of (Z̃t ). Noting that Z
∗ = Z + X

∗
, it follows

immediately from Theorem 4.2

n
(
Z

∗ − Z
)= n

(
X

∗)= nT ∗
n

d∗−→ N
(

0,
∑
h∈Z2

γZ̃(h)

)
in prob. (5.1)

For the sample mean Z of the actually observed data it holds under suitable regularity conditions
that

n(Z − μ)
d−→ N

(
0,
∑
h∈Z2

γZ(h)

)
. (5.2)

Now observe that (Zt ) and (Z̃t ) have identical second order properties per definition. In particu-
lar, γZ(h) = γZ̃(h) for all lags h ∈ Z

2. Thus, the limiting distributions in (5.1) and (5.2) coincide
and it follows

dK

(
L∗(n(Z∗ − Z

))
,L
(
n(Z − μ)

))= oP (1).

Therefore, the AR sieve bootstrap proposal is asymptotically valid for the sample mean under
the stated conditions.

In contrast to the preceeding example, the limiting distribution of sample autocovariances does
not depend exclusively on second-order properties of the underlying process. This result is well
known, particularly for the time-series case, that is, d = 1. Even if the data are generated by a
linear spatial process, that is a process of the form

Xt =
∑
ν∈Z2

ανut−ν, (5.3)

with absolutely summable coefficients (αν)ν∈Z2 and an i.i.d. white noise process (ut )t∈Z2 with
finite fourth moments, the limiting variance depends on the fourth-order cumulants of (ut ). This
can be verified with analogous calculations as for the times series case, cf. [8], Proposition 7.3.4.
However, the situation is different if one switches to sample autocorrelations of linear processes,
instead of autocovariances. Then, the limiting distribution depends only on the autocorrelations
of the underlying process, as shows the following theorem, which is a direct generalisation of the
well-known Bartlett formula for time series, cf. [8], Proposition 7.2.1.

Lemma 5.2. Let (Xt )t∈Z2 be a linear spatial process as defined in (5.3), that is, with i.i.d. white
noise and finite fourth moments, and with autocorrelation function ρ. For the sample autocor-
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relations ρ̂(h) = γ̂ (h)/γ̂ (0), with γ̂ (·) as defined in (2.1), we define the comparative quantity
ρ̌(h) := γ̌ (h)/γ̌ (0) with

γ̌ (h) := 1

|�|
∑
t∈�

Xt+hXt ,

where � = {t ∈ Z
2 : 1 ≤ t1, t2 ≤ n}. ρ̌(h) and ρ̂(h) are asymptotically equivalent. Then it holds

n2 Cov
(
ρ̌(h), ρ̌(k)

)−→ V (h, k), as n → ∞,

where

V (h, k) =
∑
r∈Z2

{
2ρ(r)2ρ(k)ρ(h) − 2ρ(r + k)ρ(r)ρ(h) − 2ρ(r − h)ρ(r)ρ(k)

+ ρ(r − h + k)ρ(r) + ρ(r + k)ρ(r − h)
}
.

The proof is analogous to the time-series case and can be found in [27].

Example 5.3 (Sample autocorrelations/correlogram). Let (Xt )t∈Z2 be a spatial process fulfill-

ing Assumption 1 with corresponding companion process (X̃t )t∈Z2 . We consider the autocor-
relation function ρ(h) = γ (h)/γ (0) at lag h, together with the usual estimator Tn := ρ̂(h) =
γ̂ (h)/γ̂ (0), where γ̂ (·) is given by (2.1). For spatial processes, ρ(h) (and accordingly ρ̂(h)) are
often referred to as the (sample) correlogram, cf. [13], Section 2.3.2. Note that the autocorrela-
tions of (X̃t ) are given by the function ρ as well. Under suitable assumptions on the dependence
structure of the process, such as weak dependence or mixing conditions, it is known that

n
(
ρ̂(h) − ρ(h)

) d−→N
(
0, τ 2

X

)
, n

(
T̃n − ρ(h)

) d−→N
(
0, τ 2

X̃

)
,

where the limiting variances τ 2
X and τ 2

X̃
in general depend on the fourth order cumulants of (Xt )

and (X̃t ), respectively. Hence, it follows τ 2
X = τ 2

X̃
in general, because (Xt ) and (X̃t ) share second

order but not fourth order properties. For T ∗
n , denoting the sample autocorrelation applied to the

bootstrap sample {X∗
t , t ∈ �}, Theorem 4.2 yields

n
(
T ∗

n − f
(
θ∗)) d−→ N

(
0, τ 2

X̃

)
.

Therefore, τ 2
X = τ 2

X̃
implies that the AR sieve bootstrap in general is asymptotically not valid for

sample autocorrelations.
However, if the data are generated by a linear process (Xt ) as given by (5.3), Lemma 5.2 shows

that the limiting variance of n(ρ̌(h) − ρ(h)) is given by

τ 2
X =

∑
r∈Z2

{
2ρ(r)2ρ(h)2 − 2ρ(r + h)ρ(r)ρ(h) − 2ρ(r − h)ρ(r)ρ(h)

(5.4)
+ ρ(r)2 + ρ(r + h)ρ(r − h)

}
.
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Since ρ̌(h) and ρ̂(h) are asymptotically equivalent, n(ρ̂(h) − ρ(h)) also has limiting variance
τ 2
X . This expression depends only on the autocorrelations of the underlying process, which co-

incide for (Xt ) and (X̃t ). Thus, it follows for this case τ 2
X = τ 2

X̃
, and the bootstrap procedure is

asymptotically valid for sample autocorrelations of data generated from linear processes.

Remark 5.4. When checking for asymptotic validity of the AR sieve bootstrap procedure, it
is of critical importance to ensure that the limiting distributions of Tn and T̃n are identical, as
has been done in the previous examples. In general, this will be the case whenever the limiting
distribution depends only on second order entities such as autocovariances or the spectral density
of the underlying process. For data generated by a linear process Xt =∑

ν∈Z2 ανut−ν , one might

be tempted to conclude that (Xt ) and its companion process (X̃t ) are identical since (ut )t∈Z2

is already i.i.d. However, Example 3.2 from [24] shows for the special case of time series that
this is not the case. To be precise, the companion process (X̃t ) is always derived from the AR
representation (2.5), where (εt ) is the uniquely determined innovation process of (Xt ). Even if
the process has linear representation Xt = ∑

ν∈Z2 ανut−ν with i.i.d. noise (ut ), its innovation
process might differ from (ut ), and might be only uncorrelated but not i.i.d. Remark 2.1 of [24]
gives a specific example of this situation. Therefore, linear processes are in general not identical
to their companion processes, which makes a careful inspection of the limiting distributions as
in the previous examples a necessity.

Example 5.5 (Standardized sample variogram). Let (Xt )t∈Z2 be a spatial process fulfilling As-

sumption 1 with autocovariance function γ . The variogram at lag h ∈ Z2 is defined as

V (h) = Var(Xt − Xt+h) = E
(
(Xt − Xt+h)

2)= 2γ (0) − 2γ (h)

for centered fields, and V (s)(h) := V (h)/γ (0) is called the standardized variogram. Using the
notation from (2.1), two classical estimators for V (h) are given by

V̂1(h) = 2γ̂ (0) − 2γ̂ (h), V̂2(h) = 1

|�h|
∑
t∈�h

(Xt − Xt+h)
2,

which are asymptotically equivalent, cf. [13], Section 2.4. In particular, one can easily check that

n
(
V̂1(h) − V̂2(h)

)= oP (1). (5.5)

Versions of both of these estimators are included in the class of functions of generalized means, as
given by Assumption 3. Furthermore, both V̂1(h) and V̂2(h) can be used to construct standardized
sample variogram estimators via V̂

(s)
j (h) := V̂j (h)/γ̂ (0), j = 1,2. It holds

V̂
(s)
1 (h) = 2 − 2ρ̂(h).

Now assume the data are generated by a linear process. Then it follows from Example 5.3 asymp-
totic validity of the AR sieve bootstrap procedure for the standardized sample variogram, as long
as the data are generated by a linear spatial process.
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Remark 5.6. Our main result Theorem 4.2 provides a check criterion for asymptotic validity
of the AR sieve bootstrap for all statistics from Assumption 3. This class of statistics contains,
among other things, the statistics from Examples 5.1–5.5. However, we conjecture that analo-
gous results can be proven, in the same spirit as in the proof of Theorem 4.2, for a much wider
class of statistics beyond those covered by Assumption 3. If Tn denotes an estimator for some
parameter θ , under the condition that L(cn(Tn − θ)) has a non-degenerated limiting distribution
for some sequence (cn), we conjecture that the AR sieve bootstrap procedure is asymptotically
valid, as long as the limiting distribution depends on second order properties of the underlying
process, only.

For example, according to Section 4.5 in [17], one can prove central limit theorems for kernel-
based nonparametric spectral density estimators for strictly stationary spatial processes under
appropriate mixing conditions. The limiting distribution then depends exclusively on the spectral
density of the underlying process, which is a second order quantity, and we conjecture that the
AR sieve bootstrap is asymptotically valid in this situation.

6. A simulation study

In this section, we will present simulation results that compare the performance of the AR sieve
bootstrap to classic normal approximations and block bootstrap methods. First, we generated
square-shaped samples {Xt = Xt1,t2 : 1 ≤ t1, t2 ≤ n} as defined in Section 2, where the sample
size is set to be n = 15 which corresponds to 15 × 15 = 225 observations. The samples are
generated by a moving average model given by

Xt1,t2 = et1,t2 + 0.5 · et1+1,t2 − 0.2 · et1−1,t2 + 0.3 · et1,t2+1 + 0.1 · et1,t2−1, (6.1)

where (et )t∈Z2 is an i.i.d. white noise process with marginal distribution N (0,1). The process
(Xt )t∈Z2 fulfils the conditions of Assumption 1. Furthermore, each realisation Xt depends on
noise terms from four different directions, two from the lower and two from the upper half-
plane, cf. Section 2. This means that the process is not “tailor-made” for an AR approximation
in the direction of the lower half-plane as performed in the AR sieve algorithm. In fact, the data
generating process from (6.1) does not “favor’ any direction of one-sided autoregressive fits; one
could as well fit models that are one-sided with respect to the upper, left or right half-plane.

The statistic that we investigated is the sample autocorrelation ρ̂(h) as defined in Example 5.3,
with h = (1,−1)T . For the process from (6.1), the true autocorrelation is given by ρ(1,−1) =
0.13/1.39. We approximated the distribution of

n
(
ρ̂(1,−1) − ρ(1,−1)

)
(6.2)

for n = 15 with a normal approximation and with the AR sieve bootstrap, via the empirical
distribution of n(ρ̂∗(1,−1)− ρ̂(1,−1)). To implement the normal approximation, we considered
the limiting distribution of (6.2) given by N (0, τ 2

X) with τ 2
X from (5.4), cf. Example 5.3. For the

process (Xt ) from (6.1) one can easily verify that τ 2
X is given by

τ 2
X =

∑
|r|∞≤2

{
2ρ(r)2ρ(1,−1)2 − · · ·}, (6.3)
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since all summands with |r|∞ := max{|r1|, |r2|} > 2 vanish due to ρ(r) = 0 for all |r|∞ > 2.
Hence, we estimated τ 2

X by replacing ρ with ρ̂ in (6.3). It should be noted that this approach
represents a best-case scenario for the normal approximation because we used the additional
information that for the present data τ 2

X has the special form (6.3), that is, we chose the opti-
mal point of cutting off the infinite sum in (5.4). For real-world data, this information would
not be known, and one would have to estimate τ 2

X based on equation (5.4) by cutting off the
infinite sum at some non-optimal point which would generate an additional error in the estima-
tion.

In Figure 3, the display in the top left corner shows the comparison of three different choices
for the order p of the AR sieve bootstrap. We simulated the 95%-quantile of the distribution
of (6.2) for n = 15. In each iteration, we generated M = 500 bootstrap samples to approximate
this quantile, subsequently using the AR sieve bootstrap with orders p = 1, p = 2 and p = 3. We
also calculated the normal approximation estimate of the quantile in each iteration as described
previously. All of this was carried out for N = 50 independent iterations to generate boxplots of
the locations of the estimates. The three AR sieve approximations with p = 1,2,3 are shown in
the boxplots 1,2,3 in the top left display of Figure 3, while the normal approximation values are
given boxplot 4. The target value, that is, the 95%-quantile of the distribution of (6.2), is deter-
mined from Monte-Carlo simulations with 500 000 repetitions and illustrated by the horizontal
dashed line. One can see that the AR sieve bootstrap works very well compared to the normal
approximation, even for small orders p and even though the normal approximation is already
improved by additional information, as was explained earlier.

In the aforementioned setting, we also compared the performances of the AR sieve bootstrap
and block bootstrap techniques (each based on M = 500 repetitions). The target was again the
95%-quantile of the distribution of (6.2) for n = 15. The order of the AR sieve bootstrap was
fixed to p = 2 and we considered block sizes of l = 2, . . . ,8. Here, the block size refers to
square-shaped blocks, that is, a block size of l means drawing blocks of l × l observations from
the original data sample and then sticking the blocks together to form a sample of size n × n.
The result can be seen in the top right corner in Figure 3. Boxplot 1 corresponds to the AR sieve
bootstrap and the results for the block bootstrap are given in boxes 2, . . . ,8 with block length
l depicted in box l. Arguably the best result for the block bootstrap is achieved for l = 4; how-
ever, the AR sieve bootstrap performs considerably stronger than all block bootstrap approaches
implemented here.

In order to show that the results obtained so far are not only specific to the 95%-quantile but
to the distribution of (6.2) as a whole, we will now look at an approximation of the variance
of this distribution instead of a single quantile. The picture in the bottom left corner of Figure 3
shows these approximations of the variance with all parameters as before. The AR sieve bootstrap
(p = 2) is depicted in box 1, the block bootstrap in boxes 2 and 3 (block lengths l = 5,6) and
the normal approximation in box 4. Similar to what happens for the 95%-quantile, the AR sieve
bootstrap outperforms the other methods.

To conclude this section, we modified some of the parameters from the simulations performed
so far. The data are still generated by a moving average model, but now following the model
equation

Xt1,t2 = et1,t2 + 4 · et1+1,t2 − 5 · et1−1,t2 + 3 · et1,t2+1 − 2 · et1,t2−1, (6.4)
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Figure 3. Top left: Approximations of the 95%-quantile of the distribution of n(ρ̂(1,−1) − ρ(1,−1)) for
n = 15, data generated by model (6.1); boxplots based on N = 50 iterations. Boxes 1 to 3: AR sieve boot-
strap (based on M = 500 repetitions) with p = 1, p = 2 and p = 3, followed by the normal approximation
in box 4. Target value given by the horizontal dashed line. Top right: Same setting as in top left; approxi-
mation of the 95%-quantile with the AR sieve bootstrap in box 1, approximations with the block bootstrap
and block sizes l = 2, . . . ,8 in boxes 2, . . . ,8 (each bootstrap with M = 500 repetitions). Bottom left: Same
setting as in top left; approximation of the variance of n(ρ̂(1,−1) − ρ(1,−1)). Box 1: AR sieve bootstrap
with p = 2. Boxes 2 and 3: Block bootstrap with block sizes l = 5,6. Box 4: Normal approximation. Bot-
tom right: Approximations of the 95%-quantile of the distribution of n(ρ̂(1,−1) − ρ(1,−1)) for n = 25,
data generated by model (6.4); boxplots based on N = 50 iterations and each bootstrap method based on
M = 300 repetitions. Box 1: AR sieve bootstrap with p = 4. Boxes 2,3,4: Block bootstrap with block sizes
l = 8,9,10. Box 5: Normal approximation.

where the noise is no longer symmetrically distributed but has an i.i.d. centered exponential
distribution. In this model, the dependence of neighbouring random variables is higher than
in model (6.1). For example, the true autocorrelation at lag h = (1,−1)T is here given by
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ρ(1,−1) = 0.4 compared to ρ(1,−1) ≈ 0.094 in model (6.1). We also increase the sample size
to n = 25 – corresponding to 25 × 25 = 625 observations – and choose the order p = 4 for the
AR sieve bootstrap. The picture in the bottom right corner of Figure 3 shows the results for the
approximation of the 95%-quantile of the distribution of (6.2) for n = 25; box 1 shows the AR
sieve bootstrap, boxes 2,3,4 the block bootstrap with l = 8,9,10 and box 5 the normal approx-
imation. It can be seen that, for this increased sample size, the normal approximation is close to
its limit which, however, differs considerably from the true quantile of the finite sample distri-
bution. This is mainly due to a negative bias for the distribution of (6.2) which can be obtained
from the Monte Carlo simulations that were performed to determine the 95%-quantile. The block
bootstrap clearly does not show desirable results, this might stem from the increased dependence
between neighbouring realisations in the present model compared to the model used previously.
However, the AR sieve bootstrap performs very well for this choice of (increased values of) n

and p. This emphasizes the fact that convergence of the AR sieve bootstrap can be achieved as
long as p = p(n) → ∞ at an appropriate rate.

7. Proofs of the main results

The proof of Theorem 4.2 depends in large parts on some auxiliary results that will be collected in
the following lemmas. We will make use of a truncated version (X∗

t,M) of the bootstrap process,
which is based on the moving average representation of (X∗

t ) from (3.9). For arbitrary M ∈ N

we define

X∗
t,M =

∑
k∈�(M)

b̂k(p)ε∗
t−k + ε∗

t , (7.1)

where the finite collection of sites �(M) is defined in (2.2), whereas the non-truncated version
(X∗

t ) has the infinite collection of sites �. Analogously, a truncated version (X̃t,M) of the com-
panion process can be defined by replacing � with �(M) in (4.2). As a natural extension of the
definition of Y∗

t and Ỹt , we denote by

Y∗
t,M := (

X∗
t+s(1),M, . . . ,X∗

t+s(m1m2),M

)T
,

Ỹt,M := (X̃t+s(1),M, . . . , X̃t+s(m1m2),M)T .

With the notations introduced so far we can state the following auxiliary results.

Lemma 7.1. Let the Assumptions 1–4 be fulfilled with r = 4 and h as specified in Assumption 3.
Let c ∈R

k be arbitrary. Then it holds:

•
∑
k∈�

(
1 + |k|∞

)2∣∣̂bk(p)
∣∣=OP (1), (7.2)

• E∗(∣∣ε∗
t

∣∣2w) P−→ E
(|εt |2w

) ∀w ≤ h + 2, (7.3)
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• (X∗
t1

, . . . ,X∗
td

)T d∗−→ (X̃t1
, . . . , X̃td

)T in P -prob.
(7.4)

for all d ≥ 1 and all t1, . . . , td ∈ Z
2,

• E∗(∣∣cT g
(
Y∗

t,M

)∣∣2+2/(h+1))=OP (1), E
(∣∣cT g(Ỹt,M)

∣∣2+2/(h+1))≤ C
(7.5)

uniformly for all t ∈ Z
2,

• Cov∗(cT g
(
Y∗

h,M

)
, cT g

(
Y∗

0,M

)) P−→ Cov
(
cT g(Ỹh,M), cT g(Ỹ0,M)

)
(7.6)

for all h ∈ Z
2,

• The series �(u,v) :=
∑
h∈Z2

Cov
(
gu(Ỹh), gv(Ỹ0)

)
converges

(7.7)
absolutely for all 1 ≤ u,v ≤ k.

The following auxiliary result will also be used several times.

Lemma 7.2. Let the Assumptions 1–4 be fulfilled with r = 4. Let W ⊂ � ∪ {0} be any subset of

vectors in the upper half-plane � or in the origin. We define Ỹ(W)
t and Y∗(W)

t to be truncated

versions of Ỹt and Y∗
t , respectively, where

Ỹ(W)
t := (

X̃
(W)
t+s(1), . . . , X̃

(W)
t+s(m1m2)

)T
, Y∗(W)

t := (
X

∗(W)
t+s(1), . . . ,X

∗(W)
t+s(m1m2)

)T
,

and

X̃
(W)
t :=

∑
k∈W\{0}

bkε̃t−k + ε̃t1{0∈W }, X
∗(W)
t :=

∑
k∈W\{0}

b̂k(p)ε∗
t−k + ε∗

t 1{0∈W }.

Then there exists C < ∞, such that it holds for any t ∈ Z
2 and any v = 1, . . . , k

∥∥gv(Ỹt ) − gv

(
Ỹ(W)

t

)∥∥
2 ≤ C ·

( ∑
k∈�\W

|bk| + 1{0/∈W }
)

,

∥∥gv

(
Y∗

t

)− gv

(
Y∗(W)

t

)∥∥∗2 ≤ OP (1) ·
( ∑

k∈�\W

∣∣̂bk(p)
∣∣+ 1{0/∈W }

)
,

where ‖z‖2 := (E(z)2)1/2 and ‖z‖∗2 := (E∗(z)2)1/2 denote the usual L2-norms.

The previous lemma explicitly incorporates the two cases 0 ∈ W and 0 /∈ W , both of which
will be needed in the proofs of the main results. The proofs of the lemmas from this section can
be found in [27].
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Proof of Lemma 3.1. As a preliminary consideration, we recall for the vectors k1, . . . , kp̄

from (3.3) and arbitrary r, s ∈ {1, . . . , p̄}
∫

(−π,π]2
exp

(
i〈kr − ks, λ〉)dλ =

{
4π2, r = s,

0, r = s,
(7.8)

because kr = ks if and only if r = s. Let d ∈ R
p̄ be arbitrary with d = 0 and denote by w(λ) :=

(exp(i〈k1, λ〉), . . . , exp(i〈kp̄, λ〉))T . Observe that |dT w(λ)|2 =∑p̄

r,s=1 drds exp(i〈kr − ks, λ〉).
Using (7.8) as well as γ (h) = ∫

(−π,π]2 f (λ)ei〈h,λ〉 dλ and f (λ) ≥ c > 0, cf. Assumption 1, we
can derive

dT (p)d =
∫

(−π,π]2
f (λ)

∣∣dT w(λ)
∣∣2 dλ

≥ c ·
∫

(−π,π]2

∣∣dT w(λ)
∣∣2 dλ

= c ·
p̄∑

r,s=1

drds

∫
(−π,π]2

exp
(
i〈kr − ks, λ〉)dλ

= 4π2c · dT d.

On the one hand this shows that (p) is positive definite and therefore invertible for each p ∈N.
On the other hand it follows

dT (p)d

dT d
≥ 4π2c,

which implies for the smallest eigenvalue σmin((p)) ≥ 4π2c, cf. [26], 5.2.2 (2). This yields for
the largest eigenvalue of the inverse matrix σmax((p)−1) ≤ (4π2c)−1 for all p ∈N. The spectral
norm of the symmetric matrix (p)−1 is given by its largest eigenvalue, that is, ‖(p)−1‖spec ≤
(4π2c)−1 for all p ∈ N, which yields the desired assertion. �

Proof of Theorem 3.2. In order to write the Yule–Walker equations (3.3) in compact form,
we denoted p̄ = 2p(p + 1) and introduced the arbitrary but fixed enumeration k1, . . . , kp̄ of
the vectors k ∈ �(p). Now we extend this enumeration to the infinite but countable set �, by
choosing an arbitrary enumeration kp̄+1, kp̄+2, . . . of the vectors k ∈ � \ �(p) such that

� = {k1, . . . , kp̄} ∪ {kp̄+1, kp̄+2, . . .}.

While the finite predictor coefficients (ak(p))k∈�(p) are given by (3.3), Lemma 2.1 shows that
the autoregressive coefficients (ak)k∈� determine the L2-projection of Xt onto sp{Xt−k : k ∈
�}. Therefore, Xt −∑

k∈� akXt−k is orthogonal to each Xt−s , s ∈ �. Equivalently, with the
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introduced enumeration of � this means

Cov

(
Xt −

∞∑
j=1

akj
Xt−kj

,Xt−km

)
= γ (km) −

∞∑
j=1

akj
γ (km − kj ) = 0 ∀m ∈ N.

From this system of equations, we consider only those ones with m = 1, . . . , p̄, which is equiva-
lent to

(p) ·
⎛⎜⎝ak1

...

akp̄

⎞⎟⎠+
∞∑

j=p̄+1

akj

⎛⎜⎝γ (k1 − kj )

...

γ (kp̄ − kj )

⎞⎟⎠=
⎛⎜⎝γ (k1)

...

γ (kp̄)

⎞⎟⎠ .

Since the right-hand sides of this system and (3.3) coincide, we can infer⎛⎜⎝ak1
(p) − ak1

...

akp̄
(p) − akp̄

⎞⎟⎠= (p)−1 ·
∞∑

j=p̄+1

akj

⎛⎜⎝γ (k1 − kj )

...

γ (kp̄ − kj )

⎞⎟⎠ . (7.9)

In the following we will denote the (n, r)th entry of (p)−1 by ((p)−1)(n,r). We are interested
in a weighted sum of the absolute values of the entries on the left-hand side of (7.9). For s ∈ N0

such that s + 1 < r , we get

p̄∑
n=1

(
1 + |kn|∞

)s∣∣akn
(p) − akn

∣∣
=

p̄∑
n=1

(
1 + |kn|∞

)s∣∣∣∣∣
∞∑

j=p̄+1

akj

p̄∑
r=1

(
(p)−1)(n,r)

γ (kr − kj )

∣∣∣∣∣ (7.10)

≤
∞∑

j=p̄+1

|akj
|

p̄∑
r=1

∣∣γ (kr − kj )
∣∣ max
r=1,...,p̄

p̄∑
n=1

(
1 + |kn|∞

)s∣∣((p)−1)(n,r)∣∣.
We denote the max-column-sum norm of an arbitrary n × n-matrix B by ‖B‖1 =
maxj=1,...,n

∑n
i=1 |B(i,j)|. It is well known that ‖ · ‖1 is submultiplicative which allows us to

derive

max
r=1,...,p̄

p̄∑
n=1

(
1 + |kn|∞

)s∣∣((p)−1)(n,r)∣∣
= ∥∥diag

[(
1 + |k1|∞

)s
, . . . ,

(
1 + |kp̄|∞

)s] · (p)−1
∥∥

1

≤ max
n=1,...,p̄

(
1 + |kn|∞

)s · ∥∥(p)−1
∥∥

1.
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Hence, (7.10) can be bounded from above by

∥∥(p)−1
∥∥

1 ·
∞∑

j=p̄+1

max
n=1,...,p̄

(
1 + |kn|∞

)s |akj
|

p̄∑
r=1

∣∣γ (kr − kj )
∣∣

≤ ∥∥(p)−1
∥∥

1

∑
k∈Z2

∣∣γ (k)
∣∣ · ∞∑

j=p̄+1

max
n=1,...,p̄

(
1 + |kn|∞

)s |akj
|.

Since our numeration was chosen such that �(p) = {k1, . . . , kp̄} and � \ �(p) = {kp̄+1,

kp̄+2, . . .}, the inequality derived so far reads∑
k∈�(p)

(
1 + |k|∞

)s∣∣ak(p) − ak

∣∣
(7.11)

≤ ∥∥(p)−1
∥∥

1

∑
k∈Z2

∣∣γ (k)
∣∣ · ∑

k∈�\�(p)

max
v∈�(p)

(
1 + |v|∞

)s |ak|.

Per definition of �(p), we have

max
v∈�(p)

(
1 + |v|∞

)s = (1 + p)s ≤ (
1 + |k|∞

)s ∀k ∈ � \ �(p), (7.12)

as |k|∞ ≥ p+1 for all k ∈ �\�(p); this is why we need a weight function strictly nondecreasing
in |k|∞. Furthermore, it holds ‖A‖1 ≤ √

n‖A‖spec for all n × n-matrices A, i.e. ‖(p)−1‖1 ≤√
2p(p + 1)‖(p)−1‖spec and√

2p(p + 1) ≤ √
2(p + 1) <

√
2
(
1 + |k|∞

) ∀k ∈ � \ �(p).

Therefore, and due to (7.12) and Lemma 3.1, (7.11) can be bounded by√
2p(p + 1)

∥∥(p)−1
∥∥

spec

∑
k∈Z2

∣∣γ (k)
∣∣ · ∑

k∈�\�(p)

(
1 + |k|∞

)s |ak|

≤ 1

2
√

2π2c

∑
k∈Z2

∣∣γ (k)
∣∣ · ∑

k∈�\�(p)

(
1 + |k|∞

)s+1|ak|,

which completes the proof. �

Proof of Theorem 4.2. The basic structure of this proof resembles the one of Theorem 3.3 in
[9]. Since the proof is lengthy and technical, we will restrict ourselves to give a sketch of the
proof in this paper. The enhanced version can be found in [27]. At first, we will neglect the outer
function f in T ∗

n and show for the bootstrap quantities

(n̄1n̄2)
−1/2

n̄1∑
t1=1

n̄2∑
t2=1

(
g
(
Y∗

t

)− E∗(g(Y∗
t

))) d∗−→N (0,�) in prob., (7.13)
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where the entries of � are given by �(u,v) :=∑
h∈Z2 Cov(gu(Ỹh), gv(Ỹ0)), for u,v = 1, . . . , k.

Since the companion process (X̃t ), just as the bootstrap process, is a linear spatial process (recall
that the innovations (̃εt ) are i.i.d.), one can follow the exact same arguments as in proving (7.13)
to derive

(n̄1n̄2)
−1/2

n̄1∑
t1=1

n̄2∑
t2=1

(
g(Ỹt ) − E

(
g(Ỹt )

)) d−→N (0,�) (7.14)

with the very same limiting distribution as above. In the end, we will incorporate the function f

by applying the delta method to both CLT’s which will complete the proof of Theorem 4.2 since
(n̄1n̄2)

1/2 and n are asymptotically equivalent.
The strategy for proving (7.13) is the following: For arbitrary, but fixed M ∈ N, we consider

the truncated quantity (Y∗
t,M) based on (X∗

t,M) from (7.1) and invoke the Cramér–Wold device
by showing

1

n

n∑
t1=1

n∑
t2=1

(
cT g

(
Y∗

t,M

)− E∗(cT g
(
Y∗

t,M

))) d∗→ N
(
0, cT �Mc

)
in prob., (7.15)

for arbitrary c ∈ R
k , where

�
(u,v)
M :=

2M+m1−1∑
h1=−2M−m1+1

M+m2−1∑
h2=−M−m2+1

Cov
(
gu(Ỹh,M), gv(Ỹ0,M)

)
.

The conditional variance of the left-hand side of (7.15), subsequently abbreviated by v∗
n , con-

verges to cT �Mc in probability due to straightforward (yet tedious) calculations, using strict
stationarity of (cT g(Y∗

t,M)) and the obvious fact that g(Y∗
h,M) and g(Y∗

0,M) are independent
whenever |h1| ≥ 2M + m1 or |h2| ≥ M + m2. Hence, showing (7.15) reduces to showing

1

n
√

v∗
n

n∑
t1=1

n∑
t2=1

(
cT g

(
Y∗

t,M

)− E∗(cT g
(
Y∗

t,M

))) d∗−→ N (0,1) in prob. (7.16)

Next, we use a blocking technique: Define appropriate sequences of integers a(n), b(n) ∈ N with
a(n) → ∞, b(n) → ∞ such that b(n)/a(n) → 0 and N(n) := n/(a(n)+b(n)) → ∞ as n → ∞.
The n × n summands in (7.16) are decomposed into dominating, square-shaped blocks Aj1,j2 of
size a(n)× a(n), and negligible, asymptotically vanishing remainder terms Bj1,j2 . The left-hand
side of (7.16) then equals

1

n
√

v∗
n

N∑
j1=1

N∑
j2=1

(Aj1,j2 + Bj1,j2), (7.17)
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where, with a := a(n),

Aj1,j2 :=
j1a+(j1−1)b∑

t1=(j1−1)(a+b)+1

j2a+(j2−1)b∑
t2=(j2−1)(a+b)+1

(
cT g

(
Y∗

t,M

)− E∗(cT g
(
Y∗

t,M

)))
.

One can easily check that all blocks Aj1,j2 are independent as soon as b(n) > M . Hence, Linde-
berg’s CLT can be applied since the Lyapunov condition

1

τ 2+δ
N

N∑
j1=1

N∑
j2=1

E∗(|Aj1,j2 |2+δ
)= N2

τ 2+δ
N

a(n)2+δOP (1) = oP (1)

can be verified for τN := (
∑N

j1=1
∑N

j2=1 Var∗(Aj1,j2))
1/2. This yields (7.16) and therefore (7.15).

The proof is then completed by using Lemma 7.2 to show

Var∗
(

1

n

n∑
t1=1

n∑
t2=1

(
cT g

(
Y∗

t

)− cT g
(
Y∗

t,M

)))≤ 1

M2
OP (1), (7.18)

since this condition is sufficient for Proposition 6.3.9 of [8] to hold, which states that (7.14)
implies (7.13). �
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