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Gerber and Chopin [J. R. Stat. Soc. Ser. B. Stat. Methodol. 77 (2015) 509–579] recently introduced Sequen-
tial quasi-Monte Carlo (SQMC) algorithms as an efficient way to perform filtering in state–space models.
The basic idea is to replace random variables with low-discrepancy point sets, so as to obtain faster con-
vergence than with standard particle filtering. Gerber and Chopin (2015) describe briefly several ways to
extend SQMC to smoothing, but do not provide supporting theory for this extension. We discuss more thor-
oughly how smoothing may be performed within SQMC, and derive convergence results for the so-obtained
smoothing algorithms. We consider in particular SQMC equivalents of forward smoothing and forward fil-
tering backward sampling, which are the most well-known smoothing techniques. As a preliminary step, we
provide a generalization of the classical result of Hlawka and Mück [Computing (Arch. Elektron. Rechnen)
9 (1972) 127–138] on the transformation of QMC point sets into low discrepancy point sets with respect to
non uniform distributions. As a corollary of the latter, we note that we can slightly weaken the assumptions
to prove the consistency of SQMC.

Keywords: hidden Markov models; low discrepancy; particle filtering; quasi-Monte Carlo; sequential
quasi-Monte Carlo; smoothing; state–space models

1. Introduction

State–space models are popular tools to model real life phenomena in many fields such as
Economics, Engineering and Neuroscience. These models are mainly used for extracting in-
formation about a hidden Markov process (xt )t≥0 of interest from a set of observations y0:T :=
(y0, . . . ,yT ). In practice, this typically translates to the estimation of p(xt |y0:t ), the distribu-
tion of xt given the data y0:t , 0 ≤ t ≤ T (called the filtering distribution), and/or to p(x0:T |y0:T )

(called the smoothing distribution). However, these distributions are intractable in most cases,
and require to be approximated in some way, the most popular being particle filtering (Sequen-
tial Monte Carlo). See, for example, the books of [6,13] for more background on state–space
models and particle filters.

Recently, [17] introduced sequential quasi-Monte Carlo (SQMC) as an efficient alternative to
particle filtering. (SQMC is related to the array-RQMC algorithm, [15,23–25], as discussed in
the body of the paper.) Essentially, SQMC amounts to replacing the random variates generated
at each iteration of a particle filter with a QMC (low-discrepancy) point set; that is a set of N

points that are selected so as to cover more evenly the space that random variates would; see,
for example, the books of [26,27] for more background on QMC. [17] established that, for some
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constructions of RQMC (randomised QMC) point sets, the convergence rate of SQMC (with
respect to N , the number of simulations) is at worst OP (N−1/2), while it is OP (N−1/2) on the class
of continuous and bounded functions. (This of course compares favourably to the OP (N−1/2)

rate of particle filtering.) In addition, the numerical results of [17] show that SQMC dramatically
outperforms particle filtering in several applications.

One important question that remains however is how to use SQMC to obtain smoothing es-
timates that converge as N → +∞. Smoothing is recognised as a more difficult problem than
filtering [4]. Smoothing algorithms typically require extra steps on top of particle filtering (such
as a backward pass), and often cost O(N2) (but some variants cost O(N), as discussed later).

This paper discusses existing smoothing algorithms, explains how they may be adapted to
SQMC, and presents convergence results for the corresponding SQMC smoothing algorithms.
We first study forward smoothing, where trajectories are carried forward in the particle filter,
and show that this approach leads to consistent estimates in SQMC. Then, we derive a SQMC
version of forward filtering backward sampling (where complete trajectories are simulated from
the positions simulated by a particle filter, see [18]), and establish convergence results for the
so obtained smoothing estimates. We also consider the marginal version of backward sampling,
which usually allows for a more precise estimation of marginal smoothing distributions.

The rest of this paper is organized as follows. Section 2 introduces the model and the nota-
tions considered in this work, and give a short description of SQMC. Section 3 contains some
preliminary results that will be needed to study SQMC smoothing. We first present a new con-
sistency result for the forward step, which has the advantage to rely on weaker assumptions than
in [17], and state a result relative to the backward decomposition and SQMC estimation of the
smoothing distribution. Then, we provide a generalization of the classical result of [22] on the
transformation of QMC point sets into low discrepancy point sets with respect to non uniform
distributions that is essential to the analysis of QMC smoothing algorithms. This section ends
with some results on the conversion of discrepancies through the Hilbert space filling curve. In
Section 4, we establish the consistency of QMC forward smoothing while our results on QMC
forward-backward smoothing are given Section 5. In Section 6, a numerical study examines the
performance of the QMC smoothing strategies discussed in this work while Section 7 concludes.

2. Preliminaries

2.1. Feynman–Kac formalism

Let (xt )t≥0 be a Markov chain, defined on a space X ⊆ Rd (equipped with Lebesgue measure),
with initial distribution m0(dx0), transition kernel mt(xt−1,dxt ), t ≥ 1, and let (Gt )t≥0 a se-
quence of (measurable) potential functions, G0 : X → R+, Gt : X × X → R+. As in [17], and
most of the QMC literature, we take X = [0,1)d , but see Section 3 of [17] for how to generalise
our results to unbounded state spaces.

For this Feynman–Kac model (mt ,Gt )t≥0, let Qt and Qt be the probability measures on X
such that, for any bounded measurable function ϕ : X →R,

Qt (ϕ) = 1

Zt−1
E

[
ϕ(xt )G0(x0)

t−1∏
s=1

Gs(xs−1,xs)

]
,
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Qt (ϕ) = 1

Zt

E

[
ϕ(xt )G0(x0)

t∏
s=1

Gs(xs−1,xs)

]
,

Zt = E

[
G0(x0)

t∏
s=1

Gs(xs−1,xs)

]
,

where expectations are with respect to the law of Markov chain (xt ), and empty products equal
one. Similarly, let Q̃t be the probability measure on X t+1 such that, for any bounded test function
ϕ :X t+1 → R,

Q̃t (ϕ) = 1

Zt

E

[
ϕ(x0:t )G0(x0)

t∏
s=1

Gs(xs−1,xs)

]
.

In the sequel, the notation 0 : t is used to denote the set of integers {0, . . . , t} and x0:t denotes
the collection {xs}ts=0. Similarly, in what follows we use the shorthand x1:N for a collection
{xn}Nn=1 of N points in Rd , and x1:N

0:t for collection {xn
0:t }Nn=1 of N points in R(t+1)d . Finally, for

a probability measure π ∈ P(X ), with P(X ) the set of probability measures on X absolutely
continuous with respect to the Lebesgue measure, π(ϕ) denotes the expectation of ϕ(x) under π .

2.2. Connection with state–space models and smoothing

The Feynman–Kac formalism of the previous section (see the book of [9] for a more in-depth
presentation) is rather abstract, but it has the advantage of representing in a very generic manner
the recursive quantities computed by most types of particle algorithms, in particular those aimed
at the sequential analysis of state–space models.

Concretely, consider a state–space model consisting of an unobserved Markov chain (xt ),
with initial distribution p0(dx0) and Markov kernel pt (xt−1,dxt ), and an observed process (yt ),
such that yt , conditional on xt , is independent of the other variables, ys and xs for s �= t , and
has conditional density (with respect to an appropriate measure, e.g. Lebesgue) f Y (yt |xt ). For
instance, in tracking and navigation applications, xt would represent the position of a moving
object (e.g., a ship), and yt a noisy measurement of this position (e.g., by a radar); see, for
example, the books of [13] and [6] for other examples of state–space models.

By taking

G0(x0) = f Y (y0|x0)
m0(dx0)

pt (dx0)
, Gt (xt−1,xt ) = f Y (yt |xt )

mt (xt−1,dxt )

pt (xt−1,dxt )
,

where the second factor in both cases is a Radon–Nikodym derivative (of mt(xt−1,dxt ) relative
to pt(xt−1,dxt ) in the latter case, assuming of course, this derivative is well defined), we obtain
as Qt (dxt ) the filtering distribution of the model, that is, the law of xt conditional on y0:t . Sim-
ilarly, Qt (dxt ) is the predictive distribution (the law of xt |y0:t−1), and Q̃t (dx0:t ) is the object of
interest in this work, namely the smoothing distribution (the law of x0:t |y0:t ). In addition, Zt is
the marginal likelihood of observations y0:t .
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A particle algorithm corresponding to a given Feynman–Kac model simulates particles accord-
ing to the Markov kernel mt(xt−1,dxt ). One may take mt(xt−1,dxt ) = pt(xt−1,dxt ), in which
case Gt simplifies to Gt(xt−1,xt ) = f Y (yt |xt ); that is, Gt depends only on xt . The correspond-
ing algorithm is usually called the bootstrap filter, after [19]. However, one may often construct
more efficient particle algorithms by taking a mt(xt−1,dxt ) that differs from pt(xt−1,dxt ) [14].

2.3. Extreme norm and QMC point sets

As in [17], our consistency results are stated in term of the extreme norm, defined, for two prob-
ability measures π1 and π2 on [0,1)d , by

‖π1 − π2‖E = sup
B∈B[0,1)d

∣∣π1(B) − π2(B)
∣∣,

where

B[0,1)d =
{

B =
d∏

i=1

[ai, bi],0 ≤ ai < bi < 1

}
.

Note that ‖πN −π‖E → 0 implies that πN(ϕ) → π(ϕ) for any bounded and continuous function
ϕ (by portmanteau lemma, see, for example, Lemma 2.2, page 6 of [36]). In words, consistency
for the extreme norm implies consistency of estimates for test functions ϕ that are bounded and
continuous.

The extreme norm is natural in QMC contexts since it can be viewed as the generalization of
the extreme discrepancy of a point set u1:N in [0,1)d , defined by

D
(
u1:N ) = ∥∥S(

u1:N ) − λd

∥∥
E,

where λd denotes the Lebesgue measure on Rd and S is the operator

S : u1:N → 1

N

N∑
n=1

δun .

The extreme discrepancy therefore measures how a point set spreads evenly over [0,1)d and is
used to define formally QMC point sets. To be more specific, u1:N is a QMC point set in [0,1)d if
D(u1:N) =O(N−1(logN)d). Note that, for a sample u1:N of N IID uniform random numbers in
[0,1)d , D(u1:N) = O(N−1/2 log logN) almost surely by the law of iterated logarithm (see, e.g.,
[28], page 167). There exist many constructions of QMC point sets in the literature (see [11,28]
for more details on this topic) and, although we write u1:N rather than uN,1:N , u1:N may not
necessarily be the N first points of a fixed sequence, that is, one may have uN,N−1 �= uN−1,N−1.
However, it is worth keeping in mind that all the results presented in this paper hold both for
point sets and sequences.

Even if in this work we are mainly interested in consistency results (which hold for determin-
istic point sets u1:N ), we will sometimes refer to randomized QMC (RQMC) point sets. For-
mally, u1:N is RQMC point set if it is a QMC point set with probability one and if, marginally,
un ∼ U([0,1)d) for all n ∈ 1 : N .
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Figure 1. First four iterates of sequence Hm, the limit of which is the Hilbert curve H , for d = 2
(source: [21]).

2.4. The Hilbert space-filling curve

The Hilbert space filling curve plays a key role in the construction and the analysis of SQMC.
This curve is a Hölder continuous fractal map H : [0,1] → [0,1]d that fills completely [0,1]d ;
see Figure 1 for a graphical depiction, and Appendix A for a presentation of its mains properties.
In what follows, we denote by h : [0,1]d → [0,1] its pseudo-inverse which verifies, for any
x ∈ [0,1]d , H ◦ h(x) = x, and, for d = 1, we use the natural convention that H and h are the
identity mappings, that is, H(x) = h(x) = x, ∀x ∈ [0,1]. The Hilbert curve is not uniquely
defined; in this work, we assume that H is such that H(0) = 0 ∈ [0,1]d (this is in fact the
classical way to construct the Hilbert curve, see, for example, [20]). This technical assumption
is needed in order to be consistent with the fact that we work with left-closed and right-opened
hypercubes since, in that case, h([0,1)d) = [0,1). Finally, to evaluate either h or H pointwise,
one may use the algorithm of [20].

2.5. Rosenblatt transform

Another important technical tool for SQMC is the Rosenblatt transform. For a probability dis-
tribution π over [0,1), Fπ denotes its CDF (cumulative distribution), and F−1

π its inverse CDF;
that is, F−1

π = inf{x ∈ [0,1) : F(x) ≥ u}. More generally, for a probability distribution π over
X = [0,1)d , Fπ :X → [0,1]d denotes the Rosenblatt transform, that is

Fπ(x) = (
Fπ,1(x1),Fπ,2(x2|x1), . . . ,Fπ,d(xd |x1:d−1)

)T
, x = (x1, . . . , xd)T ∈X ,

where Fπ,1 is the CDF of the marginal distribution of the first component (relative to π ), and for
i ≥ 2, Fπ,i(·|x1:i−1) is the CDF of component xi , conditional on (x1, . . . , xi−1), again relative
to π . (The Rosenblatt transform is not to be mistaken with the multivariate CDF; in particular it
takes values in [0,1]d , not in [0,1].)

The inverse of Fπ is denoted F−1
π . The Rosenblatt transform and its inverse define a

monotonous map that transforms any distribution into a uniform distribution, and vice-versa.
We overload this notation for Markov kernels: Fmt (xt−1, ·) is the Rosenblatt transform of

probability distribution mt(xt−1,dxt ) (for fixed xt−1 ∈ X ), and F−1
mt

is defined similarly.
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Algorithm 1 SMC Algorithm
Generate (for n ∈ 1 : N ) xn

0 ∼ m0(dx0)

Compute (for n ∈ 1 : N ) Wn
0 = G0(xn

0)/
∑N

m=1 G0(xm
0 )

for t = 1 to t = T do
Generate (for n ∈ 1 : N ) un

t ∼ U [0,1) and set an
t = F−1

t−1,N (un
t ), where Ft−1,N (m) =∑N

n=1 Wn
t−11(n ≤ m)

Generate (for n ∈ 1 : N ) xn
t ∼ mt(x̂n

t−1,dxt ), where x̂n
t−1 = xan

t

t−1

Compute (for n ∈ 1 : N ) Wn
t = Gt(x̂n

t−1,xn
t )/

∑N
m=1 Gt(x̂m

t−1,xm
t )

end for

2.6. Sequential quasi-Monte Carlo

The basic structure of SMC (Sequential Monte Carlo, also known as particle filtering) algorithms
is recalled as Algorithm 1. One sees from this description that SMC is a class of iterative algo-
rithms that use resampling and mutation steps to move from a discrete approximation Q̂N

t (dxt )

of Qt (dxt ) to a discrete approximation Q̂N
t+1(dxt+1) of Qt+1(dxt+1), where

Q̂N
t (dxt ) =

N∑
n=1

Wn
t δxn

t
(dxt ), t ∈ 0 : T .

A closer look at Algorithm 1 shows that, for t ≥ 1, the resampling and the mutation steps
together amounts to sampling from the (random) distribution on X 2 defined by

πN
t

(
d(xt−1,xt )

) = Q̂N
t−1 ⊗ mt

(
d(xt−1,xt )

)
, (1)

where, for a probability measure π ∈ P([0,1)d1) and a kernel K : [0,1)d1 → P([0,1)d2), the
notation π ⊗ K(d(x1,x2)) denotes the probability measure π(dx1)K(x1,dx2) on [0,1)d1+d2 .

Based on this observation, the basic idea of SQMC is to replace the uniform random numbers
used at iteration t ≥ 1 of an SMC algorithm to sample from (1) by a QMC point set u1:N

t of
appropriate dimension. In the deterministic version of SQMC, the only known property of u1:N

t

is that its discrepancy converges to zero as N goes to infinity. Thus, we must make sure that the
transform applied to u1:N

t preserves consistency (relative the extreme norm): that is, D(u1:N) →
0 implies that ‖�N

t (u1:N) − πN
t ‖E → 0, where �N

t is the chosen transformation.
When the state space is univariate, [17] propose to use for �N

t the inverse Rosenblatt trans-
formation of πN

t described in the previous subsection, which amounts to sample (x̂n
t−1, x

n
t ) from

(1) as follows:

x̂n
t−1 = F−1

Q̂N
t−1

(
un

t

)
, xn

t = F−1
mt

(
x̂t−1, v

n
t

)
,

(
un

t , v
n
t

) ∼ U
([0,1)2).

However, when the state variable is multivariate (i.e., d > 1) this approach cannot be directly
used because in that case Q̂N

t−1(dxt−1) is a weighted sum of Dirac measures over X ⊂Rd .
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Algorithm 2 SQMC Algorithm

Generate a QMC point set u1:N
0 in [0,1)d

Compute (for n ∈ 1 : N ) xn
0 = F−1

m0
(un

0)

Compute (for n ∈ 1 : N ) Wn
0 = G0(xn

0)/
∑N

m=1 G0(xm
0 )

for t = 1 to t = T do
Generate a QMC point set u1:N

t in [0,1)d+1, let un
t = (un

t ,vn
t ), where un

t ∈ [0,1), vn
t ∈

[0,1)d . Assume that, for all n,m ∈ 1 : N , n ≤ m =⇒ un
t ≤ um

t

Hilbert sort: find permutation σt−1 such that h(xσt−1(1)

t−1 ) ≤ · · · ≤ h(xσt−1(N)

t−1 )

Compute (for n ∈ 1 : N ) an
t−1 = F−1

t−1,N (un
t ) where Ft−1,N (m) = ∑N

i=1 W
σt−1(i)

t−1 I(i ≤ m)

Compute (for n ∈ 1 : N ) xn
t = F−1

mt
(x̂n

t−1,vn
t ), where x̂n

t−1 = x
an
t−1

t−1

Compute (for n ∈ 1 : N ) Wn
t = Gt(x̂n

t−1,xn
t )/

∑N
m=1 Gt(x̂m

t−1,xm
t )

end for

To extend this approach to multidimensional state–space models, [17] transform the multivari-
ate distribution Q̂N

t−1(dxt−1) into a univariate distribution Q̂N
t−1,h(dht−1) by applying the change

of variable h : X → [0,1), where h is the pseudo-inverse of the Hilbert curve (see Section 3.4).
Using this change of variable, the resampling and mutation steps of SMC are equivalent to sam-
pling from

πN
t,h

(
d(ht−1,xt )

) = Q̂N
t−1,h ⊗ mt,h

(
d(ht−1,xt )

)
, (2)

where mt,h(ht−1,xt ) := mt(H(ht−1),xt ). As for the univariate setting, one can generate random
variates from πN

t,h(d(ht−1,xt )) using the inverse Rosenblatt transformation of this distribution;

that is, we can sample (ĥn
t−1,xn

t ) from (2) as follows:

ĥn
t−1 = F−1

Q̂N
t−1,h

(ut ), xn
t = F−1

mt

(
H

(
ĥn

t−1

)
,vn

t

)
,

(
un

t ,vn
t

) ∼ U
([0,1)d+1),

where Q̂N
t−1,h = ∑N

n=1 Wn
t−1δh(xn

t−1)
(dht ). Since the h(xn

t−1)’s lie in [0,1], computing ĥt−1

above amounts to (a) sort the h(xn
t−1), i.e. find permutation σt−1 such that h(xσt−1(1)

t−1 ) ≤
· · · ≤ h(xσt−1(N)

t−1 ); and (b) for each n find the integer an
t−1 such that

∑
i<an

t−1
W

σt−1(i)

t−1 < un
t ≤∑

i≤at−1
W

σt−1(i)

t−1 . (Provided the un
t are ordered, Step (b) may be performed in O(N) time.)

The resulting SQMC algorithm, which is therefore based for t ≥ 1 on d +1-dimensional QMC
point sets u1:N

t , un
t = (un

t ,vn
t ) ∈ [0,1)d+1, is presented in Algorithm 2.

Note that, before [17], the idea of introducing T + 1 point sets (one per time step) of dimen-
sion d , in order to perform integration with respect to a space of dimension (T + 1)d may be
found in the array-RQMC algorithm [15,23–25], which is designed to evaluate expectations with
respect to a Markov chain (xt ), run from t = 0 to time T . The array-RQMC algorithm requires
to specify a certain order on the state space X , and the Hilbert curve used in SQMC may be seen
as one particular way to order points in X [37]. On the other hand, the theoretical results of [17]
and of this paper rely quite heavily on properties of the Hilbert curve, which seems to indicate
that the Hilbert curve is the “right” way to sort ancestors in SQMC.
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3. Preliminary results

3.1. Consistency of SQMC

The consistency of Algorithm 2 (as N → +∞, with respect to the extreme metric) was estab-
lished in [17], Theorem 5, under the assumption that Fmt is Lipschitz. We generalise below this
result to the case where Fmt is Hölder continuous, as this generalisation will be needed later on
when dealing with the backward step. This also allows us to recall some of the assumptions that
will be repeated throughout the paper. For convenience, let Fmt (xt−1,xt ) = Fm0(x0) when t = 0.

Theorem 1. Consider the set-up of Algorithm 2 where, for all t ∈ 0 : T , (u1:N
t )N≥1 is a sequence

of point sets in [0,1)dt , with d0 = d and dt = d + 1 for t > 0, such that D(u1:N
t ) → 0 as N →

+∞. Assume the following holds for all t ∈ 0 : T :

1. The xn
t ’s are pairwise distinct: xn

t �= xm
t for n �= m ∈ 1 : N ;

2. Gt is continuous and bounded;
3. Fmt (xt−1,xt ) is such that

(a) For i ∈ 1 : d and for a fixed x′, the ith coordinate of Fmt (x
′,x) is strictly increasing in

xi ∈ [0,1), the ith coordinate of x;
(b) Viewed as a function of x′ and x, Fmt (x

′,x) is Hölder continuous;
(c) For i ∈ 1 : d , mti(x′, x1:i−1,dxi), the distribution of the component xi conditional on

(x1, . . . , xi−1) relative to mt(x′,dx), admits a density pti(xi |x1:i−1,x′) with respect to
the Lebesgue measure such that ‖pti(·|·)‖∞ < +∞.

4. Qt (dxt ) = pt (xt )λd(dxt ) where pt(xt ) is a strictly positive bounded density.

For t ∈ 1 : T , let P N
t,h = (h(x̂1:N

t−1),x1:N
t ). Then, under Assumptions 1–4, we have, for t ∈ 1 : T ,∥∥S(

P N
t,h

) −Qt−1,h ⊗ mt,h

∥∥
E → 0 as N → +∞

and, for t ∈ 0 : T , ∥∥Q̂N
t −Qt

∥∥
E → 0 as N → +∞.

Theorem 1 applies to either deterministic or random point sets u1:N
t . In the latter case, assump-

tions relative to the u1:N
t ’s must hold almost surely.

The difference with [17], Theorem 5, is Assumption 3, where 3(c) was not needed but it was
assumed that Fmt is a Lipschitz function. In this work, Assumption 3(c) will be required to estab-
lish the validity of the backward step. Assumption 1 is a technical condition that is verified almost
surely for the randomized version of SQMC while assuming that Gt is bounded is standard in
particle filtering [9].

The proof of Theorem 1 is omitted since it can be directly deduced from the proof of [17], The-
orem 5, and from the generalization of the result of [22], “Satz 2”, presented in the Section 3.3,
which constitutes one of the key ingredients to study the backward pass of SQMC.
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3.2. Backward decomposition

Backward smoothing algorithms require that the Markov kernel mt(xt−1,dxt ) admits a
(strictly positive) probability density which may be computed pointwise; mt(xt−1,dxt ) =
mt(xt−1,xt )λd(dxt ), with mt(xt−1,dxt ) > 0 (and λd being the Lebesgue measure in our case).

The backward decomposition of the smoothing distribution is [10], e.g.,:

Q̃T (dx0:T ) =QT (dxT )

T∏
t=1

Mt,Qt−1(xt ,dxt−1), (3)

where, for any π ∈P(X ) and t ∈ 1 : T , Mt,π : X → P(X ) is the Markov kernel such that

Mt,π (xt ,dxt−1) := G̃t (xt−1,xt )π(dxt−1)

with

G̃t (xt−1,xt ) := mt(xt−1,xt )Gt (xt−1,xt )∫
X mt(x̃t−1,xt )Gt (x̃t−1,xt )π(dx̃t−1)

. (4)

As a preliminary result, we show that the plug-in estimate Q̃N
T of Q̃T , obtained by replacing Qt

with Q̂N
t in (3), is consistent for the extreme norm; see Appendix B.1 for a proof.

Theorem 2. Consider the set-up of Algorithm 2, define for t ∈ 1 : T

Q̃N
t (dx0:t ) = Q̂N

t (dxt )

t∏
s=1

Ms,Q̂N
s−1

(xs ,dxs−1), (5)

and consider the following hypotheses:

(H1) G̃t is continuous and bounded, ‖G̃t‖∞ < ∞;
(H2) FMt,Qt−1

(xt ,xt−1) satisfies Assumptions 3(a) and 3(b) of Theorem 1 (i.e., replace mt by
Mt,Qt−1 in these assumptions).

Then,

1. Under (H1) and the assumptions of Theorem 1, one has (for t ∈ 1 : T )

sup
xt∈[0,1)d

∥∥Mt,Q̂N
t−1

(xt ,dxt−1) −Mt,Qt−1(xt ,dxt−1)
∥∥

E → 0 as N → +∞. (6)

2. If (6) holds, and under (H2) and the assumptions of Theorem 1, one has (for t ∈ 1 : T )∥∥Q̃N
t − Q̃t

∥∥
E → 0 as N → +∞. (7)

The first result above does not have a clear interpretation, but it will be used as an intermediate
result later on.
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3.3. A generalization of Satz 2 of [22]

Theorem 3 below generalizes Proposition “Satz 2” of [22] to the case where point sets in [0,1)d

are transformed through a Hölder continuous Rosenblatt transformation; see Appendix B.2 for a
proof.

Theorem 3. Let π be a probability measure on [0,1)d and assume the following:

1. Viewed as a function of x, Fπ(x) is Hölder continuous with Hölder exponent κ ∈ (0,1];
2. For i ∈ 1 : d , the ith coordinate of Fπ(x) is strictly increasing in xi ∈ [0,1), the ith coordi-

nate of x;
3. For i ∈ 1 : d , πi(x1:i−1,dxi), the distribution of the component xi conditional on

(x1, . . . , xi−1) relative to π(dx), admits a density pi(xi |x1:i−1) with respect to the Lebesgue
measure such that ‖pi(·|·)‖∞ < +∞.

Let u1:N be a point set in [0,1)d and, for n ∈ 1 : N , define xn = F−1
π (un). Then, for a constant

c > 0, ∥∥S(
x1:N ) − π

∥∥
E ≤ cD

(
u1:N )1/d̃

,

where d̃ = ∑d−1
i=0 �κ−1�i .

When the Rosenblatt transformation Fπ is Lipschitz, d̃ = d and we recover the result of [22].
In this case, Assumption 3 is not needed. Notice that the rate provided in Theorem 3 de-
creases quickly with the Hölder exponent κ . For κ = 1/2, the convergence rate is of order
O(D(u1:N)1/(2d−1)) and hence is very slow even for moderate values of d .

We will see that the backward step of the forward-backward SQMC smoothing algorithm
amounts to applying to QMC point sets transformations that are “nearly” (1/d)-Hölder contin-
uous (in a sense that we will make precise). The main message of Theorem 3, as far as SQMC
is concerned, is that such an algorithm may be consistent (as N → +∞) despite being based on
non-Lipschitz transformations.

Theorem 3 is interesting more generally, since the construction of low discrepancy point sets
with respect to non uniform distributions is an important problem, which is motivated by the
generalized Koksma–Hlawka inequality ([2], Theorem 1):∣∣∣∣∣ 1

N

N∑
n=1

ϕ
(
xn

) −
∫

[0,1)

ϕ(x)π(dx)

∣∣∣∣∣ ≤ V (ϕ)
∥∥S(

x1:N ) − π
∥∥

E,

where V (ϕ) is the variation of ϕ in the sense of Hardy and Krause. It is also interesting to mention
that the inverse Rosenblatt transformation is the best known construction of low discrepancy
point sets for non uniform probability measures, although the bounds for the extreme metric
given in [22], “Satz 2” and in Theorem 3 are very far from the best known achievable rate
since [1], Theorem 1, have established the existence, for any probability measure π on [0,1)d ,
of a sequence (xn)n≥1 verifying ‖S(x1:N) − π‖E =O(N−1(logN)0.5(3d+1)).
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3.4. Discrepancy conversion through the Hilbert space filling curve

We now state results regarding how the Hilbert curve H : [0,1] → [0,1]d conserves discrepancy.
Such results were not directly needed to establish the consistency of SQMC. Indeed, as outlined
in the statement of Theorem 1, it was sufficient to show that P N

t,h has low discrepancy with respect

to the proposal distribution Qt−1,h ⊗ mt,h, where we recall that P N
t,h = (h(x̂1:N

t−1),x1:N
t ), with

h(x̂1:N
t−1) ∈ [0,1). The discrepancy of the “resampled” particles x̂1:N

t−1 in [0,1)d was not derived.
But, again, we will need such results when dealing with backward estimates.

More precisely, and as explained below (see Section 5.2), the analysis of backward estimates
require results on the conversion of discrepancies through the following mapping, defined for
k ∈N, by

Hk : (x0, . . . , xk) ∈ [0,1)(k+1) �→ (
H(x0), . . . ,H(xk)

) ∈ [0,1)d(k+1) (8)

and with pseudo-inverse hk : [0,1)d(k+1) → [0,1)k+1.
Theorem 4 and Corollary 1 below are generalizations of [35], Theorem 1, which corresponds

to Theorem 4 with k = 0, πh the uniform distribution on [0,1) and πN
h = S(u1:N) for a point set

u1:N in [0,1). To save space, the proofs the these two results are omitted.

Theorem 4. Let π(dx) = π(x)λd(k+1)(dx), k ∈N, be a probability measure on [0,1)d(k+1) with
bounded density π , πhk

be the image of π by hk and (πN
hk

)N≥1 be a sequence of probability

measures on [0,1)k+1 such that ‖πN
hk

− πhk
‖E → 0 as N → +∞. Let πN be the image by Hk of

πN
hk

. Then, ∥∥πN − π
∥∥

E → 0 as N → +∞.

Corollary 1. Consider the set-up of Theorem 4 with k = 0 and let K : [0,1)d → P([0,1)s) be a
Markov kernel, Kh(h1,dx2) = K(h(x1),dx2) and P N

h = (h1:N
1 ,x1:N

2 ) be a sequence of point sets
in [0,1)1+s such that, as N → +∞, ‖S(P N

h ) − πh ⊗ Kh‖E → 0. Let P N = (H(h1:N
1 ),x1:N

2 ).
Then, ∥∥S(

P N
) − πN ⊗ K

∥∥
E → 0 as N → +∞.

A direct consequence of this corollary is that, under the assumptions of Theorem 1, the point
set P N

t = (x̂1:N
t−1,x1:N

t ) is such that, as N → +∞,

∥∥S(
P N

t

) −Qt−1 ⊗ mt

∥∥
E → 0.

Another consequence of this corollary is that Algorithm 2 can be trivially adapted to forward
smoothing, as briefly explained in the next section.
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4. SQMC forward smoothing

Consider now the following extension of Algorithm 2, where full trajectories zt := x0:t ∈ X t+1

are carried forward: at time 0, set zn
0 := xn

0, and, recursively, zn
t := (ẑn

t ,xn
t ), with ẑn

t := z
an
t−1

t−1 . In
addition, replace the Hilbert sort step of Algorithm 2 by the same operation on full trajectories:

Hilbert sort: find permutation σt−1 such that ht (zσt−1(1)

t−1 ) ≤ · · · ≤ ht (zσt−1(N)

t−1 )

with ht the inverse of a Hilbert curve Ht that maps [0,1] into [0,1]dt . In other words, this is the
SQMC equivalent of the smoothing technique known as “forward smoothing”.

Proposition 1. Under Assumptions 1–3 of Theorem 1, and Assumption 4′

4′. Q̃t (dzt ) = p̃t (zt )λd(t+1)(dzt ) where p̃t (zt ) is a strictly positive bounded density;

one has, for t ≥ 0 and the forward smoothing algorithm described above,∥∥∥∥∥
N∑

n=1

Wn
t δzn

t
− Q̃t

∥∥∥∥∥
E

→ 0 as N → +∞, (9)

where Q̃t denotes the smoothing distribution at time t .

See Appendix B.3 for a proof.
This result is presented for the sake of completeness, but it is clear that it is of limited practical

interest. Transformations through Ht will lead to poor convergence rates as soon as t becomes
large, as per Theorem 4. In addition, there is no reason to believe that the SQMC version of for-
ward smoothing would not suffer from the same major drawback as its Monte Carlo counterpart,
namely that the N simulated paths quickly coalesce to a single ancestor.

5. SQMC backward smoothing

We now turn to the derivation and analysis of a SQMC version of backward smoothing. There
exist in fact two backward smoothing algorithms. The first one [14] approximates the marginal
smoothing distributions Qt |T (dxt ) for t ∈ 0 : T ; that is, the marginal distribution of xt relative
to Q̃T (dx0:T ). This may be used to compute the smoothing expectation of additive functions
ϕ(x0:T ) = ∑T

t=0 ϕt (xt ) such as, for example, the score functions of certain models (e.g., [33]).
See Section 5.1.

The second type of backward step [18] allows to estimate the full (joint) smoothing distribution
Q̃(dx0:T ). Its SQMC version is given and analysed in Section 5.2.

These two algorithms share the following properties: (a) they require that the Markov ker-
nel mt(xt−1,dxt ) admits a positive probability density mt(xt−1,xt ) which may be computed
pointwise (for all xt−1,xt ∈ X ); (b) they use as input the output of a forward pass, i.e. either
Algorithm 1 (SMC), or Algorithm 2 (SQMC); and (c) their complexity is O(T N2).
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5.1. Marginal backward smoothing

To perform marginal smoothing, one computes, from the output of the forward pass, the follow-
ing smoothing weights:

W̃n
t |T := Wn

t ×
N∑

m=1

W̃m
t+1|T mt+1(xn

t ,xm
t+1)Gt+1(xn

t ,xm
t+1)∑N

p=1 W
p
t mt+1(x

p
t ,xm

t+1)Gt+1(x
p
t ,xm

t+1)

for all n ∈ 1 : N , and recursively, from t = T − 1, to t = 0. For t = T , simply set W̃ n
t |T = Wn

T .
These weights are obtained by marginalising recursively the joint distribution given in (5) over
xT ,xT −1, . . . ,xt+1. One has:

Q̃N
t |T (dxt ) :=

N∑
n=1

W̃n
t |T δxn

t
(dxt ) ≈Qt |T (dxt ).

This particular backward pass may be applied to either the output of SMC (Algorithm 1), or
SQMC (Algorithm 2). In the latter case, the question is whether this approach remains valid. The
answer is directly given by Theorem 2: under its assumptions, we have that∥∥Q̃N

t |T − Q̃t |T
∥∥

E → 0 as N → +∞
since Q̃t |T (resp. Q̃N

t |T ) is a certain marginal distribution of Q̃T (resp. Q̃N
T ). In words, marginal

backward smoothing generates consistent (marginal) smoothing estimates when applied to the
output of the SQMC algorithm.

5.2. Full backward smoothing

The SQMC backward step to estimate the joint smoothing distribution Q̃T , proposed in [17], is
recalled as Algorithm 3.

Algorithm 3 generates a low discrepancy point set for distribution Q̃N
T , the plug-in estimate

of Q̃T , and is therefore the exact QMC equivalent of the backward step of standard backward
sampling.

To better understand why Algorithm 3 is valid, it helps to decompose it in two steps. First, it
transforms ũ1:N , a point set in [0,1)T +1, into h̃1:N

0:T , another point set in [0,1)T +1, by applying
the inverse Rosenblatt transformation of

Q̃N
T,h(dh0:T ) := Q̂N

T,h(dhT )

T∏
t=1

Mh

t,Q̂N
t−1,h

(ht ,dht−1), (10)

which is the image of probability measure Q̃N
T (dx0:T ), defined in (5), by mapping hT :

(x0, . . . ,xT ) �→ (h(x0), . . . , h(xT )). Recall that Q̂N
t,h is the image of Q̂N

t by h while, for any

π ∈ P([0,1)) and t ∈ 1 : T , Mh
t+1,π : [0,1) → P([0,1)) is a Markov kernel such that

Mh
t,π (ht ,dht−1) ∝ mt

(
H(ht−1),H(ht )

)
Gt

(
H(ht−1),H(ht )

)
π(dht−1).



2964 M. Gerber and N. Chopin

Algorithm 3 SQMC Backward step for full smoothing

Require: xσt (1:N)
t , W

σt(1:N)
t for t ∈ 0 : T , output of Algorithm 2 after the Hilbert sort step (i.e,

for all n,m ∈ 1 : N , n ≤ m =⇒ h(xσt (n)
t ) ≤ h(xσt (m)

t )) and ũ1:N a point set in [0,1)T +1 such
that, for all n,m ∈ 1 : N , n ≤ m =⇒ un

T ≤ um
T

Ensure: x̃1:N
0:T (N trajectories in X T +1)

for n = 1 → N do
Compute x̃n

T = x
an
T

T where an
T = F−1

T ,N (un
T ) with FT,N(i) = ∑N

m=1 W
σT (m)
T I(m ≤ i)

end for
for t = T − 1 → 0 do

for n = 1 → N do
Compute x̃n

t = xãn
t

t where ãn
t = F̃−1

t,N (x̃n
1+1, ũ

n
t ) with F̃t,N (xt+1, i) =∑N

m=1 W̃
σt (m)
t (xt+1)I(m ≤ i), and W̃m

t (xt+1) = Wm
t mt+1(xm

t ,xt+1)Gt+1(xm
t ,xt+1)∑N

p=1 W
p
t mt+1(x

p
t ,xt+1)Gt+1(x

p
t ,xt+1)

.

end for
end for

In a second step, Algorithm 3 returns x̃1:N
0:T where x̃n

0:T = HT (h̃n
0:T ) with the mapping HT :

[0,1)T +1 → [0,1)d(T +1) defined in (8).

5.2.1. L1- and L2-convergence

A direct consequence of the inverse Rosenblatt interpretation of the previous section is that, when
Algorithm 3 uses a RQMC point set as input, the random point x̃n

0:T is such that, for any function
ϕ : [0,1)d(T +1) → R and for any n ∈ 1 : N , we have E[ϕ(x̃n

0:T )|FN
T ] = Q̃N

T (ϕ), with FN
T the

σ -algebra generated by the forward step. Together with Theorem 2, this observation allows us to
deduce L2-convergence for test functions ϕ that are continuous and bounded (see Appendix B.4
for a proof).

Theorem 5. Consider the set-up of the SQMC forward filtering-backward smoothing algorithm
(Algorithms 2 and 3) and assume the following:

1. In Algorithm 2, (u1:N
t )N≥1, t ∈ 0 : T , are independent random sequences of point sets in

[0,1)dt , with d0 = d and dt = d + 1 for t > 0, such that, for any ε > 0, there exists a
Nε,t > 0 such that, almost surely, D(u1:N

t ) ≤ ε, ∀N ≥ Nε,t ;
2. In Algorithm 3, (ũ1:N)N≥1 is a sequence of point sets in [0,1)T +1 such that

(a) ∀n ∈ 1 : N , ũn ∼ U([0,1)T +1);
(b) For any function ϕ ∈ L2([0,1)d(T +1), λdt ), Var( 1

N

∑N
n=1 ϕ(un

t )) ≤ Cσ 2
ϕ r(N) where

σ 2
ϕ = ∫ {ϕ(u) − ∫

ϕ(v)dv}2 du, r(N) → 0 as N → +∞, and where both C and r(N)

do not depend on ϕ;
3. Assumptions of Theorem 1 and Assumptions H1–H2 of Theorem 2 hold.

Then, for any continuous and bounded function ϕ :X T +1 → R,

E
∣∣S(

x̃1:N
0:T

)
(ϕ) − Q̃T (ϕ)

∣∣ → 0, Var
(
S

(
x̃1:N

0:T
)
(ϕ)

) → 0 as N → +∞.
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Assumption 1 is verified for instance, when u1:N
t consists of the first N points of a nested

scrambled (t, dt )-sequence in base b ≥ 2 [30–32]. The result above may be easily extended to
the case where the u1:N

t ’s are deterministic (rather than random) QMC point sets.
On the other hand, the point set ũ1:N used as input of the backward pass is necessarily random

(for the result above to hold). But ũ1:N does not need to be a QMC point set (i.e., to have low
discrepancy). In particular, Assumption 2 is satisfied when the ũ1:N are IID uniform variates (in
[0,1)T +1); then C = 1 and r(N) = N−1. See Section 5.3 for a discussion on the use of QMC or
pseudo-random numbers in the backward step of SQMC.

5.2.2. Consistency

Compared to standard (forward) SQMC, establishing the consistency of SQMC backward
smoothing requires two extra technical steps. First, as Algorithm 3 generates a point set h̃1:N

0:T
in [0,1)T +1 using the inverse Rosenblatt transformation of the probability measure defined in
(10), and then projects it back to X T +1 through HT , we need to establish that this transformation
preserves the low discrepancy properties of h̃1:N

0:T . For this we will use Theorem 4.
Second, the proof of [17] for the consistency of SQMC required smoothness conditions on

the Rosenblatt transformation of mt,h(ht−1,dxt ) = mt(H(ht−1),dxt ), so that this transforma-
tion maintains low discrepancy, as explained in Section 2.6. Due to the Hölder property of the
Hilbert curve, the Hölder continuity of Fmt implies that Fmt,h

is Hölder continuous as well. Sim-
ilarly, for the backward step we need assumptions on the Markov kernel Mt,Qt−1 which imply
sufficient smoothness for the Rosenblatt transformation of Mh

t,Q̂N
t−1,h

which is used in the course

of Algorithm 3 to transform the QMC point set in [0,1)T +1.
To this aim, note that since ‖Q̂N

t−1 −Qt−1‖E → 0 as N → +∞ (Theorem 1), one may expect
that ∥∥Mh

t,Q̂N
t−1,h

−Mh
t,Qt−1,h

∥∥
E → 0 as N → +∞.

Therefore, we intuitively need smoothness assumption on this limiting Markov kernel to establish
the validity of the backward pass of SQMC. However, note that the two arguments of this kernel
are “projections” in [0,1) through the inverse of the Hilbert curve. Consequently, it is not clear
how smoothness assumptions on the Rosenblatt transformation of Mt,Qt−1 would translate into
some regularity for the Rosenblatt transformation of Mh

t,Qt−1,h
. As shown below, a consistency

result for QMC forward-backward algorithm can be established under a Hölder assumption on
the CDF of Mt,Qt−1 .

To establish the consistency of Algorithm 3, we proceed in two steps. First, we consider a
modified backward pass which amounts to sampling from a continuous distribution. Working
with a continuous distribution allows us to focus on the technical difficulties specific to the back-
ward step we just mentioned without being distracted by complicated discontinuity issues. Then,
the result obtained for this continuous backward pass is used to deduce sufficient conditions for
the consistency of Algorithm 3. If this approach in two steps greatly facilitates the analysis, the
resulting conditions for the validity of QMC forward-backward smoothing have the drawback to
impose that the Markov kernel mt and the potential function Gt are bounded below away from
zero (see Corollary 2 below).



2966 M. Gerber and N. Chopin

5.2.3. A continuous backward pass

Following the discussion above, we consider now a modified backward pass, which amounts to
transforming a QMC point set ũ1:N in [0,1)T +1 through the inverse Rosenblatt transformation
of a continuous approximation Q̃N

T,hT
of Q̃N

T,hT
.

To construct Q̃N
T,hT

, let Q̂N
T,h be the probability measure that corresponds to a continu-

ous approximation of the CDF of Q̂N
T,h, which is strictly increasing on [0, h(xσT (N)

T )] with

FQ̂N
T,h

(h(xσT (N)
T )) = 1 and such that, under the assumptions of Theorems 1 and 2,∥∥Q̂N

T,h − Q̂N
T,h

∥∥
E =O(1).

Next, for t ∈ 1 : T , let KN
t,h : [0,1) → P([0,1)) be a Markov kernel such that:

1. Its CDF is continuous on [0,1) × [0, h(xσt−1(N)

t−1 )];
2. ∀ht ∈ [0,1), the CDF of KN

t,h(ht ,dht−1) is strictly increasing on [0, h(xσt−1(N)

t−1 )] with

FKN
t,h

(ht , h(xσt−1(N)

t−1 )) = 1;

3. Under the assumptions of Theorems 1 and 2,

sup
ht∈[0,1)

∥∥KN
t,h(ht ,dht−1) −Mh

t,Q̂N
t−1,h

(ht ,dht−1)
∥∥

E =O(1).

Finally, we define Q̃N
T,hT

∈ P([0,1)T +1) as

Q̃N
T,hT

(dh0:T ) := Q̂N
T,h(dhT )

T∏
t=1

KN
t,h(ht ,dht−1),

which, by construction, has a Rosenblatt transformation which is continuous on [0,1)T +1.
Remark that such a distribution Q̃N

T,hT
indeed exists. For instance, under the assumptions of

Theorems 1 and 2, one can take for Q̂N
T,h the probability distribution that corresponds to a piece-

wise linear approximation of the CDF of Q̂N
T,h and, similarly, for ht ∈ [0,1), one can construct

KN
t,h(ht ,dht−1) from a piecewise linear approximation of the CDF of Mh

t,Q̂N
t−1,h

(ht ,dht−1).

For this modified backward step, we obtain the following consistency result.

Theorem 6. Let (ũ1:N)N≥1 be a sequence of point sets in [0,1)T +1 such that D(ũ1:N) → 0
as N → +∞. For n ∈ 1 : N , let ȟn

0:T = F−1
Q̃N

T,hT

(ũn) where Q̃N
T,hT

is as above. Suppose that the

Assumptions of Theorem 1 and Assumptions H1–H2 of Theorem 2 hold and that, viewed as a
function of xt and xt−1, F c.d.f.

Mt,Qt−1
(xt ,xt−1), the CDF of Mt,Qt−1(xt ,dxt−1), is Hölder continu-

ous for all t ∈ 1 : T . Let x̌n
0:T = HT (ȟn

0:T ). Then,∥∥S(
x̌1:N

0:T
) − Q̃T

∥∥
E → 0 as N → +∞.

See Appendix B.5.2 for a proof.



Convergence of SQMC smoothing algorithms 2967

5.2.4. A consistency result for SQMC forward-backward smoothing

We are now ready to provide conditions which ensure that QMC forward-backward smoothing
(Algorithms 2 and 3) yields a consistent estimate of the smoothing distribution. The key idea of
our consistency result (Corollary 2 below) is to show that, for a given point set ũ1:N , the point
set x̃1:N

0:T generated by Algorithm 3 becomes, as N increases, arbitrary close to the point set x̌1:N
0:T

obtained by the modified backward step described in the previous subsection.

Corollary 2. Consider the set-up of the SQMC forward filtering-backward smoothing algorithm
(Algorithms 2 and 3) and assume the following holds for t ∈ 0 : T − 1:

1. (ũ1:N)N≥1 is a sequence of point sets in [0,1)T +1 such that D(ũ1:N) → 0 as N → +∞;
2. Assumptions of Theorem 1 and Assumptions H1–H2 of Theorem 2 hold;
3. F c.d.f.

Mt,Qt−1
(xt ,xt−1) is Hölder continuous;

4. There exists a constant ct > 0 such that, for all x(t−1):(t+1) ∈X 3,

Gt(xt−1,xt )Gt+1(xt ,xt+1)mt+1(xt ,xt+1) ≥ ct ;
5. Gt(xt−1,xt )mt (xt−1,xt ) is uniformly continuous on X 2.

Then, ∥∥S(
x̃1:N

0:T
) − Q̃T

∥∥
E → 0 as N → +∞.

See Appendix B.5.3 for a proof. Recall that the result above implies that

1

N

N∑
n=1

ϕ
(
x̃n
t

) → Q̃T (ϕ) as N → +∞

for any bounded and continuous ϕ, as explained in Section 2.3.
Assumption 4 is the main assumption of this result. This strong condition is the price to pay for

our study of QMC backward smoothing in two steps which, again, has the advantage to facilitate
the analysis by avoiding complicated discontinuity problems. We conjecture that this assumption
may be removed by using an approach similar to the proof of Theorem 4 in [17].

5.3. An alternative backward step

A drawback of Algorithm 3 is that it uses as an input a point set of ũ1:N of dimension (T + 1),
although T is often large in practice. It is well known that high-dimensional QMC point sets do
not have good equidistribution properties, unless N is extremely large.

To address this issue, we may still use SQMC for the forward pass, but use as a backward pass
Algorithm 3 with IID uniform variables as an input (i.e., input ũ1:N is replaced by N independent
uniforms). Our consistency results still apply, since D(ũ1:N) → 0 with probability one in that
case [28], page 167. Of course, one cannot hope for a convergence rate better than N−1/2 for
such a hybrid approach, but the resulting algorithm may still perform better than standard (Monte
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Carlo) backward smoothing (for fixed N ), while being simpler to implement than SQMC with a
QMC backward pass based on a point set of dimension T + 1.

More generally, we could take ũ1:N to be some combination of point sets and uniform variables
(e.g., the first k components of u1:N is a point set, and the remaining components are independent
uniforms), while still having D(ũ1:N) → 0 [29]. However, we leave for further research the study
of such an extension.

6. Numerical study

We consider the following multivariate stochastic volatility model (SV) proposed by [8]:{
yt = S

1/2
t εt , t ≥ 0,

xt = μ + 
(xt−1 − μ) + �
1
2 νt , t ≥ 1,

(11)

where yt and xt take values in Rd , St = diag(exp(xt1), . . . , exp(xtd)), 
 and � are diagonal
matrices and (εt ,νt ) ∼ N2d(02d ,C) with C a correlation matrix. (Since the state space is not
[0,1]d , our consistency results do not apply directly to this model.)

The parameters we use for the simulations are the same as in [8]: 
 = 0.9Id , � = 0.1Id ,
μ = −9(1, . . . ,1)t and

C =
(

0.61d + 0.4Id 0d

0d 0.81d + 0.2Id,

)
where Id , 0d and 1d , are respectively, the identity, all-zeros, and all-ones d × d matrices. The
prior distribution for x0 is the stationary distribution of the process (xt )t≥0. We take d = 2 and
T = 399 (i.e., 400 observations).

We report results (a) for QMC full backward smoothing (Algorithm 2 for the forward pass,
then Algorithm 3 for the backward pass), and (b) for marginal backward smoothing (as de-
scribed in Section 5.1). In Figure 2, we first illustrate our L2-convergence result for full back-
ward smoothing (Theorem 5), by showing the evolution of the mean square error (MSE) as
a function of N and for the estimation of the smoothing expectation E[x1t |y0:50], with t ∈
{1,10,20,30,40}. Then, the different algorithms are compared with their Monte Carlo counter-
part using the gain factors for the estimation of the smoothing expectation E[x1t |y0:T ], t ∈ 0 : T ,
which we define as the Monte Carlo (MSE) over the quasi-Monte Carlo MSE. Results for com-
ponent x2t of xt are mostly similar (by symmetry) and thus are not reported.

The implementation of QMC and Monte Carlo algorithms are as in [17]. In SQMC, prior to the
Hilbert sort step, the particles are mapped into [0,1)d using a component-wise (rescaled) logistic
transform (i.e., each component is rescaled to have mean 0, variance 1, and then is applied the
transform x → 1/(1 + e−x)). For SMC, systematic resampling [7] is used, and random variables
are generated using standard methods (i.e., not using the inverse Rosenblatt transformation). The
complete C/C++ code is available on-line at https://bitbucket.org/mgerber/sqmc.

Figure 3 plots the gain factors at each time step, for either N = 28 (left), or N = 210 (right).
We observe that gain factors tend to increase with N (as expected) and that they are above one
most of the time. They are not very high for full backward smoothing; but note that even a
marginal improvement in terms of gain factor may translate in high CPU time savings, given

https://bitbucket.org/mgerber/sqmc
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Figure 2. Full backward smoothing (Algorithm 3) of the bivariate SV model (11). The graph gives the
MSE (from 100 replications) for E[xt1|y0:49] as a function of N and for t ∈ {1,10,20,30,40}.

that these algorithms have complexity O(N2); that is, a gain factor of 3 means that SMC would
need 3 times more particles, and therefore 9 times more CPU time, to reach the same accuracy
as SQMC. Notice also that gain factors are higher for marginal smoothing.

Finally, we compare Algorithm 3 (full backward smoothing) with the hybrid strategy described
at the end of Section 5.3: that is, a SQMC forward pass (Algorithm 2) followed by a Monte Carlo
backward pass. Again, this is for N = 28 (left) and N = 210 (right); see Figure 4. Interestingly,
the hybrid strategy (slightly) dominates at most time steps (excepts those such that T − t is
small). As already discussed, the likely reason for this phenomenon is that the backward pass of
Algorithm 3 is based on a point set of dimension T , which is too large to have good equidistri-
bution properties (for reasonable values of N ), and therefore to bring much improvement over
plain Monte Carlo. Thus, for large T , one may as well use this hybrid strategy to perform full
smoothing.

7. Conclusion

The estimation of the smoothing distribution p(x0:T |y0:T ) is a challenging task for QMC meth-
ods because it is typically a high dimensional problem. On the other hand, due to the O(N2)

complexity of most smoothing algorithms, small gains in term of mean square errors translate
into important savings in term of running times to reach the same level of error. In this work
we provide asymptotic results for some QMC smoothing strategies, namely forward smooth-
ing, and two variants of forward-backward smoothing. In a simulation study, we show that the
QMC forward-backward smoothing algorithm outperforms its Monte Carlo counterpart despite
of the high dimensional nature of the problem. Also, if one is interested in the estimation of the
marginal smoothing distributions, more important gains may be obtained.
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Figure 3. Smoothing of the bivariate SV model (11) for N = 28 and N = 210 particles. The graphs give
the gain factor (MSE ratio, from 100 replications) for comparing SQMC with SMC, and for E[xt1|y0:T ] as
a function of t . The top line is for full backward smoothing (Algorithm 3), the bottom line is for marginal
backward smoothing.
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Figure 4. Smoothing of the bivariate SV model (11) for N = 28 and N = 210 particles. The graphs give
the gain factor (MSE ratio, for 100 replications) of the hybrid backward pass (Algorithm 3 with IID input)
relative to the QMC backward pass (Algorithm 3 with a QMC point set as input), for the estimation of
E[xt1|y0:T ] as a function of t .

The set of smoothing strategies discussed in this work is obviously not exhaustive. For in-
stance, we have not discussed two-filter smoothing [5], or its O(N) variant proposed by [16]. In
fact, our analysis can be easily applied to derive a QMC version of these algorithms and to pro-
vide conditions for their validity. Another interesting smoothing algorithm is proposed in [12],
where the backward pass is an accept-reject procedure, leading to a O(N) complexity. Yet an-
other smoothing strategy is the particle Gibbs sampler proposed by [3] which generates a Markov
chain having the smoothing distribution as stationary distribution. For these last two methods, the
usefulness and the validity of replacing pseudo-random numbers by QMC point sets remain open
questions.

Appendix A: Main properties of the Hilbert curve

Function H is obtained as the limit of a certain sequence (Hm) of functions Hm : [0,1] → [0,1]d
as m → ∞. The proofs of the results presented in this work are based on the following technical

properties of H and Hm. For m ≥ 0, let Id
m = {I d

m(k)}2md−1
k=0 be the collection of consecutive

closed intervals in [0,1] of equal size 2−md and such that ∪Id
m = [0,1]. For k ≥ 0, Sd

m(k) =
Hm(Id

m(k)) belongs to Sd
m, the set of the 2md closed hypercubes of volume 2−md that covers

[0,1]d , ∪Sd
m = [0,1]d ; Sd

m(k) and Sd
m(k + 1) are adjacent, that is, have at least one edge in

common (adjacency property). If we split I d
m(k) into the 2d successive closed intervals I d

m+1(ki),
ki = 2dk + i and i ∈ 0 : 2d − 1, then the Sd

m+1(ki)’s are simply the splitting of Sd
m(k) into 2d
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closed hypercubes of volume 2−d(m+1) (nesting property). Finally, the limit H of Hm has the
bi-measure property: λ1(A) = λd(H(A)), for any measurable set A ⊂ [0,1], and satisfies the
Hölder condition ‖H(x1) − H(x2)‖ ≤ CH |x1 − x2|1/d for all x1 and x2 in [0,1]. For more
background on space-filling curves, see [34].

Appendix B: Proofs

B.1. Backward decomposition: Proof of Theorem 2

Lemma 2 of [17] is central for the proof of this result and is reproduced here for sake of clarity.

Lemma 1. Let (πN)N≥1 be a sequence of probability measures on [0,1)d1 such that ‖πN −
π‖E → 0 as N → +∞ for some π ∈ P([0,1)d1), and let K a kernel [0,1)d1 → P([0,1)d2) such
that FK(x1,x2) is Hölder continuous with its ith component strictly increasing in x2i , i ∈ 1 : d2.
Then ∥∥πN ⊗ K − π ⊗ K

∥∥
E =O(1).

From Theorem 1, we know that (for t ≥ 1)∥∥S(
P N

t,h

) −Qt−1,h ⊗ mt,h

∥∥
E =O(1) for PN

t,h=
(
h
(

x̂1:N
t−1

)
,x1:N

t

)
.

To establish (6), we fix xt+1, and recognise Mt+1,Qt
as the marginal distribution of xt , relative

to joint distribution

G̃t+1(xt ,xt+1)Gt,h(ht−1,xt )

Qt−1,h ⊗ mt,h(Gt,h)
×Qt−1,h ⊗ mt,h

(
d(ht−1,xt )

)
(12)

with Gt,h(ht−1,xt ) = Gt(H(ht−1,xt )). This is a change of measure applied to Qt−1,h ⊗ mt,h.
Similarly, Mt+1,Q̂N

t
is the marginal of a joint distribution obtained by the same change of mea-

sure, but applied to S(P N
t,h).

Thus, we may apply Theorem 1 of [17], and deduce that (again for a fixed xt+1):∥∥Mt+1,Q̂N
t
(xt+1,dxt ) −Mt+1,Qt

(xt+1,dxt )
∥∥

E =O(1).

To see that the O(1) term in the above expression does not depend on xt+1, note that in (12),
the dominating measure does not depends on xt+1, and the density with respect to this dominat-
ing measure is bounded uniformly with respect to xt+1, and therefore the results follows from
the computations in the proof of [17], Theorem 1. This shows (6) for t ≥ 1. For t = 0 replace
Qt−1,h ⊗ mt,h by m0,h in the above argument.

Let us now prove the second part of the theorem. As a preliminary result to establish (7) we
show that, for all t ≥ 0,∥∥Q̂N

t+1 ⊗Mt+1,Q̂N
t

−Qt+1 ⊗Mt+1,Qt

∥∥
E =O(1). (13)
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Let Bt and Bt+1 be two sets in B[0,1)d and note Bt :t+1 = Bt × Bt+1 to simplify the notations.
Then,∣∣Q̂N

t+1 ⊗Mt+1,Q̂N
t
(Bt :t+1) −Qt+1 ⊗Mt+1,Qt

(Bt :t+1)
∣∣

=
∣∣∣∣∫

Bt+1

λd

(
FM

t+1,Q̂N
t

(xt+1,Bt )
)
Q̂N

t+1(dxt+1) − λd

(
FMt+1,Qt

(xt+1,Bt )
)
Qt+1(dxt+1)

∣∣∣∣
≤

∣∣∣∣∫
Bt+1

λd

(
FMt+1,Qt

(xt+1,Bt )
)(
Q̂N

t+1 −Qt+1
)
(dxt+1)

∣∣∣∣
+

∣∣∣∣∫
Bt+1

Q̂N
t+1(dxt+1)

[
λd

(
FM

t+1,Q̂N
t

(xt+1,Bt )
) − λd

(
FMt+1,Qt

(xt+1,Bt )
)]∣∣∣∣.

By assumption, FMt+1,Qt
(xt+1,xt ) is Hölder continuous. Since ‖Q̂N

t+1 −Qt+1‖E =O(1) by The-
orem 1, Lemma 1 therefore implies

sup
Bt :t+1∈B2

[0,1)d

∣∣∣∣∫
Bt+1

λd

(
FMt+1,Qt

(xt+1,Bt )
)(
Q̂N

t+1 −Qt+1
)
(dxt+1)

∣∣∣∣ =O(1).

In addition,∣∣∣∣∫
Bt+1

Q̂N
t+1(dxt+1)

[
λd

(
FM

t+1,Q̂N
t

(xt+1,Bt )
) − λd

(
FMt+1,Qt

(xt+1,Bt )
)]∣∣∣∣

≤
∫

Bt+1

Q̂N
t+1(dxt+1) sup

Bt∈B[0,1)d

∣∣λd

(
FM

t+1,Q̂N
t

(xt+1,Bt )
) − λd

(
FMt+1,Qt

(xt+1,Bt )
)∣∣

≤
∫

Bt+1

Q̂N
t+1(dxt+1) sup

xt+1∈[0,1)d

∥∥Mt+1,Q̂N
t
(xt+1,dxt ) −Mt+1,Qt

(xt+1,dxt )
∥∥

E

=O(1)

using (6). This complete the proof of (13).
We are now ready to prove the second statement of the theorem. Note that (7) is true for t = 1

by (13). Let t > 1 and B0:t ∈ Bt+1
[0,1)d

. Then,∣∣∣∣∫
B0:t

(
Q̃N

t − Q̃t

)
(dx0:t )

∣∣∣∣
=

∣∣∣∣∣
∫

B0:t

(
Q̂N

t ⊗Mt,Q̂N
t−1

(dxt−1:t )
t−1∏
s=1

Ms,Q̂N
s−1

(xs ,dxs−1)

−Qt ⊗Mt,Qt−1(dxt−1:t )
t−1∏
s=1

Ms,Qs−1(xs ,dxs−1)

)∣∣∣∣∣
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≤
∣∣∣∣∣
∫

Bt−1:t

[∫
B0:t−2

t−1∏
s=1

Ms,Qs−1(xs ,dxs−1)

](
Q̂N

t ⊗Mt,Q̂N
t−1

−Qt ⊗Mt,Qt−1

)
(dxt−1:t )

∣∣∣∣∣
+

∣∣∣∣∣
∫

Bt−1:t
Q̂N

t ⊗Mt,Q̂N
t−1

(dxt−1:t )

×
(∫

B0:t−2

t−1∏
s=1

Ms,Q̂N
s−1

(xs ,dxs−1) −
∫

B0:t−2

t−1∏
s=1

Ms,Qs−1(xs ,dxs−1)

)∣∣∣∣∣.
The first term after the inequality sign can be rewritten as∣∣∣∣∫

Bt−1:t
λ(t−1)d

(
F⊗t−1

s=1Ms,Qs−1
(xt−1,B0:t−2)

)(
Q̂N

t ⊗Mt,Q̂N
t−1

−Qt ⊗Mt,Qt−1

)
(dxt−1:t )

∣∣∣∣.
The supremum of this quantity over B0:t ∈ Bt+1

[0,1)d
is O(1) using (13), the fact that F⊗t−1

s=1Ms,Qs−1
is Hölder continuous (because FMs,Qs−1

is Hölder continuous for all s) and Lemma 1.
To control the second term we first prove by induction that, for any t > 1,

sup
B0:t−2∈Bt−1

[0,1)d

∣∣∣∣∣
∫

B0:t−2

t−1∏
s=1

Ms,Q̂N
s−1

(xs ,dxs−1) −
∫

B0:t−2

t−1∏
s=1

Ms,Qs−1(xs ,dxs−1)

∣∣∣∣∣ =O(1) (14)

uniformly on xt−1. By (6), this result is true for t = 2. Assume that (14) holds for t > 2. Then∣∣∣∣∣
∫

B0:t−1

t∏
s=1

Ms,Q̂N
s−1

(xs ,dxs−1) −
∫

B0:t−1

t∏
s=1

Ms,Qs−1(xs ,dxs−1)

∣∣∣∣∣
=

∣∣∣∣∣
∫

B0:t−1

[
Mt,Q̂N

t−1
(xt ,dxt−1)

t−1∏
s=1

Ms,Q̂N
s−1

(xs ,dxs−1)

−Mt,Qt−1(xt ,dxt−1)

t−1∏
s=1

Ms,Qs−1(xs ,dxs−1)

]∣∣∣∣∣
≤

∣∣∣∣∣
∫

Bt−1

Mt,Q̂N
t−1

(xt ,dxt−1)

∫
B0:t−2

(
t−1∏
s=1

Ms,Q̂N
s−1

(xs ,dxs−1) −
t−1∏
s=1

Ms,Qs−1(xs ,dxs−1)

)∣∣∣∣∣
+

∣∣∣∣∫
Bt−1

λ(t−1)d

(
F⊗t−1

s=1Ms,Qs−1
(xt−1,B0:t−2)

)
× (

Mt,Q̂N
t−1

(xt ,dxt−1) −Mt,Qt−1(xt ,dxt−1)
)∣∣∣∣,
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where we saw above that second term on the right-hand side of the inequality sign is O(1) uni-
formly on xt while the first term is bounded by∫

[0,1)d
Mt,Q̂N

t−1
(xt ,dxt−1)

× sup
B0:t−2∈Bt−1

[0,1)d

∣∣∣∣∣
∫

B0:t−2

(
t−1∏
s=1

Ms,Q̂N
s−1

(xs ,dxs−1) −
t−1∏
s=1

Ms,Qs−1(xs ,dxs−1)

)∣∣∣∣∣,
where, by the inductive hypothesis, the second factor is O(1) uniformly on xt−1 ∈ [0,1)d . This
shows that (14) is true at time t + 1 and therefore the proof of the theorem is complete.

B.2. Generalization of [22]: Proof of Theorem 3

The proof of this result is an adaptation of the proof of [22], “Satz 2”.
In what follows, we use the shorthand αN(B) = S(u1:N)(B) = N−1 ∑N

n=1 1B(un) for any set
B ⊂ [0,1)d . One has∥∥S(

x1:N ) − π
∥∥

E = sup
B∈B[0,1)d

∣∣αN

(
Fπ(B)

) − λd

(
Fπ(B)

)∣∣.
Let β = �κ−1�, d̃ = ∑d−1

i=0 βi , L an arbitrary integer, and P be the partition of [0,1)d in Ld̃

congruent hyperrectangles W of size L−βd−1 × L−βd−2 × · · · × L−1. Let B ∈ B[0,1)d , U1 the
set of the elements of P that are strictly in Fπ(B), U2 the set of elements W ∈ P such that
W ∩ ∂(Fπ(B)) �= ∅, U1 = ∪U1, U2 = ∪U2, and U ′

1 = Fπ(B) \U1 so that ([22], “Satz 2” or [17],
Theorem 4)∣∣αN

(
Fπ(B)

) − λd

(
Fπ(B)

)∣∣ ≤ ∣∣αN(U1) − λd(U1)
∣∣ + #U2

{
D

(
u1:N ) + L−d̃

}
,

where, under the assumption of the theorem, |αN(U1) − λd(U1)| ≤ Ld̃−1D(u1:N) (see [22]).
To bound #U2, we first construct a partition P ′ of [0,1)d into hyperrectangles W ′ of size

L′−βd−1 × · · · × L′−1 such that, for all points x and x′ in W ′, we have∣∣Fi(x1:i−1, xi) − Fi

(
x′

1:i−1, x
′
i

)∣∣ ≤ L−βd−i

, i = 1, . . . , d, (15)

where Fi(x1:i−1, xi) denotes the ith component of Fπ(x) (with Fi(x1:i−1, xi) = F1(x1) when
i = 1). To that effect, let i ∈ 2 : d and note that∣∣Fi(x1:i−1, xi) − Fi

(
x′

1:i−1, x
′
i

)∣∣ ≤ ∣∣Fi(x1:i−1, xi) − Fi

(
x1:i−1, x

′
i

)∣∣
+ ∣∣Fi

(
x1:i−1, x

′
i

) − Fi

(
x′

1:i−1, x
′
i

)∣∣.
By Assumption 3, the probability measure πi(x1:i−1,dxi) admits a density pi(xi |x1:i−1) with
respect to the Lebesgue measure such that ‖pi(·|·)‖∞ < +∞. Therefore, the first term after the
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inequality sign is bounded by ‖pi‖∞L′−βd−i
. For the second term, the Hölder property of Fπ

implies that∣∣Fi

(
x1:i−1, x

′
i

) − Fi

(
x′

1:i−1, x
′
i

)∣∣ ≤ Cπ(i − 1)κ/2(L′−βd+1−i )κ

≤ Cπ(i − 1)κ/2(L′−βd+1−i )1/β = Cπ(i − 1)κ/2L′−βd−i

with Cπ the Hölder constant of Fπ . For i = 1, we simply have∣∣F1(x1) − F1
(
x′

1

)∣∣ ≤ ‖p1‖∞L′−βd−1
.

Condition (15) is therefore verified for L′ the smallest integer such that L′ ≥ C̃L, for some
C̃ > 0.

Remark now that ∂(Fπ(B)) = Fπ(∂(B)) since F is a continuous function. Let R ∈ ∂B be a
(d − 1)-dimensional face of B and R be the set of hyper-rectangles W ′ ∈ P ′ such that R ∩W ′ �=
∅. Note that #R ≤ L′d̃−1 ≤ (�C̃L� + 1)d̃−1. For each W ′ ∈ R, take a point rW ′ ∈ R ∩ W ′ and
define

r̃W ′ = Fπ

(
rW ′) ∈ Fπ(R).

Let R̃ be the collection of hyper-rectangles W̃ of size 2L−βd−1 × · · · × 2L−1 (assuming L is
even) and having point r̃W ′

, W ′ ∈R, as a middle point.
For an arbitrary u ∈ Fπ(R), let x = F−1

π (u) ∈ R. Hence, x is in one hyperrectangle W ′ ∈ R so
that using (15)∣∣ui − r̃W ′

i

∣∣ = ∣∣Fi(x1:i−1, xi) − Fi

(
rW ′

1:i−1, r
W ′
i

)∣∣ ≤ L−βd−i

, i = 1, . . . , d.

This shows that u belongs to the hyperrectangle W̃ ∈ R̃ with centre r̃W ′
so that Fπ(R) is covered

by at most #R̃= #R ≤ (�C̃L�+1)d̃−1 hyperrectangles W̃ ∈ R̃. To go back to the initial partition
of [0,1)d with hyperrectangles in P , remark that every hyperrectangle in R̃ is covered by at most
c1 hyperrectangles in P for a constant c1. Finally, since the set ∂B is made of the union of 2d

(d − 1)-dimensional faces of B , we have #U2 ≤ c2L
d̃−1 for a constant c2.

Then, we may conclude the proof as follows∥∥S(
x1:N ) − π

∥∥
E ≤ Ld̃−1D

(
u1:N ) + c2L

d̃−1(D(
u1:N ) + L−d̃

)
,

where the optimal value of L is such that, for some c3 > 0,∥∥S(
x1:N ) − π

∥∥
E ≤ c3D

(
u1:N )1/d̃

.

B.3. Consistency of forward smoothing: Proof of Proposition 1

The proof amounts to a simple adaptation of Theorem 1: by replacing Assumption 4 by As-
sumption 4′ above, one obtains that ‖S(P̃ N

t,ht ) − Q̃t−1,ht ⊗ mt,h‖E → 0 as N → +∞, where
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P̃ N
t,ht = (ht (ẑ1:N

t−1),x1:N
t ) Q̃t−1,ht is the image by ht of Q̃t−1, and mt,h is defined as in Theorem 1.

Therefore, by Corollary 1,∥∥S(
z1:N
t

) − Q̃t−1 ⊗ mt

∥∥
E → 0 as N → +∞. (16)

In addition, since the Radon–Nikodym derivative

Q̃t

Q̃t−1 ⊗ mt

(
d(x0:t−1,xt )

) ∝ Gt(xt−1,xt−1),

is continuous and bounded, Theorem 1 of [17], together with (16), implies (9).

B.4. L2-Convergence: Proof of Theorem 5

To prove the result, let ϕ be as in the statement of the theorem and let us first prove the L1-
convergence.

We have

E
∣∣S(

x̃1:N
0:T

)
(ϕ) − Q̃T (ϕ)

∣∣ ≤ E
∣∣S(

x̃1:N
0:T

)
(ϕ) − Q̃N

T (ϕ)
∣∣ +E

∣∣Q̃N
T (ϕ) − Q̃T (ϕ)

∣∣.
By portmanteau lemma ([36], Lemma 2.2, page 6), convergence in the sense of the extreme
metric is stronger than weak convergence. Hence, the second term above goes to 0 as N → +∞
by Theorem 2 and by the dominated convergence theorem. For the first term, as each ũn ∼
U([0,1)T +1), we have, by the inverse Rosenblatt interpretation of the backward pass of SQMC,

E
[
S

(
x̃1:N

0:T
)
(ϕ)|FT

] = E
[
S

(
h̃1:N

0:T
)
(ϕ ◦ HT )|FT

] = Q̃N
T,hT

(ϕ ◦ HT ) = Q̃N
T (ϕ)

with FN
T the σ -algebra generated by the forward step (Algorithm 2). Therefore,

E
[∣∣S(

x̃1:N
0:T

)
(ϕ) − Q̃N

T (ϕ)
∣∣|FT

] ≤ Var
(
S

(
x̃1:N

0:T
)
(ϕ)|FT

)1/2
, (17)

where, using Assumption 3 and the fact that x̃n
0:T = HT ◦ F−1

Q̃N
T,hT

(ũn),

Var
(
S

(
x̃1:N

0:T
)
(ϕ)|FN

T

) ≤ Cr(N)σ 2
ϕ,N (18)

with σ 2
ϕ,N ≤ Q̃N

T (ϕ2) and with C and r(N) as in the statement of the theorem. Let ε > 0. Then,
by Assumption 1 and looking at the proof of Theorem 2, we have for N large enough and almost
surely, Q̃N

T (ϕ2) ≤ Q̃T (ϕ2) + ε so that, for N large enough,

E
∣∣S(

x̃1:N
0:T

)
(ϕ) − Q̃N

T (ϕ)
∣∣ ≤

√
Cr(N)

(
Q̃T

(
ϕ2

) + ε
)

(19)

showing the L1-convergence. To prove the L2-convergence, remark that

E
[
S

(
x̃1:N

0:T
)
(ϕ)|FN

T

] = Q̃N
T (ϕ) = (

Q̃N
T (ϕ) − Q̃T (ϕ)

) + Q̃T (ϕ)
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and therefore

Var
(
E

[
S

(
x̃1:N

0:T
)
(ϕ)|FN

T

]) = Var
(
Q̃N

T (ϕ) − Q̃T (ϕ)
) ≤ E

[(
Q̃N

T (ϕ) − Q̃T (ϕ)
)2]

,

where the right-hand side converges to zero as N → +∞ by the dominated convergence theorem
and by Theorem 2. On conclude the prove using (17)–(19) and the fact that

Var
(
S

(
x̃1:N

0:T
)
(ϕ)

) = Var
(
E

[
S

(
x̃1:N

0:T
)
(ϕ)|FN

T

]) +E
[
Var

(
S

(
x̃1:N

0:T
)
(ϕ)|FN

T

)]
.

B.5. Consistency of the backward step: Proof of Theorem 6 and proof of
Corollary 2

B.5.1. Preliminary computations

To prove Theorem 6, we need the following two lemmas:

Lemma 2. Let m ∈N, I = [0, k+1
2dm ], k ∈ {0,1, . . . ,2dm − 2} and B = H(I). Then, B = ⋃p

i=1 Bi

for some closed hyperrectangles Bi ⊆ [0,1]d and where p ≤ 2d(m + 1).

Proof. To prove the lemma, let 0 ≤ m1 ≤ m be the smallest integer m̃ such that I d
m̃
(0) ⊆ I and

i∗m1
be the number of intervals in Id

m1
included in I . Note that i∗m1

< 2d . Indeed, if i∗m1
≥ 2d then,

by the nesting property of the Hilbert curve,

I d
m1−1(0) ⊆

2d−1⋃
k=0

I d
m1

(k) ⊆
i∗m1

−1⋃
k=0

I d
m1

(k) ⊆ I,

which is in contradiction with the definition of i∗m1
. Define I2 = I \ ∪II

m1
and i∗m2

the number
of intervals in Id

m2
included in I2. For the same reason as above i∗n2

< 2d . More generally, for
any m1 ≤ mk ≤ m, i∗mk

≤ 2d meaning that the set B is made of at most
∑m

k=m1
i∗mk

≤ 2d(m + 1)

hypercubes (of side varying between 2−m and 2−m1 ). �

Lemma 3. Let (πN)N≥1 be a sequence of probability measures on [0,1)(k+1)d such that ‖πN −
π‖E → 0 where π(dx) = π(x)λ(k+1)d (dx) is a probability measure on π(k+1)d that admits a
bounded density π(x). Let πhk

be the image by hk of π . Then,∥∥πN
hk

− πhk

∥∥
E → 0 as N → +∞.

The proof of this last result is omitted since it follows from the properties of Cartesian products
and from straightforward modifications of the proof of [17], Theorem 3.
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B.5.2. Proof of the Theorem 6

To prove the theorem, first note that∥∥Q̃N
T,hT

− Q̃T ,hT

∥∥
E =O(1).

Indeed, by assumption, ‖Q̂N
T,h − Q̂N

T,h‖E =O(1) and, by Theorem 1 and [17], Theorem 3, ‖Q̂N
T,h −

QT ,h‖E =O(1) since QT admits a bounded density (Assumption 4 of Theorem 1). Hence, ‖Q̂N
T,h−

QT ,h‖E =O(1) and thus, by Theorem 4, ‖Q̂N
T −QT ‖E =O(1), with Q̂N

T the image by H of Q̂N
T,h.

In addition, using the same argument, and using the fact that, for all t ∈ 1 : T , G̃t is bounded
(Assumption H1 of Theorem 2), we have, by Theorem 2 (first part),

sup
xt∈X

∥∥KN
t (xt ,dxt−1) −Mt,Qt−1(xt ,dxt−1)

∥∥
E =O(1), t∈1:T

with KN
t (xt ,dxt−1) the image by H of the probability measure Kt,h(H(xt ),dht−1). Conse-

quently, by the second part of Theorem 2, ‖Q̃N
T − Q̃T ‖E =O(1) where Q̃N

T denotes the image
by HT of Q̃N

T,hT
. Finally, under the assumptions of the theorem, Q̃T admits a bounded density

(because for all t , G̃t is bounded and Qt admits a bounded density) and thus, by Lemma 3,
‖Q̃N

T,hT
− Q̃T ,hT

‖E =O(1).
To prove the theorem it therefore remains to show that∥∥S(

ȟ1:N
0:T

) − Q̃N
T,hT

∥∥
E =O(1). (20)

Indeed, this would yield ‖S(ȟ1:N
0:T ) − Q̃T ,hT

‖E =O(1) and thus, by Theorem 4,∥∥S(
x̌1:N

0:T
) − Q̃T

∥∥
E =O(1)

as required.
To prove (20), we assume to simplify the notations that FMt,Qt−1

(xt ,xt−1) is Lipschitz. Gen-
eralization for any Hölder exponent can be done using similar arguments as in the proof of
Theorem 3.

Let hn
t = h(xN

t ) where x1:N
t are the particles obtained at the end of iteration t of Algorithm 2.

We assume that, for all t ∈ 0 : T , the particles are sorted according to their Hilbert index, that is,
n < m =⇒ hn

t < hm
t (note that the inequality is strict by Assumption 1 of Theorem 1). Then,

using the same notation as in the proof of Theorem 3, one has∥∥S(
ȟ1:N

0:T
) − Q̃N

T,hT

∥∥
E = sup

B∈BN

[0,1)T +1

∣∣αN

(
FQ̃N

T,hT

(B)
) − λT +1

(
FQ̃N

T,hT

(B)
)∣∣,

where BN
[0,1)T +1 = {[a,b] ⊂ B[0,1)T +1 , bN

i ≤ hN
i , i ∈ 0 : T }.

The beginning of the proof follows the lines of Theorem 3, with β = d and d replaced by
T + 1. Let d̃ = ∑T

t=0 dt so that, for a set B ∈ BN
[0,1)T +1 ,∣∣αN

(
FQ̃N

T,hT

(B)
) − λT +1

(
FQ̃N

T,hT

(B)
)∣∣ ≤ Ld̃D

(
u1:N ) + #U2

{
D

(
u1:N ) + L−d̃

}
,
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where L and U2 are as in the proof of Theorem 3.
Following this latter, let P ′ be the partition of the set [0,1)T +1 into hyperrectangles W ′ of size

L′−dT × L′−dT −1 × · · · × L′−1 such that, for all h and h′ in W ′, we have∣∣FQ̂N
T,h

(ht ) − FQ̂N
T,h

(
h′

1

)∣∣ ≤ L−dT

(21)

and ∣∣F̃ N
i−1(hi−1, hi) − F̃ N

i−1

(
h′

i−1, h
′
i

)∣∣ ≤ L−dT +1−i

, i ∈ 2 : (T + 1), (22)

where, to simplify the notation, we write F̃ N
i−1(h̃, ·) the CDF of KN

T −i+2,h(h̃,dhT −i+1).
Let us first look at condition (21). We have∣∣FQ̂N

T,h
(h1) − FQ̂N

T,h

(
h′

1

)∣∣
≤ 2‖FQ̂N

T,h
− FQ̂N

T,h
‖∞ + 2‖FQ̂N

T,h
− FQT ,h

‖∞ + ∣∣FQT ,h
(h1) − FQT ,h

(
h′

1

)∣∣
≤ 2r1(N) + 2r2(N) + ∣∣FQT ,h

(h1) − FQT ,h

(
h′

1

)∣∣
with r1(N) = ‖FQ̂N

T,h
− FQ̂N

T,h
‖∞ and r2(N) = ‖Q̂N

T,h − QT ,h‖E; note r1(N) → 0 by the con-

struction of Q̂N
T,h and under the assumptions of the theorem while r2(N) → 0 by Theorem 1 and

by [17], Theorem 3.
Let L′ = 2m for an integer m ≥ 0, so that hi and h′

i are in the same interval Id
dT −im

(k) ∈ Id
dT −im

,

i ∈ 1 : (T + 1). Then, since h1 and h′
1 are in the same interval I d

dT −1m
(k) ∈ Id

dT −1m
,

∣∣FQT ,h
(h1) − FQT ,h

(
h′

1

)∣∣ ≤QT ,h

(
I d
dT −1m

(k)
) =QT

(
Sd

dT −1m
(k)

) ≤ ‖pT ‖∞
(L′)dT

as QT admits a bounded density pT . Hence, (21) is verified if

L′ ≥ Lk̃N, k̃N =
( ‖pT ‖∞

(1 − LdT
r∗

1 (N))

)1/dT

, r∗
1 (N) = 2r1(N) + 2r2(N),

which implies that we assume from now on that L−dT ≥ 2r∗
1 (N) for N large enough.

Let us now look at (22) for a i > 1. To simplify the notation in what follows, let FN
i−1(h̃, ·)

be the CDF of Mh

T −i+2,Q̂N
T −i+1,h

(h̃,dhT −i+1) and Fi−1(h̃, ·) be the CDF of Mh
T −i+2,QT −i+1

(h̃,

dhT −i+1). Then,∣∣F̃ N
i−1(hi−1, hi) − F̃ N

i−1

(
h′

i−1, h
′
i

)∣∣
≤ 2

∥∥F̃ N
i−1 − FN

i−1

∥∥∞ + 2
∥∥FN

i−1 − Fi−1
∥∥∞ + ∣∣Fi−1(hi−1, hi) − Fi−1

(
h′

i−1, h
′
i

)∣∣
= 2r3(N) + 2r4(N) + ∣∣Fi−1(hi−1, hi) − Fi−1

(
h′

i−1, h
′
i

)∣∣
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with r3(N) = ‖F̃ N
i−1 − FN

i−1‖∞ and r4(N) = ‖FN
i−1 − Fi−1‖∞; note r3(N) → 0 by the construc-

tion of KN
T −i+2,h and under the assumptions of the theorem while r4(N) → 0 by Theorem 2 and

[17], Theorem 3.
To control |Fi−1(hi−1, hi) − Fi−1(h

′
i−1, h

′
i )|, assume without loss of generality that hi ≥ h′

i

and write G̃h
i (hi−1, h

′
i ) = G̃T −i+2(H(hi−1),H(h′

i )) to simplify further the notation. Then∣∣Fi−1(hi−1, hi) − Fi−1
(
h′

i−1, h
′
i

)∣∣ ≤ ∣∣Fi−1
(
hi−1, h

′
i

) − Fi−1
(
h′

i−1, h
′
i

)∣∣
+

∣∣∣∣∫ hi

h′
i

G̃h(hi−1, v)QT −i+1,h(dv)

∣∣∣∣.
The second term is bounded by ‖G̃T −i+2‖∞QT −i+1,h([h′

i , hi]) ≤ ‖G̃T −i+2‖∞QT −i+1(W)

where W ∈ Sd
dT −im

. Since QT −i+1 admits a bounded density, we have, for a constant c > 0,

‖G̃T −i+2‖∞QT −i+1,h

([
h′

i , hi

]) ≤ cL−dT +1−i

.

To control the other term suppose first that h′
i > L′−dT −i+1

and let k be the largest integer such

that h′
i ≥ kL′−dT −i+1

. Then,∣∣Fi−1
(
hi−1, h

′
i

) − Fi−1
(
h′

i−1, h
′
i

)∣∣
=

∣∣∣∣∫ h′
i

0

[
G̃h

i (hi−1, v) − G̃h
i

(
h′

i−1, v
)]
QT −i+1,h(dv)

∣∣∣∣
(23)

≤
∣∣∣∣∫ kL′−dT −i+1

0

[
G̃h

i (hi−1, v) − G̃h
i

(
h′

i−1, v
)]
QT −i+1,h(dv)

∣∣∣∣
+

∣∣∣∣∫ h′
i

kL′−dT −i+1

[
G̃h

i (hi−1, v) − G̃h
i

(
t ′i−1, v

)]
QT −i+1,h(dv)

∣∣∣∣.
Then, using by Lemma 2, we have for the first term:

∣∣∣∣∫ kL′−dT −i+1

0

[
G̃h

i (hi−1, v) − G̃h
i

(
h′

i−1, v
)]
QT −i+1,h(dv)

∣∣∣∣
=

∣∣∣∣∣
ki∑

j=1

∫
Wj

[
G̃T −i+2

(
H(hi−1),x

) − G̃T −i+2
(
H

(
h′

i−1

)
,x

)]
QT −i+1(dx)

∣∣∣∣∣
≤

ki∑
j=1

{∣∣F c.d.f.
MT −i+2,QT −i+1

(
H(hi−1),aj

) − F c.d.f.
MT −i+2,QT −i+1

(
H

(
h′

i−1

)
,aj

)∣∣
+ ∣∣F c.d.f.

MT −i+2,QT −i+1

(
H(hi−1),bj

) − F c.d.f.
MT −i+2,QT −i+1

(
H

(
h′

i−1

)
,bj

)∣∣},
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where Wj = [aj ,bj] ⊂ [0,1)d and where ki ≤ 2d(dT −im + 1). Let Ci be the Lipschitz constant
of F c.d.f.

MT −i+2,QT −i+1
. Then, for any c ∈ [0,1)d ,∣∣F c.d.f.

MT −i+2,QT −i+1

(
H(hi−1), c

) − F c.d.f.
MT −i+2,QT −i+1

(
H

(
h′

i−1

)
, c

)∣∣ ≤ Ci

∥∥H(hi−1) − H
(
h′

i−1

)∥∥∞

≤ CiL
′−dT −i+1

because H(hi−1) and H(h′
i−1) belong to the same hypercube W ∈ Sd

dT −im
of side 2−mdT −i+1 =

L′−dT −i+1
.

For the second term after the inequality sign in (23), we have∣∣∣∣∫ h′
i

kL′−dT −i+1

[
G̃h

i (hi−1, v) − G̃h
i

(
h′

i−1, v
)]
QT −i+1,h(dv)

∣∣∣∣
≤ Mh

T −i+2,QT −i+1,h

(
hi−1,

[
kL′−dT −i+1

, h′
i

]) +Mh
T −i+2,QT −i+1,h

(
h′

i−1,
[
kL′−dT −i+1

, h′
i

])
≤ MT −i+2,QT −i+1

(
H(hi−1),W

) +MT −i+2,QT −i+1

(
H

(
h′

i−1

)
,W

)
≤ 2‖G̃T −i+2‖∞‖pT −i+1‖∞2−mdT −i+1

for a W ∈ Sd
dT −im

and where pT −i+1 is the (bounded) density of QT −i+1. This last quantity is

also the bound we obtain for h′
i < L′−dT −i+1

. Hence, these computations shows that∣∣F̃i−1(hi−1, hi) − F̃i−1
(
h′

i−1, h
′
i

)∣∣ ≤ ciL
′−dT −i+1

log
(
L′)

for a constant ci , i ∈ 2 : (T + 1).
Condition (22) is therefore verified when (taking L′ so that log(L′) ≥ 1)

L′

log(L′)
≥ L max

i∈{2,...,T +1}

(
ci

1 − LdT −i+1
r∗

2 (N)

) 1
dT −i+1

,

where r∗
2 (N) = 2r3(N) + 2r4(N). Let γ ∈ (0,1) and note that for N large enough logL′ < L′γ .

Hence, for N large enough (21) and (22) are verified for L′ the smallest power of 2 such that

L′ ≥ (kNL)(1−γ )−1
, kN = max

i∈{1,...,T +1}

(
ci

1 − LdT −i+1
r∗(N)

) 1
dT −i+1

, c1 = ‖pT ‖,

where r∗(N) = r∗
1 (N) + r∗

2 (N). Note that we assume from now on that L−dT ≥ 2r∗(N).
Because the function FQ̃N

T,hT

is continuous on [0, hN
0 ] × · · · × [0, hN

T ], ∂(FQ̃N
T,hT

(B)) =
FQ̃N

T,hT

(∂(B)) and therefore we can bound #U2 following the proof of Theorem 3. Using the

same notations as in the proof of Theorem 3, we obtain that Q̃N
T,hT

(∂(B)) is covered by at most

(T + 1)2d̃ k
d̃−1
1−γ

N L
d̃−1
1−γ
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hyperrectangles in R̃. To go back to the initial partition of [0,1)T +1 with hyperrectangles W ∈P ,
remark that L′ > L so that every hyperrectangles in R̃ is covered by at most c∗ hyperrectangles
of P for a constant c∗. Hence,

#U (1)
2 ≤ cNL

d̃−1
1−γ , cN = c∗(T + 1)2d̃ k

d̃−1
1−γ

N . (24)

We therefore have∥∥S(
ȟ1:N

0:T
) − Q̃N

T,hT

∥∥
E ≤ Ld̃D

(
u1:N ) + cNL

d̃−1
1−γ

(
D

(
u1:N ) + L−d̃

)
.

Let γ ∈ (0, d̃−1) so that cd := d̃ − d̃−1
1−γ

> 0. To conclude the proof as in [17], Theorem 4, let

d̃1 = dT and d̃2 = ∑T −1
t=0 dt . Thus,∥∥S(

ȟ1:N
0:T

) − Q̃N
T,hT

∥∥
E ≤ 2Ld̃1+d̃2D

(
u1:N ) + cNL−cd ,

where the optimal value of L is such that L = O(D(u1:N)
− 1

cd+d̃1+d̃2 ). Then, provided that

r∗(N)D(u1:N)
− d̃1

cd+d̃1+d̃2 = O(1), L verifies all the conditions above and, since cN = O(1), we
have ∥∥S(

ȟ1:N
0:T

) − Q̃N
T,hT

∥∥
E =O

(
D

(
u1:N ) 1

cd+d̃1+d̃2
)
.

Otherwise, if r∗(N)D(u1:N)
− d̃1

cd+d̃1+d̃2 → +∞, let L =O(r∗(N)
− 1

d̃1 ). Then cN =O(1) and

Ld̃1+d̃2D
(
u1:N ) = O

(
r(N)

) cd

d̃1
− cd+d̃1+d̃2

d̃1 D
(
u1:N )

= O
(
r(N)cd/d̃1

)(
O

(
r(N)

)−1
D

(
u1:N ) d̃1

cd+d̃1+d̃2
) cd+d̃1+d̃2

d̃1

= O
(
r(N)cd /d̃1

)
.

Therefore ‖S(ȟ1:N
0:T ) − Q̃N

T,hT
‖E =O(1), which concludes the proof.

B.5.3. Proof of Corollary 2

To prove the result, we first construct a probability measure Q̃N
T,hT

such that the point set

x̃1:N
0:T generated by Algorithm 3 becomes, as N increases, arbitrary close to the point set

x̌1:N
0:T obtained using a smooth backward step described in Theorem 6. Then, we show that, if

‖S(x̌1:N
0:T ) − Q̃T ‖E → 0, then‖S(x̃1:N

0:T ) − Q̃T ‖E → 0.
To this aims, assume that, for all t ∈ 0 : T , the points h1:N

t are labelled so that n < m =⇒
hn

t < hm
t . (Note that the inequality is strict because, by Assumption 1 of Theorem 1, the points

x1:N
t are distinct.) Without loss of generality, assume that h1

t > 0 and let h0
t = 0 for all t .



2984 M. Gerber and N. Chopin

To construct Q̃N
T,hT

, let Q̂N
T,h be such that FQ̂N

T,h
is strictly increasing on [0, hN

T ] with

FQ̂N
T,h

(hn
T ) = FQ̂N

T,h
(hn

T ) for all n ∈ 1 : N and, for t ∈ 1 : T , let KN
t,h(ht ,dht−1) be such, for all

ht ∈ [0,1), FKN
t,h

(ht , ·) is strictly increasing on [0, hN
t−1] and

FKN
t,h

(
ht , h

n
t−1

) = FMh

t,Q̂N
t−1,h

(
ht , h

n
t−1

) ∀n ∈ 1 : N.

Let ȟ1:N
0:T be as in Theorem 6 (with Q̃N

T,hT
constructed using the above choice of Q̂N

T,h and

KN
t,h(h1,dht−1)). We now show by a backward induction that, for any t ∈ 0 : T , maxn∈1:N ‖x̌n

t −
x̃n
t ‖∞ =O(1).

To see this, note that, by the construction of Q̂N
T,h,

∣∣ȟn
T − h̃n

T

∣∣ ≤ �N
T , �N

T := max
n∈1:N

∣∣hn−1
T − hn

T

∣∣,
where, by [17], Lemma 2, �N

T → 0 as N → +∞. Hence, using the Hölder property of the Hilbert
curve, this shows that maxn∈1:N ‖x̌n

T − x̃n
T ‖∞ =O(1).

Let t ∈ 0 : T − 1 and assume that maxn∈1:N ‖x̌n
t+1 − x̃n

t+1‖∞ =O(1). Let wn
t = h(xǎn

t
t ), where

ǎn
t is the index selected at iteration t of Algorithm 3 obtained by replacing x̃n

t+1 by x̌n
t+1. Then,

by the construction of KN
t,h, maxn∈1:N |wn

t − ȟn
T | =O(1).

We now want to show that maxn∈1:N |wn
t − h̃n

T | =O(1). To simplify the notation, let
m̃t+1(xt ,xt+1) = mt+1(xt ,xt+1)Gt1(xt ,xt+1). Then, using Assumption 4, simple computations
show that, for m ∈ 1 : N ,∣∣W̃m

t

(
x̃n
t+1

) − W̃m
t

(
x̌n
t+1

)∣∣
≤ |Wm

t m̃t+1(xm
t , x̃n

t+1) − Wm
t m̃t+1(xm

t , x̌n
t+1)|∑N

k=1 Wk
t m̃t+1(xk

t , x̃n
t+1)

+ Wm
t m̃t+1

(
xm
t , x̌n

t+1

) |∑N
k=1 Wk

t m̃t+1(xk
t , x̌n

t+1) − ∑N
k=1 Wk

t m̃t+1(xk
t , x̃n

t+1)|
(
∑N

k=1 Wk
t m̃t+1(xk

t , x̃n
t+1))(

∑N
k=1 Wk

t m̃t+1(xk
t , x̌n

t+1))

≤ ‖Gt‖∞
|m̃t+1(xm

t , x̃n
t+1) − m̃t+1(xm

t , x̌n
t+1)|

Nct

+ ‖Gtm̃t+1‖∞
∑N

k=1 Gt(x̂k
t−1,xk

t )|m̃t+1(xk
t , x̌n

t+1) − m̃t+1(xk
t , x̃n

t+1)|
(Nct )

2
.

Let

ωt+1(δ) = sup
(x1,x2)∈X 2,(x′

1,x
′
2)∈X 2

‖xi−x′
i‖∞≤δ,i=1,2

∣∣m̃t+1(x1,x2) − m̃t+1
(
x′

1,x′
2

)∣∣, δ > 0
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be the modulus of continuity of m̃t+1. Then,

∣∣W̃ i
t

(
x̃n
t+1

) − W̃ i
t

(
x̌n
t+1

)∣∣ ≤ max
n∈1:N

wt+1(|x̃n
t+1 − x̌n

t+1|∞)

N

‖Gt‖∞(ct + ‖Gtm̃t+1‖∞)

c2
t

=: ξ̃N
t ,

where, using the fact that m̃t+1 is uniformly continuous on X 2 (Assumption 5) and the inductive
hypothesis, ξ̃N

t =O(N−1). Also, we know that

min
m∈1:N inf

xt+1∈X
W̃m

t (xt+1) ≥ ξN
t := ct

N‖Gt‖m̃t+1‖∞
.

Then, let Nt be such that ξ̃
Nt
t < ξ

Nt
t so that, for N ≥ Nt , we either have h̃n

t = wn
t , or h̃n

t = wn+1
t or

h̃n
t = wn−1

t . Hence, maxn∈1:N |wn
t − h̃n

t | =O(1) and therefore maxn∈1:N |h̃n
t − ȟn

t | =O(1). Finally,
by, the Hölder property of the Hilbert curve, this shows that maxn∈1:N ‖x̌n

t − x̃n
t ‖∞ =O(1).

The rest of the proof follows the lines of [28], Lemma 2.5, page 15. First, note that the above
computations shows that, for any ε > 0, there exists a Nε such that ‖x̃1:N

0:T − x̌1:N
0:T ‖∞ ≤ ε for

N ≥ Nε . Let B = [a,b], B+ = [a,b + ε] ∩ [0,1)T +1 and B− = [a,b − ε]. If ε > bi for at least
one i ∈ 1 : (T + 1), B− =∅. Then for N ≥ Nε , we have

S
(
x̌1:N

0:T
)(

B−) ≤ S
(
x̃1:N

0:T
)
(B) ≤ S

(
x̌1:N

0:T
)(

B+)
. (25)

By the definition of the extreme metric, we have∣∣S(
x̌1:N

0:T
)(

B+) − Q̃T

(
B+)∣∣ ≤ ∥∥S(

x̌1:N
0:T

) − Q̃T

∥∥
E,

(26)∣∣S(
x̌1:N

0:T
)(

B−) − Q̃T

(
B−)∣∣ ≤ ∥∥S(

x̌1:N
0:T

) − Q̃T

∥∥
E.

Combining (25) and (26) yields:{
−(

Q̃T (B) − Q̃T

(
B−)) − ∥∥S(

x̌1:N
0:T

) − Q̃T

∥∥
E ≤ S

(
x̃1:N

0:T
)
(B) − Q̃T (B),

S
(
x̃1:N

0:T
)
(B) − Q̃T (B) ≤ (

Q̃T

(
B+) − Q̃T (B)

) + ∥∥S(
x̌1:N

0:T
) − Q̃T

∥∥
E.

(27)

Using the fact that Q̃T admits a bounded density, we have for a constant c > 0

Q̃T (B) − Q̃T

(
B−) ≤ cλT +1

(
B \ B−) ≤ cεT +1,

(28)
Q̃T

(
B+) − Q̃T (B) ≤ cλT +1

(
B+ \ B

) ≤ cεT +1.

Therefore, combining (27) and (28), we obtain, for N ≥ Nε and for all B ∈ B[0,1)T +1 ,

−cεT +1 − ∥∥S(
x̌1:N

0:T
) − Q̃T

∥∥
E ≤ S

(
x̃1:N

0:T
)
(B) − Q̃T (B) ≤ ∥∥S(

x̌1:N
0:T

) − Q̃T

∥∥
E + cεT +1

and thus ∥∥S(
x̃1:N

0:T
) − Q̃T

∥∥
E ≤ ∥∥S(

x̌1:N
0:T

) − Q̃T

∥∥
E + cεT +1

and the result follows from Theorem 6.
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