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Multivariate continuous-time ARMA(p, q) (MCARMA(p, q)) processes are the continuous-time analog of
the well-known vector ARMA(p, q) processes. They have attracted interest over the last years. Methods to
estimate the parameters of an MCARMA process require an identifiable parametrization such as the Echelon
form with a fixed Kronecker index, which is in the one-dimensional case the degree p of the autoregressive
polynomial. Thus, the Kronecker index has to be known in advance before parameter estimation can be
done. When this is not the case, information criteria can be used to estimate the Kronecker index and
the degrees (p, q), respectively. In this paper, we investigate information criteria for MCARMA processes
based on quasi maximum likelihood estimation. Therefore, we first derive the asymptotic properties of
quasi maximum likelihood estimators for MCARMA processes in a misspecified parameter space. Then,
we present necessary and sufficient conditions for information criteria to be strongly and weakly consistent,
respectively. In particular, we study the well-known Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC) as special cases.

Keywords: AIC; BIC; CARMA process; consistency; information criteria; law of iterated logarithm;
Kronecker index; quasi maximum likelihood estimation

1. Introduction

In this paper, we study necessary and sufficient conditions for weak and strong consistency of in-
formation criteria for multivariate continuous-time ARMA(p, q) (MCARMA(p, q)) processes.
One-dimensional Gaussian CARMA processes were already investigated by Doob [12] in 1944
and Lévy-driven CARMA processes were propagated at the beginning of this century by Peter
Brockwell, see [7] for an overview. An R

s -valued Lévy process (L(t))t≥0 is a stochastic process
in R

s with independent and stationary increments, L(0) = 0s P-a.s. and càdlàg (continue à droite,
limite à gauche) sample paths. Special cases of Lévy processes are Brownian motions and (com-
pound) Poisson processes. Further information on Lévy processes can be found in [2,4,26], for
example. A formal definition of an MCARMA process was recently given in [23]; see Section 2
of this paper. The idea behind it is that for a two-sided R

s -valued Lévy process L = (L(t))t∈R,
that is, L(t) = L(t)1{t≥0} − L̃(t−)1{t<0} where (L̃(t))t≥0 is an independent copy of the Lévy
process (L(t))t≥0, and positive integers p > q , a d-dimensional MCARMA(p, q) process is the
solution to the stochastic differential equation

P(D)Y (t) = Q(D)DL(t) for t ∈R, (1.1)

where D is the differential operator,

P(z) := Id×dzp + A1z
p−1 + · · · + Ap−1z + Ap (1.2)
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with A1, . . . ,Ap ∈R
d×d is the autoregressive polynomial and

Q(z) := B0z
q + B1z

q−1 + · · · + Bq−1z + Bq (1.3)

with B0, . . . ,Bq ∈ R
d×s is the moving average polynomial. There are a few papers studying

the statistical inference of MCARMA processes, for example, [9,13,14,27,28]. In particular, [28]
derive the asymptotic behavior of the quasi maximum likelihood estimator (QMLE) under the as-
sumption that the underlying parameter space � with N(�) parameters contains the true param-
eter and satisfies some identifiability assumptions. These are typical assumptions for estimation
procedures. For a one-dimensional CARMA process, we only obtain identifiability when the de-
gree p of the autoregressive polynomial is fixed in the parameter space; in the multivariate setup
the Kronecker index, which specifies the order of the coefficients of the multivariate autoregres-
sive polynomial, has to be fixed. If we know the Kronecker index, we know the degree p of the
autoregressive polynomial as well. But if we observe data, how do we know what is the true Kro-
necker index of the data, so that we do the parameter estimation in a suitable parameter space �?
That is the point where we require model selection criteria or, synonymously, information criteria
(cf. [11,22]). The most prominent model selection criteria are the Akaike Information Criterion
(AIC) introduced in [1] by Akaike, the Schwarz Information Criterion (SIC), also known as BIC
(Bayesian Information Criterion), going back to [29], and the Hannan–Quinn criterion in [19].
The AIC approximates the Kullback–Leibler discrepancy, whereas the BIC approximates the
Bayesian a posteriori distribution of the different candidate models. The Hannan–Quinn criterion
is based on the AIC of Akaike but with a different penalty term to obtain a strongly consistent in-
formation criterion. Information criteria for multivariate ARMAX processes and their statistical
inference are well-studied in the monograph [18]; see also [8] for an overview of model selection
criteria for ARMA processes. An extension of the AIC to multivariate weak ARMA processes is
given in [5]. There exist only a few papers investigating information criteria independent of the
underlying model, for example, [31] presents very general likelihood-based information criteria
and their properties, and [10] derives the BIC. All of these information criteria have in common
that they are likelihood-based and choose as candidate model the model for which the informa-
tion criterion attains the lowest value. They are of the form

ICn(�) := L̂
(
ϑ̂n, Y n

)+ N(�)
C(n)

n
.

In our setup Yn = (Y (h), . . . , Y (hn)) is a sample of length n from an MCARMA process, L̂ is
the properly normalized quasi log-likelihood function, ϑ̂n is the QMLE and C(n) is a penalty
term. We choose the parameter space as the most suitable for which the information criterion is
lowest. This means that for two parameter spaces �1,�2 we say that �1 fits better than �2 to
the data if we have ICn(�1) < ICn(�2). A strongly consistent information criterion chooses the
correct space asymptotically with probability 1, and for a weakly consistent information criterion
the convergence to the true space holds in probability. The sequence C(n) can be interpreted as
a penalty term for the inclusion of more parameters into the model. Without the penalty term,
the criterion would always choose the model with more parameters if we compare two parameter
spaces both containing a parameter that generates the data. However, this is not feasible, since
the inclusion of too many parameters ultimately leads to an interpolation of the data, such that
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the model would not provide information about the process generating the data anymore. The
employment of an information criterion can therefore be seen as seeking a trade-off between
accuracy and complexity. The rest of the paper is structured in the following way. In Section 2
we present basic facts on MCARMA processes and state space models. Since our information
criteria are based on quasi maximum likelihood estimation we define first, in Section 3.1, the
quasi log-likelihood function for MCARMA processes and in Section 3.2 the model assumptions.
Then, in Section 3.3, we derive the asymptotic normality of the QMLE extending the results given
in [28] to a misspecified parameter space. For the proof of strong consistency of the information
criteria, we require some knowledge about the asymptotic behavior of the quasi log-likelihood
function L̂ as well. For this reason, we prove in Section 3.4 a law of the iterated logarithm for L̂.
Section 4 contains the main results of the paper: necessary and sufficient conditions for strong
and weak consistency of information criteria. In particular, we investigate Gaussian MCARMA
processes where the results are explicit. Special information criteria are the AIC and the BIC
which are the topic of Section 5. Finally, we conclude with a simulation study in Section 6.

Notation

We use the notation
D→ for weak convergence and

P→ for convergence in probability. For two

random vectors Z1,Z2 the notation Z1
D= Z2 means equality in distribution. We use as norms the

Euclidean norm ‖·‖ in R
d and the spectral norm ‖·‖ for matrices, which is submultiplicative and

induced by the Euclidean norm. The matrix 0d×s is the zero matrix in R
d×s and Id×d is the iden-

tity matrix in R
d×d . For a vector x ∈R

d we write xT for its transpose. For a matrix A ∈ R
d×d we

denote by tr(A) its trace, by det(A) its determinant and by λmax(A) its largest eigenvalue. If A is

symmetric and positive semidefinite we write A
1
2 for the principal square root, i.e. the symmetric,

positive semidefinite matrix satisfying A
1
2 A

1
2 = A. For a sequence of random variables (Xn)n∈N

we say that Xn is oa.s.(an) if |Xn/an| → 0 as n → ∞ P-a.s. and likewise that Xn is Oa.s.(an) if
lim supn→∞ |Xn/an| < ∞ P-a.s. We write ∂i for the partial derivative operator with respect to
the ith coordinate and ∇ = (∂1, . . . , ∂r ) for the gradient operator in R

r . Finally, by ∂2
i,j we denote

the second partial derivative with respect to the coordinates i and j , and by ∇2
ϑf we denote the

Hessian matrix of the function f . When there is no ambiguity, we use ∂if (ϑ0), ∇ϑf (ϑ0) and
∇2

ϑf (ϑ0) as shorthands for ∂if (ϑ)|ϑ=ϑ0 , ∇ϑf (ϑ)|ϑ=ϑ0 and ∇2
ϑf (ϑ)|ϑ=ϑ0 , respectively. We in-

terpret ∇ϑf (ϑ) as a column vector. In general C denotes a constant which may change from line
to line.

2. MCARMA processes and state space processes

We start with a formal definition of an MCARMA process which can be interpreted as solution
of (1.1).

Definition 2.1. Let (L(t))t∈R be an R
s -valued Lévy process with E‖L(1)‖2 < ∞ and let the

polynomials P(z),Q(z) be defined as in (1.2) and (1.3) with p,q ∈ N0, q < p, and B0 �= 0d×s .
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Moreover, define

A =

⎛⎜⎜⎜⎜⎜⎝
0d×d Id×d 0d×d · · · 0d×d

0d×d 0d×d Id×d

. . .
...

...
. . .

. . . 0d×d

0d×d · · · · · · 0d×d Id×d

−Ap −Ap−1 · · · · · · −A1

⎞⎟⎟⎟⎟⎟⎠ ∈ R
pd×pd,

C = (Id×d,0d×d, . . . ,0d×d) ∈ R
d×pd and B = (βT

1 · · ·βT
p )T ∈R

pd×s with

β1 := · · · := βp−q−1 := 0d×s and βp−j := −
p−j−1∑

i=1

Aiβp−j−i + Bq−j , j = 0, . . . , q.

Assume that the eigenvalues of A have strictly negative real parts. Then the R
d -valued causal

MCARMA(p, q) process Y = (Y (t))t∈R is defined by the state space equation

Y(t) = CX(t) for t ∈ R, (2.1)

where X is the stationary unique solution to the pd-dimensional stochastic differential equation

dX(t) = AX(t)dt + B dL(t). (2.2)

In particular, MCARMA(1,0) processes and X in (2.2) are multivariate Ornstein–Uhlenbeck
processes. For more details on the well-definedness of MCARMA(p, q) processes see [23]. The
class of MCARMA processes is huge. Schlemm and Stelzer [27], Corollary 3.4, showed that the
class of continuous-time state space models of the form

Y(t) = CX(t) and dX(t) = AX(t)dt + B dL(t), (2.3)

where A ∈ R
N×N has only eigenvalues with strictly negative real parts, B ∈ R

N×s and C ∈
R

d×N , and the class of causal MCARMA processes are equivalent if E‖L(1)‖2 < ∞ and
E[L(1)] = 0s . In general, when we talk about an MCARMA process or a state space model Y ,
respectively, corresponding to (A,B,C,L), we mean that the MCARMA process Y is defined
as in (2.3) and shortly write Y = MCARMA(A,B,C,L).

In this paper, we observe the MCARMA process only on a discrete equidistant time-grid with
grid distance h > 0. It is well known that the Ornstein–Uhlenbeck process (X(t))t∈R sampled at
hZ is an AR(1)-process with

X(kh) = eAhX
(
(k − 1)h

)+ Nh,k, k ∈ Z,

where Nh,k = ∫ kh

(k−1)h
eA(kh−t)B dL(t) is a sequence of i.i.d. random vectors. We denote its co-

variance matrix by Cov(Nh,k) =���h. Hence, (Y (kh))k∈Z is the output process of the discrete-
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time state space model

Y(kh) = CX(kh) where X(kh) = eAhX
(
(k − 1)h

)+ Nh,k. (2.4)

This discrete-time state space representation is basic for quasi maximum likelihood estimation.

3. Quasi maximum likelihood estimation

3.1. Definition

Since the MCARMA process observed at discrete equidistant time points is a discrete-time state
space model as given in (2.4), we use quasi maximum likelihood estimation for discrete-time
state space models with respect to identification issues. We now review the most important
aspects of estimation as it is done in [28] for MCARMA processes. The estimation is based
on the Kalman filter, which calculates the linear innovations of a Gaussian discrete-time state
space model; originally introduced in [21] and described in a time series context in [8], Sec-
tion 12.2. If we observe data, we unfortunately do not know the model parameter behind it
and hence, we have to calculate the so-called pseudo-innovations. In the following, we as-
sume that our data set is generated by a continuous-time state space model (A,B,C,L), that
is, Y = MCARMA(A,B,C,L). Moreover, we have a parametric family of MCARMA models
(Aϑ,Bϑ,Cϑ,Lϑ) with ϑ in the parameter space � ⊂ R

N(�), N(�) ∈ N. The aim is to find
ϑ0 ∈ � such that MCARMA(Aϑ0 ,Bϑ0 ,Cϑ0,Lϑ0) = Y . Therefore, we calculate for every ϑ ∈ �

the steady-state Kalman gain matrix Kϑ via the discrete-time Riccati equation

�ϑ = eAϑh�ϑeAT
ϑ h +���ϑ,h − (

eAϑh�ϑCT
ϑ

)(
Cϑ�ϑCT

ϑ

)−1(eAϑh�ϑCT
ϑ

)T
,

as

Kϑ = (
eAϑh�ϑCT

ϑ

)(
Cϑ�ϑCT

ϑ

)−1 and set Vϑ = Cϑ�ϑCT
ϑ .

Based on this, the pseudo-innovations are defined as

εϑ,k = Y(kh) − CϑX̂ϑ,k with X̂ϑ,k = (
eAϑh − KϑCϑ

)
X̂ϑ,k−1 + KϑY

(
(k − 1)h

)
,

where X̂ϑ,0 =∑∞
j=1(e

Aϑh − KϑCϑ)j−1KϑY(−jh). For ϑ0 so that MCARMA(Aϑ0 ,Bϑ0 ,Cϑ0 ,

Lϑ0) = Y the pseudo-innovations (εϑ0,k)k∈N are the innovations, that is, εϑ0,k = Yk − Pk−1Yk ,
where Pk denotes the orthogonal projection onto the space span{Yj : −∞ < j ≤ k}, the closure
is taken in L2 and Vϑ0 = E[εϑ0,1ε

T
ϑ0,1

]. With this, −2/n times the Gaussian log-likelihood of the
model associated to ϑ is

L
(
ϑ,Y n

)= 1

n

n∑
k=1

(
d log(2π) + log

(
det(Vϑ)

)+ εT
ϑ,kV

−1
ϑ εϑ,k

)=: 1

n

n∑
k=1

lϑ,k. (3.1)

The expectation of this random variable is Q(ϑ) := E[L(ϑ,Y n)]. In practical scenarios, it is not
possible to calculate the pseudo-innovations, as they are defined in terms of the full history of



Information criteria for multivariate CARMA processes 2865

the process Y but we have only finitely many observations. Suppose now that we have n obser-
vations of the output process Y , contained in the sample Yn = (Y (h), . . . , Y (nh)). Therefore, we
initialize the filter at k = 1 by prescribing X̂ϑ,1 = X̂ϑ,initial and use the recursion

ε̂ϑ,k = Y(kh) − CϑX̂ϑ,k with X̂ϑ,k = (
eAϑh − KϑCϑ

)
X̂ϑ,k−1 + KϑY

(
(k − 1)h

)
.

The ε̂ϑ,k are denoted as approximate pseudo-innovations. Substituting the approximate pseudo-
innovations for their theoretical counterparts in (3.1), we obtain the quasi log-likelihood function

L̂
(
ϑ,Y n

) := 1

n

n∑
k=1

(
d log(2π) + log

(
det(Vϑ)

)+ ε̂T
ϑ,kV

−1
ϑ ε̂ϑ,k

)
. (3.2)

The QMLE based on the sample Yn is then given by

ϑ̂n := arg min
ϑ∈�

L̂
(
ϑ,Y n

)
. (3.3)

The idea is that ϑ̂n is an estimator for the pseudo-true parameter

ϑ∗ := arg min
ϑ∈�

Q(ϑ). (3.4)

The function Q attains its minimum at ϑ∗ in the space �. However, if we minimize only
over � and � does not contain a parameter generating Y then it is not clear that the min-
imum, and hence ϑ∗, is uniquely defined. On the other hand, if there is a ϑ0 ∈ � with
MCARMA(Aϑ0 ,Bϑ0 ,Cϑ0 ,Lϑ0) = Y then ϑ∗ = ϑ0. The latter case was investigated in [28].

3.2. Assumptions

In this section, we give the model assumptions which we require for the asymptotic results on
the QMLE ϑ̂n.

Assumption B.

B.1 The parameter space � is a compact subset of RN(�).
B.2 E[Lϑ ] = 0, E‖Lϑ(1)‖2 < ∞ and �L

ϑ = E[Lϑ(1)LT
ϑ (1)] is non-singular for each ϑ ∈

�.
B.3 For each ϑ ∈ �, the eigenvalues of Aϑ have strictly negative real parts and are elements

of {z ∈ C : −π
h

< Im(z) < π
h
}.

B.4 The pseudo-true parameter ϑ∗ as defined in (3.4) is an element of the interior of �.
B.5 For the true Lévy process L there exists a δ > 0 such that E‖L(1)‖4+δ < ∞.
B.6 For every ε > 0 there exists a δ(ε) > 0 such that Q(ϑ∗) ≤ minϑ∈Bε(ϑ∗)c∩� Q(ϑ)− δ(ε),

where Bε(ϑ
∗) is the open ball with center ϑ∗ and radius ε.

B.7 The Fisher information matrix of the QMLE is non-singular.
B.8 The maps ϑ → Aϑ , ϑ → Bϑ , ϑ → Cϑ and ϑ → �L

ϑ are three times continuously dif-
ferentiable. Moreover, for each ϑ ∈ �, the matrix Cϑ has full rank.
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B.9 For all ϑ ∈ �, the triple (Aϑ,Bϑ,Cϑ) is minimal with McMillan degree N , i.e.
Hϑ(z) := Cϑ(zIN×N − Aϑ)−1Bϑ is minimal in the sense that for any other representa-
tion Hϑ(z) = C̃ϑ (zIÑ×Ñ − Ãϑ )−1B̃ϑ the inequality Ñ ≥ N holds.

B.10 The family (MCARMA(Aϑ,Bϑ,Cϑ,Lϑ))ϑ∈� is identifiable from the spectral density.

Remark 3.1.
(a) Two parameter spaces � and �′ both satisfying B.9 with different McMillan degrees gen-

erate different processes.
(b) Assumption B.6 is a property called identifiable uniqueness. It makes sure that ϑ∗ is the

unique minimum of Q(ϑ) in � (cf. [32], page 28). In the correctly specified case, that is, when
the space � contains ϑ0 with MCARMA(Aϑ0 ,Bϑ0 ,Cϑ0 ,Lϑ0) = Y , the identifiable uniqueness
follows from some properties satisfied by the innovations associated to ϑ0 so that Assumption B.6
can be dropped.

Remark 3.2. An MCARMA process (A,B,C,L) in Echelon form with Kronecker index m =
(m1, . . . ,md) has the property that A = (Aij )i,j=1,...,d ∈ R

N×N is a block matrix with blocks
Aij ∈ R

mi×mj given by

Aij =

⎛⎜⎜⎝
0 . . . . . . . . . . . . 0
...

...

0 . . . . . . . . . . . . 0
αij,1 . . . αij,min(mi+1{i>j },mj ) 0 . . . 0

⎞⎟⎟⎠+ δi,j

⎛⎜⎜⎝
0
... I(mi−1)×(mi−1)

0
0 . . . 0

⎞⎟⎟⎠
and

C =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 . . . 0

... 0 0 . . . 0
...

...

0(d−1)×md

... 1 0 . . . 0
...

...

0(d−1)×m1
... 0(d−2)×m2

...
... 1 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

The matrix B = (bij ) ∈ R
N×s is unrestricted. Moreover, the polynomials P(z) = [pij (z)] and

Q(z) = [qij (z)] are of the form

pij (z) = δi,j z
mi −

min(mi+1{i>j },mj )∑
k=1

αij,kz
k−1 and qij (z) =

mi∑
k=1

κm1+···+mi−1+k,j z
k−1,
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where κi,j is the (i, j)th entry of the matrix K = T B , where T = (Tij )i,j=1,...,d ∈ R
N×N is a

block matrix with blocks Tij ∈R
mi×mj given by

Tij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−αij,2 . . . −αij,min(mi+1{i>j },mj ) 0 . . . 0
... . .

. ...

−αij,min(mi+1{i>j },mj )

...

0
...

...
...

0 . . . . . . . . . . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ δi,j

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 . . . . . . 0 1
0 0 . . . 1 0
...

... . .
. ...

... . .
. ...

...

0 1 . . . 0 0
1 0 . . . . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

This means that the Kronecker index specifies the degrees of the polynomials on the diagonal
of the autoregressive polynomial P(z); the polynomials on the secondary line have a degree of
at most min(mi + 1{i>j},mj ). In particular, we can calculate the degree p = maxi=1,...,d mi of
the autoregressive polynomial. Moreover, the polynomials P and Q can be calculated explicitly
from A,B and C. Important is that an MCARMA process in Echelon form fulfills the smoothness
and identifiability assumptions B.8, B.9 and B.10. A special subclass of MCARMA processes
in Echelon form are the one-dimensional CARMA processes, for which the degree p of the
autoregressive polynomial is fixed and the zeros of P and Q are distinct. This class corresponds
to the class of CARMA processes in Echelon form with Kronecker index p. For more details on
MCARMA processes in Echelon form, we refer to [28], Section 4.1.

3.3. Asymptotic normality

The next proposition collects auxiliary results which are used in the proof of the asymptotic
normality of the QMLE. They are highlighted here separately for easier reference, because they
will appear again later in a different context.

Proposition 3.3. Let � with associated family of continuous-time state space models (Aϑ,Bϑ,

Cϑ,Lϑ)ϑ∈� be given.

(a) Suppose Assumptions B.1 to B.3 as well as B.5 are satisfied. Then, there exists a pseudo-
true parameter ϑ∗ ∈ � as defined in equation (3.4) and for every n ∈ N, there exists

ϑ∗
n = arg min

ϑ∈�

E
[
L̂
(
ϑ,Yn

)]
(3.5)
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as well. If � also satisfies the other parts of Assumption B, then ϑ∗
n → ϑ∗ as n → ∞. In

particular, for n sufficiently large ϑ∗
n is in the interior of � as well.

(b) Suppose Assumptions B.1 to B.9 are satisfied. Then L̂(ϑ,Y n) → Q(ϑ) P-a.s. holds uni-
formly in ϑ as n → ∞.

(c) Suppose Assumption B is satisfied. Then,

√
n∇ϑ L̂

(
ϑ∗, Y n

) D→ N
(
0,I

(
ϑ∗)) as n → ∞,

where I(ϑ∗) = limn→∞ nVar(∇ϑL(ϑ∗, Y n)).
(d) Suppose Assumptions B.1 to B.9 are satisfied. Then the convergence ∇2

ϑ L̂(ϑ,Y n) → H(ϑ)

P-a.s. holds uniformly in ϑ as n → ∞, where H(ϑ) := E[∇2
ϑ lϑ,1] with lϑ,1 as in (3.1).

(e) Suppose Assumption B is satisfied. Then there exist ε,α > 0 such that for almost all ω and
for every n > n1(ω) and ϑ ∈ Bε(ϑ

∗) ∩ � we have det(∇2
ϑ L̂(ϑ,Y n)(ω)) ≥ α.

Proof. (a) The existence statements follow directly from [31], Proposition 3.1. As in the proof of
[28], Lemma 2.7, we have supϑ∈�E‖̂εϑ,k‖ < ∞, supϑ∈�E‖εϑ,k‖ < ∞ and for some ρ ∈ (0,1)

sup
ϑ∈�

E
[∣∣L̂(ϑ,Y n

)−L
(
ϑ,Y n

)∣∣]≤ C

n

n∑
k=1

ρk sup
ϑ∈�

(
E‖̂εϑ,k‖ +E‖εϑ,k‖

) n→∞→ 0.

Hence, the convergence ϑ∗
n → ϑ∗ follows.

(b) This is exactly [28], Lemma 2.8, taking [28], Lemma 3.14, into account.
(c) Note that under Assumption B we have

∇ϑQ(ϑ)|ϑ=ϑ∗ = ∇ϑE
[
L
(
ϑ,Yn

)]|ϑ=ϑ∗ = 0.

Next, we use dominated convergence to interchange expectation and derivative, giving
E[∇ϑL(ϑ,Y n)]|ϑ=ϑ∗ = 0. The rest of the proof can be carried out as [28], Lemma 2.16.

(d) The pointwise convergence can be proved as in [28], Lemma 2.17, taking [28],
Lemma 3.14, into account, respectively, [6], Lemma 2 and Lemma 3. The stronger statement
of uniform convergence can be shown by using the compactness of the parameter space analo-
gous to the proof of [28], Lemma 2.16, respectively [16], Theorem 16.

(e) Assumption B.7 says that the Fisher information matrix E[∇2
ϑ lϑ∗,1] is invertible and hence,

det(E[∇2
ϑ lϑ∗,1]) > 0. Moreover, by Assumption B.8 the map ϑ → E[∇2

ϑ lϑ,1] is continuous. Thus,
there exist ε,α > 0 such that infϑ∈Bε(ϑ∗)∩� det(E[∇2

ϑ lϑ,1]) > α. Since by (d) as n → ∞,

sup
ϑ∈Bε(ϑ∗)∩�

∥∥∇2
ϑ L̂

(
ϑ,Y n

)−E
[∇2

ϑ lϑ,1
]∥∥→ 0 P-a.s.,

we finally get limn→∞ infϑ∈Bε(ϑ∗)∩� det(∇2
ϑ L̂(ϑ,Y n)) > α P-a.s. �

We can now state the desired central limit theorem, which basically combines [31], Proposi-
tion 4.1, and [28], Theorem 3.16.
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Theorem 3.4. Assume that the space � with associated family of continuous-time state space
models (Aϑ,Bϑ,Cϑ,Lϑ)ϑ∈� satisfies Assumption B. Then, ϑ̂n → ϑ∗

P-a.s. as n → ∞, and

√
n
(
ϑ̂n − ϑ∗) D→ N

(
0,H−1(ϑ∗)I(ϑ∗)H−1(ϑ∗)),

where

I
(
ϑ∗)= lim

n→∞nVar
(∇ϑL

(
ϑ∗, Y n

))
and H

(
ϑ∗)= lim

n→∞∇2
ϑL

(
ϑ∗, Y n

)
. (3.6)

Proof. The proof can be carried out in the same way as [28], Theorem 3.16, Theorem 2.4 and
Theorem 2.5, respectively, replacing ϑ0 by ϑ∗ wherever it appears. Note that we have the ad-
ditional assumption B.6 concerning identifiable uniqueness, which ensures that the estimator
converges to a unique limit, see also [32], Theorem 3.4. �

Remark 3.5.
(a) For the strong consistency part of the theorem, Assumption B.3 can be relaxed requiring

only continuity instead of three times differentiability.
(b) In the case that we are in a correctly specified parameter space, this theorem corresponds

exactly to [28], Theorem 3.16.
(c) Suppose L is a Brownian motion, then some straightforward but lengthy calculations give

I(ϑ∗) = 2H(ϑ∗); details can be found in [15] as well (cf. [5], Remark 2, for VARMA processes).

3.4. Law of the iterated logarithm

This section is devoted to the development of various forms of the law of the iterated logarithm
which we need to study the consistency properties of the information criteria. In the following
proposition, we start by establishing a law of the iterated logarithm for linear combinations of
partial derivatives of the quasi log-likelihood function.

Proposition 3.6. Assume that the space � with associated family of continuous-time state space
models (Aϑ,Bϑ,Cϑ,Lϑ)ϑ∈� satisfies Assumption B. Then, for every x ∈ RN(�) \ {0N(�)} it
holds P-a.s.

lim sup
n→∞

−√
n√

log(log(n))
xT ∇ϑ L̂

(
ϑ∗, Y n

) = lim sup
n→∞

√
n√

log(log(n))
xT ∇ϑ L̂

(
ϑ∗, Y n

)
=
√

2 · xT I
(
ϑ∗)x.

Proof. Let x ∈ R
N(�) \ {0N(�)}. First, it can be deduced that xT I(ϑ∗)x is finite and positive

from B.7. We use the representation L(ϑ,Y n) = 1
n

∑n
k=1 lϑ,k from (3.1). The aim is now to apply

the law of the iterated logarithm for dependent random variables as it is given in [24], Theorem 8.
Therefore, we need to check the following three conditions:

(a) E[xT ∇ϑ lϑ∗,k] = 0 and E|xT ∇ϑ lϑ∗,k|2+δ1 < ∞ for some δ1 > 0.
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(b) E[|xT ∇ϑ lϑ∗,k − E[xT ∇ϑ lϑ∗,k | σ(Y ((k − m)h), . . . , Y (kh), . . . , Y ((k + m)h))]|2] =
O(m−2−δ2) for some δ2 > 0 and m ∈ N.

(c)
∑∞

k=1 αY(h) (k)
δ3

2+δ3 < ∞ for some 0 < δ3 < δ1, where (αY (h) (k))k∈Z denotes the strong
mixing coefficients of the process (Y (kh))k∈Z.

These conditions are satisfied by similar arguments as in [28], Lemma 2.16, so that we give
only a short sketch: (a) The first statement is already given in the proof of [28], Lemma 2.16.
For the second statement, we use the representation given in [28], equation (2.24), that for any
i ∈ {1, . . . ,N(�)}

∂i lϑ∗,k = tr
(
V −1

ϑ∗
(
Id×d − εϑ∗,kε

T
ϑ∗,kV

−1
ϑ∗
)
∂iVϑ∗

)+ 2∂iε
T
ϑ∗,kV

−1
ϑ∗ εϑ∗,k.

Then we obtain with the Cauchy–Schwarz inequality

E|∂i lϑ∗,k|2+δ1 ≤ CE
∣∣tr(V −1

ϑ∗ εϑ∗,kε
T
ϑ∗,kV

−1
ϑ∗ ∂iVϑ∗

)∣∣2+δ1 + CE
∣∣∂iε

T
ϑ∗,kV

−1
ϑ εϑ∗,k

∣∣2+δ1

≤ C
(
E‖εϑ∗,k‖4+2δ1 + (

E‖εϑ∗,k‖4+2δ1E‖∂iεϑ∗,k‖4+2δ1
) 1

2
)
,

where we have used the compactness of � in the last line. From Assumption B.5, we know that
the driving Lévy process L of Y has finite (4 + δ)th moment for some δ > 0, which carries over
to the (4 + δ)th moment of Y(kh), k ∈ Z, and hence to εϑ∗,k and ∂iεϑ∗,k . With this, we obtain
that the right-hand side is finite if δ1 < δ

2 and finally, we get E|xT ∇ϑ lϑ∗,k|2+δ1 < ∞. (b) fol-
lows from Step 2 in the proof of [28], Lemma 2.16, and (c) because Y is strongly mixing with
geometric rate by [23], Proposition 3.34. Then a consequence of (a)–(c) and [24], Theorem 8,
is

lim sup
n→∞

|∑n
k=1(

∑N(�)
i=1 xi∂i lϑ∗,k)|√

2nxT I(ϑ∗)x log(log(nxT I(ϑ∗)x))
= 1 P-a.s.

Since log(log(nxT I(ϑ∗)x)) = O(log(log(n))) we can therefore deduce the statement for L
by symmetry. Finally, [28], Lemma 2.11 and Lemma 3.14, give

√
n supϑ∈� |∂iL̂(ϑ,Y n) −

∂iL(ϑ,Y n)| P→ 0 as n → ∞ so that we can transfer the result to L̂ as well. �

The next theorem builds upon this and presents a version of the law of the iterated logarithm
for the gradient of the quasi log-likelihood function.

Theorem 3.7. Assume that the space � with associated family of continuous-time state space
models (Aϑ,Bϑ,Cϑ,Lϑ)ϑ∈� satisfies Assumption B. Then for any � ∈R

N(�)×N(�)

lim sup
n→∞

√
n√

log(log(n))

∥∥�∇ϑ L̂
(
ϑ∗, Y n

)∥∥=
√

2 · λmax
(
�I

(
ϑ∗)�T

)
P-a.s.

Proof. An application of Proposition 3.6 gives

lim sup
n→∞

√
n√

log(log(n))
xT �∇ϑ L̂

(
ϑ∗, Y n

)=
√

2 · xT �I
(
ϑ∗)�T x P-a.s.
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for every x ∈R
N(�) \ {0N(�)}. Just as in the proof of [17], Lemma 2, we can conclude from this

that

lim sup
n→∞

√
n√

log(log(n))

∥∥�∇ϑ L̂
(
ϑ∗, Y n

)∥∥=
√

2 · λmax
(
�I

(
ϑ∗)�T

)
P-a.s. �

Having this theorem allows us to derive a variant of the law of the iterated logarithm for L̂.

Theorem 3.8. Assume that the space � with associated family of continuous-time state space
models (Aϑ,Bϑ,Cϑ,Lϑ)ϑ∈� satisfies Assumption B. Then

lim sup
n→∞

n

log(log(n))

(
L̂
(
ϑ∗, Y n

)− L̂
(
ϑ̂n, Y n

))= λmax
(
H
(
ϑ∗)− 1

2 I
(
ϑ∗)H(ϑ∗)− 1

2
)

P-a.s.

Proof. A first-order Taylor expansion of ∇ϑ L̂(ϑ̂n, Y n) around ϑ∗ gives

0 = ∇ϑ L̂
(
ϑ̂n, Y n

)= ∇ϑ L̂
(
ϑ∗, Y n

)+ ∇2
ϑ L̂

(
ϑ

n
,Y n

)(
ϑ̂n − ϑ∗),

for some ϑ
n

with ‖ϑn −ϑ∗‖ ≤ ‖ϑ̂n −ϑ∗‖. Since by Theorem 3.4 we know that ϑ̂n → ϑ∗
P-a.s.,

ϑ
n → ϑ∗

P-a.s. as well. A conclusion of Proposition 3.3(e) is that limn→∞ det(∇2
ϑ L̂(ϑ

n
,Y n)) >

0 P-a.s., so that

ϑ̂n − ϑ∗ = −(∇2
ϑ L̂

(
ϑ

n
,Y n

))−1∇ϑ L̂
(
ϑ∗, Y n

)
P-a.s. (3.7)

is well-defined. Now we employ a Taylor expansion again, albeit this time we expand L̂(ϑ∗, Y n)

around ϑ̂n and use a second-order expansion. This gives us

L̂
(
ϑ∗, Y n

)= L̂
(
ϑ̂n, Y n

)+ 1

2

(
ϑ̂n − ϑ∗)T ∇2

ϑ L̂
(
ϑ̌n, Y n

)(
ϑ̂n − ϑ∗),

for some ϑ̌n with ‖ϑ̌n − ϑ̂n‖ ≤ ‖ϑ̂n − ϑ∗‖, where we have used ∇ϑ L̂(ϑ̂n, Y n) = 0. As above
we have ϑ̌n → ϑ∗

P-a.s. Rearranging the terms and plugging in (3.7), we arrive at

L̂
(
ϑ∗, Y n

)− L̂
(
ϑ̂n, Y n

)= 1

2

∥∥∇2
ϑ L̂

(
ϑ̌n, Y n

) 1
2
(∇2

ϑ L̂
(
ϑ

n
,Y n

))−1∇ϑ L̂
(
ϑ∗, Y n

)∥∥2
. (3.8)

An application of Theorem 3.7 with � =H(ϑ∗)− 1
2 (which is symmetric) yields

lim sup
n→∞

√
n√

log(log(n))

∥∥H(ϑ∗)− 1
2 ∇ϑ L̂

(
ϑ∗, Y n

)∥∥
=
√

2 · λmax
(
H
(
ϑ∗)− 1

2 I
(
ϑ∗)H(ϑ∗)− 1

2
)

P-a.s.

With ∇2
ϑ L̂(ϑ̌n, Y n)

1
2 ∇2

ϑ L̂(ϑ
n
,Y n)−1 → H(ϑ∗)− 1

2 P-a.s. (cf. Proposition 3.3(d)) and (3.8) we
can derive the statement. �
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Remark 3.9. This result is an analog to [31], Proposition 5.1, which investigates consistency of
information criteria under some different model assumptions. However, it is stronger than the
one in the cited article, since we are able to specify the limit superior exactly while in [31] it is
only shown that convergence occurs.

4. Likelihood-based information criteria

Throughout the remainder of this paper, we denote by � and �0 parameter spaces with asso-
ciated families of continuous-time state space models (Aϑ,Bϑ,Cϑ,Lϑ)ϑ∈�0 and (Aϑ,Bϑ,Cϑ,

Lϑ)ϑ∈�, respectively, satisfying Assumption B and by ϑ̂n the QMLE based on Yn in � as de-
fined in (3.3). In this main section, we derive properties for likelihood-based information criteria
of the following form.

Definition 4.1. Let C(n) be a positive, nondecreasing function of n with limn→∞ C(n)/n = 0.
Then

ICn(�) := L̂
(
ϑ̂n, Y n

)+ N(�)
C(n)

n
. (4.1)

These information criteria have the property that ICn(�)
P→ Q(ϑ∗). Since Q attains its min-

imum at ϑ0 for which MCARMA(Aϑ0 ,Bϑ0 ,Cϑ0 ,Lϑ0) = Y (cf. [28], Lemma 2.10) we choose
the parameter space for which the information criterion is minimal. The condition C(n)/n → 0
guarantees that underfitting is not possible, that is, there is no positive probability of choosing a
parameter space which cannot generate the process underlying the data. However, C(n)/n → 0
is not sufficient to exclude overfitting, that is, a positive probability to choose a space with more
parameters than necessary. In the following we will give necessary and sufficient conditions to
exclude this case. To this end, we need some notation.

Definition 4.2. Assume that there is a ϑ0 ∈ �0 with MCARMA(Aϑ0 ,Bϑ0 ,Cϑ0 ,Lϑ0) = Y . We

say that �0 is nested in � if N(�0) < N(�) and there exist a matrix F ∈ RN(�)×N(�0)

with FT F = IN(�0)×N(�0) as well as a c ∈ R
N(�) such that (Aϑ,Bϑ,Cϑ,Lϑ)ϑ∈�0 =

(AFϑ+c,BFϑ+c,CFϑ+c,LFϑ+c)ϑ∈�0 .

The interpretation of nested is that all processes generated by a parameter in �0 can also be
generated by a parameter in �. However, there are also processes which can be generated by a
parameter in �, but not by a parameter in �0. In this sense, �0 is contained in �. The condition
FT F = IN(�0)×N(�0) guarantees that we have a bijective map from �0 → F�0 + c ⊂ �.

For MCARMA processes parametrized in Echelon form, a parameter space � that satisfies
Assumption B contains only processes that have the same Kronecker index m = (m1, . . . ,md)

and hence, fixed degree p = maxi=1,...,d mi of the AR polynomial. However, for the MA poly-
nomial there is only the restriction that the degree is less than or equal to p − 1. In this context,
�0 could be a parameter space generating processes with Kronecker index m0 and MA degree
not exceeding q0, where � generates processes with Kronecker index m0 and MA degree not
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exceeding q for some q0 < q ≤ p0 − 1. Then �0 is nested in �. In this way our information
criteria can be used to estimate the Kronecker index, the degree of the AR polynomial and the
degree of the MA polynomial.

In the following we investigate only parameter spaces with associated family of continuous-
time state space models (Aϑ,Bϑ,Cϑ,Lϑ) in Echelon form. Let the Kronecker index, the degree
of the AR polynomial and the degree of the MA polynomial, respectively, belonging to Y be
denoted by m0, p0 and q0, respectively. Then �E

0 is defined as the parameter space generating
all MCARMA processes with Kronecker index m0. The degree of the AR polynomial of those
processes is then p0, the degree of the MA polynomial is between 0 and p0 − 1. The space
�E

0 is the biggest parameter space generating MCARMA processes in Echelon form, satisfying
Assumption B and containing a parameter ϑE

0 with MCARMA(AϑE
0
,BϑE

0
,CϑE

0
,LϑE

0
) = Y . Note

that ϑE
0 is then the true parameter in �E

0 . Next, we define under which circumstances ICn is
consistent; we distinguish two different types of consistency.

Definition 4.3.

(a) The information criterion ICn is called strongly consistent if for any parameter spaces
�0 and � with ϑ0 ∈ �0 so that MCARMA(Aϑ0 ,Bϑ0 ,Cϑ0 ,Lϑ0) = Y , and either
MCARMA(Aϑ,Bϑ,Cϑ,Lϑ) �= Y for every ϑ ∈ � or �0 being nested in � we have

P

(
lim sup
n→∞

(
ICn(�0) − ICn(�)

)
< 0

)
= 1.

(b) The information criterion ICn is called weakly consistent if for any parameter spaces
�0 and � with ϑ0 ∈ �0 so that MCARMA(Aϑ0 ,Bϑ0 ,Cϑ0 ,Lϑ0) = Y , and either
MCARMA(Aϑ,Bϑ,Cϑ,Lϑ) �= Y for every ϑ ∈ � or �0 being nested in � we have

lim
n→∞P

(
ICn(�0) − ICn(�) < 0

)= 1.

If the information criterion is strongly consistent, then the chosen parameter space converges
almost surely to the true parameter space. For a weakly consistent information criterion, we only
have convergence in probability. Moreover, if we compare two parameter spaces both containing
a parameter that generates the true output process, then we choose the parameter space with less
parameters asymptotically almost surely in the strongly consistent case, whereas in the weakly
consistent case we have convergence in probability. This especially means overfitting is asymp-
totically excluded.

With these notions, we characterize consistency of ICn for MCARMA processes in terms of
the penalty term C(n).

Theorem 4.4.

(a) The criterion ICn is strongly consistent if

lim sup
n→∞

C(n)

log(log(n))
> λmax

(
H
(
ϑE

0

)− 1
2 I
(
ϑE

0

)
H
(
ϑE

0

)− 1
2
)
.

The information criterion is not strongly consistent if lim supn→∞ C(n)/ log(log(n)) = 0.
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(b) The criterion ICn is weakly consistent if lim supn→∞ C(n) = ∞. If lim supn→∞ C(n) <

∞, then ICn is neither weakly nor strongly consistent.
(c) Let � and �0 be parameter spaces with ϑ0 ∈ �0 such that MCARMA(Aϑ0 ,Bϑ0 ,Cϑ0 ,

Lϑ0) = Y and �0 is nested in � with map F . Moreover, suppose lim supn→∞ C(n) =
C < ∞. Define

MF

(
ϑ∗) := −H−1(ϑ∗)+ F

(
FT H

(
ϑ∗)F )−1

FT .

Then

lim
n→∞P

(
ICn(�0) − ICn(�) > 0

)= P

(
N(�)−N(�0)∑

i=1

λiχ
2
i > 2

[
N(�) − N(�0)

]
C

)
> 0,

where (χ2
i ) is a sequence of i.i.d. χ2 random variables with one degree of freedom and

the λi are the N(�) − N(�0) strictly positive eigenvalues of

H
(
ϑ∗) 1

2 MF

(
ϑ∗)I(ϑ∗)MF

(
ϑ∗)H(ϑ∗) 1

2 .

Proof. For the whole proof, we denote by ϑ0 the parameter in �0 with MCARMA(Aϑ0 ,Bϑ0 ,

Cϑ0 ,Lϑ0) = Y and by ϑ∗ the pseudo-true parameter in �. Moreover, denote by ϑ̂n
0 the QMLE

based on Yn in �0, by ϑ̂n the QMLE based on Yn in � and by ϑ̂E
0 the QMLE based on Yn in �E

0 .
The corresponding quasi log-likelihood functions are denoted by L̂0, L̂ and L̂E , respectively.

(a) We distinguish two different cases.
Case 1: MCARMA(Aϑ,Bϑ,Cϑ,Lϑ) �= Y for every ϑ ∈ �. Then

ICn(�0) − ICn(�) = L̂0
(
ϑ̂n

0 , Y n
)− L̂

(
ϑ̂n, Y n

)+ [
N(�0) − N(�)

]C(n)

n
. (4.2)

On the one hand, by Theorem 3.8 we have that

L̂
(
ϑ̂n, Y n

) = L̂
(
ϑ∗, Y n

)+ Oa.s.

(
log(log(n))

n

)
,

L̂0
(
ϑ̂n

0 , Y n
) = L̂0

(
ϑ0, Y

n
)+ Oa.s.

(
log(log(n))

n

)
,

and on the other hand, by Proposition 3.3(b)

L̂
(
ϑ∗, Y n

)= Q
(
ϑ∗)+ oa.s.(1) and L̂0

(
ϑ0, Y

n
)= Q(ϑ0) + oa.s.(1).

Finally, in this case Q(ϑ∗) − Q(ϑ0) ≥ δ > 0 by [28], Lemma 2.10, so that for some δ > 0

ICn(�0) − ICn(�) = Q(ϑ0) − Q
(
ϑ∗)+ r̂(n) + [

N(�0) − N(�)
]C(n)

n

< −δ + r̂(n) + [
N(�0) − N(�)

]C(n)

n
,
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where r̂(n) is oa.s.(1). By assumption it holds that C(n)/n → 0 as n → ∞, so that the statement
follows.

Case 2: �0 is nested in � with map F . Note that �0 and � are nested in �E
0 as well, implying

L̂
(
ϑ̂n, Y n

)= min
ϑ∈�

L̂
(
ϑ,Y n

)≥ min
ϑ∈�E

0

L̂E

(
ϑ,Yn

)= L̂E

(
ϑ̂n

E,Y n
)
. (4.3)

Moreover, ε̂ϑ0,k = ε̂ϑ∗,k = ε̂ϑE
0 ,k and hence,

L̂0
(
ϑ0, Y

n
)= L̂

(
ϑ∗, Y n

)= L̂E

(
ϑE

0 , Y n
)
. (4.4)

With this and (4.3), we receive

L̂0
(
ϑ̂n

0 , Y n
)− L̂

(
ϑ̂n, Y n

)≤ L̂E

(
ϑE

0 , Y n
)− L̂E

(
ϑ̂E

0 , Y n
)
.

Now, Theorem 3.8 tells us that

lim sup
n→∞

n

log(log(n))

(
L̂E

(
ϑE

0 , Y n
)− L̂E

(
ϑ̂E

0 , Y n
))

= λmax
(
H
(
ϑE

0

)− 1
2 I
(
ϑE

0

)
H
(
ϑE

0

)− 1
2
)

P-a.s.

Turning to the information criterion, this gives

lim sup
n→∞

n

log(log(n))

(
ICn(�0) − ICn(�)

)
≤ lim sup

n→∞
n

log(log(n))

(
L̂E

(
ϑE

0 , Y n
)− L̂E

(
ϑ̂E

0 , Y n
)+ [

N(�0) − N(�)
] C(n)

log(log(n))

)
≤ λmax

(
H
(
ϑE

0

)− 1
2 I
(
ϑE

0

)
H
(
ϑE

0

)− 1
2
)− lim sup

n→∞
C(n)

log(log(n))
P-a.s.,

since N(�0) − N(�) ≤ −1. Hence, if

lim sup
n→∞

C(n)

log(log(n))
> λmax

(
H
(
ϑE

0

)− 1
2 I
(
ϑE

0

)
H
(
ϑE

0

)− 1
2
)
,

we obtain strong consistency.
Finally, if lim supn→∞ C(n)/ log(log(n)) = 0, then from L̂0(ϑ̂

n
0 , Y n) − L̂(ϑ̂n, Y n) ≥ 0 it

clearly follows that strong consistency cannot hold.
(b) Again we distinguish the two cases from part (a). Case 1 can be dealt with analogously

as in (a), so that we only need to give detailed arguments for case 2. Suppose therefore that �0
is nested in �. Define the map f : �0 → � by f (ϑ) = Fϑ + c, where F and c are as in the
definition of nested spaces. Then, a Taylor expansion of L̂(f (ϑ̂n

0 ), Y n) around ϑ̂n results in

L̂0
(
ϑ̂0, Y

n
) = L̂

(
f
(
ϑ̂n

0

)
, Y n

)
(4.5)

= L̂
(
ϑ̂n, Y n

)+ 1

2

(
ϑ̂n − f

(
ϑ̂n

0

))T ∇2
ϑ L̂

(
ϑ

n
,Y n

)(
ϑ̂n − f

(
ϑ̂n

0

))
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with ϑ
n

such that ‖ϑn − ϑ̂n‖ ≤ ‖f (ϑ̂n
0 ) − ϑ̂n‖. Plugging (4.5) into (4.2) gives

ICn(�0) − ICn(�)
(4.6)

= 1

2

(
ϑ̂n − f

(
ϑ̂n

0

))T ∇2
ϑ L̂

(
ϑ

n
,Y n

)(
ϑ̂n − f

(
ϑ̂n

0

))+ [
N(�0) − N(�)

]C(n)

n
.

In order to be able to show weak consistency, we will study the behavior of the random variable
ϑ̂n − f (ϑ̂n

0 ). Note that L̂0(ϑ,Y n) = L̂(f (ϑ),Y n) for ϑ ∈ �0, so that by the chain rule

∇ϑ L̂0
(
ϑ0, Y

n
)= FT ∇ϑ L̂

(
f (ϑ0), Y

n
)= FT ∇ϑ L̂

(
ϑ∗, Y n

)
.

Moreover, f (ϑ̂n
0 ) − ϑ∗ = f (ϑ̂n

0 ) − f (ϑ0) = F(ϑ̂n
0 − ϑ0). As in (3.7), we also have

ϑ̂n − ϑ∗ = −(∇2
ϑ L̂

(
ϑ̌n, Y n

))−1∇ϑ L̂
(
ϑ∗, Y n

)
,

ϑ̂n
0 − ϑ0 = −(∇2

ϑ L̂0
(
ϑ̃n, Y n

))−1∇ϑ L̂0
(
ϑ0, Y

n
)
,

where ϑ̌n is such that ‖ϑ̌n − ϑ∗‖ ≤ ‖ϑ̂n − ϑ∗‖ and ϑ̃n is such that ‖ϑ̃n − ϑ0‖ ≤ ‖ϑ̂n
0 − ϑ0‖. In

particular, ϑ̌n → ϑ∗ and ϑ̃n → ϑ0 P-a.s. as n → ∞. To summarize,

ϑ̂n − f
(
ϑ̂n

0

) = ϑ̂n − ϑ∗ − F
(
ϑ̂n

0 − ϑ0
)

= [−(∇2
ϑ L̂

(
ϑ̌n, Y n

))−1 + F
(∇2

ϑ L̂0
(
ϑ̃n, Y n

))−1
FT

]∇ϑ L̂
(
ϑ∗, Y n

)
.

An application of Proposition 3.3(c) and (d) results in

√
n
(
ϑ̂n − f

(
ϑ̂n

0

)) D→ [−H
(
ϑ∗)−1 + FH(ϑ0)

−1FT
]
N
(
0N(�),I

(
ϑ∗))=: NF .

Since by the chain rule H(ϑ0) = FT H(ϑ∗)F the random vector NF is distributed as
N (0N(�),MF (ϑ∗)I(ϑ∗)MF (ϑ∗)) (note that MF (ϑ∗) is symmetric). Finally, by (4.6), Propo-
sition 3.3(d) and C(n) → ∞ as n → ∞,

P
(
ICn(�0) − ICn(�) < 0

)
= P

(
1

2

√
n
(
ϑ̂n − f

(
ϑ̂n

0

))T ∇2
ϑ L̂

(
ϑ

n
,Y n

)√
n
(
ϑ̂n − f

(
ϑ̂n

0

))
< −[N(�0) − N(�)

]
C(n)

)
n→∞→ P

(
NT

FH
(
ϑ∗)NF < ∞)

.

Using [20], equation (1.1), gives NT
FH(ϑ∗)NF

D=∑N(�)
i=1 λiχ

2
i , where (χ2

i ) is a sequence of in-
dependent χ2 random variables with one degree of freedom and the λi are the eigenvalues of

H(ϑ∗) 1
2 MF (ϑ∗)I(ϑ∗)MF (ϑ∗)H(ϑ∗) 1

2 . Since rank(MF (ϑ∗)) = N(�)−N(�0) and H(ϑ∗) 1
2

and I(ϑ∗) have full rank, the number of strictly positive eigenvalues of

H(ϑ∗) 1
2 MF (ϑ∗)I(ϑ∗)MF (ϑ∗)H(ϑ∗) 1

2 is N(�) − N(�0). Hence, the result follows.
(c) With the arguments in (b) we obtain the statement. �
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Remark 4.5.
(a) A conclusion of Theorem 4.4(a) is that strong consistency of the information criterion

always holds, independent of the process Y and hence ϑE
0 , if lim supn→∞ C(n)/ log(log(n)) =

∞.
(b) Let �0 be nested in � with map F . Then it can be shown as in the proof of Theorem 3.8

that

lim sup
n→∞

n

log(log(n))

(
ICn(�0) − ICn(�)

)
= λmax

(
MF

(
ϑ∗) 1

2 I
(
ϑ∗)MF

(
ϑ∗) 1

2
)+ lim sup

n→∞
[
N(�0) − N(�)

] C(n)

log(log(n))
.

This implies that the information criterion ICn is strongly consistent iff lim supn→∞ C(n)/

log(log(n)) > C∗, where

C∗ := max
F

λmax(MF (ϑ∗) 1
2 I(ϑ∗)MF (ϑ∗) 1

2 )

N(�) − N(�0)
≤ λmax

(
H
(
ϑE

0

)− 1
2 I
(
ϑE

0

)
H
(
ϑE

0

)− 1
2
)
.

Since the structure of H(ϑ∗) and I(ϑ∗) is in general not known, it is difficult to calculate C∗
explicitly. However, in the Gaussian case we will derive that C∗ = 2 (cf. Corollary 4.6).

(c) We would like to note that these results are similar to the statement of [31], Corollary 5.3,
under different model assumptions. However, the authors present only sufficient conditions for
strong consistency, where we also have a necessary condition (see Remark 3.9 as well).

(d) The proof of Theorem 4.4(a), Case 1, shows that if � satisfies MCARMA(Aϑ,Bϑ,Cϑ,

Lϑ) �= Y for every ϑ ∈ �, then a necessary and sufficient condition for choosing the correct
parameter space �0 instead of � asymptotically with probability 1 is limn→∞ C(n)/n = 0. Only
if we allow nested models as well the additional condition lim supn→∞ C(n)/ log(log(n)) > C∗
becomes necessary. The probability in Theorem 4.4(c) is the overfitting probability.

To wrap up this section, we want to study the special case where the observed MCARMA
process is driven by a Brownian motion.

Corollary 4.6. Assume that the Lévy process L which drives the observed process Y is a Brow-
nian motion. Then ICn is strongly consistent iff lim supn→∞ C(n)/ log(log(n)) > 2.

Proof. It is straightforward to construct a space �0 which is nested in �E
0 with N(�0) =

N(�E
0 ) − 1 so that λmax(MF (ϑE

0 )
1
2 I(ϑE

0 )MF (ϑE
0 )

1
2 ) = 2; see [15] as well. Additionally, a

conclusion of Remark 3.5(c) is that

λmax
(
H
(
ϑE

0

)− 1
2 I
(
ϑE

0

)
H
(
ϑE

0

)− 1
2
)= 2λmax(IN(�E

0 )×N(�E
0 )) = 2.

Therefore, the statement follows directly from Theorem 4.4(a) and Remark 4.5(b). �

The results of this section are analogous to the ones obtained for ARMAX processes with i.i.d.
noise in [18], Theorem 5.5.1.
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5. AIC and BIC

In this section, we transfer the two most well-known information criteria, the AIC and BIC, to
the MCARMA framework, highlight the main ideas in their development and apply the results of
Section 4 to them. In the following, we assume again that � is a parameter space with associated
family of continuous-time state space models (Aϑ,Bϑ,Cϑ,Lϑ)ϑ∈� satisfying Assumption B
and sequence of QMLE (ϑ̂n) in �.

5.1. The Akaike Information Criterion (AIC)

Historically, Akaike’s idea was to study the Kullback–Leibler discrepancy of different models
and choose the one which minimizes this quantity. In this section, we give arguments why this
approach is also reasonable in the case of MCARMA models. As a starting point, let g,f be
probability densities on R

n. Then the Kullback–Leibler discrepancy between g and f is

K(g | f ) :=
∫
Rn

f (x) log

(
f (x)

g(x)

)
dx = Ef

[
log(f )

]−Ef

[
log(g)

]≥ 0.

Equality holds only for g = f (cf. [8], page 302). Let now (fϑ)ϑ∈� be a family of densities on
Rn and fix one “true” density fϑ0 . With Eϑ0 we denote the expectation regarding the distribution
with density fϑ0 . Then, the density that comes closest to fϑ0 in the Kullback–Leibler sense is
given by the one associated to

arg min
ϑ∈�

K(fϑ |fϑ0) = arg min
ϑ∈�

{
Eϑ0

[
log(fϑ0)

]−Eϑ0

[
log(fϑ)

]}= arg min
ϑ∈�

{
−2

n
Eϑ0

[
log(fϑ)

]}
.

In our context, fϑ denotes the density of the observations Yn. The problem is that the right-
hand side is not directly calculable so that we have to approximate it. To this end, let Yn be an
independent copy of Yn and ϑ̂n(Y n) be the QMLE in � based on the observation Yn. Then we
use the approximation

min
ϑ∈�

[
−2

n
Eϑ0

[
log(fϑ)

]] ≈ −2

n
Eϑ0

[
log(fϑ̂n(Y n)) | Yn

]= −2

n
E
[
log

(
fϑ̂n(Y n)

(
Yn
)) | Yn

]
(5.1)

≈ E
[
L̂
(
ϑ̂n
(
Yn
)
,Yn

) | Yn
]
.

The right-hand side can again be approximated by the following theorem.

Theorem 5.1. As n → ∞ it holds that

n

(
L̂
(
ϑ̂n
(
Yn
)
,Yn

)−
[
L̂
(
ϑ̂n
(
Yn
)
,Yn

)− tr(I(ϑ∗)H−1(ϑ∗))
n

])
D→ Zϑ∗ ,

where Zϑ∗ is a random variable with expectation E[Zϑ∗ ] = 0.
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Proof. A second-order Taylor expansion of L̂(ϑ̂n(Yn), Y n) around ϑ̂n(Y n) gives

L̂
(
ϑ̂n
(
Yn
)
, Y n

)
= L̂

(
ϑ̂n
(
Yn
)
, Y n

)+ 1

2

(
ϑ̂n
(
Yn
)− ϑ̂n

(
Yn
))T ∇2

ϑ L̂
(
ϑ

n
,Y n

)(
ϑ̂n
(
Yn
)− ϑ̂n

(
Yn
))

,

where ‖ϑn − ϑ̂n(Y n)‖ ≤ ‖ϑ̂n(Yn) − ϑ̂n(Y n)‖. Hence,

L̂
(
ϑ̂n
(
Yn
)
, Y n

)− L̂
(
ϑ̂n
(
Yn
)
, Y n

)
= 1

2
tr
(∇2

ϑ L̂
(
ϑ

n
,Y n

)(
ϑ̂n
(
Yn
)− ϑ̂n

(
Yn
))(

ϑ̂n
(
Yn
)− ϑ̂n

(
Yn
))T )

.

On the one hand, since both ϑ̂n(Y n) and ϑ̂n(Yn) converge P-a.s. to ϑ∗, the vector ϑ
n → ϑ∗ P-

a.s. as well. On the other hand, by the independence of Yn and Yn, the random vectors ϑ̂n(Yn)

and ϑ̂n(Y n) are independent as well. By Theorem 3.4, as n → ∞,

√
n
(
ϑ̂n
(
Yn
)− ϑ∗, ϑ̂n

(
Yn
)− ϑ∗) D→ (N1,N2),

where N1,N2 are independent, N (0,H−1(ϑ∗)I(ϑ∗)H−1(ϑ∗))-distributed random vectors.
A conclusion of Proposition 3.3(d) is ∇2

ϑ L̂(ϑ
n
,Y n)→H(ϑ∗) P-a.s. Hence, a continuous map-

ping theorem gives

n
(
L̂
(
ϑ̂n
(
Yn
)
, Y n

)− L̂
(
ϑ̂n
(
Yn
)
, Y n

)) D→ 1

2
tr
(
H
(
ϑ∗)(N1 +N2)(N1 +N2)

T
)
,

and by the independence of N1 and N2 we have

E
[
H
(
ϑ∗)(N1 +N2)(N1 +N2)

T
]= 2H

(
ϑ∗)

E
[
N1N T

1

]= 2I
(
ϑ∗)H−1(ϑ∗).

The statement follows then since the expectation of the trace is the trace of the expectation. �

As a consequence of (5.1) and Theorem 5.1, we receive the approximation

min
ϑ∈�

[
−2

n
Eϑ0

[
log(fϑ)

]]≈ L̂
(
ϑ̂n
(
Yn
)
,Yn

)+ tr(I(ϑ∗)H−1(ϑ∗))
n

,

which becomes our information criterion via the following definition:

AICn(�) := L̂
(
ϑ̂n, Y n

)+ tr(I(ϑ∗)H−1(ϑ∗))
n

. (5.2)

In general, I(ϑ∗) and H(ϑ∗) are not known. For practical purposes, they have to be estimated.
For both, estimators are known and can be found at the end of [28], Section 2.2, for example.

Remark 5.2. If the Lévy process L which drives the observed process Y is a Brownian mo-
tion and MCARMA(Aϑ∗ ,Bϑ∗ ,Cϑ∗ ,Lϑ∗) = Y , we have I(ϑ∗) = 2H(ϑ∗) by Remark 3.5(c) and
hence, the AIC reduces to AICn(�) = L̂(ϑ̂n, Y n) + 2N(�)

n
; for further details see [15].
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The form of the AIC given in this remark coincides with Akaike’s original definition (cf.
[1]). This suggests to define an alternative version of the AIC, the Classical Akaike Information
Criterion (CAIC), as follows:

CAICn(�) := L̂
(
ϑ̂n, Y n

)+ 2N(�)

n
. (5.3)

This criterion avoids the additional work of estimating the matrices I(ϑ∗) and H−1(ϑ∗) appear-
ing in the AIC, which comes at the cost of not being exact when the driving Lévy process is not
a Brownian motion. For both versions of the AIC, we can immediately make a statement about
consistency.

Theorem 5.3. Both the AIC and the CAIC are neither strongly nor weakly consistent.

Proof. The CAIC is a special case of ICn with C(n) = 2 such that the assertion follows from
Theorem 4.4(b). For the AIC, the proof of Theorem 4.4(b) can directly be adapted. �

5.2. The Bayesian Information Criterion (BIC)

Another information criterion which appears often in the literature is the so-called Bayesian In-
formation Criterion (BIC), sometimes also called SIC, an abbreviation for Schwarz Information
Criterion, named after the author who originally introduced it in [29]. Another often-cited article
in this context is [25], which introduces an equivalent criterion in a slightly different context
based on coding theory. As the name Bayesian Information Criterion already suggests, the ap-
proach of the definition is based on Bayesian statistics. Our derivation is based on [10], relying
on properties of the likelihood function. Suppose that π is a discrete prior probability distribu-
tion over the set of candidate spaces � and π(�) > 0 for every parameter space � which will be
considered. Moreover, suppose that g(· | �) is a prior probability distribution over the parameter
space �. For g, we require the following assumption.

Assumption C. For every space � there exist two constants b and B with 0 < b ≤ B < ∞ such
that 0 ≤ g(ϑ | �) ≤ B for all ϑ ∈ � and b ≤ g(ϑ | �) for all ϑ in some neighborhood of the
pseudo-true parameter ϑ∗ ∈ �.

Now we can apply Bayes’ theorem to obtain the joint posterior probability distribution

f
(
�,ϑ | Yn

)= π(�)g(ϑ | �)f (Yn | �,ϑ)

h(Y n)
, (5.4)

where h(·) denotes the (unknown) marginal density of Yn. With this, we can calculate the a
posteriori probability of space � as

P
(
� | Yn

)=
∫

�

f
(
�,ϑ | Yn

)
dϑ. (5.5)
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The idea is to choose the most probable model for the data at hand, that is, the space � which
maximizes the a posteriori probability. Similar to the derivation of the AIC, the task is now to
find a good approximation of (5.5) which is directly calculable from the data. For this note first
that maximization of (5.5) is equivalent to minimizing −2/n times the logarithm of P(� | Yn).
Applying this transformation and plugging in (5.4) gives

−2

n
log

(
P
(
� | Yn

))
(5.6)

= 2

n
log

(
h
(
Yn
))− 2

n
log

(
π(�)

)− 2

n
log

(∫
�

f
(
Yn | �,ϑ

)
g(ϑ | �)dϑ

)
.

We choose the parameter space � with the lowest value of − 2
n

log(P(� | Yn)). Hence, we have
to approximate this expression. For this, we approximate the unknown density f (Y n | �,ϑ) by
the pseudo-Gaussian likelihood function and use the following theorem.

Theorem 5.4. Suppose the a priori density g satisfies Assumption C. Then

−2

n
log

(
P
(
� | Yn

))= L̂
(
ϑ̂n, Y n

)+ N(�)
log(n)

n
+
[

2

n
log

(
h
(
Yn
))+ O

(
log(n)

n

)]
.

Proof. By Assumption B, Assumption C, Proposition 3.3 and [31], Proposition 3.1, the regular-
ity assumptions in [10] are satisfied so that the statement follows from there. �

The term 2
n

log(h(Y n)) is the same across all parameter spaces and therefore not relevant for
model selection. Based on these ideas, we define the BIC:

BICn(�) := L̂
(
ϑ̂n, Y n

)+ N(�)
log(n)

n
. (5.7)

As with the AIC, we can immediately make a statement about consistency of the BIC by Theo-
rem 4.4(a):

Theorem 5.5. The BIC is a strongly consistent information criterion.

6. Simulation study

The results on information criteria obtained in the previous sections will now be illustrated by a
simulation study. In this context, we would like to thank Eckhard Schlemm and Robert Stelzer,
who kindly provided the MATLAB code for the simulation and parameter estimation of the
MCARMA process. As before, we use the Echelon MCARMA parametrization in the simula-
tions. Throughout our simulations, we always consider two-dimensional MCARMA processes.
As driving Lévy process, we use, on the one hand, a two-dimensional, correlated Brownian mo-
tion and, on the other hand, a two-dimensional, normal-inverse Gaussian (NIG) process. For the



2882 V. Fasen and S. Kimmig

NIG process, the increments L(t) − L(t − 1) have the density

fNIG(x;μ,α,β, δ,�) = δeδκ

2π

e〈βx〉

eαg(x)

1 + αg(x)

g(x)3
, x ∈ R

2,

where g(x) =√
δ2 + 〈x − μ,�(x − μ)〉, κ2 = α2 −〈β,�β〉. The parameter μ ∈ R

2 is a location
parameter, α ≥ 0 is a shape parameter, β ∈ R

2 is a symmetry parameter, δ ≥ 0 is a scale parameter
and � ∈ R

2×2 is a positive semidefinite matrix with det(�) = 1 that determines the dependence
between the components of the Lévy process. In the simulations, we use the values

δ = 1, α = 3, β =
(

1
1

)
, � =

( 5
4 − 1

2
− 1

2 1

)
, μ = − 1

2
√

31

(
3
2

)
,

which result in a zero-mean process with covariance matrix

�L
NIG ≈

(
0.4571 −0.1622

−0.1622 0.3708

)
.

In the case of the Brownian motion, the covariance matrix �L
BM is equal to the covariance matrix

�L
NIG in the NIG case. In the estimation, the number of free parameters includes three parameters

for the covariance matrix of the driving Lévy process.
The simulation of the continuous-time MCARMA process is done with the initial value

X(0) = 0, applying the Euler–Maruyama method to the stochastic differential equation (2.2) and
then evoking (2.1). For the Euler–Maruyama scheme, we operate on the interval [0, n], where n

is the number of observations and the step size is 0.01. Afterwards, the simulated process is sam-
pled at discrete points in time with sampling distance h = 1, resulting in n observations of the
discretely sampled MCARMA process. After obtaining the discrete samples of the MCARMA
process we calculate the AIC, CAIC and BIC as defined in (5.2), (5.3) and (5.7), respectively.
In the calculation of the AIC, we estimate the penalty term tr(I(ϑ∗)H−1(ϑ∗)) by the methods
presented in [28], Section 2.2, as well since in general there is no explicit form of I(ϑ∗) and
H(ϑ∗).

For the first part of the study, we simulate a two-dimensional MCARMA process with Kro-
necker index m0 = (1,2), p = 2 and q = 1 with parameter ϑ

(1)
0 = (−1,−2,1,−2,−3,1,2 ) and

n = 2000. We consider eight different parameter spaces in total with m0 ∈ {1,2}2, p ∈ {1,2} and
q ∈ {0,1}. We observe that every information criterion makes the right choice of the parameter
space in all 50 of replications, independent of the driving Lévy process. There are no effects
of overfitting, which is not surprising considering the fact that the true parameter is chosen in
such a way that it is only contained in one space, so that the scenario from Remark 4.5(d) is
given. Next, we change the true parameter slightly to ϑ

(2)
0 = (−1,−2,1,−2,−3,0,0 ), that is,

the data-generating process is now a MCARMA(2,0) process, while m0 = (1,2) remains the
same. The results of 50 replications for the true parameter ϑ

(2)
0 in space 2 are summarized in

Table 1.
As expected because of the strong consistency the BIC performs convincingly and has a high

accuracy for both driving Lévy processes. It even achieves a perfect score in the case where
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Table 1. Results for the true parameter ϑ
(2)
0 in space 2

Space Model BM NIG

m p q N(�) AIC CAIC BIC AIC CAIC BIC

1 (1,1) 1 0 7 0 0 0 0 0 0
2 (1,2) 2 0 8 36 42 49 40 46 50
3 (1,2) 2 1 10 14 8 1 10 4 0
4 (2,1) 2 0 9 0 0 0 0 0 0
5 (2,1) 2 1 11 0 0 0 0 0 0
6 (2,2) 2 0 11 0 0 0 0 0 0
7 (2,2) 2 1 15 0 0 0 0 0 0

Agreement 88% 88%

the driving noise is a NIG process and makes one wrong decision in the BM scenario. Further-
more, both versions of the AIC exhibit overfitting. The line “agreement” records the percent-
age of repetitions in which the CAIC and AIC lead to the same choice, revealing that there is
an undeniable difference between the CAIC and the AIC in both cases. From the theory, we
know that this should not happen when the driving Lévy process is a Brownian motion since
the criteria are then the same. This difference comes from the estimation error by estimating the
penalty term tr(I(ϑ∗)H−1(ϑ∗)) in the AIC. We realize that in the Gaussian model the estima-
tion error of the penalty term is usually higher for model number 2 than for model 3 (relative
to the true values), which results in a higher overfitting rate for the AIC. We also calculate the
overfitting probability in the Brownian motion case as given in Theorem 4.4(c). For this, note
that there is only one parameter space in which the true one is nested (space number 3) and
for that space we have C = 2 and N(�) − N(�0) = 2. The strictly positive eigenvalues of

H(ϑ∗) 1
2 MF (ϑ∗)I(ϑ∗)MF (ϑ∗)H(ϑ∗) 1

2 are calculated with the help of MATLAB and turn out
to be both equal to 2, so that the overfitting probability simplifies to P(χ2

1 > 2) ≈ 0.1573. The
empirical probability 8/50 = 0.16 of overfitting in the CAIC is very close.

Finally, we consider another situation in which the data-generating process is a MCARMA(3,

0) process with Kronecker index m0 = (3,2) and the true parameter is

ϑ
(3)
0 = (−3,−6,−5,2,−3,−0.2,−4,−2.5,−7,−9,0,0,0,0,0,0 ) .

Here, we consider 7 candidate spaces in total among which there are two parameter spaces in
which the true one is nested (spaces 6 and 7); the true parameter space is number 5. We conduct
the study with n = 5000. The results of 100 repetitions are given in Table 2. The results of
this simulation study resemble the ones of the study with ϑ

(2)
0 as true parameter – the AIC is

the criterion most prone to overfitting, while both the CAIC and BIC perform well. However,
the BIC’s performance is worse, only slightly outperforming the CAIC in the NIG case and
scoring even in the Brownian motion case. The agreement of the AIC and CAIC is now higher
in both cases. In light of the CAIC’s lesser overfitting rate, it might therefore be reasonable
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Table 2. Results for the true parameter ϑ
(3)
0 in space 5

Space Model BM NIG

m p q N(�) AIC CAIC BIC AIC CAIC BIC

1 (1,1) 1 0 7 1 0 0 5 0 0
2 (1,2) 2 1 10 0 0 0 0 0 0
3 (2,1) 2 1 11 0 0 0 0 0 0
4 (2,2) 2 1 15 0 0 0 0 0 0
5 (3,2) 3 0 13 89 93 93 78 86 87
6 (3,2) 3 1 17 9 6 6 16 14 13
7 (3,2) 3 2 19 1 1 1 1 0 0

Agreement 96% 92%

to prefer the use of the CAIC over the AIC in these scenarios. The approximated overfitting
probability of space number 6 for the CAIC is 0.1326, showing that the empirical overfitting rate
is very close to the theoretical probability in the NIG case and even a bit lower in the Brownian
motion case. The most notable difference to the situation in which ϑ

(2)
0 was used is that we

now have n = 5000 instead of n = 2000. This choice was made because we observe that the
order selection procedures do not yield sufficiently satisfying results for ϑ

(3)
0 when we let n =

2000. Upon increasing n to 5000, we observe a decidedly better performance of all the criteria.
Because of this, we also expect that the accuracy of the BIC would improve further when more
observations are added. These phenomena can be explained by the fact that we now consider
larger parameter spaces, containing more parameters. This is a hint that for larger parameter
spaces more observations are necessary to obtain the asymptotic results from the theory. Thus,
in situations with less observations, alternative information criteria are necessary, for example,
based on bootstrap methods (cf. [3,30]), which will be investigated in some future research.

Acknowledgements

Vicky Fasen was supported by the Deutsche Forschungsgemeinschaft through the research grant
FA 809/2-2.

References

[1] Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In
Second International Symposium on Information Theory (Tsahkadsor, 1971) 267–281. Budapest:
Akadémiai Kiadó. MR0483125

[2] Applebaum, D. (2009). Lévy Processes and Stochastic Calculus, 2nd ed. Cambridge Studies in Ad-
vanced Mathematics 116. Cambridge: Cambridge Univ. Press. MR2512800

[3] Bengtsson, T. and Cavanaugh, J.E. (2006). An improved Akaike information criterion for state-space
model selection. Comput. Statist. Data Anal. 50 2635–2654. MR2227324

http://www.ams.org/mathscinet-getitem?mr=0483125
http://www.ams.org/mathscinet-getitem?mr=2512800
http://www.ams.org/mathscinet-getitem?mr=2227324


Information criteria for multivariate CARMA processes 2885

[4] Bertoin, J. (1996). Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge: Cambridge
Univ. Press. MR1406564

[5] Boubacar Maïnassara, Y. (2012). Selection of weak VARMA models by modified Akaike’s informa-
tion criteria. J. Time Series Anal. 33 121–130. MR2877612

[6] Boubacar Mainassara, Y. and Francq, C. (2011). Estimating structural VARMA models with uncorre-
lated but non-independent error terms. J. Multivariate Anal. 102 496–505. MR2755011

[7] Brockwell, P.J. (2014). Recent results in the theory and applications of CARMA processes. Ann. Inst.
Statist. Math. 66 647–685. MR3224604

[8] Brockwell, P.J. and Davis, R.A. (1991). Time Series: Theory and Methods, 2nd ed. Springer Series in
Statistics. New York: Springer. MR1093459

[9] Brockwell, P.J. and Schlemm, E. (2013). Parametric estimation of the driving Lévy process of
multivariate CARMA processes from discrete observations. J. Multivariate Anal. 115 217–251.
MR3004556

[10] Cavanaugh, J.E. and Neath, A.A. (1999). Generalizing the derivation of the Schwarz information
criterion. Comm. Statist. Theory Methods 28 49–66. MR1669504

[11] Claeskens, G. and Hjort, N.L. (2008). Model Selection and Model Averaging. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge: Cambridge Univ. Press. MR2431297

[12] Doob, J.L. (1944). The elementary Gaussian processes. Ann. Math. Stat. 15 229–282. MR0010931
[13] Fasen, V. (2014). Limit theory for high frequency sampled MCARMA models. Adv. in Appl. Probab.

46 846–877. MR3254345
[14] Fasen, V. (2016). Dependence estimation for high frequency sampled multivariate CARMA models.

Scand. J. Stat. 46 292–320.
[15] Fasen, V. and Kimmig, S. (2015). Information criteria for multivariate CARMA processes. Available

at arXiv:1505.00901.
[16] Ferguson, T.S. (1996). A Course in Large Sample Theory. Texts in Statistical Science Series. London:

Chapman & Hall. MR1699953
[17] Finkelstein, H. (1971). The law of the iterated logarithm for empirical distributions. Ann. Math. Stat.

42 607–615. MR0287600
[18] Hannan, E.J. and Deistler, M. (2012). The Statistical Theory of Linear Systems. Classics in Applied

Mathematics 70. Philadelphia, PA: SIAM. Reprint of the 1988 original [MR0940698]. MR3397291
[19] Hannan, E.J. and Quinn, B.G. (1979). The determination of the order of an autoregression. J. R. Stat.

Soc. Ser. B. Stat. Methodol. 41 190–195. MR0547244
[20] Imhof, J.P. (1961). Computing the distribution of quadratic forms in normal variables. Biometrika 48

419–426. MR0137199
[21] Kalman, R.E. (1960). A new approach to linear filtering and prediction problems. J. Basic Eng. 82

35–45.
[22] Konishi, S. and Kitagawa, G. (2008). Information Criteria and Statistical Modeling. Springer Series

in Statistics. New York: Springer. MR2367855
[23] Marquardt, T. and Stelzer, R. (2007). Multivariate CARMA processes. Stochastic Process. Appl. 117

96–120. MR2287105
[24] Oodaira, H. and Yoshihara, K. (1971). The law of the iterated logarithm for stationary processes
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