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In this paper, a new method based on probability generating functions is used to obtain multiple Stein oper-
ators for various random variables closely related to Poisson, binomial and negative binomial distributions.
Also, the Stein operators for certain compound distributions, where the random summand satisfies Panjer’s
recurrence relation, are derived. A well-known perturbation approach for Stein’s method is used to obtain
total variation bounds for the distributions mentioned above. The importance of such approximations is il-
lustrated, for example, by the binomial convoluted with Poisson approximation to sums of independent and
dependent indicator random variables.
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1. Introduction

Stein’s method is known to be one of the powerful techniques for probability approximations and
there is a vast literature available on this topic. For details and applications of Stein’s method,
see [7,12,35] and [29]. For some recent developments, see [12,16,19,27–29] and the references
therein. The method is based on the construction of a characteristic operator for an approximation
problem. Different approaches are used for deriving Stein operators (see, [32]). For instance, a
Stein operator can be treated in the framework of birth–death processes [10]. Stein’s method for
discrete distributions has been independently and simultaneously developed by [23,27,28]. More
recently, [26] has proposed a canonical operator, for both continuous and discrete distributions,
and a general approach to obtain bounds on approximation problems.

In this paper, we consider the random variables (r.v.s) concentrated on Z+ = {0,1,2, . . .} with
distributions having the form of convoluted measures or random sums. Using their probability
generating functions (PGF’s), we derive Stein operators for discrete probability approximations.
In particular, the existence of multiple Stein operators (in the case of convoluted measures) for an
approximation problem is shown and the corresponding bounds are derived, using perturbation
technique, and compared for the case of indicator r.v.s. Although the existence of infinite families
of Stein operators for many common distributions is already well known (see, [22] and [26]), this
comparison may benefit the readers, as it is illustrated for the first time (in case of convoluted
measures) to the best of our knowledge.
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Next, we describe a typical procedure for Stein’s method on Z+-valued r.v.s. Let Y be
a Z+-valued r.v. with E(|Y |) < ∞, F := {f |f : Z+ → R and is bounded} and GY = {g ∈
F |g(0) = 0 and g(x) = 0 for x /∈ supp(Y )}, where supp(Y ) denotes the support of r.v. Y . We
want to bound Ef (Z) −Ef (Y ) for some r.v. Z concentrated on Z+ and f ∈ F . Stein’s method
is then realized in three consecutive steps. First, for any g ∈ GY , a linear operator A satisfying
E(Ag)(Y ) = 0 is established and is called a Stein operator. For a general framework of Stein
operators, the reader is referred to [17,20,23,27,28,37,38] and [26].

In the next step, the so-called Stein equation

(Ag)(j) = f (j) −Ef (Y ), j ∈ Z+, f ∈F (1)

is solved with respect to g(j) in terms of f and is referred to as a solution to the Stein equa-
tion (1). As a rule, solutions to the Stein equations have useful properties, such as ‖�g‖ :=
supj∈Z+ |�g(j)| is small, where �g(j) := g(j + 1) − g(j) denotes the first forward difference.
Note that the properties of �g depend on the form of A and some properties of Y . Finally, taking
expectations on both sides of (1), we get

Ef (Z) −Ef (Y ) = E(Ag)(Z) (2)

and bounds for E(Ag)(Z) are established through the bounds for �g and �k+1g(j) := �k(g(j +
1) − g(j)), k = 1,2, . . . . For more details on Stein’s method under a general setup, we refer the
readers to [5,22,23,26] and the references therein.

For some standard distributions, a Stein operator can be established easily. Indeed, let μj :=
P(Y = j) > 0, j ∈ Z+. Then

∑∞
j=0 μj (

(j+1)μj+1
μj

g(j + 1) − jg(j)) = 0. Therefore,

(Ag)(j) = (j + 1)μj+1

μj

g(j + 1) − jg(j), j ∈ Z+, (3)

and it can be easily verified that E(Ag)(Y ) = 0. Some well-known examples are listed below.

(1) For α > 0, let Y1 be a Poisson P(α) r.v. with μj = P(Y1 = j) = αj e−α/j !. Then

(Ag)(j) = αg(j + 1) − jg(j), j ∈ Z+. (4)

(2) Let 0 < p < 1, q = 1 −p, M̃ > 1, and Y2 have the pseudo-binomial distribution (see [11],
page 370) so that

μj = P(Y2 = j) = 1

C̃

(
M̃

j

)
pjqM̃−j , j ∈ {0,1, . . . , �M̃�},

where C̃ =∑�M̃�
j=0

(
M̃
j

)
pjqM̃−j , �M̃� denotes integer part of M̃ and

(
M̃
j

)= M̃(M̃−1)···(M̃−j+1)
j ! . If

M̃ is an integer, then Y2 is a binomial r.v. Suppose now g(0) = 0 and g(�M̃�+1) = g(�M̃�+2) =
· · · = 0. Then, from (3)

(Ag)(j) = (M̃ − j)p

q
g(j + 1) − jg(j), j = 0,1, . . . , �M̃�.
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Multiplying the above expression by q , we can get the following Stein operator:

(Ag)(j) = (M̃ − j)pg(j + 1) − jqg(j), j = 0,1, . . . , �M̃�. (5)

(3) Let Y3 ∼ NB(r, p̄), 0 < p̄ < 1, be negative binomial distribution with μj = P(Y3 = j) =
�(r + j)/(�(r)j !)p̄r q̄j , for j ∈ Z+, r > 0 and q̄ = 1 − p̄. Then (3) reduces to

(Ag)(j) := q̄(r + j)g(j + 1) − jg(j), j ∈ Z+. (6)

Observe that equation (3) is not that useful if we do not have simple expressions for μj and
especially for μj/μj+1. One such class is the Ord family of cumulative distributions (see [1]).
For example, if we consider compound distribution or convolution of two or more distributions,
then μj ’s are usually expressed through sums or converging series of probabilities. Therefore,
some other refined approaches for obtaining Stein operator(s) are needed.

The paper is organized as follows. In Section 2, we use the PGF approach to obtain general
expressions for Stein operators arising out of convolution of r.v.s and random sums that satisfy
Panjer’s recursive relation. These operators are then seen as perturbations of known operators for
standard distributions which motivate the discussion about perturbation approach and its appli-
cations. In Section 3, some facts about the perturbation approach to a solution of Stein equation
are discussed and applied to the operators derived in Section 2. In Section 4, as an applica-
tion, an approximation problem for the distribution of the sum of possibly dependent indicator
variables by the convolution of Poisson and binomial distribution is considered. We show that
such approximations can be treated either as Poisson perturbation or as binomial perturbation,
leading to two different bounds. Finally, we mention that though the approach is restricted to
distributional approximations, its ideas can be extended for approximations to signed measures
as well.

2. Stein operators via PGF

In this section, the PGF approach is used to derive the operators satisfying E(Ag)(Y ) = 0 for
g ∈ GY . The construction of A is well known if probabilities of approximating distribution satisfy
some recursive relation and it can be easily verified by using this approach. Indeed, the PGF has
been used as a tool for establishing Panjer’s recurrence relations; see, for example, [39] and [24].
Note also that, strictly speaking, A can be called a Stein operator only if it is used in (2) with g

satisfying (1). Moreover, one expects g to have some useful properties. In Section 3, we show
that, the majority of operators considered below have solutions to (1) with properties typical for
the Stein method.

Next, we use the PGF approach to derive the Stein operators for compound Poisson distribu-
tion, certain convolution of distributions and a compound distribution where the summand satisfy
the Panjer’s recurrence relation.
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2.1. The general idea

Let N be a Z+-valued r.v. with μk = P(N = k) and finite mean. Then its PGF

GN(z) =
∞∑

k=0

μkz
k (7)

satisfies

G′
N(z) = d

dz
GN(z) =

∞∑
k=1

kμkz
k−1 =

∞∑
k=0

(k + 1)μk+1z
k, (8)

where prime denotes the derivative with respect to z. If we can express G′
N(z) through GN(z)

then, by collecting factors corresponding to zk , the recursion follows. One can easily verify the
Stein operators derived for standard distributions in the previous section, using this approach.

Next, we start with the derivation of a Stein operator for a compound Poisson distribution.
Let {Xj } be an i.i.d. sequence of random variables with P(Xj = k) = pk , k = 0,1,2, . . . .

Also, let N ∼ P(λ) and be independent of the {Xj }. Then the distribution of Y4 :=∑N
j=1 Xj is

known as the compound Poisson distribution with the PGF

Gcp(z) = exp

{ ∞∑
j=1

λj

(
zj − 1

)}
, (9)

where λj = λpj and
∑∞

j=1 j |λj | < ∞. Then

G′
cp(z) = Gcp(z)

∞∑
j=1

jλj z
j−1 =

∞∑
k=0

μkz
k

∞∑
j=1

jλj z
j−1 =

∞∑
k=0

zk

k∑
m=0

μm(k − m + 1)λk−m+1.

Comparing the last expression to the right-hand side of (8), we obtain the recursive relation, for
all k ∈ Z+, as

k∑
m=0

μm(k − m + 1)λk−m+1 − (k + 1)μk+1 = 0.

Then, for g ∈ GY4 , we have

0 =
∞∑

k=0

g(k + 1)

[
k∑

m=0

μm(k − m + 1)λk−m+1 − (k + 1)μk+1

]

=
∞∑

m=0

μm

[ ∞∑
k=m

g(k + 1)(k − m + 1)λk−m+1 − mg(m)

]

=
∞∑

m=0

μm

[ ∞∑
j=1

jλjg(j + m) − mg(m)

]
.
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Therefore, a Stein operator for the compound Poisson distribution, defined in (9), is

(Ag)(j) =
∞∑
l=1

lλlg(j + l) − jg(j)

(10)

=
∞∑
l=1

lλlg(j + 1) − jg(j) +
∞∑

m=2

mλm

m−1∑
l=1

�g(j + l), j ∈ Z+,

since E(Ag)(Y4) = 0. This operator coincides with the one from [6].
Next, we derive multiple Stein operators for convolution of standard distributions discussed

above.

2.2. Convolutions of distributions

Recall that Y1 ∼ P(α) (α > 0), Y2 ∼ Bi(M,p) (M ∈ N, 0 < p < 1), Y3 ∼ NB(r, p̄) (0 < p̄ < 1,
r > 0) and Y4 follows the compound Poisson distribution defined in (9). We assume that Y1, Y2,
Y3 and Y4 are independent. Then the PGF’s of Y1 + Y2, Y2 and Y3 are given by

G12(z) = (q + pz)M exp
{
α(z − 1)

}
, G2(z) = (q + pz)M,

(11)

G3(z) =
(

p̄

1 − q̄z

)r

,

respectively. Here q̄ = 1 − p̄ and q = 1 − p. We now derive the Stein operators for the convolu-
tions of various combinations of Y1, Y2, Y3 and Y4.

Proposition 2.1. Let Gcp(z) be the PGF of Y4 and λ =∑∞
j=1 jλj . Then we have the following

results:

(i) The r.v. Y24 = Y2 + Y4 has the PGF G2(z)Gcp(z) and its Stein operator, for g ∈ GY24 , is

(Ag)(j) =
(

M + λ

p
− j

)
pg(j + 1) − qjg(j)

(12)

+
∞∑

m=2

(
qmλm + p(m − 1)λm−1

)m−1∑
l=1

�g(j + l).

(ii) The r.v. Y34 = Y3 + Y4 has the PGF G3(z)Gcp(z) and has a Stein operator, for g ∈ GY34 ,

(Ag)(j) =
(

λp̄

q̄
+ r + j

)
q̄g(j + 1) − jg(j)

(13)

+
∞∑

m=2

(
mλm − q̄(m − 1)λm−1

)m−1∑
l=1

�g(j + l).
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Proof. Write G2(z)Gcp(z) =∑∞
k=0 μkz

k . Differentiating with respect to z, we get the identity

∞∑
k=0

μkz
k

(
Mp

q + pz
+

∞∑
j=1

λj jzj−1

)
=

∞∑
k=0

kμkz
k−1.

Multiplying both sides by (q + pz) and collecting the terms corresponding to zk , we obtain the
recursive relation

k∑
m=0

μm

(
qλk−m+1(k − m + 1) + p(k − m)λk−m

)− (k + 1)μk+1q + (Mp − pk)μk = 0.

Multiplying the last equation by g(k + 1) and summing over all nonnegative integer k leads
to (12).

To prove (13), let G3(z)Gcp(z) =∑∞
k=0 μkz

k . Differentiating with respect to z gives the iden-
tity

∞∑
k=0

μkz
k

(
rq̄

1 − q̄z
+

∞∑
j=1

λj jzj−1

)
=

∞∑
k=0

kμkz
k−1.

Multiplying both sides by (1 − q̄z) and collecting the terms corresponding to zk , we obtain

k∑
m=0

μm

(
λk−m+1(k − m + 1) − q̄(k − m)λk−m

)− (k + 1)μk+1 + q̄(k + r)μk = 0.

Multiply the above equation by g(k + 1) and then sum over k ∈ Z+ to obtain the result. �

Proposition 2.2. Let Y12 = Y1 + Y2 have PGF G12(z) as defined in (11). Then, for j ∈ Z+ and
g ∈ GY12 , a Stein operator for Y12 is

(Ag)(j) = (Mp + α − jp)g(j + 1) − jqg(j) + pα�g(j + 1). (14)

If in addition p < q , then

(Ag)(j) = (α + Mp)g(j + 1) − jg(j) + M

∞∑
l=2

(−1)l+1
(

p

q

)l l−1∑
k=1

�g(j + k). (15)

Proof. Observe that (15) follows from (10) and the expansion

(q + pz)M = exp

{
M

∞∑
i=1

(−1)i+1

i

(
p

q

)i(
zi − 1

)}
. (16)

Note that (14) is a special case of (12). �
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Remark 2.3. (i) As is known in the literature (see [22]), we have two significantly different Stein
operators (see (14) and (15)) for the approximation problem.

(ii) Observe that, the operator given in (14) is similar to the operator given in (5), where M̃ is
replaced by M + α/p, except for the last term, and hence is known as a binomial perturbation.

(iii) Similarly, the operator given in (15) is similar to the operator given in (4), where α is
replaced by Mp + α, except for the last sum, leading to a Poisson perturbation.

Next, we demonstrate that the number of such operators might be even larger. We consider the
convolution of negative binomial and binomial distributions. It is logical to use the binomial ap-
proximation for sums of r.v.’s with variances smaller than their means and the negative binomial
approximation if variances are larger than means. Therefore, one can expect that the convolution
of a binomial with a negative binomial r.v. to be a more versatile discrete approximation, as it
gives more flexibility in the choice of parameters to match the second moment, for example.

Proposition 2.4. Let Y23 = Y2 + Y3 have PGF G23(z) = G2(z)G3(z) and p < q . Then, for
j ∈ Z+ and g ∈ GY23 , the r.v. Y23 has the following Stein operators:

(A1g)(j) = (Mp + rqq̄ − pj + qq̄j)g(j + 1)
(17)

+ (rq̄p − Mpq̄ + pq̄j)g(j + 2) − qjg(j),

(A2g)(j) = p

(
rq̄

pp̄
+ M − j

)
g(j + 1) − qjg(j)

(18)

+ r(qq̄ + p)

∞∑
m=2

q̄m−1
m−1∑
l=1

�g(j + l),

(A3g)(j) = q̄

(
Mpp̄

q̄
+ r + j

)
g(j + 1) − jg(j)

(19)

+ M

(
p

q
+ q̄

) ∞∑
m=2

(−1)m+1
(

p

q

)m−1 m−1∑
l=1

�g(j + l),

(A4g)(j) =
(

Mp + rq̄

p̄

)
g(j + 1) − jg(j)

(20)

+
∞∑

m=2

(
M(−1)m+1

(
p

q

)m

+ rq̄m

)m−1∑
l=1

�g(j + l).

Proof. Differentiating G23(z) = G2(z)G3(z) with respect to z, we obtain

∞∑
k=0

μkz
k

(
Mp

q + pz
+ rq̄

1 − q̄z

)
=

∞∑
k=0

kμkz
k−1.



On Stein operators 2835

Multiplying both sides by (q + pz)(1 − q̄z) and collecting the terms corresponding to zk , we
obtain the recursive relation

μk(Mp + rqq̄ − pk + qq̄k) + μk−1
(
rpq̄ − Mpq̄ + pq̄(k − 1)

)− qμk+1(k + 1) = 0.

Multiplying the last equation by g(k + 1) and summing over all nonnegative k, we obtain (17).
Observe next that (

p̄

1 − q̄z

)r

= exp

{
r

∞∑
i=1

q̄i

i

(
zi − 1

)}
.

Therefore, (18) follow from (12). Similarly, (19) follows from (13) and (16), and (20) follows
from (10) and (16). �

Remark 2.5. As discussed earlier, the operators A2, A3, and A4 are binomial, negative binomial
and Poisson perturbations, respectively. Note, however, A1 cannot be seen as a perturbation
operator.

2.3. Compound distributions

Next, we extend the PGF technique for finding Stein operators for a general class of compound
distributions. Let SN =∑N

j=1 Xj , where N is a Z+-valued r.v. with μk = P(N = k) and the Xj

are i.i.d. r.v.s, independent of N , with P(Xj = k) = pk for k ∈ Z+. Here and henceforth, S0 is
treated as a degenerate r.v. concentrated at zero. Then the PGF of SN is given by

GSN
(z) = GN

(
GX1(z)

)= ∞∑
j=0

πjz
j ,

where

πj = P(SN = j) =
∞∑

k=0

P(N = k)P (Sk = j) =
∞∑

k=0

μkpk,j , (21)

and pk,j = P(Sk = j) denotes the k-fold convolution of {pj }j≥0. Thus,

GN

(
GX1(z)

)= ∞∑
j=0

( ∞∑
k=0

μkpk,j

)
zj .

Further on, we assume that E(SN) < ∞. Then

G′
SN

(z) =
∞∑

j=1

jπj z
j−1 =

∞∑
j=0

(j + 1)πj+1z
j =

∞∑
j=0

(j + 1)

( ∞∑
k=0

μkpk,j+1

)
zj . (22)
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Similarly,

G′
SN

(z) = d

dGX1(z)

∞∑
k=0

μk

(
GX1(z)

)k( d

dz

∞∑
m=0

p1,mzm

)
(23)

=
∞∑

k=0

(k + 1)μk+1
(
GX(z)

)k ∞∑
m=0

(m + 1)pm+1z
m.

Noting that (GX1(z))
k =∑∞

s=0 pk,sz
s , we get

G′
SN

(z) =
∞∑

k=0

(k + 1)μk+1

∞∑
s=0

pk,sz
s

∞∑
m=0

(m + 1)pm+1z
m

(24)

=
∞∑

s=0

{ ∞∑
k=0

(k + 1)μk+1

s∑
m=0

pk,m(s − m + 1)ps−m+1

}
zs .

Comparing (24) with (22), we obtain the required recursion relation, for s ∈ Z+, as

(s + 1)

∞∑
k=0

μkpk,s+1 =
∞∑

k=0

(k + 1)μk+1

s∑
m=0

pk,m(s − m + 1)ps−m+1. (25)

Next, we derive a Stein operator. So far, some μj ’s were allowed to be equal to zero. Now we
restrict ourselves to the case μj > 0, j = 0,1,2, . . . ,K (K = ∞ is also allowed) and assume
that μK+1 = μK+2 = · · · = 0, when K < ∞. Multiplying (25) by g(s + 1) and summing over
s ∈ Z+, we obtain

∞∑
s=0

sg(s)

K∑
k=0

μkpk,s =
∞∑

s=0

g(s + 1)

K∑
k=0

(k + 1)μk+1

s∑
m=0

pk,m(s − m + 1)ps−m+1,

or equivalently

K∑
k=0

μk

∞∑
m=0

pk,m

(
ak

∞∑
s=m

g(s + 1)(s − m + 1)ps−m+1 − mg(m)

)
= 0,

where ak = (k +1)μk+1/μk . Changing the order of summation in the above equation and setting
l = s − m + 1, we obtain

∞∑
m=0

K∑
k=0

μkpk,m

(
ak

∞∑
l=1

g(l + m)lpl − mg(m)

)
= 0. (26)
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Next, let us assume that ak’s satisfy Panjer’s recursion: ak = a + bk (see [30]). From (21)
and (26),

∞∑
m=0

πm

(
a

∞∑
l=1

g(l + m)lpl − mg(m)

)
+ b

∞∑
m=0

K∑
k=0

kμkpk,m

∞∑
l=1

g(l + m)lpl = 0. (27)

Let X be an independent copy of X1. Then Eg(Sk + X)X = Eg(Sk + X)Xi , (i = 1,2, . . . , k).
Therefore,

∞∑
m=0

kpk,m

∞∑
l=1

g(l + m)lpl = kEg(Sk + X)X =
k∑

i=1

Eg(Sk + X)Xi = ESkg(Sk + X)

and

∞∑
m=0

K∑
k=0

kμkpk,m

∞∑
l=1

g(l + m)lpl =
K∑

k=0

μkESkg(Sk + X)

=
K∑

k=0

μk

∞∑
m=0

mpk,m

∞∑
l=0

g(l + m)pl

=
∞∑

m=0

πmm

∞∑
l=0

g(l + m)pl.

Substituting the last expression into (27), we obtain a Stein operator as

(Ag)(j) =
∞∑
l=1

(al + bj)g(l + j)pl − (1 − bp0)jg(j), j ∈ Z+. (28)

Thus, we have proved the following result.

Theorem 2.6. Let N be r.v. concentrated on {0,1,2, . . . ,K} (K may be infinite) with distribution
μk = P(N = k) satisfying Panjer’s recursion, for some a, b ∈R,

(k + 1)μk+1

μk

= a + bk, k = 0,1, . . . ,K,

with μK+1 = 0. Let SN =∑N
j=1 Xj , where the Xj are i.i.d. r.v.s independent of N and con-

centrated on Z+ with probabilities P(X1 = k) = pk . If E(SN) < ∞ and g ∈ GSN
, then a Stein

operator for SN is given by (28).
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2.4. Some examples

(a) Let N ∼ P(λ), λ > 0. Applying Theorem 2.6 with K = ∞, a = λ and b = 0, we obtain

(Ag)(j) = λ

∞∑
l=1

lg(l + j)pj − jg(j),

which coincides with the one given in (10) with λj = λpj .
(b) Let N ∼ NB(r, p̄), the negative binomial distribution, r > 0 and 0 < p̄ < 1. Then K = ∞,

a = rq̄ , b = q̄ and a Stein operator for the compound negative binomial distribution is

(Ag)(j) = q̄

∞∑
m=1

(rm + j)g(j + m)pm − (1 − q̄p0)jg(j)

=
∞∑

m=1

pm

{
q̄(rm + j)g(j + m) − jg(j)

}− p̄p0jg(j)

(29)
= q̄(rEX1 + j) − jg(j) − p0q̄j�g(j)

+ q̄

∞∑
m=2

(rm + j)pm

m−1∑
k=1

�g(j + k).

Note that the PGF of SN is

GSN
(z) =

(
p̄

1 − q̄GX(z)

)r

=
(

p̄

1 − q̄
∑∞

j=0 pjzj

)r

.

(c) Let N ∼ Bi(n,p), the binomial distribution, where n ∈N (the set of natural numbers) and
0 < p < 1. Then K = n, a = np/q , b = −p/q and a Stein operator for the compound binomial
distribution is given by

(Ag)(j) = (p/q)

∞∑
m=1

(nm − j)g(j + m)pm − (1 + (p/q)p0
)
jg(j)

which can be written, in a form similar to (5), as

(Ag)(j) = p

∞∑
m=1

(nm − j)g(j + m)pm − (q + pp0)jg(j)

= p(nEX1 − j)g(j + 1) − qjg(j) (30)

+ pp0j�g(j) +
∞∑

m=2

(nm − j)pm

m−1∑
k=1

�g(j + k).
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Also, in this case

GSN
(z) = (1 + p

(
GX(z) − 1

))n =
(

1 + p

∞∑
j=0

pj

(
zj − 1

))n

.

Remark 2.7. (i) If we take p1 = 1 in the examples above, we obtain the standard Stein operators
for Poisson, binomial and negative binomial distributions, as given by (4), (5) and (6), respec-
tively.

(ii) Sometimes the form of PGF allows to establish recursive relations without differentiation.
For example, the PGF for the compound geometric distribution is of the form

p

1 − q
∑∞

m=1 pmzm
=

∞∑
k=0

μkz
k.

Multiplying both sides by 1 − q
∑∞

m=1 pmzm and collecting factors corresponding to zk , we
obtain

(Ag)(j) = q

∞∑
m=1

pmg(j + m) − g(j).

This operator coincides with the one from [14]. Note in this example p0 = 0.

3. Perturbed solutions to the Stein equation

In this section, we discuss some known facts and explore properties of exact and approximate
solutions to the Stein equation. Assume that Y and Z are r.v.s concentrated on Z+, f ∈ F and
g ∈ GY . Henceforth, ‖f ‖ = supk |f (k)|. As mentioned in Section 1, the second step in Stein’s
method is solving the equation (1). Suppose a Stein operator for Y is given by

(Ag)(j) = αjg(j + 1) − βjg(j), (31)

where β0 = 0 and αk − αk−1 ≤ βk − βk−1 (k = 1,2, . . .). Then a solution g to (1) satisfies

∣∣�g(j)
∣∣≤ 2‖f ‖min

{
1

αj

,
1

βj

}
, j ∈ Z+, f ∈ F . (32)

Define gi as a solution to (1) for the choice f (j) = I (j = i), where I (A) denotes the indicator
function of A. Then, from (2.18) and Theorem 2.10 of [10], we have

∣∣�g(i)
∣∣= ∣∣∣∣∣

∞∑
j=0

f (j)�gj (i)

∣∣∣∣∣≤ sup
j≥0

f (j)
∣∣�gi(i)

∣∣≤ sup
j≥0

f (j)min
{
α−1

i , β−1
i

}
, (33)

for nonnegative functions f . The proof of (32) can now be completed by following steps
similar to that of Lemma 2.2 from [2], by noting the fact Stein equations with f +(j)(:=
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f (j) − infk f (k) ≥ 0) and f (j) on the right-hand side of (1) have the same solution. If f is
nonnegative, then f +(j) is not needed and 2‖f ‖ in (32) can be replaced by ‖f ‖. Therefore, if
f : Z+ → [0,1], then 2‖f ‖ in (32) should be replaced by 1.

Note that different choices of f lead to different probabilistic metrics. In this paper, we con-
sider total variation norm which is twice the total variation metric. That is,

∥∥L(Y ) −L(Z)
∥∥

TV =
∞∑

j=0

∣∣P(Y = j) − P(Z = j)
∣∣= sup

‖f ‖≤1

∣∣Ef (Y ) −Ef (Z)
∣∣

= 2 sup
f ∈F1

∣∣Ef (Y ) −Ef (Z)
∣∣= 2 sup

A

∣∣P(Y ∈ A) − P(Z ∈ A)
∣∣,

where F1 = {f |f : Z+ → [0,1]}, and the supremum is taken over all Borel sets in the last
equality.

Let g be the solution to (1) for Poisson or negative binomial or pseudo-binomial r.v. with
Stein operator given by (4) or (6) or (5), respectively. Then the corresponding bounds are given
respectively, as

‖�g‖ ≤ 2‖f ‖
max(1, λ)

, ‖�g‖ ≤ 2‖f ‖
rq̄

, ‖�g‖ ≤ 2‖f ‖
�Ñ�pq

. (34)

The first two bounds follow directly from (32). Observe that for pseudo-binomial distribution, the
assumptions of (32) are not always satisfied. The last bound of (34) follows from Lemma 9.2.1
in [7], and using similar arguments as above.

If a Stein operator has a form different from (31), then solving (1) and checking properties
similar to (32) becomes rather tedious. Apart from the solution for compound geometric distri-
bution by [14], some partial success has been achieved for compound Poisson distribution by [8].
In such situations, one can try the perturbation technique introduced in [9] and further developed
in [3] and [4]. Roughly, the basic idea of perturbation can be summarized in the following way:
good properties of the solution of (1) can be carried over to solutions of Stein operators in similar
forms.

Next, we formulate a partial case of Lemma 2.3 and Theorem 2.4 from [4] under following
setup.

Let A0 be a Stein operator for r.v. Y with support {0,1,2, . . . ,K} (K = ∞ is allowed) and g0

be the solution of the Stein equation

(A0g0)(j) = f (j) −Ef (Y ), f ∈ F, g0 ∈ GY .

Also, let there exist ω1, γ > 0 such that ‖�g0‖ ≤ ω1‖f ‖min(1, γ −1). Let A denote a Stein
operator for r.v. Z and U := A−A0 be the perturbed part of A with respect to A0.

The following lemma establishes, under certain conditions, an approximation result between
any two r.v.s W and Z, using the observation that a Stein operator for the r.v. Z can be seen as
perturbation of a Stein operator for r.v. Y .
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Lemma 3.1. Let Z be a r.v. with a Stein operator A = A0 + U and W be another r.v., both
concentrated on Z+. Also, assume that, for g ∈ GY ∩ GZ , there exist ω2, ε > 0 such that

‖Ug‖ ≤ ω2‖�g‖, ∣∣E(Ag)(W)
∣∣≤ ε‖�g‖,

and ω1ω2 < γ . Then∥∥L(W) −L(Z)
∥∥

TV ≤ γ

γ − ω1ω2

(
εω1 min

(
1, γ −1)+ 2P(Z > K) + 2P(W > K)

)
.

Next, using the assumptions of Lemma 3.1 and (34), we evaluate the values of ω1, ω2 and γ

to the various Stein operators derived in Section 2. Our observations are as follows:

(O1) If a Stein operator is given by (10), then we have the Poisson perturbation with ω1 = 2,
γ =∑∞

m=1 mλm,

‖Ug‖ ≤ ‖�g‖
∞∑

m=2

m(m − 1)|λm| = ‖�g‖ω2

and ω1ω2 < γ , provided {λm}m≥2 is sufficiently small. For a general description of the
problem, see [6].

(O2) For the Stein operator given by (14), we have the pseudo-binomial perturbation with
ω1 = 2/pq , γ = �M + α/p�, ω2 = pα and ω1ω2 < γ , if p is sufficiently small (see
Theorem 4.4).

(O3) Consider the Stein operator given by (15). Then we have the Poisson perturbation with
ω1 = 2, γ = Mp + α, ω2 = Mp2/(q − p)2 and ω1ω2 < γ , whenever p is sufficiently
small (see Theorem 4.1).

(O4) For the Stein operator given by (18), we have the pseudo-binomial perturbation with
ω1 = 2, γ = �M +rq̄/(pp̄)�pq and ω2 = rq̄(qq̄+p)

p̄2 . The condition ω1ω2 < γ is satisfied
if p and q̄ are sufficiently small.

(O5) If the Stein operator is given by (19), then we have the negative binomial perturbation
with ω1 = 2, γ = Mpp̄ + rq̄ , ω2 = Mpq(p/q + q̄)(q − p)−2 and ω1ω2 < γ , provided
p and q̄ are sufficiently small.

(O6) Finally, consider the Stein operator given by (20). Then we have the Poisson perturba-
tion, ω1 = 2, γ = Mp + rq̄/p̄, ω2 = Mp2/(q −p)2 + rq̄2/p̄2 and ω1ω2 < γ , whenever
p and q̄ are sufficiently small.

Remark 3.2. (i) Note that, for the Stein operator in (17), the perturbation approach is not applica-
ble. Also, for compound negative binomial or compound binomial distributions, the perturbation
part of the operator contains j , which makes the perturbation technique inapplicable, as the upper
bound for ‖Ug‖ cannot be established. Consequently, either a new version of perturbation tech-
nique with nonuniform bounds should be developed or a different approach should be devised.

(ii) We also remark here that once a Stein operator is derived (as discussed in Section 2), the
properties of the associated exact solution to the Stein equation must be derived and this can be
quite difficult. The perturbation approach, as discussed in some examples above (see (O1)–(O6)),
can be useful to get an upper bound on approximate solution to the Stein equation.
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4. Application to sums of indicator variables

In this section, we exploit the different forms of Stein operator to obtain better bounds for the
approximation problems to sums of possibly dependent indicator r.v.s. In particular, we consider
Stein operators derived in (14) and (15) along with the corresponding observations (O2) and (O3)
and establish the approximation results to the sums of independent and dependent indicators.

Consider the sum W = ∑n
i=1 Ii of possibly dependent indicator variables and let W(i) =

W − Ii , P(Ii = 1) = pi = 1 − P(Ii = 0) = 1 − qi (i = 1,2, . . . , n). Assume also W̃ (i) satisfy
P(W̃ (i) = k) = P(W(i) = k|Ii = 1), for all k. We choose Y12 = Y1 + Y2 as the approximating
variable, where Y1 ∼ P(α), Y2 ∼ Bi(M,p) and are independent. Denote its distribution by BCP
whose PGF is given in (11). Poisson, signed compound Poisson and translated Poisson, binomial
and negative binomial approximations have been applied to the sums of independent and depen-
dent Bernoulli variables in numerous papers; see, for example, [7,9,16,31,33,34,36] and [41].
Unlike asymptotic expansions or a signed compound Poisson measure, BCP is a distribution.
This might be an added advantage in practical applications.

4.1. The choice of parameters

Note that the BCP is a three-parametric distribution. We choose the parameters p, M and α to
ensure the almost matching of the first three moments of W . Denoting as before the integral part
by �·�, we define

M :=
⌊(

n∑
i=1

p2
i

)3( n∑
i=1

p3
i

)−2⌋
, (35)

δ :=
(

n∑
i=1

p2
i

)3( n∑
i=1

p3
i

)−2

− M, 0 ≤ δ < 1, (36)

p :=
(

n∑
i=1

p3
i

)(
n∑

i=1

p2
i

)−1

; α :=
n∑

i=1

pi − Mp. (37)

Then the following relations hold:

Mp2 =
n∑

i=1

p2
i − δp2, Mp3 =

n∑
i=1

p3
i − δp3. (38)

Observe also that (
n∑

i=1

p2
i

)2

≤
n∑

i=1

pi

n∑
i=1

p3
i .

Therefore, for α > 0, the BCP is not a signed measure, but a distribution. Similar to [36], we
choose parameters to match the three moments for the sum of independent Bernoulli variables.
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Thus, only weak dependence of r.v.s is assumed. Note that the additional information about the
dependence of r.v.s can significantly alter the choice of parameters, see, for example, [16] and
Corollary 4.8. Observe also that α and Mp can be of the same order. Indeed, let n be even and
p1 = p2 = · · · = pn/2 = 1/6, pn/2+1 = · · · = pn = 1/12. Then Mp = O(n) = α.

4.2. Poisson perturbation

We start with the Stein operator given in (15). Some additional notations are needed. Hence-
forth, let I1 and I denote the degenerate distributions concentrated at 1 and 0, respectively. The
convolution operator is denoted by ∗. Also, let

d := ∥∥L(W) ∗ (I1 − I )∗2
∥∥

TV =
n∑

k=0

∣∣�2P(W = k)
∣∣, (39)

d1 := max
i

∥∥L(W(i)
) ∗ (I1 − I )∗2

∥∥
TV = max

i

n∑
k=0

∣∣�2P
(
W(i) = k

)∣∣, (40)

λ̂ =
n∑

i=1

pi, σ 2 =
n∑

i=1

piqi, τ = max
i

piqi,

η1 :=
n∑

i=1

pi

(
1 + 2pi + 4p2

i

)
E
∣∣W̃ (i) − W(i)

∣∣,
θ1 := Mp2

(1 − 2p)2(Mp + α)
=

∑n
i=1 p2

i − δp2

(1 − 2p)2
∑n

i=1 pi

. (41)

Now, we have the following BCP approximation result for the sum of weakly dependent indicator
r.v.s.

Theorem 4.1. Let max(p, θ1) < 1/2. Then

∥∥L(W) − BCP
∥∥

TV ≤ 2

(1 − 2θ1)̂λ

{
d1

n∑
i=1

p4
i + dMp4

(1 − 2p)2
+ (1 + 2p)δp2 + η1

}
.

If the indicator variables are dependent, then obtaining the bounds for d and d1 is difficult; see
Lemma 4.7 and [15] for some partial cases and the history of the problem. On the other hand, if
the r.v.s are independent, then by the unimodality of W (see [42]), we obtain

P(W = k) ≤ 1

2σ
,

∥∥L(W) ∗ (I1 − I )
∥∥

TV ≤ 1

σ
.
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Now let S1 and S2 be the sets of indices such that

S1 ∪ S2 = {1,2, . . . , n},
∑
i∈S1

piqi ≥ σ 2

2
,

∑
i∈S2

piqi ≥ σ 2 − τ

2
.

Then, by the properties of total variation,

d ≤
∥∥∥∥L(∑

i∈S1

Ii

)
∗ (I1 − I )

∥∥∥∥
TV

∥∥∥∥L(∑
i∈S2

Ii

)
∗ (I1 − I )

∥∥∥∥
TV

≤ 2

σ
√

σ 2 − τ
. (42)

Similarly,

d1 ≤ 2√
(σ 2 − τ)(σ 2 − 3τ)

. (43)

Thus, we have the following corollary for independent r.v.s.

Corollary 4.2. Let W be the sum of n independent Bernoulli r.v.s with success probabilities pi ,
max(p, θ1) < 1/2 and σ 2 > 3τ . Then∥∥L(W) − BCP

∥∥
TV

(44)

≤ 2

(1 − 2θ1)̂λ

{
2
∑n

i=1 p4
i√

(σ 2 − τ)(σ 2 − 3τ)
+ 2Mp4

(1 − 2p)2σ
√

σ 2 − τ
+ (1 + 2p)δp2

}
.

Remark 4.3. (i) Observe that θ1 < p(1 − 2p)−2 ≤ maxi pi(1 − 2 maxi pi)
−2. Therefore, a suffi-

cient condition for max(p, θ1) < 1/2 is maxi pi < (3 − √
5)/4 = 0.19098 . . . .

(ii) If all pi � C, then the order of accuracy of the bound in (44) is O(n−1). In comparison to
the Edgeworth expansion, the BCP is more advantageous since the approximation holds for the
total variation norm and no additional measures compensating for the difference in supports are
needed.

(iii) Also, one can compare (44) with the classical Poisson approximation result (see [13],
equations (1.1)–(1.2)), where for pi � C and the order of accuracy is O(1).

Proof of Theorem 4.1. Applying Newton’s expansion, similar to [3], page 518, we get∣∣E�g(W + k) −E�g(W + 1) − (k − 1)E�2g(W + 1)
∣∣

≤
k−2∑
s=1

(k − 1 − s)
∣∣E�3g(W + s)

∣∣
(45)

≤
k−2∑
s=1

(k − 1 − s)

∣∣∣∣∣
∞∑

j=0

�g(j + s)�2P(W = j − 2)

∣∣∣∣∣
≤ (k − 1)(k − 2)

2
‖�g‖d.
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By the definition of M and p, defined respectively, in (35) and (37),

−M

∞∑
l=2

(−p

q

)l

(l − 1) = −
n∑

k=1

p2
k + δp2,

−M

∞∑
l=2

(−p

q

)l l−1∑
k=1

(k − 1) =
n∑

k=1

p3
k − δp3, (46)

M

∞∑
k=2

(
p

q

)l l−1∑
k=1

(k − 1)(k − 2) = 2Mp4

(1 − 2p)4
.

Therefore, from (45) and (46), we get∣∣∣∣∣−M

∞∑
l=2

(−p

q

)l l−1∑
k=1

E�g(W + k) +
n∑

i=1

p2
i E�g(W + 1) −

n∑
i=1

p3
i E�2g(W + 1)

∣∣∣∣∣
≤ Mp4

(1 − 2p)4
‖�g‖d + ∣∣δp2

E�g(W + 1)
∣∣+ ∣∣δp3

E�2g(W + 1)
∣∣ (47)

≤ Mp4

(1 − 2p)4
‖�g‖d + δp2(1 + 2p)‖�g‖.

Taking into account (15) and (47), we obtain

∣∣E(Ag)(W)
∣∣ ≤ ∣∣∣∣∣E

{
n∑

i=1

pig(W + 1) − Wg(W)

}
−

n∑
i=1

p2
i E�g(W + 1)

+
n∑

i=1

p3
i E�2g(W + 1)

∣∣∣∣∣+ ‖�g‖
(

Mp4d

(1 − 2p)2
+ δp2(1 + 2p)

)
(48)

≤ J1 + J2 + J3 + ‖�g‖
(

Mp4d

(1 − 2p)2
+ δp2(1 + 2p)

)
(say).

Here,

J1 =
∣∣∣∣∣E
{

n∑
i=1

pig(W + 1) − Wg(W)

}
−

n∑
i=1

p2
i E
{
�g
(
W(i) + 1

)|Ii = 1
}∣∣∣∣∣

≤
∣∣∣∣∣

n∑
i=1

piqi

(
E
{
g
(
W(i) + 1

)|Ii = 0
}−E

{
g
(
W(i) + 1

)|Ii = 1
})∣∣∣∣∣

(49)

=
∣∣∣∣∣

n∑
i=1

piE
(
g
(
W(i) + 1

)− g
(
W̃ (i) + 1

))∣∣∣∣∣
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≤ ‖�g‖
n∑

i=1

piE
∣∣W(i) − W̃ (i)

∣∣.
Similarly,

J2 =
∣∣∣∣∣

n∑
i=1

p2
i E
{
�g
(
W(i) + 1

)|Ii = 1
}−

n∑
i=1

p2
i E�g(W + 1)

+
n∑

i=1

p3
i E
{
�2g

(
W(i) + 1

)|Ii = 1
}∣∣∣∣∣

(50)

=
∣∣∣∣∣

n∑
i=1

p2
i qi

(
E
{
�g
(
W(i) + 1

)|Ii = 0
}−E

{
�g
(
W(i) + 1

)|Ii = 1
})∣∣∣∣∣

≤ 2‖�g‖
n∑

i=1

p2
i E
∣∣W(i) − W̃ (i)

∣∣
and

J3 =
∣∣∣∣∣

n∑
i=1

p3
i E�2g(W + 1) −

n∑
i=1

p3
i E
{
�2g

(
W(i) + 1

)|Ii = 1
}∣∣∣∣∣

≤
n∑

i=1

p3
i qi

∣∣E{�2g
(
W(i) + 1

)|Ii = 0
}−E

{
�2g

(
W(i) + 1

)|Ii = 1
}∣∣

(51)

+
n∑

i=1

p4
i

∣∣E�3g
(
W̃ (i) + 1

)∣∣
≤ ∥∥�3g

∥∥ n∑
i=1

p3
i E
∣∣W(i) − W̃ (i)

∣∣+ n∑
i=1

p4
i ‖�g‖d1.

Collecting the bounds in (47)–(51), applying Lemma 3.1 and (O3) with T = ∞, the proof is
completed. �

4.3. Binomial perturbation

Here, we approximate W using Stein operator in (14). In addition to the notations used above,
let

d2 := max
i,j

∥∥L(W(ij)
) ∗ (I1 − I )

∥∥
TV = max

i,j

∑
k

∣∣�P
(
W(ij) = k

)∣∣,
T̂ := �M + α/p�, θ2 := α

qT̂
, W(ij) = W − Ii − Ij .
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Also, let the distribution of W̃
(ij)
i satisfy P(W̃

(ij)
i = k) = P(W(ij) = k|Ii = 1), for all k.

Theorem 4.4. Let θ2 < 1/2. Then∥∥L(W) − BCP
∥∥

TV

≤ 2

pqT̂ (1 − 2θ2)

{
d2

(
n∑

i=1

p4
i − p

n∑
i=1

p3
i

)
+ δp2

+
n∑

i=1

pi

(
2 + 2|pi − p|)E∣∣W̃ (i) − W(i)

∣∣ (52)

+
(

2
n∑

k=1

p2
k

)−1 n∑
i,j=1

pipj |pi − pj |
[
d2|pi − pj |

∣∣Cov(Ii , Ij )
∣∣

+ 4pipjE
∣∣W̃ (ij)

i − W̃ (ij)
∣∣]}+ 2

1 − 2θ2

(
P(Y1 + Y2 > T̂ ) + P(W > T̂ )

)
.

When the indicator r.v.s are independent, a bound for the term d2, similar to the one in (43)
for d1, can be obtained. This leads to the following corollary.

Corollary 4.5. Let W be the sum of n independent indicator r.v.s, θ2 < 1/2 and σ 2 > 3τ . Then

∥∥L(W) − BCP
∥∥

TV ≤ 2

1 − 2θ2

{
4

pqT̂ (σ 2 − 3τ)

(
n∑

i=1

p4
i − p

n∑
i=1

p3
i

)
(53)

+ δp2 + P(W > T̂ ) + P(Y1 + Y2 > T̂ )

}
.

Remark 4.6. (i) If the r.v.s are independent, then

P(W > T̂ ) + P(Y1 + Y2 > T̂ ) ≤ exp
{−λ̂ψ(p)

}
,

where ψ(p) = (p)−1(− lnp − 1) + 1. Indeed,

P(Y1 + Y2 ≥ T̂ + 1) ≤ e−x(T̂ +1)
EexY1EexY2 ≤ e−x(T̂ +1) exp

{
α
(
ex − 1

)}(
q + pex

)M
≤ exp

{−xλ̂/p + (Mp + α)
(
ex − 1

)}≤ exp
{−λ̂

(
x/p + 1 − ex

)}
.

Now it suffices to take x = − lnp. Similarly, one can obtain a bound for P(W > T̂ ). Observe,
that ψ(p) > 0 for any p < 1.

(ii) If pi = C, then the bound in (53) is at least of the order O(n−1). The corresponding bounds
for the binomial approximation as given in Corollary 1.3 of [36] are of order O(n) and the ones
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in Remarks 2 of [34] are of order O(n−1/2). Also, see Theorem 1 of [18] where the bound is of
order O(1).

(iii) If all the pi are equal, then both sides of (53) are equal to zero, as is the case for the
binomial approximation (see [36]).

(iv) Comparing Theorem 4.4 with Theorem 4.1, we observe that both have similar accuracy
with respect to λ̂. On the other hand, Theorem 4.4 reflects the closeness of pi and, in this sense,
is more accurate than Theorem 4.1.

(v) The BCP approximation (matching the first three moments) provides bounds with better
accuracy (see Theorems 4.1 and 4.4) than the bounds obtained (matching the two moments) for
the binomial approximation (see [36] and [34]).

Proof of Theorem 4.4. Using (14) and (35)–(37), we get

(Ag)(j) =
n∑

i=1

pig(j + 1) − jg(j) − pj�g(j) + pα�g(j + 1). (54)

Therefore,∣∣E(Ag)(W)
∣∣

=
∣∣∣∣∣

n∑
i=1

piEg(W + 1) −
n∑

i=1

EIig(W) − p

n∑
i=1

piE
{
�g
(
W(i) + 1

)|Ii = 1
}

+
(

n∑
i=1

pi(p − pi) + δp2

)
E�g(W + 1)

∣∣∣∣∣
≤ δp2

∣∣E�g(W + 1)
∣∣ (55)

+
∣∣∣∣∣

n∑
i=1

pi(pi − p)E
{
�g
(
W(i) + 1

)|Ii = 1
}+

n∑
i=1

pi(p − pi)E�g(W + 1)

∣∣∣∣∣
+

n∑
i=1

piqi

∣∣E{�g
(
W(i) + 1

)|Ii = 0
}−E

{
�g
(
W(i) + 1

)|Ii = 1
}∣∣

= R1 + R2 + R3 (say).

It is easy to check that

|R1| ≤ ‖�g‖δp2, (56)

|R3| =
n∑

i=1

pi

∣∣E�g
(
W(i) + 1

)−Eg
(
�W̃(i) + 1

)∣∣
(57)

≤ 2‖�g‖
n∑

i=1

piE
∣∣W̃ (i) − W(i)

∣∣,
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|R2| ≤
∣∣∣∣∣

n∑
i=1

p2
i (p − pi)E

{
�2g

(
W(i) + 1

)|Ii = 1
}∣∣∣∣∣

(58)

+
n∑

i=1

piqi |pi − p|∣∣E{�g
(
W(i) + 1

)|Ii = 0
}−E

{
�g
(
W(i) + 1

)|Ii = 1
}∣∣.

The second summand in (58) is less than or equal to

∥∥�2g
∥∥ n∑

i=1

pi |pi − p|E∣∣W̃ (i) − W(i)
∣∣≤ 2‖�g‖

n∑
i=1

pi |pi − p|E∣∣W̃ (i) − W(i)
∣∣. (59)

Also, the first term in (58) is

n∑
i=1

p2
i (pi − p)E

{
�2g

(
W(i) + 1

)|Ii = 1
}

(60)

=
n∑

k=1

�2g(k)

n∑
i=1

pi(pi − p)P (Ii = 1,W = k).

Moreover,

n∑
i=1

pi(pi − p)P (Ii = 1,W = k)

=
(

n∑
k=1

p2
k

)−1∑
i,j

pip
2
j (pi − pj )P (Ii = 1,W = k)

(61)

=
(

2
n∑

k=1

p2
k

)−1{∑
i,j

pip
2
j (pi − pj )P (Ii = 1,W = k)

+
∑
i,j

pjp
2
i (pj − pi)P (Ij = 1,W = k)

}
.

Set

Pij (k) = P(W = k + 1|Ii = 1, Ij = 1) − P(W = k|Ii = 1, Ij = 1). (62)

Then it can be seen (see [36], page 709) that

P(Ii = 1,W = k)

= P(Ij = 1,W = k) + (pi − pj )P
(
W(ij) = k − 1

)+ Cov
(
Ii − Ij , I

{
W(ij) = k − 1

})
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and

piP
(
W(ij) = k − 1

)− P(Ii = 1,W = k)

= (pipj + Cov(Ii , Ij )
)
Pij (k) − Cov

(
Ii , I
{
W(ij) = k − 1

})
.

Therefore,

n∑
i=1

pi(pi − p)P (Ii = 1,W = k)

= 1

2
∑

k p2
k

{∑
i,j

p2
i pj (pi − pj )

2P
(
W(ij) = k − 1

)−∑
i,j

pipj (pj − pi)
2P(Ii = 1,W = k)

+
∑
i,j

p2
i pj (pi − pj )Cov

(
Ii − Ij , I

{
W(ij) = k − 1

})}

= 1

2
∑

k p2
k

{∑
i,j

p2
i p

2
j (pi − pj )

2Pij (k) +
∑
i,j

pipj (pj − pi)
2 Cov(Ii , Ij )Pij (k)

−
∑
i,j

pipj (pi − pj )
2 Cov

(
Ii , I
{
W(ij) = k − 1

})
+
∑
i,j

p2
i pj (pi − pj )Cov

(
Ii − Ij , I

{
W(ij) = k − 1

})}

= 1

2
∑

k p2
k

{∑
i,j

p2
i p

2
j (pi − pj )

2Pij (k) +
∑
i,j

pipj (pi − pj )
2 Cov(Ii , Ij )Pij (k)

+
∑
i,j

pip
2
j (pi − pj )Cov

(
Ii , I
{
W(ij) = k − 1

})}
.

Consequently,∣∣∣∣∣
n∑

i=1

p2
i (pi − p)E

{
�2g

(
W(i) + 1

)|Ii = 1
}∣∣∣∣∣

≤ 1

2
∑

k p2
k

{∣∣∣∣∣
n∑

k=1

�2g(k)
∑
i,j

p2
i p

2
j (pi − pj )

2Pij (k)

∣∣∣∣∣
+
∣∣∣∣∣

n∑
k=1

�2g(k)
∑
i,j

pipj (pi − pj )
2 Cov(Ii , Ij )Pij (k)

∣∣∣∣∣ (63)
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+ 2

∣∣∣∣∣
n∑

k=1

�2g(k)
∑
i,j

pip
2
j (pi − pj )Cov

(
Ii , I
{
W(ij) = k − 1

})∣∣∣∣∣
}

= R4 + R5 + R6 (say).

We next derive upper bounds for R4, R5 and R6 separately. First,

R4 ≤ 1

2
∑

k p2
k

∑
i,j

p2
i p

2
j (pi − pj )

2

∣∣∣∣∣
n∑

k=1

�2g(k)Pij (k)

∣∣∣∣∣
≤ 1

2
∑

k p2
k

∑
i,j

p2
i p

2
j (pi − pj )

2‖�g‖
n∑

k=1

∣∣�Pij (k − 1)
∣∣ (64)

≤ d2‖�g‖
(

n∑
k=1

p4
k − p

n∑
i=1

p3
i

)
.

Secondly,

R5 ≤ d2‖�g‖
2
∑

k p2
k

∑
i,j

pipj (pi − pj )
2
∣∣Cov(Ii , Ij )

∣∣. (65)

Finally,

Cov
(
Ii , I
{
W(ij) = k − 1

}) = EIiI
{
W(ij) = k − 1

}− piP
(
W(ij) = k − 1

)
= piP

(
W(ij) = k − 1|Ii = 1

)− piP
(
W(ij) = k − 1

)
.

Consequently, ∣∣∣∣∣
n∑

k=1

�2g(k)
∑
i,j

pip
2
j (pi − pj )Cov

(
Ii , I
{
W(ij) = k − 1

})∣∣∣∣∣
=
∣∣∣∣∑

i,j

p2
i p

2
j (pi − pj )

(
E�2g

(
W̃ (ij) + 1

)−E�2g
(
W(ij) + 1

))∣∣∣∣
≤ 4‖�g‖

∑
i,j

p2
i p

2
j |pi − pj |E

∣∣W̃ (ij) − W(ij)
∣∣

and

R6 ≤ 2
‖�g‖∑

k p2
k

∑
i,j

p2
i p

2
j |pi − pj |E

∣∣W̃ (ij) − W(ij)
∣∣. (66)

Collecting the bounds in (55)–(66), we get the required bound for the Stein operator defined
in (54). Applying Lemma 3.1 and (O2), the proof is completed. �
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4.4. Application to (1,1)-runs

We consider here a dependent setup arising out of independent Bernoulli trials. Let {Xj } be a
sequence of independent Be(p∗) variables and a(p∗) = p∗(1 − p∗). Define, for j ≥ 2,

Ij = Xj(1 − Xj−1) and W =
n∑

j=2

Ij . (67)

Then, it can be easily seen that

E(W) =
n∑

j=2

P(Ij = 1) = (n − 1)
(
1 − p∗)p∗ = (n − 1)a

(
p∗) (say), (68)

V(W) = (n − 1)a
(
p∗)+ (5 − 3n)

(
a
(
p∗))2 (69)

and

E(W −EW)3 = (n − 1)a
(
p∗)+ (15 − 9n)a

(
p∗)2 + 4(5n − 11)a

(
p∗)3. (70)

This leads to the following choice of parameters:

M :=
⌊

(3n − 5)2

10n − 22

⌋
, (71)

δ := (3n − 5)2

10n − 22
− M, 0 ≤ δ < 1, (72)

p :=
(

10n − 22

3n − 5

)
a
(
p∗); α := (n − 1)a

(
p∗)− Mp. (73)

Let us define

K1 = 288(1 − 3a(p∗))
a(p∗)

and K2 = 4

a(p∗)
√

min{1 − a(p∗),1/2} . (74)

To apply Theorem 4.1, we need the following lemma.

Lemma 4.7. Let {Ij }j≥2 and W be as defined in (67), d and d1 be respectively defined in (39)
and (40). Then, for (n − 2)a(p∗) ≥ 8,

d ≤ K1

n − 1
+ K2√

n − 1
:= γ (n − 1), (75)

d1 ≤ K1

n − 2
+ K2√

n − 2
, (76)

where K1 and K2 are as defined in (74).
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An application of Theorem 4.1 leads to the following corollary.

Corollary 4.8. Let W be as defined in (67) and θ1 be as defined in (41). Assume max(p, θ1) ≤
1/2 and (n − 2)p∗(1 − p∗) ≥ 8. Then

∥∥L(W) − BCP
∥∥

TV ≤ 2

(1 − 2θ1)̂λ

{(
na4(p∗)+ Mp4

(1 − 2p)2

)(
K1

n − 2
+ K2√

n − 2

)
(77)

+ (1 + 2p)δp2 + (n − 1)C1

}
,

where C1 = 2 max{1,2(1 − a(p∗))}a(p∗)(1 + 2a(p∗) + 4a2(p∗))(1 − a(p∗)(1 − a(p∗))).

Remark 4.9. The bound given in (77) is of order O(1) and comparable to the existing bounds
for Poisson approximation given in Theorem 2.1 of [40]. Also, it is an improvement over the
bound given in Theorem 2.1 of [21] which is of order O(n).

Proof of Lemma 4.7. Let ρ0 = 0 and define the stopping times

ρj = min{l > ρj−1|Il = 1}.
From [25], the Tj = ρj − ρj−1 are i.i.d. having the PGF

E
(
zT
)= a(p∗)z2

1 − z + a(p∗)z2
.

Hence, E(T ) = 1/a(p∗) and V(T ) = 1 − 3a(p∗)/(a2(p∗)). Observe now that ρj =∑j

i=1 Ti is
the waiting time for j th occurrence of Il . Then it follows that the average number of occurrences
in a sequence {Ij }2≤j≤n is (n − 1)/E(T ) = (n− 1)a(p∗). Suppose now k = �(n− 1)a(p∗)�+ 1.
Then ρk =∑k

j=1 Tj and by Proposition 4.6 of [9], we get

∥∥L(ρk) ∗ (I1 − I )
∥∥

TV ≤ 2

(ka(p∗)min{u1,1/2}) 1
2

,

where u1 = 1− (1/2)‖L(T )∗ (I1 −I )‖TV. Now, it can be easily seen that ‖L(T )∗ (I1 −I )‖TV =
2a(p∗) which implies∥∥L(ρk) ∗ (I1 − I )

∥∥
TV ≤ 2

(ka(p∗)min{1 − a(p∗),1/2}) 1
2

≤ 2

((n − 1)(a(p∗))2 min{1 − a(p∗),1/2}) 1
2

.

Define maximal coupling (see [7], page 254)

2P
(
ρk �= ρ′

k

)= ∥∥L(ρk) ∗ (I1 − I )
∥∥

TV ≤ 2

((n − 1)(a(p∗))2 min{1 − a(p∗),1/2}) 1
2

. (78)
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Let now ρ′
k =∑k

j=1 T ′
j such that Tj ’s are i.i.d. and ρ′

j = ρ′
j−1 + T ′

j with ρ′
0 = 0. Define now

Ii =

⎧⎪⎨⎪⎩
0, ρ′

j−1 < i < ρ′
j ; 1 ≤ j ≤ k,

1, ρ′
j = i; 1 ≤ j ≤ k,

Ii , ρ′
k < i.

Then, for ρk ≤ (n − 1) and ρk = ρ′
k + 1, we have W = W ′ + 1. Hence,

P
(
W ′ + 1 �= W

)≤ P(ρk > n − 1) + P
(
ρk �= ρ′

k + 1
)
. (79)

Using Chebyshev’s inequality, we get

P(ρk > n − 1) ≤ V(ρk)

(n − 1 −E(ρk))2
.

As seen earlier,

E(ρk) = k

a(p∗)
; V(ρk) = k(1 − 3a(p∗))

a2(p∗)
.

Assume now, without loss of generality, (n − 1)a(p∗) ≥ 8. Then

P(ρk > n − 1) ≤ k(1 − 3a(p∗))
((n − 1)a(p∗) − k)2

≤ 1.125(1 − 3a(p∗))
(n − 1)a(p∗)(0.125)2

(80)

= 72(1 − 3a(p∗))
(n − 1)a(p∗)

= K1/(n − 1) (say).

Hence, we obtain from (78), (79) and (80)

d ≤ 2
∥∥L(W) ∗ (I1 − I )

∥∥
TV ≤ K1

n − 1
+ K2√

n − 1
.

This proves (75). �

Using similar arguments and the fact that Tj ’s are i.i.d., (76) immediately follows.

Proof of Corollary 4.8. The bounds for d and d1 in Theorem 4.1 are given by Lemma 4.7.
Next, to compute E|W̃ (i) − W(i)|, construct the following two-dimensional stochastic process
{(Zi1

l ,Zi0
l )}l≥i with initial state (Zi1

i ,Zi0
i ) = (1,0), where L(Z

ij
l ) = L(Il |Ii = j), for j = 0,1,

having following marginal distributions.

(i) For l ≥ i + 2,

P
((

Zi1
l ,Zi0

l

)= (0,0)
) = 1 − a

(
p∗),
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P
((

Zi1
l ,Zi0

l

)= (0,1)
) = 0,

P
((

Zi1
l ,Zi0

l

)= (1,0)
) = 0,

P
((

Zi1
l ,Zi0

l

)= (1,1)
) = a

(
p∗).

(ii) For i < l ≤ i + 1,

P
((

Zi1
l ,Zi0

l

)= (0,0)
) = 1 − a(p∗)

1 − a(p∗)
,

P
((

Zi1
l ,Zi0

l

)= (0,1)
) = a(p∗)

1 − a(p∗)
,

P
((

Zi1
l ,Zi0

l

)= (1,0)
) = 0,

P
((

Zi1
l ,Zi0

l

)= (1,1)
) = 0.

Also, the joint distributions satisfy:

(i) For l = i

P
((

Zi1
l+1,Z

i0
l+1

)= (0,0),
(
Zi1

l ,Zi0
l

)= (0,0)
) = 1 − 2

a(p∗)
1 − a(p∗)

,

P
((

Zi1
l+1,Z

i0
l+1

)= (0,1),
(
Zi1

l ,Zi0
l

)= (0,0)
) = a(p∗)

1 − a(p∗)
,

P
((

Zi1
l+1,Z

i0
l+1

)= (0,0),
(
Zi1

l ,Zi0
l

)= (0,1)
) = a(p∗)

1 − a(p∗)
,

and zero otherwise.
(ii) For l = i + 1,

P
((

Zi1
l+1,Z

i0
l+1

)= (0,0),
(
Zi1

l ,Zi0
l

)= (0,0)
) = 1 − (2 − a

(
p∗)) a(p∗)

1 − a(p∗)
,

P
((

Zi1
l+1,Z

i0
l+1

)= (1,1),
(
Zi1

l ,Zi0
l

)= (0,0)
) = a

(
p∗),

P
((

Zi1
l+1,Z

i0
l+1

)= (0,0),
(
Zi1

l ,Zi0
l

)= (0,1)
) = a(p∗)

1 − a(p∗)
,

and zero otherwise.
(iii) For l ≥ i + 2,

P
((

Zi1
l+1,Z

i0
l+1

)= (0,0),
(
Zi1

l ,Zi0
l

)= (0,0)
) = 1 − 2a

(
p∗),

P
((

Zi1
l+1,Z

i0
l+1

)= (1,1),
(
Zi1

l ,Zi0
l

)= (0,0)
) = a

(
p∗),

P
((

Zi1
l+1,Z

i0
l+1

)= (0,0),
(
Zi1

l ,Zi0
l

)= (1,1)
) = a

(
p∗),

and zero otherwise.
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Let us now define the random variables

ζ = min
{
k − i|Zi1

k = Zi0
k = 1

}
, for k ≥ i

and

ζ̃ = min
{
i − k|Zi1

k = Zi0
k = 1

}
, for i ≤ k.

Due to symmetry of the stochastic process about i, we have suppressed the index i. The distri-
bution of ζ is given by

P(ζ = k) =
⎧⎨⎩

a
(
p∗), for 2 ≤ k ≤ 3,

a
(
p∗)(1 − 2a(p∗)

1 − a(p∗)

)k−3

, for k ≥ 4.

Therefore,

E(ζ ) = a
(
p∗)+ 1

a(p∗)
.

Also, due to symmetry, we have ζ
L= ζ̃ .

Define now

W
(i)
l =

i−ζ̃∑
j=2

Zi1
j =

i−ζ̃∑
j=2

Zi0
j , W(i)

r =
n∑

j=i+ζ

Zi1
j =

n∑
j=i+ζ

Zi0
j

and

ξ i1 =
(i+ζ−1)∧n∑

j=(i−ζ̃+1)∨2

Zi1
j − Zi1

i .

Thus,

W̃ (i) = W
(i)
l + W(i)

r + ξ i1.

Let now

I
′
j =

{
Zi1

j , with probability a
(
p∗),

Zi0
j , with probability 1 − a

(
p∗),

and I
′′
j

L= Ij , but I′′j is independent of {(Zi1
j ,Zi0

j )|j ∈ [i − ζ̃ , i + ζ ]}. Then

Zj :=
{
I
′′
j , if j ∈ [i − ζ̃ , i + ζ ],
I
′
j , if j > i + ζ or j < i − ζ̃ .
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Define

ξ i =
(i+ζ−1)∧n∑

j=(i−ζ̃+1)∨m

Zj − Zi; W(i)′ = W
(i)
l + W(i)

r + ξ i

so that W(i) L= W(i)′. Note that

E
(
ξ i
) ≤ E(ζ + ζ̃ − 1) = 2

a(p∗)
+ 2a

(
p∗)− 1,

E
(
ξ i1) ≤ E(ζ + ζ̃ − 2) = 2

a(p∗)
+ 2a

(
p∗)− 2.

Therefore,

E
∣∣W̃ (i) − W(i)

∣∣ ≤ E
∣∣ξ i − ξ i1

∣∣
≤ a
(
p∗)max

{
2
(
1 − a

(
p∗)),1

}
E(ζ + ζ̃ − 2)

= 2 max
{
2
(
1 − a

(
p∗)),1

}(
1 − a

(
p∗)(1 − a

(
p∗))).

Thus, the bound given in Theorem 4.1 becomes

∥∥L(W) − BCP
∥∥

TV ≤ 2

(1 − 2θ1)̂λ

{(
na
(
p∗)4 + Mp4

(1 − 2p)2

)(
K1

n − 2
+ K2√

n − 2

)
+ (1 + 2p)δp2 + (n − 1)C1

}
.

This proves the corollary. �
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[31] Peköz, A., Röllin, A., Čekanavičius, V. and Shwartz, M. (2009). A three-parameter binomial approx-
imation. J. Appl. Probab. 46 1073–1085.

[32] Reinert, G. (2005). Three general approaches to Stein’s method. In An Introduction to Stein’s Method.
Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 4 183–221. Singapore: Singapore Univ. Press.
MR2235451

[33] Röllin, A. (2005). Approximation of sums of conditionally independent variables by the translated
Poisson distribution. Bernoulli 11 1115–1128. MR2189083

[34] Roos, B. (2000). Binomial approximation to the Poisson binomial distribution: The Krawtchouk ex-
pansion. Theory Probab. Appl. 45 258–272.

[35] Ross, N. (2011). Fundamentals of Stein’s method. Probab. Surv. 8 210–293. MR2861132
[36] Soon, S.Y.T. (1996). Binomial approximation for dependent indicators. Statist. Sinica 6 703–714.

MR1410742
[37] Stein, C. (1986). Approximate Computation of Expectations. Institute of Mathematical Statistics Lec-

ture Notes—Monograph Series 7. Hayward, CA: IMS. MR0882007
[38] Stein, C., Diaconis, P., Holmes, S. and Reinert, G. (2004). Use of exchangeable pairs in the analysis

of simulations. In Stein’s Method: Expository Lectures and Applications. Institute of Mathematical
Statistics Lecture Notes—Monograph Series 46 1–26. Beachwood, OH: IMS. MR2118600

[39] Sundt, B. (1992). On some extensions of Panjer’s class of counting distributions. Astin Bull. 22 61–80.
[40] Vellaisamy, P. (2004). Poisson approximation for (k1, k2)-events via the Stein–Chen method. J. Appl.

Probab. 41 1081–1092. MR2122802
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