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In this paper, we give variational representations for decay parameters of Markov chains. In continuous-time
cases, the representation involves Donsker–Varadhan’s famous I -functional, from which some dual repre-
sentations are given, which are expected to he useful in estimating the lower and upper bounds of the decay
parameter. As a consequence, dual representations for decay parameters of discrete time Markov chains are
derived. For continuous-time chains with finite states, we also give another form of dual formulas, which
can be regarded as a version of the one for the Perron–Frobenius eigenvalue, with nonnegative matrices re-
placed by Q-matrices of the chains. Connections with quasi-stationarity and quasi-ergodicity of absorbing
Markov chains are discussed. An interpretation for the corresponding variational solutions is given.
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1. Introduction

Let P(t) = {Pij (t), i, j ∈ E, t ≥ 0} be a standard transition functions on a countable state
space E, that is, it has the following properties:

(i) Pij (t) ≥ 0 and limt→0 Pij (t) = δij = Pij (0) ∀i, j ∈ E.
(ii)

∑
j∈E Pij (t) ≤ 1 for all t ≥ 0, i ∈ E.

(iii) (Chapman–Kolmogorov equation, or the semigroup property)

Pij (t + s) =
∑
k∈E

Pik(s)Pkj (t) for all s, t ≥ 0 and i, j ∈ E.

P (t) is said to be conservative or honest if
∑

j∈E Pij (t) = 1 for all i ∈ E and all t ≥ 0. In this
case, it is well known that there is a Markov chain X = {Xt, t ≥ 0} on E, with transition function
P(t).

If P(t) is non-conservative, we add an extra state, say 0, to E, and extend P(t) to Ẽ = E ∪{0}
so that the extension, still denoted as P(t), is conservative on Ẽ. Then we have a Markov chain
X = {Xt, t ≥ 0} on Ẽ with transition function P(t), and 0 is an absorbing state of X.
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Remark 1.1. (1) In this paper, we specify E to be {1,2, . . . ,N} with N ≤ ∞;
(2) It is well known that if P(t) is a standard transition function on E, then for each i ∈ E,

Pii(t) > 0, ∀t ≥ 0,

and for any i, j ∈ E with i 	= j , either:

(2a) Pij (t) = 0 ∀t > 0, or
(2b) Pij (t) > 0 ∀t > 0,

cf. [7], Theorem 1.3, see also [1]. In this paper we assume (2b) for every pair i 	= j in E (in this
sense, we may call P(t), or equivalently the chain X, irreducible on E).

Under the above assumptions, a fundamental result proved in [17] is that there exists the limit

−λ1 = lim
t→∞

1

t
logPij (t), (1.1)

which is independent of i and j . If the chain X is transient or null recurrent on E, then for each
pair i, j ∈ E with i 	= j ,

Pij (t) ≤ Cij e
−λ1t ∀t ≥ 0

for some constant Cij . In each of these cases, λ1 characterizes the exponential decay rate of the
process, thus is called the decay parameter of P(t), or equivalently of the chain X. It is of the
same significance as the exponential ergodic rate for an ergodic chain. If the chain X is ergodic
with the unique stationary distribution π , denote by λ∗

1 the largest constant for which∥∥Pi·(t) − π
∥∥

TV ≤ Cie
−λ∗

1t ∀t > 0

for each i ∈ E with some constant Ci , where ‖μ‖TV denote the total variation of the signed
measure μ. λ∗

1 is shown to be closely related to the spectral gap of the corresponding generator
of the chain, and has been well studied. To be more precise, let Q be the matrix of transition rates
of the chain (called the Q-matrix, see [1], page 64, for its definition and for more details). If the
chain is conservative, then 0 is a trivial eigenvalue of Q. Let σ ∗ be the spectral gap of Q. It is
proved that if the chain is reversible, then

λ∗
1 ≥ σ ∗,

with equality holds in certain specific cases, see [4], Chapter 9, [5], Chapter 8, [6,9] and the ref-
erences cited therein. To see the significance of λ1 in the non-conservative case, we first focus on
the case of finite E. If we denote by ρ the Perron–Frobenius eigenvalue of the nonnegative matrix
eQ, then it is easy to check that λ1 = − logρ. Furthermore, since Q is a Metzler–Leontief matrix
(cf. [24], page 45), it is shown that λ1 is the principal eigenvalue of −Q: λ1 is an eigenvalue
of −Q, and any other eigenvalue λ satisfies that Reλ > λ1. The well-known Perron–Frobenius
theorem gives further significant results:

(i) For the Perron–Frobenius eigenvalue ρ of a nonnegative (finite) matrix P , there exist the
strictly positive left and right eigenvalues u′ and v which are unique up to constant multiples.
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(ii) If P is primitive, then

lim
n→∞ρ−nP n = vu′ (1.2)

see [24], Chapter 1. As for the case of infinite E, see Theorem 2.3 in the Section 2.1. It is also
noted that λ1 is closely linked to the principal eigenvalue of the generator of the process. To
describe it, define

λ∗ = − lim
t→∞

log‖P(t)‖u

t
, (1.3)

where ‖P(t)‖u is the norm of the operator P(t) on Cb(E). Then the spectrum of −Q is contained
in {λ : Reλ ≥ λ∗}. From the definition of λ1 it can be easily seen that

λ1 ≥ λ∗. (1.4)

In many typical cases, λ∗ is really in the spectrum. In such cases, λ∗ is regarded as the principal
eigenvalue of −Q. The simplest but nontrivial case is the one where E is finite, as we have just
discussed. In this case, the equality holds in (1.4). Another typical case is that when E is an open
set with compact closure in some connected manifold, and P(t) is the semigroup associated with
a certain elliptic second order differential operator L on E with Dirichlet boundary conditions.
In this case, it is shown in [14] that λ∗ is in the spectrum of −L and represents the decay rate of
P(t). Besides, it is also known that λ1 is relevant to existence of a quasi-stationary distribution
(QSD) of the process (cf. [27] and [20]). Thus computation or estimate of λ1 is of great interests.
A classical result is for the Perron–Frobenius eigenvalue ρ of a nonnegative matrix A = (ai,j ),
which provides two variational formulas for ρ in dual form:

ρ = sup
u>0

inf
i

∑
j ai,j uj

xi

= inf
u>0

sup
i

∑
j ai,j uj

ui

(1.5)

(cf. [24] or Appendix D in [22]). An extension to the case of an infinite E will be given in
Section 4, see (4.7). A number of papers had worked on representation for λ1 in continuous
time cases, some powerful formulas were obtained in certain concrete cases. For example, for a
birth–death process with birth rates {bn} and death rates {dn}, it was proved in [26] that

λ1 = sup
u∈U

inf
n

{
bn + dn − bn−1dn

un

− un+1

}
, (1.6)

where U = {u = (uj , j ≥ 1) : uj > 0 ∀j ≥ 1} is the set of all strictly positive functions on E. This
variational representation can provide good lower bounds for λ1. [8,9] and [6] provide some other
representations and powerful approximation procedures for λ1.

The aim of the present paper is to provide representation for λ1 for more general chains. The
formula we are going to derive is motivated by the fundamental works of [13] and [14]. It is
proved in [13] that if L is an elliptic second order differential operator L on a compact metric
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space E, and P(t) is the associated semigroup, then for any continuous function V on E,

−λV = sup
μ∈M1(E)

[∫
V dμ − I (μ)

]
, (1.7)

where λV is the principal eigenvalue of L+V , M1(E) is the space of probability measures on E,
and I is defined by

I (μ) = − inf
u∈D(L)+

∫
Lu

u
dμ, (1.8)

where D(L) is the domain of L and D(L)+ = {u ∈ D(L) : infx u(x) > 0}. A similar formula
is proved in [14] when E is an open set with compact closure in Rd (or in a more general
connected manifold without boundary), and L is an elliptic second order differential operator on
E with Dirichlet boundary conditions. The significance of (1.7) is that it generalizes the following
classical variational formula for λV when L is self-adjoint w.r.t. a measure ν on E:

−λV = sup
f ∈L2(ν),‖f ‖2=1

[∫
Vf 2 dν + (Lf,f )

]
. (1.9)

The formula (1.7) involves the functional I which is typically used as the large deviation rate
function for the family {Lt , t ≥ 0} of empirical measures of a Markov process {Xt, t ≥ 0} on an
arbitrary topological space E:

Lt = 1

t

∫ t

0
δXs ds,

where δx is the Dirac measure centered at x. A large deviation principle for {Lt } with the rate
function I states that

− inf
μ∈A◦ I (μ) ≤ lim inf

t→∞
1

t
logPπ(Lt ∈ A) ≤ lim sup

t→∞
1

t
logPπ(Lt ∈ A) ≤ − inf

μ∈Ā
I (μ)

for every subset A of M1(E) which is Borel measurable with respect to some preassembled
topology on M1(E), A◦ and Ā are the interior and closure of A respectively, π is the initial
distribution of the process. The above inequalities can be roughly expressed as

P(Lt ∈ dμ) ∼ e−tI (μ). (1.10)

Thus I (μ) gives the exponential decay rate of the probability that Lt being close to an anomalous
state μ. Establish of a large deviation principle for {Lt } and construction of the rate function
involves the computation of λV (which is just λ1 when E is finite and V = 0 as we have pointed
out), see Section 7 in [25] and Section 3.1, Section 6.5 in [10]. For explicit description of a
large deviation principle, its more general theory and applications, see [10–12,25] and the recent
book [22]. Note that the principal eigenvalue λV in both [13] and [14] is defined in the same way
as the one for λ∗ by (1.3), with P(t) replaced by the Feynman–Kac semigroup P V (t) determined
by L+V . This definition indicates some connection between λV and large deviation behavior of
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the associate Markov process. [13] and [14] reveal such a connection in terms of the functional I .
The proofs of the results are purely analytical, no relying on any large deviation result. In [4],
we investigated this problem for Markov chains with countably infinite states from the point of
view of large deviations. We proved the large deviation principle for the empirical processes of
such a chain under some standard tightness condition, and derived some relationships among λ1,
λV , some other parameters and quasi-stationary distributions. In the present paper, we are going
to handle this problem without the aid of large deviation results, providing variational formulas
for λ1 similar to that for λV (which is λ∗ when V = 0) given in [13] and [14]. We note that λ1
may differ from λ∗ in general. The approach we will adopt is different from that of [13] and
[14]: besides a standard truncation argument, we will use suitably tilted transition functions to
obtain some linear representations for the perturbed I -functional, see Theorem 3.4. The main
variational formula we will prove is that

λ1 = inf
μ∈M1(E)

I (μ). (1.11)

Similar formula will also be given when the chain is perturbed by some function V , see Theo-
rem 3.8. This variational representation has at least the following features:

(1) If the chain is reversible, then (1.11) admits a more explicit form in terms of the matrix
Q = (qij ) of transition rates:

λ1 = 1

2
inf

μ∈M1(E)

∑
ij

[√μiqij − √
μjqji]2 (1.12)

(see Section 2.2), which corresponds to (1.9) for a self-adjoint L. For example, for a birth–death
chain with birth rates {bn} and death rates {dn},

λ1 = 1

2
inf

μ∈M1(E)

∑
i

[μibi + μi+1di+1 − 2
√

μiμi+1bidi+1]2; (1.13)

(2) (1.11) applies to general chains, which will lead to the following “dual” max-min and
min-max variational formulas:

−λ1 = sup
μ∈M

q
1 (E)

inf
u∈U

∫
Qu

u
dμ = inf

u∈U
sup

μ∈M
q
1 (E)

∫
Qu

u
dμ, (1.14)

where U is as in (1.6),

(Qu)i =
∑
j

qij uj =
∑
j 	=i

qij (uj − ui),

with qi = ∑
j 	=i qij and

M
q

1 (E) =
{
μ ∈ M1(E) : μ(q) �

∑
i

qiμi < ∞
}
,
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see Corollary 3.3. The dual form is different from that in (1.5) which is not a minimax form.
When E is finite, a version of (1.5) in terms of the Q-matrix is given in Section 4, see (4.10). To
see the significance of (1.14), we note that for nonnegative infinite matrices, dual formulas for
the Perron–Frobenius eigenvalue ρ of exactly the same form as (1.5) were unknown. A version
was known as in (4.4), for which two sets of functions U and Uα are involved. Applying (1.14),
we give in Section 4 a version of it for ρ. It is also worth noting that slightly different from (1.8)
for defining the functional I , the matrix Q in stead of the generator L is used in the integral in
(1.14), with D(L)+ replaced by U . This makes the dual formula more applicable in deriving both
lower and upper bounds of λ1. As a consequence, it follows that

−λ1 = inf
u∈U

sup
i

(Qu)i

ui

= inf
u∈U

sup
i

[∑
j 	=i

qij

uj

ui

− qi

]
(1.15)

which can be regarded as a generalization of (1.6) to general chains. When applied to a birth–
death chain with birth rates {bn} and death rates {dn}, it follows that

λ1 = sup
u∈U

inf
n

{
bn + dn − bn

un+1

un

− dn

un−1

un

}
(1.16)

which is another version of (1.6);
(3) The functional I has been found to be important in analyzing long-term behaviors of

a Markov process. It connects many important concepts. Besides its close relationship with the
principal eigenvalue of the generator as described above, (1.10) also indicates its connection with
stationary distributions and ergodicity of the Markov process. Indeed, it is known that I (μ) = 0
iff μ is stationary for the process (cf. [25], Corollary 7.26). Thus, if the stationary distribution
is unique and the large deviation (1.10) is verified, then Lt will converge to this unique station-
ary, see [11–13] and [14]. Equation (1.11) allows one to explore the power of I to derive con-
sequences concerning decay rates and quasi-ergodic behaviors of the (sub-)Markov processes
under consideration. For example, we give in Section 3 necessary and sufficient condition for
I (m) = infμ∈M1(E) I (μ) = λ1 for some (and then unique) m ∈ M1(E). These conditions con-
cern the λ1-positivity of P(t) and the λ1 invariant measures and vectors, and such a minimizer m

is a certain quasi-stationary distribution of the process, which differs from the classical ones that
have been extensively studied for long time as surveyed in [20]. We will call such distribution m

a quasi-ergodic distribution, since we will show in Sections 3 and 4 that it is closely related to the
quasi-ergodic behavior of the time average of the process, more precisely, m is the quasi-limit
of {Lt , t ≥ 0}, see Theorem 3.6 and (3.15). We also prove that if I (ν) = 0 for some ν ∈ M1(E),
then the process is conservative.

We point out that variational formulas like the ones studied in this paper can be found in many
other settings. Besides the classical ones given in (1.5) for the Perron–Frobenius eigenvalue of a
nonnegative matrix, [14] also derived a dual form (a kind different from (1.5)) for the principal
eigenvalue λV described previously in this section. Similar variational formulas appear in even
more complicated situations. For example, in the context of particles in a random medium, [18]
and [19] derived a variational formula for the effective Hamiltonian used in describing the solu-
tion to certain HJB equations. For random walks in a random environment, [21] and [23] provide
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variational formulas for the limiting quenched free energy. In [16], variational formulas are de-
rived for the limiting time constant of last-passage percolation and for the limiting free energy of
directed polymers both evolving in certain random media. When the configuration space is finite,
[16] explained the connection of the variational formulas with the Perron–Frobenius theorem in
more details.

The next section contains some preliminaries for the decay parameter λ1 and the functional I .
The derivation of the variational formulas in terms of the functional I are given in Section 3.
Existence and an interpretation of the corresponding variational solution are also provided. In
Section 4 we study the connections of the problems considered in Section 3 with related ones for
discrete time chains in two directions. In one direction, we apply the results obtained in Section 3
to give dual variational formulas for the Perron–Frobenius type eigenvalues of nonnegative infi-
nite matrices (see (4.7)). The dual form is different from the classical one in the Perron–Frobenius
theory (see (1.5)). In the other direction, for finite Markov chains in continuous-time, we also give
a second form of dual formulas for λ1, see (4.10), which can be regarded as a version of (1.5)
for the Perron–Frobenius eigenvalue, with nonnegative matrices replaced by Q-matrices of the
chains.

2. Preliminaries

2.1. The decay parameter

Recall that we are considering an irreducible (sub-)Markov transition function P(t) on a count-
able state space E which we specify to be {1,2, . . . ,N} with N ≤ ∞. X is the associated Markov
chain on E. The decay parameter λ1 is defined by (1.1) whose existence is established in [17]. It
is easy to check that

λ1 = inf

{
α ≥ 0 :

∫ ∞

0
Pii(t)e

αt dt = ∞
}
. (2.1)

P(t) (or X) is classified as λ1-recurrent or λ1-transient depending on whether
∫ ∞

0 Pii(t)e
λ1t dt =

∞ or < ∞. λ1-recurrent chains are further divided into λ1-positive or λ1-null, depending on
whether limt→∞ eλ1tPij (t) > 0 or = 0, respectively (cf. [1], Section 5.2).

Remark 2.1. (1) If P(t) is honest and positively recurrent, then λ1 = 0. Thus in this case, 0-
positivity is the usual positivity. On the other hand, if the chain is null-recurrent or transient, it is
also possible that λ1 = 0. Examples can be easily constructed by applying the fact that

λ1 ≤ inf
i

qi ,

where qi = ∑
j 	=i qij (see Theorem 1.9 in [1], page 164).

(2) If λ1 > 0, then the chain is transient. In this situation, the chain can be honest. The follow-
ing example can be found in [1]. Let Q be defined on the state space E = Z by

qi,i+1 = pc, qii = −c, qi,i−1 = qc,
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where 0 < p < 1, q = 1 − p, and c > 0. Then the process is irreducible and the decay parameter
is λ1 = (1 − 2

√
pq)c. Thus if p 	= 1

2 , λ1 > 0.
(3) From the irreducibility assumption (2b) made in Remark 1.1 and (1.2), it is easy to see that

any irreducible finite chain (i.e., when N < ∞) is λ1-positive. This can also be checked directly.

Concerning λ1, we summarize some relevant definitions and known results as follows, which
can be regarded as extension of the Perron–Frobenius theorem in the case of countably infinite
states. more details can be found in [1,24,28] and [29].

Definition 2.2. For a given λ ≥ 0, a collection of strictly positive numbers, α = {αi, i ∈ E}, is
called a λ-subinvariant measure for P(t), if∑

j∈E

αjPji(t) ≤ e−λtαi (2.2)

for all t ≥ 0 and all i ∈ E. α is called λ-invariant if equality holds in (2.2) for all i ∈ E. A col-
lection β = {βi, i ∈ E} of strictly positive numbers is called a λ-subinvariant vector for P(t),
if ∑

j∈E

Pij (t)βj ≤ e−λtβi (2.3)

for all t ≥ 0 and all i ∈ E. β is called λ-invariant if equality holds for all i ∈ E.

Theorem 2.3. (1) Nonnegative numbers x = {xi, i ∈ E} satisfying (2.2) or (2.3) are either all
zero, or all strictly positive.

(2) For λ ≥ 0, there exists a λ-subinvariant measure and a λ-subinvariant vector iff λ ≤ λ1.
(3) If P(t) is λ1-recurrent, then the λ1-subinvariant measure and the λ1-subinvariant vector

are both unique up to constant multiples, and in fact are both λ1-invariant. Furthermore, P(t) is
λ1-positive if and only if the λ1-invariant measure {αi, i ∈ E} and λ1-invariant vector {βi, i ∈ E}
are strictly positive and satisfy ∑

k∈E

αkβk < +∞. (2.4)

Moreover, in this case,

lim
t→∞ eλ1tPij (t) = αjβi∑

k∈E αkβk

. (2.5)

Remark 2.4. From the above theorem, we see that

λ1 = sup
{
r : ∃x ∈ U as a column, s.t. P(t)x ≤ e−rt x,∀t ≥ 0

}
(2.6)

= sup
{
r : ∃y ∈ U as a row, s.t. yP (t) ≤ e−rt y,∀t ≥ 0

}
.

λ1 can also be regarded as an eigenvalues of the Q-matrix Q. This can be seen from the fol-
lowing proposition (see Proposition 2.13 in [1], page 88). We recall that the minimal Q-function
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for a given Q-matrix Q is the minimal nonnegative solution to the corresponding backward (or
forward) Kolmogorov equation, see Section 2 of [1] or Section 2.2 of [7] for details.

Proposition 2.5. Let Q be a Q-matrix and Pij (t) be the minimal Q-function. {xi, i ∈ E} (resp.
{yi, i ∈ E}) is a non-negative column (resp. row) and c is a real number. Then the following
statements are equivalent:

(1) P(t)x ≤ ectx (resp. yP (t) ≤ ecty);
(2) Qx ≤ cx (resp. yQ ≤ cy).

Remark 2.6. From this proposition, it follows that if an irreducible transition function Pij (t)

associated with the matrix Q is minimal, then the decay parameter λ1 of Pij (t) satisfies

λ1 = sup
{
r : ∃ positive column {xi, i ∈ E}, s.t. Qx ≤ −rx

}
(2.7)

= sup
{
r : ∃ positive row {yi, i ∈ E}, s.t. yQ ≤ −ry

}
.

Therefore, for every irreducible Q-matrix Q, we can define a parameter by (2.7). For conve-
nience, we also call it the decay parameter of Q. In particular, if Pij (t) is λ1-recurrent, then −λ1
is an eigenvalue of Q. Furthermore, if E is finite, then Q is an irreducible ML-matrix and −λ1
is the principal eigenvalue of Q as we have pointed out in Section 1.

2.2. Donsker–Varadhan’s I-functional

We recall the definition (1.8) of Donsker–Varadhan’s I -functional for a (sub-)Markov process X

with transition function P(t) and generator L. It is easy to see from its definition that I is convex
and lower semi-continuous, see also Section 7 of [25]. Furthermore, if P(t) is conservative, then
I (μ) = 0 iff μ is invariant for P(t) as we have pointed out in Section 1. To explore further the
power of I , we first note that on D(L)+, Lu = Qu with Qu being defined as in Section 1, that is,

(Qu)i =
∑
j 	=i

qij (uj − ui), i ∈ E.

Thus,

I (μ) = − inf
u∈D(L)+

∫
Qu

u
dμ.

Though the domain, D(L) is generally not known explicitly, the following lemma makes it pos-
sible to avoid the use of D(L).

Lemma 2.7. Let E be a Polish space, {P(t), t ≥ 0} be a Markov semigroup (which may be non-
conservative) on Cb(E) with generator L. I is defined by (1.8). For each h > 0 and μ ∈ M1(E),
we define

Ih(μ) = − inf
u∈U+

b

∫
log

P(h)u

u
dμ, (2.8)
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where, as defined in Section 1, U is the set of all strictly positive functions on E, and U+
b = {u ∈

U : 0 < infx∈E u(x) ≤ supx∈E u(x) < ∞}. Then for each μ ∈ M1(E) and h > 0, we have

Ih(μ) ≤ hI (μ) and I (μ) = lim
h→0+

1

h
Ih(μ). (2.9)

Proof. Such a result is proved in [12] for every compact metric space E, see Lemma 3.1 in that
paper. If we notice that in (1.8), each u ∈ D(L)+ has a strictly positive lower bound, and that L

is the (strong) generator of {P(t), t ≥ 0}, it can be seen that the proof of Lemma 3.1 of [12] is
valid in the present situation. We provide the necessary details as follows. On the one hand, for
u ∈ D(L)+ and μ ∈ M1(E), define


(t) =
∫

E

log
P(t)u

u
dμ.

Since dP (t)u/dt = LP(t)u = P(t)Lu, we see that

d
(t)

dt
=

∫
E

LP(t)u

P (t)u
dμ ≥ −I (μ).

Now since 
(0) = 0, it follows for any h > 0 that


(h) =
∫ h

0

d
(t)

dt
dt ≥ −

∫ h

0
I (μ)dt = −hI (μ).

The inequality in (2.9) then follows which further implies that

lim sup
h→0+

1

h
Ih(μ) ≤ I (μ).

On the other hand, since each u ∈D(L)+ is bounded away from 0 and

lim
h→0

P(h)u − u

h
= Lu

in Cb(E), so P(h)u = u + hLu + o(h) with o(h) uniform in E. Thus

log
P(h)u

u
= log

[
1 + h

Lu

u
+ o(h)

]
= h

Lu

u
+ o(h),

which implies that

1

h
Ih(μ) ≥ − 1

h

∫
E

log
P(h)u

u
dμ = −

∫
E

Lu

u
dμ + o(1).

From this, we obtain

lim inf
h→0+

1

h
Ih(μ) ≥ I (μ),

completing the proof of the equality in (2.9). �
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Since we are considering Markov chains on countable state spaces, there is another way to
avoid the use of D(L). We need to make the following modification of I :

J (μ) =
⎧⎨
⎩− inf

u∈U

∫
Qu

u
dμ, μ ∈ M

q

1 (E),

+∞, otherwise,
(2.10)

where as defined in Section 1, M
q

1 (E) = {μ ∈ M1(E) : μ(q) = ∑
i qiμi < ∞}. As we will show

in Theorem 3.2 in the next section, the infimum of J over M1(E) is the same as that of I , which
is exactly λ1.

Remark 2.8. It should be noted that if the matrix Q is stable, that is, qi < ∞ ∀i ∈ E, then Qu/u

is well defined for every u ∈ U since

(Qu)i

ui

=
∑
j :j 	=i

qij

uj

ui

− qi > −∞, ∀i ∈ E.

Furthermore, for μ ∈ M
q

1 (E), the integral
∫

Qu
u

dμ is also well defined for u ∈ U since∫
Qu

u
dμ =

∑
i 	=j

μiqij

uj

ui

− μ(q) > −∞.

Thus J is well defined, and it is easily seen that I ≤ J . Theorem 8.8 of [7] shows that for
μ ∈ M

q

1 (E), I (μ) = J (μ).

The following proposition is an easy consequence of definition (2.10).

Proposition 2.9. If E1 ⊂ E2 are two countable sets, Q(1) and Q(2) are two Q-matrices defined
on E1 and E2, respectively, such that, q

(1)
ij = q

(2)
ij for all i, j ∈ E1. Let J (1) and J (2) be defined

as (2.10), corresponding to Q(1) and Q(2), respectively. Then if μ ∈ M1(E1) ∩ M1(E2), that is,
if μ(E2 \ E1) = 0, we have

J (2)(μ) ≤ J (1)(μ). (2.11)

Proof. Given μ ∈ M1(E1)∩M1(E2) with μ(q(2)) < ∞, since μ(q(2)) = μ(q(1)) by the assump-
tion, we have that

J (2)(μ) = − inf
u∈U(E2)

[∑
i∈E1

∑
j∈E2:j 	=i

μiq
(2)
ij

uj

ui

− μ
(
q(2)

)]

≤ − inf
u∈U(E2)

[∑
i∈E1

∑
j∈E1:j 	=i

μiq
(2)
ij

uj

ui

− μ
(
q(2)

)]

= − inf
u∈U(E1)

[∑
i∈E1

∑
j∈E1:j 	=i

μiq
(1)
ij

uj

ui

− μ
(
q(1)

)] = J (1)(μ).
�
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Remark 2.10. Summarizing the above discussion, we assume in this paper that the Q-matrix
under consideration is stable, and the corresponding transition function is the minimal one.

3. The main results

Now we start presenting the main results of this article. Our first new observation is that conser-
vativeness is necessary for the existence of a probability measure μ satisfying I (μ) = 0.

Proposition 3.1. Let P(t) be an irreducible (sub-)Markov transition function. If there exists
some μ ∈ M1(E) such that I (μ) = 0, then P(t) is conservative and μ is its stationary distribu-
tion.

Proof. Fix an h > 0. By adding an additional state 0, we define Ẽ = E ∪ {0} and let

P̃ (h) =
(

1 0
ρ(h) P (h)

)
,

where ρ(h) is chosen so that P̃ (h) is conservative. Let Ĩh and Ih be defined as in (2.8) for
P̃ (h) and P(h) respectively. Then, viewing μ ∈ M1(E) as a probability measure on Ẽ supported
on E, it is easy to check that Ĩh(μ) ≤ Ih(μ). Thus, if I (μ) = 0 for some μ ∈ M1(E), then by
Lemma 2.7 we see that Ĩh(μ) = 0. Therefore, as we have pointed out in Section 1, it follows
from Corollary 7.26 in [25], page 142, that

μPh = μP̃h = μ. (3.1)

A standard argument then shows that P(h) is conservative: Write (3.1) in its components as
follows: ∑

i

μiPij (h) = μj . (3.2)

The irreducibility of P(t) implies that μj > 0 for every j . Then summing over j in (3.2) we get
the desired conclusion. �

The next theorem gives the fundamental variational representation for λ1 in terms of I and J .

Theorem 3.2. For any irreducible transition function on E,

inf
μ∈M1(E)

I (μ) = λ1 = inf
μ∈M1(E)

J (μ). (3.3)

Recall the definition of J , we have the following corollary to the above theorem, which is
more applicable in estimating λ1.
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Corollary 3.3. For any irreducible transition function on E,

−λ1 = sup
μ∈M

q
1 (E)

inf
u∈U

∫
Qu

u
dμ (3.4)

= inf
u∈U

sup
μ∈M

q
1 (E)

∫
Qu

u
dμ = inf

u∈U
sup
j∈E

(Qu)j

uj

. (3.5)

Proof. The first equality follows from Theorem 3.2 and the definition of J . The third one follows
easily from the fact that

sup
μ∈M

q
1 (E)

∫
Qu

u
dμ = sup

j∈E

(Qu)j

uj

.

Thus we only need to prove the second equality. To this end, we note that on the one hand, it is
trivial that the lhs ≤ rhs. On the other hand, by Theorem 2.3 and Remark 2.4, there exists a ũ ∈ U
such that

(Qũ)i

ũi

≤ −λ1.

Thus

−λ1 ≥ sup
μ∈M

q
1 (E)

∫
Qũ

ũ
dμ ≥ inf

u∈U
sup

μ∈M
q
1 (E)

∫
Qu

u
dμ,

which is precisely what we need. �

We now start preparing to prove Theorem 3.2. Since

inf
μ∈M1(E)

I (μ) ≤ inf
μ∈M1(E)

J (μ) = inf
μ∈M

q
1 (E)

J (μ),

we only need to prove the following two inequalities:

inf
μ∈M1(E)

I (μ) ≥ λ1 and inf
μ∈M1(E)

J (μ) ≤ λ1. (3.6)

The proof of the first inequality involves studying a series of transition functions tilted with
respect to the original one. For the proof of the second inequality, a truncation and approximation
procedure is used.

The approach by properly tilting transition functions is a typical technique in the study of large
deviations. It is also a standard approach in the study of recurrence of Markov and sub-Markov
processes, and is often known as h-transformation. For example, it was used in [17] to study
decay rates of Markov chains (see also [1]). By using such an approach here, we obtain a linear
relationship among the corresponding I functionals, which may be of independent interests. To
define the tilted transition functions, let β = {βi, i ∈ E} be a (positive) λ1-subinvariant vector.
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Then for each 0 ≤ θ ≤ λ1, β is also a θ -subinvariant vector, thus we can define a tilted (sub-
Markov) transition function {P θ(t), t ≥ 0} as follows:

P θ
ij (t) = eθtPij (t)βj

βi

, i, j ∈ E, t ≥ 0. (3.7)

The Q-matrix Qθ of this new transition function is given by

qθ
ij = βj

βi

(qij + θδij ), i, j ∈ E. (3.8)

Let λθ
1 and I θ be the corresponding decay parameter and I functional, respectively. Then we

have:

Theorem 3.4. With the above notations,

I θ = I − θ. (3.9)

Proof. Let I θ
h be defined as in (2.8) for P θ(h). Then by Lemma 2.7, it suffices to prove that

I θ
h = Ih − θh. (3.10)

To this end, we note that it is easy to check that

I θ
h (μ) = − inf

u∈U+
b

∫
log

P θ(h)u

u
dμ

= − inf
u∈U+

b

∫
log

P(h)(uβ)

uβ
dμ − θh.

For every u ∈ U+
b , there exists constants 0 < c1 < c2, such that c1 < ui < c2, for all i ∈ E. Define

u(n) = ( 1
n

∨ (uβ)) ∧ n for n ≥ 1, then u(n) ∈ U+
b and u(n) → uβ point-wise. Thus from the fact

that

Phβ ≤ e−θhβ

coordinate-wise, we obtain

log
P(h)(u(n))

u(n)
= log

P(h)((1/n ∨ (uβ)) ∧ n)

(1/n ∨ (uβ)) ∧ n

≤ log
P(h)(1/n + (uβ)) ∧ n

(1/n ∨ (uβ)) ∧ n

≤ log
(1/n + c2e

−θhβ) ∧ n

(1/n ∨ (c1β)) ∧ n

≤ log

(
1 + c2

c1
e−θh

)
,
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where the last inequality can be directly verified by considering the following cases

(1) c1βi ≤ 1

n
; (2)

1

n
< c1βi < n and (3) c1βi ≥ n

respectively. It then follows from Fatou’s lemma that

−
∫

log
P(h)(uβ)

uβ
dμ ≤ − lim sup

t→∞

∫
log

P(h)u(n)

u(n)
dμ ≤ − inf

u∈U+
b

∫
log

P(h)u

u
dμ.

Thus I θ
h (μ) ≤ Ih(μ) − θh.

To prove the reversed inequality, note that

Ih(μ) = − inf
u∈U+

b

∫
log

P(h)u

u
dμ

= − inf
u∈U+

b

∫
log

P θ(h)(u/β)

u/β
dμ + θh

and that (
P θ

h β−1)
i
=

∑
j∈E

P θ
ij (h)β−1

j = β−1
i eθh

∑
j∈E

Pij (h) ≤ eθhβ−1
i .

An argument similar to the previous one gives that Ih(μ) ≤ I θ
h (μ)+ θh, completing the proof. �

As will be seen soon, the first inequality in (3.6) follows from (3.9). To prove the second
inequality in (3.6), we need a truncation and approximation procedure. Let (En) be an increasing
sequence of finite subsets of E, such that

∅ ⊂ E1 ⊂ E2 ⊂ · · · ⊆ E =
⋃
n

En.

The En-truncated Q-matrix Qn = (q
(n)
ij )i,j∈En , is defined by

q
(n)
ij = qij , i, j ∈ En.

Associated with the matrix (q
(n)
ij )i,j∈En , there is a unique (and hence minimal) transition function

P
(n)
ij (t). If it is irreducible, we denote its decay parameter denoted by λ

(n)
1 . The following lemma

will be used in the proof of Theorem 3.2.

Lemma 3.5 ([3], Section 3, Lemma 1 and Section 4, Lemma 2). There exists an increasing
sequence (En) of finite subsets of E, such that the transition function P

(n)
ij (t) associated with the

matrix (q
(n)
ij )i,j∈En is irreducible, and λ1 = limn→∞ ↓ λ

(n)
1 .

Now we can prove Theorem 3.2.
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Proof of Theorem 3.2. First, applying Theorem 3.4 we see that for any μ ∈ M1(E)

I (μ) − λ1 = Iλ
1 (μ) ≥ 0,

this implies that

inf
μ∈M1(E)

I (μ) ≥ λ1.

To prove the second inequality in (3.6), we note that the truncated chain P (n)(t) is λ
(n)
1 -positive.

This implies that the λ
(n)
1 -tilted chain P n,λ

(n)
1 (t) is conservative and ergodic. Thus, still denote by

I the I -functional for P (n) without confusion, there is a unique μ(n) ∈ M1(En) such that

inf
μ∈M1(En)

I (μ) = I
(
μ(n)

) = Iλ
(n)
1

(
μ(n)

) + λ
(n)
1 = λ

(n)
1 .

Now from Proposition 2.9, it follows that

inf
μ∈M1(E)

J (μ) ≤ inf
μ∈M1(En)

J (μ) ≤ inf
μ∈M1(En)

J (n)(μ) = inf
μ∈M1(En)

I (n)(μ) = λ
(n)
1 .

Letting n → ∞ and applying Lemma 3.5 we conclude that

inf
μ∈M1(E)

J (μ) ≤ λ1,

which is the desired assertion. �

Theorem 3.4 can be further applied to study when and where the infimum in (3.3) is attained.
To see this, let α = (α1, α2, . . .) and β = (β1, β2, . . .) be the λ1-subinvariant measure and vector,
respectively. Denote αβ = (α1β1, α2β2, . . .).

Theorem 3.6. With the above notation, the following assertions are equivalent:

(a) P(t) is λ1-positive.
(b) α,β are unique and λ1-invariant, and αβ is summable.
(c) The infimum infμ∈M1(E) I (μ) = λ1 is attained at some μ ∈ M1(E), which is unique and

given by the normalized αβ .

Proof. The equivalence between assertions (a) and (b) is given by Theorem 2.3. To prove that
they are equivalent to assertion (c), we note that if P(t) is λ1-positive, then P λ1(t) is conser-
vative and positively recurrent, with the normalized αβ , denoted by μ, as its unique stationary
distribution. Thus Iλ1(μ) = 0. From this and (3.9), assertion (c) follows. On the other hand, if
assertion (c) holds, then (3.9) implies that Iλ1(μ) = 0 with μ being the normalized αβ . From
Proposition 3.1, we see that P λ1 is conservative with μ as its stationary distribution. This implies
that P λ1(t) is positively recurrent, or equivalently, P(t) is λ1-positive. �

According to this theorem, the infimum of I (μ) over M1(E) is attained at some m ∈ M1(E)

iff P(t) is λ1-positive. The latter is equivalent to the ergodicity of the tilted chain P λ1(t) and m
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is its unique stationary distribution. In the following, we give an interpretation of m from the per-
spective of quasi-stationarity of the chain P(t) itself. The motivation comes from the following
consideration: If we define Iτ = I − λ1, then it is nonnegative and lower semi-continuous. The
fact that I (μ) = 0 iff μ is stationary for P(t) leads to our study of the zeros of Iτ . Our investi-
gation shows that a zero m of Iτ is different from the classical and well studied quasi-stationary
distribution. We may call such a zero m a “fractional quasi-ergodic” or simply “quasi-ergodic
distribution” of P(t). To explain this more explicitly, let X = {Xt, t ≥ 0} be the Markov chain
on Ẽ = {0} ∪ E with E = N as described in the beginning of Section 1. Let {Pi, i ∈ Ẽ} be the
corresponding Markov family. We assume that X is irreducible on E and that 0 is an absorbing
state of it. Denote by

τ = inf{t ≥ 0 : Xt = 0}
the absorption time. Suppose that Pi(τ > t) > 0, ∀i ∈ E, t ≥ 0, and absorbing is certain, meaning
that for all i ∈ E,

Pi(τ < ∞) = 1.

Let λ1 be the decay parameter of P(t) = {Pij (t), t ≥ 0} on E. To see the connection between the
decay rate and the quasi-stationarity of X, we impose the following two hypotheses:

(H1) X is λ1-positive.
(H2) The λ1-invariant measure α = {αi, i ∈ E} given in Theorem 2.3 is finite, that is,∑
j∈E αi < ∞.

According to Theorem 2.3, under these two hypotheses, we can normalize α and the λ1-
invariant vector β so that

∑
j∈E αi = ∑

j∈E αiβi = 1. Denote mi = αiβi .
The relationship among λ1, α, β and the quasi-stationary distribution are summarized in the

following, see [1,15] and [2] for details.

Proposition 3.7. Under assumptions (H1) and (H2), we have:

(a) ∀i ∈ E,

lim
t→∞ eλ1tPi(τ > t) = βi, (3.11)

and so limt→∞ 1
t

logPi(τ > t) = −λ1.
(b) α is the unique quasi-stationary distribution (QSD) of X characterized by

Pα(Xt = j |τ > t) = αj , for all j ∈ E and t ≥ 0.

Furthermore, α is the unique Yaglom limit defined by

lim
t→∞Pi(Xt = j |τ > t) = αj , for all i ∈ E. (3.12)

According to Theorems 2.3 and 3.6, under (H1) and (H2),

λ1 = inf
μ∈M1(E)

I (μ) = I (m).
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By definition, m is clearly different from α, it is known to be the unique doubly limiting quasi-
stationary distribution of X, that is, ∀i, j ∈ E,

lim
s→∞ lim

t→∞Pi(Xs = j |τ > t + s) = mj . (3.13)

A substantially new difference between the interpretations of α and m is that m is the unique
“fractional” Yaglom limit of X, that is, ∀q ∈ (0,1),

lim
t→∞Pi(Xqt = j |τ > t) = mj , ∀i ∈ E. (3.14)

Proof of this assertion for more general processes can be found in [5]. But since in the present
case, a direct proof is simpler, we outline it as follows: from the Markov property and (3.11),

lim
t→∞Pi(Xqt = j |τ > t) = lim

t→∞
Ei[PXqt (τ > (1 − q)t);Xqt = j, τ > qt]

Pi(τ > t)

= lim
t→∞

Ei[eλ1tPj (τ > (1 − q)t);Xqt = j, τ > qt]
eλ1tPi(τ > t)

= lim
t→∞

Ei[eλ1qtβj ;Xqt = j, τ > qt]
βi

= lim
t→∞P

λ1
i (Xqt = j) = mj ,

where P
λ1
i is used for the tilted process P λ1(t), and we have used in the last equality the fact that

under (H1), P λ1(t) is ergodic with the unique stationary distribution m.
Comparing this assertion with the those in Proposition 3.7, we see a phase transition in the

conditional limit

lim
t→∞Pi(Xqt = j |τ > t)

when q varies from 0 < q < 1 to q = 1.
A simple but non-trivial consequence of (3.12) is that ∀i ∈ E,f ∈ Bb(E),

lim
t→∞Ei

[
1

t

∫ t

0
f (Xs) ds

∣∣∣τ > t

]
= m(f ). (3.15)

This is the reason that we call m a “quasi-ergodic measure” of X. The above limit can be extended
to the following higher moment cases:

lim
t→∞Ei

[(
1

t

∫ t

0
f (Xs) ds

)n∣∣∣τ > t

]
= [

m(f )
]n

,

for any n ≥ 1.
Finite Markov chains are trivial examples for which both (H1) and (H2) are satisfied. To give

a simple but non-trivial example, we consider birth–death processes. This is a typical family of
Markov chains which has been extensively studied from various aspects, including the quasi-
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stationary behavior. Here we only consider the linear birth–death process with birth and death
rates given by

bn = nb, n ≥ 0, dn = nd, n ≥ 1,

where b, d > 0. 0 is the only absorbing state, and E = N is a transient irreducible class with
decay parameter λ1 = |b − d|. The chain is always λ1-positive for b 	= d . However, the λ1-
invariant measure π is summable, and hence (H1) and (H2) are fulfilled, if and only if b < d .

The above approach can be generalized to give variational representation for the decay pa-
rameter of the Q-matrix with a potential. To describe this explicitly, let Q = (qij ) be a standard
Q-matrix on E, and V ∈ Cb(E). Let Q + V = (qV

ij )i,j∈E , with qV
ij = qij + δijV (i). Q + V is a

“quasi” Q-matrix in the sense that for some constant C,∑
j

qV
ij ≤ C ∀i

which determine a “minimal” quasi-transition function P V (t) = (P V
ij (t)) with

∑
j

P V
ij (t) ≤ eCt ∀t, i.

If Q is conservative, regular and X = {Xt, t ≥ 0} is the Markov chain constructed from Q, then
P V (t) is the Feynman–Kac semigroup given by

P V (t)g(i) = Ei

[
g(Xt )e

∫ t
0 V (Xs) ds

]
, g ∈ Cb(E)

and P V
ij (t) = P V

t δj (i). Let λ1(V ) be defined as in (2.7) for Q+V , and I the I -functional defined
for Q.

Theorem 3.8. With the above notations,

−λ1(V ) = sup
μ∈M1(E)

{∫
V dμ − I (μ)

}
. (3.16)

Remark. When E is finite, the above assertion follows from the Perron–Frobenius theorem.

Proof of Theorem 3.8. Let V ≤ C. Define Q′ = Q + V − C, then Q′ is a standard Q-matrix
and Q′ + C = Q + V . Let λ′

1 be the decay parameter of Q′ and I ′ be the I -functional for Q′.
Then by Theorem 3.2,

−λ′
1 = − inf

μ∈M1(E)
I ′(μ)

= sup
μ∈M1(E)

{
inf

u∈D(L)+

∫
Q′u
u

(x)dμ(x)

}

= sup
μ∈M1(E)

{∫
V dμ − I (μ)

}
− C.
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On the other hand, according to Remark 2.6,

λ′
1 = sup

{
r : ∃ positive {xi, i ∈ E}, s.t. Q′x ≤ −rx

}
= sup

{
r : ∃ positive {xi, i ∈ E}, s.t. (Q + V )x ≤ −(r − C)x

}
= λ1(V ) + C.

Combining the above equalities, we get the desired assertion. �

4. Connections with discrete-time chains

In this section, we make some remarks on applying the results obtained in the last section to
discrete-time Markov chains, and the other way round. Let P = (Pij )i,j∈E be an irreducible,
nonnegative matrix satisfying ∑

j∈E

Pij ≤ c ∀i ∈ E

for some constant c. P n = (P n
ij ) denote the nth power of P . The convergence parameter of P is

defined by

R = inf

{
s > 0 :

∞∑
n=0

P n
ij s

n = ∞
}

.

It is known (Corollary 4 of [28]) that

R = sup
{
r : ∃ positive column {ui, i ∈ E}, s.t. rPu ≤ u

}
(4.1)

= sup
{
r : ∃ positive row {yi, i ∈ E}, s.t. ryP ≤ y

}
.

Thus ρ = 1/R is the Perron–Frobenius eigenvalue of P when E is finite, and (1.5) gives a dual
form of variational representations of ρ. If E is infinite, from (4.1) it is easy to check that

1

R
= inf

u∈U
sup
i∈E

(Pu)i

ui

. (4.2)

Furthermore, the proof of Lemma 2, the argument in page 376 and Theorem 5.2 of [28] also
show that

1

R
= sup

u∈Uα

inf
i∈E

(Pu)i

ui

, (4.3)

where α is any fixed R-subinvariant measure, and

Uα �
{
u ∈ U :

∑
j

ujαj < ∞
}
.
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Combining it with (4.2) we get the following “dual” formula for 1/R:

1

R
= inf

u∈U
sup
i∈E

(Pu)i

ui

= sup
u∈Uα

inf
i∈E

(Pu)i

ui

, (4.4)

which can be regarded as a generalization of (1.5) to the case where E is infinite. We will discuss
the connection between the variational formulas for 1/R and those for λ1 in two directions.

First, we can apply the results obtained in Section 3 to give a second form of “dual” represen-
tations of 1/R. In doing this, we will give a connection between R and an associate continuous-
time version of R. To be precise, define a standard Q-matrix Q = (qij ) by

qij = 1

c
Pij − δij , i, j ∈ E.

Its decay parameter λ1 is defined by (2.7). Notice that

P = cQ + c1,

where 1 is the identically 1 function on E. Then by Theorem 3.2 we get that

c(1 − λ1) = c sup
μ∈M1(E)

[
1 + inf

u∈U

∫
Qu

u
dμ

]

= c sup
μ∈M1(E)

[
inf
u∈U

∫
(Q + 1)u

u
dμ

]
(4.5)

= sup
μ∈M1(E)

inf
u∈U

∫
Pu

u
dμ.

From (2.7) and (4.1), we see that

c(1 − λ1) = 1

R
or λ1 = 1 − 1

cR
. (4.6)

Combining this with (4.2) and (4.5), we have proved the following theorem.

Theorem 4.1. Let P be a nonnegative and irreducible matrix satisfying

∑
j∈E

Pij ≤ c ∀i ∈ E

for some c, and R be the corresponding decay parameter. Then

1

R
= sup

μ∈M1(E)

inf
u∈U

∫
Pu

u
dμ = inf

u∈U
sup
i∈E

(Pu)i

ui

= inf
u∈U

sup
μ∈M1(E)

∫
(Pu)

u
dμ. (4.7)
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As another consequence of (4.6), consider a continuous-time Markov chain P(t) with the
Q-matrix Q = (qij ) and its embedded discrete time chain P = (Pij ), that is,

Pij = qij

qi

+ δij .

If we define a Q-matrix Q = (q̄ij ) by

q̄ij = qij

qi

,

then

P = Q + 1.

Thus if we denote by λ̄1 and R the decay parameters of Q and P , respectively, then from (4.6)
we see that

λ̄1 = 1 − 1

R
. (4.8)

On the other hand, if we denote by J̄ the modified I -functional corresponding to Q (see defini-
tion (2.10)), and notice that M

q̄

1 (E) = M1(E), then it follows from Theorem 3.2 that

λ̄1 = − sup
μ∈M1(E)

inf
u∈U

∫
Qu

u
dμ = − sup

μ∈M1(E)

inf
u∈U

∫
Qu

qu
dμ. (4.9)

Thus, if we denote by λ1 the decay parameter of Q, then since Qũ ≤ −λ1ũ for some ũ ∈ U , we
immediately get that

λ̄1 ≥
(

sup
i

qi

)−1
λ1.

Furthermore, for μ ∈ M
q

1 (E), we can define μq ∈ M1(E) by

dμq = q dμ

μ(q)
.

Then it follows from (4.9) that

λ̄1 ≤ − sup
μ∈M

q
1 (E)

inf
u∈U

∫
Qu

qu
dμq

= − sup
μ∈M

q
1 (E)

inf
u∈U

∫
Qu

u

dμ

μ(q)
≤

(
inf
i

qi

)−1
λ1.

Combining these with (4.8) we obtain that

inf
i

qi

(
1 − 1

R

)
≤ λ1 ≤ sup

i

qi

(
1 − 1

R

)
,
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recovering a known result (Proposition 3.2 in [1], page 186).
Going the other way round, we next apply (4.4) to derive its continuous-time version for λ1

when E is finite.

Proposition 4.2. Let E be finite, P(t) be an irreducible Markov transition function on E with
Q-matrix Q = (qij ). Then

− sup
u∈U

inf
i

(Qu)i

ui

= λ1 = − inf
u∈U

sup
i

(Qu)i

ui

. (4.10)

Proof. To prove the first equality, for any h > 0, denote by R(h) the convergence parameter
of the discrete time chain with transition matrix P(h), then R(h) = eλ1h. If α is the (unique)
λ1-invariant measure, then

Uα = U
since E is finite. Thus, we see from (4.4) (which is just (1.5) in the present case) that

e−λ1h = sup
u∈U

inf
i

(P (h)u)i

ui

≥ inf
i

(P (h)u)i

ui

(4.11)

for each u ∈ U . Since

log
P(h)u

u
= log

[
1 + h

Qu

u
+ o(h)

]
= h

Qu

u
+ o(h)

with o(h) uniform in E, it follows from (4.11) that for each u ∈ U ,

−λ1 = sup
u∈U

inf
i

[
(Qu)i

ui

+ o(1)

]
≥ inf

i

[
(Qu)i

ui

+ o(1)

]

with o(1) uniform in E. Thus by letting h → 0+, we obtain that

−λ1 ≥ inf
i

(Qu)i

ui

,

and hence

−λ1 ≥ sup
u∈U

inf
i

(Qu)i

ui

.

On the other hand, if β is the λ1-invariant vector, then

−λ1 = Qβ

β
≤ sup

u∈U
inf
i

(Qu)i

ui

.

The first equality in (4.10) follows from the above two inequalities. The second equality is given
in Corollary 3.3. It can also be proved in the similar way as above when E is finite. �

The above arguments can be generalized to some specific cases when E is infinite.
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