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In this article, we consider an unbiased simulation method for multidimensional diffusions based on the
parametrix method for solving partial differential equations with Hölder continuous coefficients. This
Monte Carlo method which is based on an Euler scheme with random time steps, can be considered as an
infinite dimensional extension of the Multilevel Monte Carlo method for solutions of stochastic differential
equations with Hölder continuous coefficients. In particular, we study the properties of the variance of the
proposed method. In most cases, the method has infinite variance and therefore we propose an importance
sampling method to resolve this issue.
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1. Introduction

Consider the following multidimensional stochastic differential equation (s.d.e.)

Xt = X0 +
m∑

j=1

∫ t

0
σj (Xs) dW

j
s +

∫ t

0
b(Xs) ds, t ∈ [0, T ]. (1)

Here, W is an m-dimensional Wiener process and σj , b : Rd → R
d are such that there exists a

weak solution to (1). More precise assumptions that we will work under and that guarantees this
will be stated later.

As there are very few situations where one can solve (1) explicitly one has to use numeri-
cal approximations. In such a case, the numerical calculation of E [f (XT )] for f : Rd → R

d ,
using Monte Carlo simulation has been widely addressed in the literature. In particular, the
Euler–Maruyama scheme is one of the main numerical approximation schemes studied due to
its generality and simplicity of implementation.

Given a time partition π : 0 = t0 < t1 < · · · < tN < tN+1 = T , we define the Euler–Maruyama
scheme {Xπ

ti
; i = 0, . . . ,N + 1} associated with (1) by Xπ

0 = X0,

Xπ
ti+1

= Xπ
ti

+
m∑

j=1

σj

(
Xπ

ti

)(
W

j
ti+1

− W
j
ti

) + b(Xti )(ti+1 − ti ), i = 0, . . . ,N.
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From this numerical approximation, it is possible to draw Monte Carlo samples and therefore
we can obtain an approximation of E [f (XT )]. This approximation will contain two types of
errors, a statistical error which arises from the fact that we are taking the average of a finite
number of Monte Carlo samples. This error can usually be controlled by estimating the variance
of the sample. Should a smaller error be needed we simply draw more Monte Carlo samples. The
second error is the bias, which comes from the time discretization π . This error is more difficult
to control. There are results on the asymptotic rate at which this error decreases as the number
of steps increases but in general it is not possible to know (a priori) how large this error is in a
specific example. In cases where the coefficients have some regularity the rate of convergence is
known (see [3]).

Although these convergence rates may be considered to be slow, they have become the ba-
sis of the construction of other more refined numerical schemes. Besides, this computational
application, they also have various theoretical uses and is therefore important.

Many researchers have addressed various of the above issues related to some of the shortcom-
ings of the Euler–Maruyama scheme. In order to carry out these studies, one needs in general
smoothness and uniform ellipticity assumptions on the coefficients of (1).

In this article, we provide and discuss the properties of a numerical scheme with no bias
and which is also applicable to situations where the coefficients σ or b are bounded Hölder
continuous functions and therefore they may not satisfy smoothness conditions.

For (weak) existence and uniqueness of solutions of s.d.e.’s with bounded Hölder continuous
uniformly elliptic coefficients, we refer the reader to [18].

The organization of this paper is as follows. After introducing some definitions and notations
in the next section, we follow in Section 3, introducing the Multilevel Monte Carlo (MLMC)
methods and in particular the parametrix method which can be seen as a random MLMC method.
In Section 4, we derive some bounds that will be useful in understanding the behavior of the
variance of the proposed simulation method. Then in Sections 5 and 6, we explore some of the
properties of the two varieties of the parametrix method, in particular we find that the simulation
methods do not always give a finite variance.

In Section 7, we show how, using importance sampling on the discretization times of the
Euler–Maruyama scheme, the problem of infinite variance can be solved. The main results are
that, assuming that the coefficient functions are regular, the method achieves finite variance, and
that, assuming only that the coefficient functions are Hölder, the method achieves finite variance
in dimension 1. In Section 8, we find bounds on the variance of the methods and we are therefore
able to state an optimization problem for finding parameters in the importance sampling method
which will improve the performance of the simulation methods. We also provide some rules
of thumb for choosing these parameters. In Section 9, we exemplify the results obtained in the
paper by applying these methods to some s.d.e.’s. We find that our examples behaves as we would
expect from the results developed in this article.

2. Definitions and notations

Here we give some of the notations and definitions that will be used throughout the text. For
two symmetric matrices a and b, we let a < b mean that b − a is positive definite. Also let
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ai,j denote the (i, j)th element of a. Let a be a d × d symmetric non negative definite matrix,
with 0 < aI ≤ a ≤ aI , for a, a ∈ R, where I is the d × d dimensional identity matrix. Define
ρa := a/a. The multi-dimensional Gaussian density with mean zero and covariance matrix a is
denoted by

ϕa(x) = 1

(2π)d/2
√

deta
exp

{
−1

2
xT a−1x

}
.

We abuse the notation by using ϕa ≡ ϕaId×d
. We let ∂

j
α be the partial derivative operator of

order j , with respect to the variables

α = (α1, . . . , αj ) ∈ Aj = {
α = (α1, . . . , αj ) ∈ {1, . . . , d}j}

and define the Hermite polynomials associated with the Gaussian density, Hi
a(x) = −(a−1x)i

and H
i,j
a (x) = (a−1x)i(a−1x)j − (a−1)i,j . That is, ∂iϕa(x) = Hi

a(x)ϕa(x) and ∂2
i,j ϕa(x) =

H
i,j
a (x)ϕa(x). In general, | · | denotes the norm in real vector spaces while ‖ · ‖k denotes the

uniform norm in Ck
b(Rd,R) ≡ Ck

b(Rd), the space of bounded functions with k bounded deriva-
tives. The norm in this space is defined

‖f ‖k =
k∑

j=0

∑
α∈Aj

sup
x∈Rd

∣∣∂j
αf (x)

∣∣.
C∞

c (Rd) denotes the space of real valued infinitely differentiable functions with compact
support defined on R

d . For a bounded function f , recall that ‖f ‖0 = supx∈Rd |f (x)|. For
a Hölder function a : Rd → R

k with index α ∈ (0,1], we define its Hölder norm as aH =
supx 	=y

|a(x)−a(y)|
|x−y|α . As above, we naturally extend the definition so that Cα

b (Rd ,R) ≡ Cα
b (Rd)

denotes the space of bounded α-Hölder functions. δx0(x) will denote the Dirac’s delta general-
ized distribution function.

Throughout the proofs, we will use a constant denoted by CT in order to indicate the depen-
dence on T . This constants may change value from one line to the next. Furthermore, they will
always be increasing in T and converge to a finite value as T ↓ 0.

3. Multilevel Monte Carlo methods

Because of the difficulty to quantify the discretization error, there is an interest in so-called
unbiased simulation methods. We differentiate here between exact methods and unbiased meth-
ods. Exact meaning to sample a path, at a finite set of points, with the distribution of the s.d.e.,
while unbiased means that we can, with out bias, estimate E [f (XT )]. In many applications, an
unbiased method is however sufficient. An example of an exact method is given in [4]. This
method uses the Lamperti transform of the original s.d.e. and therefore it is limited to the case
d = m = 1. Other exact methods have also been derived for some special cases, for example, [6]
for the SABR model and [5] for the Heston model. However, these methods can not be easily
extended to a general s.d.e.
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Now, in order to introduce the Multilevel Monte Carlo method (MLMC), let Xn
T denote an

approximation of XT using an Euler method with uniform time steps of length 2−nT , n ≥ 0. The
MLMC method, introduced in [10], is then to approximate E[f (XT )],

E
[
f (XT )

] ≈ E
[
f

(
X0

T

)] +
n̄∑

n=1

E
[
f

(
Xn

T

) − f
(
Xn−1

T

)]
,

up to some final level n̄. At each level, a certain number of Monte Carlo samples are generated
and the sample average then approximates the expectation. Choosing the number of samples at
each level in a good way will improve the convergence rate compared to the Euler method.

Now, letting n̄ → ∞ we can write, assuming convergence,

E
[
f (XT )

] = E
[
f

(
X0

T

)] +
∞∑

n=1

E
[
f

(
Xn

T

) − f
(
Xn−1

T

)]

= E
[
f

(
X0

T

)] +
∞∑

n=1

pn

E [f (Xn
T ) − f (Xn−1

T )]
pn

(2)

= 1

p0
E

[
1(N = 0)f

(
X0

T

)] + E

[
1(N ≥ 1)

f (XN
T ) − f (XN−1

T )

pN

]
,

where N is a random variable with distribution pn > 0, n ≥ 0. The last expression above can
be simulated unbiasedly using Monte Carlo methods. Now, we would like to discuss the second
moment of the above proposed estimator. A straightforward calculation gives

E

[(
f (XN

T ) − f (XN−1
T )

pN

)2]
≤ C

∞∑
n=1

rn

pn

,

where rn := E [(f (Xn
T ) − f (Xn−1

T ))2]. As discussed previously, the rate at which this error goes
to zero is well understood. In fact, under sufficient regularity hypotheses on b, σ and f one knows
that rn = O(2−n). Then the variance of the method will be finite if we choose pn ∼ 2−nn2. On the
other hand, note that the average number of random number generators used can be considered to
be

∑∞
n=1 2npn = ∞. Therefore the procedure is doomed to fail as long as ∞-level Monte Carlo

method goes. The choice of pn may be changed in order to make the average complexity finite
but then the variance of the method will be infinite.

The interpretation of the method is clear. The method has no bias because it relies on an
infinite order expansion. The level used in each simulation is determined by the value of the
random variable N and the amount of simulation in each level is determined by the choice of
the probability distribution pn,n ≥ 0. Still, as it can not be applied in the ∞-dimensional case,
one tries to approximate it by taking a certain number of levels. In fact, the previous calculation
shows that taking too many levels in the MLMC may lead to the wrong result. One remedy is
to use the Milstein scheme which improves on the order of strong convergence. However, this
assumes more regularity and is also difficult to use in multidimensional problems (for more on
this, see [11]).
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Furthermore, in the case that the coefficients σ , b are Hölder functions and f is not a regular
function it is well known that the rate rn degenerates quickly (see, e.g., [14] and [1]). Therefore,
the applicability of the MLMC method as understood above is limited. For this reason, we will
propose to use the parametrix method of approximation as one possible extension of the MLMC
method in what follows. This method will allow a more profound analysis of the differences
between approximations showing exactly where the variance explosion appears. This variance
problem will then be solved by an appropriate time importance sampling. Then an optimization
procedure for the efficiency of the algorithm can be carried out.

The principle of simulation without bias just described can also be found in [16] and [17]
which have already appeared in [15] which cites [12] as a source of this idea. As explained
in Section 3 of [17], one can not apply L2(	) criteria to this problem and even if a criteria
in probability is applied as in Section 4 in that same paper then the computational complexity
increases as the strong rate of convergence slows down.

3.1. Parametrix methods

The unbiased simulation technique for the multidimensional s.d.e. (1) which we will propose here
has been introduced in [2]. This technique is based on the parametrix method introduced by E.
Levi more than 100 years ago in order to solve uniformly elliptic partial differential equations of
parabolic type. This method is highly flexible and has been extended to various other equations.
The proposed method is also based on the Euler scheme although in this new simulation scheme
the partition will be random.

We may interpret the method as a randomized MLMC method but where the structure of
the s.d.e. is used to rewrite the difference of levels in (2) so that we can eventually handle
Hölder type coefficients. In fact, heuristically speaking, the difference between two levels in (2),
f (XN

T ) − f (XN−1
T ), can be rewritten using the Itô formula. This will generate a weight which

appears due to the derivatives in the Itô formula as well as the difference of the generators of the
two processes XN and XN−1. The differential operators which appear in the difference of the two
generators can be applied to densities directly or in an adjoint form which therefore does not re-
quire differentiation of the coefficients. This requires a delicate “diagonal” type argument which
appears in [2]. Finally, these arguments lead to two different types of approximations (for more
details, see [2]). For this reason, one is called the forward method which requires smoothness of
coefficients and the backward method which can be applied for Hölder continuous coefficients.

Let us introduce these methods in the following general format:
Let π : 0 = t0 < t1 < · · · < tN < tN+1 = T and define the following discrete time process and

its associated weight function,

Xπ
0 is random variable with density ν(x),

Xπ
ti+1

= Xπ
ti

+ μ
(
Xπ

ti

)
(ti+1 − ti ) + σ

(
Xπ

ti

)√
ti+1 − tiZi+1, i = 0,1, . . . ,N,

(3)
Zi, i = 1, . . . ,N are independent N(0, Im×m) random vectors,

θt (x, y) = 1

2

d∑
i,j=1

κ
i,j
t (x, y) −

d∑
i=1

ρi
t (x, y).
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We shall abuse this notation slightly and write for example, Xπ
si

or Xπ
τi

with the understanding
that the time partition π is appropriately defined. That is π : 0 = s0 < s1 < · · · < sN < sN+1 = T

or π : 0 = τ0 < τ1 < · · · < τN < τN+1 = T , which should be understood from the context.
Here, we define a(x) ≡ σT σ(x) and assume that a is uniformly elliptic. As explained

previously, the goal is to give an alternative probabilistic representation for E [f (XT )] for
f : Rd → R

d .
Define Sn = {s = (s1, . . . , sn) ∈ Rn|0 < s1 < s2 < · · · < sn < T }. Then, the following is

proved in [2],

E
[
f (XT )

] =
∞∑

n=0

∫
Sn

E

[
�

(
Xπ

T

) n−1∏
j=0

θsj+1−sj

(
Xπ

sj
,Xπ

sj+1

)]
ds, (4)

where we define
∫
S0 ds ≡ 1. Now, let N(t) be a Poisson process with intensity parameter λ > 0

and define N ≡ N(T ). Let τ1, . . . , τN be the event times of the Poisson process and set τ0 = 0,
τN+1 = T . Since, conditional on N , the event times are distributed as a uniform order statistic,
P(N = n, τ1 ∈ ds1, . . . , τn ∈ dsn) = λne−λT , for s ∈ Sn. We may rewrite the time integral in (4)
in a probabilistic way as

E
[
f (XT )

] = eλT E

[
�

(
Xπ

T

)N−1∏
i=0

λ−1θτi+1−τi

(
Xπ

τi
,Xπ

τi+1

)]
. (5)

Now, the forward method is defined by

ν(x) = δX0(x),

�(x) = f (x),

μ(x) = b(x),

κ
i,j
t (x, y) = ∂2

i,j a
i,j (y) + ∂j a

i,j (y)H i
ta(x)

(
y − x − b(x)t

)
+ ∂ia

i,j (y)H
j

ta(x)

(
y − x − b(x)t

)
+ (

ai,j (y) − ai,j (x)
)
H

i,j

ta(x)

(
y − x − b(x)t

)
,

ρi
t (x, y) = ∂ib

i(y) + (
bi(y) − bi(x)

)
Hi

ta(x)

(
y − x − b(x)t

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(F)

Here, Hi and Hi,j denote the Hermite polynomials of order 1 and 2 which have been defined
in Section 2. Further assuming that f (x) is a density function, the backward method is

ν(x) = f (x),

�(x) = δX0(x),

μ(x) = −b(x),

κ
i,j
t (x, y) = (

ai,j (y) − ai,j (x)
)
H

i,j

ta(x)

(
y − x + b(x)t

)
,

ρi
t (x, y) = (

bi(x) − bi(y)
)
Hi

ta(x)

(
y − x + b(x)t

)
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(B)

We note here the time directional nature of each scheme from which the names forward and
backward come from. In particular, in the backward method one needs to evaluate the irregular
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function �(x) = δX0(x). This creates problems in the MC computation procedure which may be
partially solved by either using conditional expectation with respect to the noises generated up
to τN , kernel density estimation methods or integration by parts formulas.

We will denote the transition densities from x to y associated with the forward and backward
methods respectively by qF

t (x, y) and qB
t (x, y). That is,

qF
t (x, y) = ϕa(x)t

(
y − x − b(x)t

)
, qB

t (x, y) = ϕa(x)t

(
y − x + b(x)t

)
.

For statements that are true for both the forward and backward methods, we will simply write
qt (x, y).

We note that for the backward method a formula better suited for simulation is obtained by
conditioning on all the noise up to τN in Equation (5). That is,

E
[
f (XT )

] = eλT E

[
qB
T −τN

(
Xπ

τN
,X0

)N−1∏
i=0

λ−1θτi+1−τi

(
Xπ

τi
,Xπ

τi+1

)]
. (6)

We will henceforth refer to the MC simulation method based on (6) as the backward method with
exponential sampling.

Now, we can see the connection to the MLMC method of the previous section. Comparing the
first line of (2) with (4), we see that both methods sum over the number of discretization steps so
that (4) is in some sense also a MLMC method but where the differences of levels is replaced by
the weight function θ and finally we integrate over all possible time partitions at each level.

Since the right-hand side of (5) can be sampled, this gives us an unbiased simulation
method. Since the time-steps τi+1 − τi are exponentially distributed we shall refer to this as the
forward/backward-method with exponential (time) sampling. With the method being unbiased,
the only source of error is the statistical error and we shall therefore in the following sections
investigate the variance of the method. The computational work is governed by the probabilities
of N which are parametrized by λ.

We also remark here that the above two methods should be considered as examples of possible
parametrix methods. In fact, many other types of basic approximations may be used in order to
build an expansion similar to (5) (see, e.g., [8]). In this sense, the above expansion is a Taylor
like expansion where one can choose a parameter (the so-called parametrix) in order to obtain
the expansion. One of the advantages of the parametrix is that it does not require the existence
of strong solutions of the s.d.e. This is in comparison to the MLMC which implicitly demands
the existence and uniqueness of strong solutions while the original problem of the calculation of
E [f (XT )] only requires weak existence of solutions to the s.d.e. (1) in order to make sense.

4. Bounds on θ

In order to analyze the variance of the proposed simulation method (3), we need to find bounds
on the weight function θt (x, y).

We will use the Gaussian inequalities and the constants Ca,p(α) and C′
a,p(α) appearing in

Lemma A.1 as well as the inequality

ϕta(y) ≤ (2ρa)
d/2ϕ2ta(y).
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Here a is any invertible matrix such that 0 < aI ≤ a ≤ aI .

Lemma 4.1. Assume that there exist a, a ∈ R such that 0 < aI ≤ a(x) ≤ aI , a, b ∈ Cα
b (Rd).

In the forward method, we further assume σj ∈ C2
b(Rd), b ∈ C1

b(Rd). Then for t ∈ (0, T ], there
exists a constant CT > 0 which depends on T , a, a, and the corresponding norms of a and b in
each case such that ∣∣θt (x, y)pqt (x, y)

∣∣ ≤ CT

tp(1−ζ/2)
ϕ4āt (y − x), (7)

where, in general, for the forward method ζ = 1, for the backward method ζ = α. However if a

is constant, then in the forward case ζ = 2 and in the backward case ζ = 1 + α.

An explicit expression for the constant CT in the above result can be found in the proof below.
The statement of this lemma will be important in what follows and therefore we will refer to the
parameters and hypotheses in each of the four cases above. That is:

Case 1 (Forward case: general). σj ∈ C2
b(Rd), b ∈ C1

b(Rd). ζ = 1.
Case 2 (Backward case: general). σj , b ∈ Cα

b (Rd). ζ = α.
Case 3 (Forward case: a constant). b ∈ C1

b(Rd). ζ = 2.
Case 4 (Backward: a constant). b ∈ Cα

b (Rd). ζ = 1 + α.

Proof of Lemma 4.1. In case 1,∣∣κi,j
t (x, y)qF

t (x, y)1/p
∣∣

= ∣∣(∂2
i,j a

i,j (y) + ∂ia
i,j (y)H

j

ta(x)

(
y − x − b(x)t

) + ∂j a
i,j (y)H i

ta(x)

(
y − x − b(x)t

)
+ (

ai,j (y) − ai,j (x)
)
H

i,j

ta(x)

(
y − x − b(x)t

))
ϕta(x)

(
y − x − b(x)t

)1/p∣∣
≤

(
(2ρa)

d/(2p)‖a‖2 + 2‖a‖1
Ca,p(1)

t1/2
+ ‖a‖1‖b‖0C

′
a,p(0) + ‖a‖1

C′
a,p(1)

t1/2

)

× ϕ2ta

(
y − x − b(x)t

)1/p

=
(‖a‖1

t1/2

(
2Ca,p(1) + C′

a,p(1)
) + (2ρa)

d/(2p)‖a‖2 + ‖a‖1‖b‖0C
′
a,p(0)

)

× ϕ2ta

(
y − x − b(x)t

)1/p
,

and ∣∣ρi
t (x, y)qF

t (x, y)1/p
∣∣

= ∣∣{∂ib
i(y) + (

bi(y) − bi(x)
)
Hi

ta(x)

(
y − x − b(x)t

)}∣∣
× ϕta(x)

(
y − x − b(x)t

)1/p

≤ (‖b‖1(2ρa)
d/(2p) + ‖b‖1Ca,p(2) + ‖b‖1‖b‖0Ca,p(1)t1/2)ϕ2ta

(
y − x − b(x)t

)1/p
.
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Thus, by Lemma A.1(iii),

∣∣θt (x, y)pqF
t (x, y)

∣∣ =
∣∣∣∣
(

1

2

∑
i,j

κ
i,j
t (x, y) −

∑
i

ρi
t (x, y)

)
ϕa(x)t

(
y − x − b(x)t

)1/p

∣∣∣∣
p

≤ CT

tp(1−ζ/2)
ϕ4āt (y − x).

Here

CT := 2d/2e1/4‖b‖0T a−1
[

d2

2
‖a‖1

(
2Ca,p(1) + C′

a,p(1)
) + T d‖b‖0‖b‖1Ca,p(1)

+ T 1/2d

(
d((2ρa)

d/(2p)‖a‖2 + ‖a‖1‖b‖0C
′
a,p(0))

2

+ ‖b‖1
(
(2ρa)

d/(2p) + Ca,p(2)
))]p

.

In case 2, with aH and bH being the Hölder constants of a and b, similar calculations give∣∣θt (x, y)pqB
t (x, y)

∣∣
≤ ϕ2ta

(
y − x + b(y)t

)
×

[
d2aH

2

C′
a,p(α)

t1−α/2
+ d2aH

2
‖b‖α

0

C′
a,p(0)

t1−α
+ dbH

Ca,p(α + 1)

t(1−α)/2
+ dbH ‖b‖α

0
Ca,p(1)

t1/2−α

]p

≤ CT

tp(1−ζ/2)
ϕ4at (y − x),

where now

CT := 2d/2e1/4‖b‖0T a−1
[

d2aH

2
C′

a,p(α) + d2aH

2
‖b‖α

0 C′
a,p(0)T α/2

+ dbH Ca,p(α + 1)T 1/2 + dbH ‖b‖α
0 Ca,p(1)T (1+α)/2

]p

.

In cases 3 and 4, that is with constant a, all the above calculations have to be repeated in a similar
way to give the claimed result. �

As a corollary of Lemma 4.1, we have the following result.

Corollary 4.2. For n ∈ N,

E

[∣∣∣∣∣�(
Xπ

T

) n−1∏
j=0

θsj+1−sj

(
Xπ

sj
,Xπ

sj+1

)∣∣∣∣∣
p]

≤ CT (T − sn)
−q

n−1∏
j=0

CT (sj+1 − sj )
−p(1−ζ/2),
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where q = 0 in the forward case and q = (p − 1)d/2 in the backward case.

Proof. We will do the proof for the backward case. The forward case is similar and left for the
reader. First,

qB
t (x, y)p ≤ CT t−(p−1)d/2ϕ2ta/p(x − y), (8)

where we used Lemma A.1(iii) and direct calculation on the Gaussian density. Then,

E

[∣∣∣∣∣�(
Xπ

T

) n−1∏
j=0

θsj+1−sj

(
Xπ

sj
,Xπ

sj+1

)∣∣∣∣∣
p]

=
∫

f (xs0) dxs0

n−1∏
j=0

{∣∣θsj+1−sj (xsj , xsj+1)
∣∣pqB

sj+1−sj
(xsj , xsj+1) dxsj+1

}
qB
T −sn

(xsn ,X0)
p

≤ CT

∫ n−1∏
j=0

{
CT (sj+1 − sj )

−p(1−ζ/2)ϕ4a(sj+1−sj )(xsj+1 − xsj ) dxsj

}

× (T − sn)
−(p−1)d/2ϕ2(sj+1−sj )a/p(xsn − X0) dxsn

= CT (T − sn)
−(p−1)d/2

n−1∏
j=0

CT (sj+1 − sj )
−p(1−ζ/2).

�

5. The forward simulation method with exponential time
sampling

Let us begin by recalling a basic mathematical result which describes the behavior of the forward
simulation method.

Theorem 5.1 ([2]). Assume that σj ∈ C2
b(Rd), b ∈ C1

b(Rd), j ∈ {1, . . . , d} and that there exist
a, a ∈ R such that 0 < aI ≤ a(x) ≤ aI . Also, assume that f ∈ C∞

c (Rd). Then the right side

of (4) for (F) converges absolutely at least at the rate
Cn

T T n/2

[n/2]! for some positive constant CT and
therefore the equality (4) holds.

Remark 5.2. The assumption f ∈ C∞
c (Rd) limits the usefulness of the theorem in financial

applications where it is common to consider non-differentiable functions, for example, in option
pricing. However it is possible to relax this assumption by using classical limiting arguments.
We do not address this technical issue here. In fact, in the present setting one can prove that
the density of the process XT exists and it has Gaussian upper bounds (see, for example, [8]).
Therefore, one can consider functions f that have non-compact support and sub-Gaussian upper
bounds.
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In the case of non-bounded coefficient functions, one can perform some smooth bounded
approximation of the coefficients in order to apply the parametrix method. In general, applying
the parametrix directly, introduces large variations in the method. For more details, see [19].

While Theorem 5.1 guarantees that the simulation method will converge to the correct value,
in order to achieve a statistical error of the order M−1/2, where M is the number of MC sample
paths used for the simulation, we need the variance to be finite. The following two results show
that this is not always the case.

Lemma 5.3. In addition to the assumptions in Theorem 5.1, assume that a(x) ≡ a > 0. Then the
forward method with exponential sampling has finite variance.

Proof. By applying Corollary 4.2, with p = 2, ζ = 2 and q = 0 we get that the variance of the
method based on (5) has as leading constant term,

e2λT E

[
f

(
Xπ

T

)2
N−1∏
i=0

λ−2θ2
τi+1−τi

(
Xπ

τi
,Xπ

τi+1

)]

= e2λT

∞∑
n=0

λ−2n

∫
Sn

E

[
f

(
Xπ

T

)2
n−1∏
j=0

θ2
sj+1−sj

(
Xπ

sj
,Xπ

sj+1

)]
ds (9)

≤ CT e2λT

∞∑
n=0

λ−2n(CT T )n

n! = CT e2λT +CT T/λ2
.

�

The above result thus shows that in the case of a constant diffusion term, the forward method
with exponential sampling will have finite variance. For future reference, we note that the bound
in (9) can be written in terms of the Mittag–Leffler function, see Appendix B, as

CT e2λT E1,1
(
λ−2CT T

)
.

A negative result is the following. This issue will be solved in Section 7 by using importance
sampling on the jump times.

Lemma 5.4. There are choices of a, b and f , such that the forward simulation method (5) has
infinite variance.

Proof. Without loss of generality, we assume that d = m = 1, b(x) ≡ 0 and a ∈ C2
b(R) and

assume that a′ 	= 0, ν-a.e. and that f is not zero on a set of positive Lebesgue measure. Then for
π̄ = {0, s, T },

E

[
f 2(Xπ

T

) N∏
i=1

θ2
τi+1−τi

(
Xπ

τi−1
,Xπ

τi

)] ≥ E
[
I(N = 1)f 2(Xπ

T

)
θ2
τ1

(
Xπ

0 ,Xπ
τ1

)]

=
∫ T

0
E

[
f 2(Xπ̄

T

)
θ2
s

(
Xπ̄

0 ,Xπ̄
s

)]
ds.
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Define Xπ̄
s = Xπ̄

0 +σ(Xπ̄
0 )

√
sZ1 and Xπ̄

T = Xπ̄
s +σ(Xπ̄

s )
√

T − sZ2. We then get for some X∗ ∈
[Xπ̄

0 ∧ Xπ̄
s ,Xπ̄

0 ∨ Xπ̄
s ]

θs

(
Xπ̄

0 ,Xπ̄
s

)
= 1

2
a′′(Xπ̄

s

) − a′(Xπ̄
s

)Xπ̄
s − Xπ̄

0

a(Xπ̄
0 )s

+ 1

2

(
a
(
Xπ̄

s

) − a
(
Xπ̄

0

))((
Xπ̄

s − Xπ̄
0

a(Xπ̄
0 )s

)2

− 1

a(Xπ̄
0 )s

)

= 1

2
a′′(Xπ̄

s

) + a′(Xπ̄
s

) Z1

σ(Xπ̄
0 )

√
s

+ 1

2

(
a′(Xπ̄

s

)
σ
(
Xπ̄

0

)√
sZ1 − a′′(X∗)a(Xπ̄

0 )sZ2
1

2

)(
Z2

1 − 1

a(Xπ̄
0 )s

)

= 1√
s

a′(Xπ̄
s )

σ (Xπ̄
0 )

Z1 + Z3
1

2
+ 1

2
a′′(Xπ̄

s

) − a′′(X∗)Z2
1(Z2

1 − 1)

4
.

Now,

lim inf
s→0

sE
[
f 2(Xπ̄

T

)
θ2
s

(
Xπ̄

0 ,Xπ̄
s

)] ≥ C lim inf
s→0

E
[
f 2(Xπ̄

T

)
a′(Xπ̄

s

)2(
Z1 + Z3

1

)2]
≥ CE

[
f 2(Xπ̄

0 + σ
(
Xπ̄

0

)√
T Z2

)
a′(Xπ̄

0

)2(
Z1 + Z3

1

)2] ≥ C.

Therefore, we can find δ > 0 such that

∫ T

0
E

[
f 2(Xπ̄

T

)
θ2
s

(
Xπ̄

0 ,Xπ̄
s

)]
ds ≥

∫ δ

0

C

2s
ds = ∞. �

Remark 5.5. We should remark here that the fact that the variance is not finite is more a practical
issue than a theoretical problem. In fact, the strong law of large numbers still applies even if the
variance does not exist. Therefore, the convergence of the method is still assured. The fact that the
variance is infinite implies that the convergence will exhibit large deviations from the expectation.
The amount and the height of these oscillations will depend on the behavior of moments of
order less than 2 as determined by the Marcinkiewicz–Zygmund strong law. In fact, in the case
exhibited above all moments of order less than 2 are finite and therefore the deviations from the
mean are somewhat limited. However, from a practical point of view, having finite variance is
convenient when obtaining confidence intervals for the estimated values.

6. The backward simulation method with exponential time
sampling

The backward simulation method is based on the following result.
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Theorem 6.1 ([2]). Assume that there are a, a ∈R such that 0 < aI ≤ a(x) ≤ aI , a, b ∈ Cα
b (Rd)

and f ∈ C∞
c (Rd) is a density function. Then (4) holds for the backward method where the sum

converges absolutely at a rate of at least
Cn

T T nα/2

[n(α/2)]! for some positive constant CT .

The following result shows that the backward method can be expected to perform poorly in
dimensions higher than 1.

Lemma 6.2. In addition to the assumptions in Theorem 6.1, assume that a(x) ≡ a > 0 and
b ∈ Cα

b (Rd). Then the backward method with exponential sampling, (6), has finite p moment,
where 0 < p < min{ 2

1−α
, 2

d
+ 1}.

Proof. We apply Corollary 4.2, with ζ = 1 + α and q = (p − 1)d/2 and get,

E

[∣∣∣∣∣qB
T −sn

(
Xπ

sn
,X0

) n−1∏
j=0

θsj+1−sj

(
Xπ

sj
,Xπ

sj+1

)∣∣∣∣∣
p]

≤ CT (T − sn)
−(p−1)d/2

n−1∏
j=0

CT (sj+1 − sj )
−p(1−α)/2.

This is integrable over Sn when p < min{ 2
1−α

, 2
d

+ 1}. Thus for the p-moment, we have that

epλT E

[
qB
T −sn

(
Xπ

sn
,X0

)p
N−1∏
i=0

λ−p
∣∣θτi+1−τi

(
Xπ

τi
,Xπ

τi+1

)∣∣p]

≤ CT epλT

∞∑
n=0

λ−pn

∫
Sn

Cn
T (T − sn)

−(p−1)d/2
n−1∏
j=0

(sj+1 − sj )
−p(1−α)/2 ds

(10)
= CT epλT T −(p−1)d/2�

(
1 − (p − 1)d/2

)
× E1−p(1−α)/2,1−(p−1)d/2

(
λ−pCT T 1−p(1−α)/2�

(
1 − p(1 − α)/2

))
,

where in the last equality we used the definition of the Mittag–Leffler function in Appendix B.
�

In the backward case, we thus get a weaker result than in the forward case. In particular for
dimensions 2 or greater, the result does not guarantee that the variance of (B) will be finite. In
the important special case p = 2 and d = 1, (10) simplifies to

CT e2λT T −1/2�(1/2)Eα,1/2
(
λ−2CT T α�(α)

)
.

We remark that the second condition p < 2
d
+1 appears due to the variance of qB

T −τN
(XB

τN
,X0)

in (6) which converges to the Dirac delta distribution as T − τN → 0. This will imply that the
variance is finite for d = 1. In higher dimensions, one solution to the problem is to approximate
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this distribution by replacing T − τN by T − τN + ε for some small ε > 0. This of course
introduces a bias and one would have to find an optimal ε that balances variance and bias. This
can be done using the well-known kernel density estimation techniques.

If we consider the rate of degeneration of the variance, this problem may be improved in
polynomial orders by using the Malliavin–Thalmaier integration by parts formula. In particular,
one needs to use the Malliavin–Thalmaier type formula which also implies some kernel density
type approximation. This will change the bound p < min{ 2

1−α
, 2

d
+ 1} into p < 2(1 − ε) for any

ε > 0 and d > 1. This method which requires an approximation of the Poisson kernel will also
introduce bias in the estimation which is controlled by the value of ε.

A solution that retains the unbiasedness is based on importance sampling where the direc-
tion of simulation is changed again. Therefore, qT −τN

(Xπ
τN

,X0) is replaced by f (Xπ
T ), for

f ∈ Cc(R
d) as in Theorem 5.1. We however choose not to treat this problem in more detail

here and leave as a possible topic for future research.
We also remark that the variance explosion due to the intermediate time discretization points

which appeared in Lemma 5.4 also appears here and it gives as a result the above restriction
p < 2

1−α
.

7. Achieving finite variance by importance sampling on
discretization time points

In examining the proof of Lemma 5.4, we see that the infinite variance is a consequence of the
fact that θ2

s (·, ·) increases at the rate 1/s as s → 0. Conditional on N = n the discretization
times used in the non-uniform Euler–Maruyama scheme are distributed as the order statistics of
a sequence of n i.i.d. uniformly distributed random variables on [0, T ]. Then the integral on the
last line of the proof of Lemma 5.4 diverges not only in the first level but on all levels.

We aim to change the sampling distribution of the discretization times, thereby moving some
of the singularity of θ at s = 0 from the integrand to the sampling distribution. An example
should help to illustrate the idea.

7.1. Toy example

Consider the problem of calculating
∫ 1

0 tρ dt , for ρ > −1. For us, this serves as a much simplified
version of (4). As we did with (4), we may rewrite by exchanging the integral for an expectation
as follows ∫ 1

0
tρ dt = E

[
Xρ

]
, X ∼ U(0,1),

which can be calculated using simulation of n i.i.d. copies of Xρ with X ∼ U(0,1). The above
expression corresponds to (5).

Now, if ρ ∈ (−1,−1/2], the second moment of the random variable Xρ is

E
[
X2ρ

] =
∫ 1

0
t2ρ dt = ∞,
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and thus our simulation will have an exploding variance. This means that the Monte Carlo simu-
lation will exhibit (high) oscillations although there is almost sure convergence. One solution is
to use importance sampling. That is, let p > 1 and Y be a random variable with density function
t−γ (1 − γ ), for 0 < t < 1 and −pρ+1

p−1 < γ < 1. We then have

∫ 1

0
tρ dt =

∫ 1

0

tρ+γ

(1 − γ )

(1 − γ )

tγ
dt = 1

1 − γ
E

[
Yρ+γ

]
.

And furthermore, the p-moment of the above random variable is always finite as

1

(1 − γ )p
E

[
Yp(ρ+γ )

] = 1

(1 − γ )p

∫ 1

0
tp(ρ+γ ) (1 − γ )

tγ
dt

= 1

(1 − γ )p−1(pρ + (p − 1)γ + 1)
.

Similarly, consider the problem of calculating the infinite sum
∑∞

n=0 an, for an ≥ 0 for all n.
We could formulate this in a probabilistic way by introducing a probability function pn > 0,
n ≥ 0 and writing

∞∑
n=0

an =
∞∑

n=0

pn

an

pn

= E

[
aN

pN

]
,

where the random variable N is distributed according to pn. It is easily seen that the variance
minimizing choice of sampling distribution is pn = an/

∑∞
n=0 an. Although this choice is in prac-

tice not available since we do not know
∑∞

n=0 an we may use the general heuristic of sampling
those n for which an is large.

7.2. Importance sampling of discretization time points

We saw in the previous section that by passing some of the singularity of the random variable
of interest at 0 to the sampling density, that is, by using importance sampling, we are able to
reduce the variance. The following result sets up the importance sampling that we will use in our
simulation method.

Lemma 7.1. Let {pn(s1, . . . , sn)}n≥0 be a family of strictly positive functions, pn : Sn → R+.
Suppose that there exists a discrete non-negative random variable N , such that

P(N = n) =
∫

Sn

pn(s1, . . . , sn) ds > 0, n ≥ 1. (11)

Also, suppose that there exists a family {τi}i∈N of strictly increasing positive random vari-
ables with density conditional on N = n, given by pn(s1, . . . , sn)/P(N = n). Then, for any
gn ∈ L1(Sn), n = 1, . . . , the following probabilistic representation holds∫

Sn

gn(s1, . . . , sn) ds = E

[
gN(τ1, . . . , τN)

pN(τ1, . . . , τN)
1(N = n)

]
.
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Proof. We have that

E

[
gN(τ1, . . . , τN)

pN(τ1, . . . , τN )
1(N = n)

]

= P(N = n)E

[
gn(τ1, . . . , τn)

pn(τ1, . . . , τn)

∣∣∣∣N = n

]

= P(N = n)

∫
Sn

gn(s1, . . . , sn)

pn(s1, . . . , sn)

pn(s1, . . . , sn)

P(N = n)
ds

=
∫

Sn

gn(s1, . . . , sn) ds. �

The functions pn in the previous lemma can be chosen rather arbitrarily. However, firstly, we
wish to apply importance sampling to (5) which involves a product. Secondly, an arbitrary choice
of pn could be hard to sample from. Therefore, we consider multiplicative pn, corresponding to
independent increments.

Lemma 7.2. Let {ξi; i ∈N} be a sequence of i.i.d. random variables with support on [0, T + ε],
ε > 0, and common strictly positive density fξ (x), x ∈ [0, T +ε]. Also, let τ0 = 0 , τi ≡ ∑i

j=1 ξj ,
i ≥ 1 and let N := inf{n; τn < T ≤ τn+1}. Then, N , τi and the functions

pn(s1, . . . , sn) =
∫ T +ε

T −sn

fξ (x) dx

n−1∏
i=0

fξ (si+1 − si), s0 = 0, (s1, . . . , sn) ∈ Sn,

satisfy the assumptions in Lemma 7.1.

Proof. First, note that the positivity of pn is clearly satisfied. Furthermore,

P(N = n|τn = sn) =
∫ T +ε

T −sn

fξ (x) dx,

and therefore

P
(
N = n, (τ1, . . . , τn) ∈ A

) =
∫

A∩Sn

P(N = n|τn = sn)

n−1∏
i=0

fξ (si+1 − si) ds.

In particular,
∫
Sn pn(s1, . . . , sn) ds = P(N = n). Also, the density of τ1, τ2, . . . , τn conditioned

on N = n is given by

P(N = n|τn = sn)
∏n−1

i=0 fξ (si+1 − si)

P(N = n)
= pn(s1, . . . , sn)

P(N = n)
. �

We may now formulate two explicit examples of importance sampling for the time discretiza-
tion points. These methods will then have improved moment properties.
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Proposition 7.3 (Beta sampling). Let {ξj ; j ∈ N} be a sequence of i.i.d. random variables with

common density fξ (x) = (1−γ )

xγ τ̄1−γ , 0 < x < τ̄ , τ̄ > T , γ ∈ (0,1) and let N and τi be defined
as in Lemma 7.2. Then, under the same assumptions as in Theorem 5.1 for the forward and
Theorem 6.1 for the backward, the following representation holds

E
[
f (XT )

] = E

[
�(Xπ

T )

pN(τ1, . . . , τN)

N−1∏
j=0

θτj+1−τj

(
Xπ

τj
,Xπ

τj+1

)]
, (12)

with

pn(s1, . . . , sn) =
(

1 −
(

T − sn

τ̄

)1−γ )(
1 − γ

τ̄ 1−γ

)n n−1∏
i=0

1

(si+1 − si)γ
, n ≥ 0.

Also, for the forward method, the p moment of the r.v. inside the expectation of (12) is finite for
p(1 − ζ

2 − γ ) < 1 − γ . In the backward method we additionally need that p < 2/d + 1, thus
the variance is only finite in dimension 1. The values of ζ are given in Lemma 4.1. In particular,
if 1 − ζ < γ < 1 then the variance of the random variable in (12) is finite and if we choose
γ = 1 − ζ

2 then all moments are finite.

Proof. Set

gn(s1, . . . , sn) ≡ E

[
�

(
Xπ

T

) n−1∏
j=0

θsj+1−sj

(
Xπ

sj
,Xπ

sj+1

)]
.

Note that under Theorem 5.1 for the forward and Theorem 6.1 for the backward, we have that∑∞
n=0 | ∫

Sn gn(s1, . . . , sn) ds| < ∞ and

E
[
f (XT )

] = g0 +
∞∑

n=1

∫
Sn

gn(s1, . . . , sn) ds.

The cumulative distribution function of ξ can be found to be Fξ (x) = ( x
τ̄
)1−γ . Using Lemma 7.2,

pn satisfies the assumption in Lemma 7.1 with

pn(s1, . . . , sn) = P(ξ > T − sn)

n−1∏
i=0

(1 − γ )

(si+1 − si)γ τ̄ 1−γ

(13)

=
(

1 −
(

T − sn

τ̄

)1−γ )(
1 − γ

τ̄ 1−γ

)n n−1∏
i=0

1

(si+1 − si)γ
.

Thus,

E
[
f (XT )

] = E

[
gN(τ1, . . . , τN)

pN(τ1, . . . , τN )

]
= E

[
�(Xπ

T )

pN(τ1, . . . , τN)

N−1∏
j=0

θτj+1−τj

(
Xπ

τj
,Xπ

τj+1

)]
,
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and we also note that

pn(s1, . . . , sn) ≥
(

1 −
(

T

τ̄

)1−γ )(
1 − γ

τ̄ 1−γ

)n n−1∏
i=0

1

(si+1 − si)γ
.

Using Corollary 4.2, we get

E

[∣∣∣∣∣ �(Xπ
T )

pN(τ1, . . . , τN)

N−1∏
i=0

θτi+1−τi

(
Xπ

τi
,Xπ

τi+1

)∣∣∣∣∣
p]

=
∞∑

n=0

∫
Sn

E

[∣∣∣∣∣ �(Xπ
T )

pn(s1, . . . , sn)

n−1∏
i=0

θsi+1−si

(
Xπ

si
,Xπ

si+1

)∣∣∣∣∣
p]

pn(s1, . . . , sn) ds

(14)

≤ CT

∞∑
n=0

∫
Sn

(T − sn)
−q

n−1∏
j=0

CT (sj+1 − sj )
−p(1−ζ/2) 1

pn(s1, . . . , sn)p−1
ds

≤ CT

∞∑
n=0

Cn
T

∫
Sn

(T − sn)
−q

n−1∏
j=0

(sj+1 − sj )
−(p(1−ζ/2)−γ (p−1)) ds,

the above quantity is finite if q < 1 and p(1 − ζ
2 − γ ) < 1 − γ . �

Remark 7.4. In the above lemma, ξj
d= τ̄B , where B is a random variable with a Beta(1 − γ,1)

distribution. This is equivalent to ξj
d= τ̄ e−(1−γ )E , if E has an Exp(1) distribution. We could

instead consider a Beta(1 − γ,1 − γ̃ ) distribution thereby gaining an extra degree of freedom
when choosing parameters. However, our main concern is the singularity close to zero which
we control by choosing γ appropriately. Adding a parameter γ̃ allows us to shift probability
mass to the right, but this can also be achieved by choosing τ̄ large. Also, since the shape of the
distribution to the right of T is not important we chose not to include a γ̃ in our calculations.

Interpretation of the importance sampling method on discretization time points: Note that in
the extreme case that γ = 0 then ξj has a U(0, τ̄ ) distribution. Choosing a parameter γ > 0 means
that the algorithm is likely to take more and smaller time discretization steps on average. It thus
means that the algorithm will be sampling farther into the sum in (4). If we consider p = 2
in (14), we can see this clearly. The integral behaves asymptotically as Cn

T T n(α+γ−1)/�(1 +
n(α + γ − 1)) when n → ∞, and therefore, CT , T and α + γ will determine how far into the
sum we need to sample to get a good estimate.

Similarly, a large τ̄ means that the algorithm is likely to take larger and fewer time discretiza-
tion steps. We must have τ̄ > T since otherwise the algorithm will never sample the term cor-
responding to n = 0 in (4), that is, the case with no intermediate time steps between 0 and T .
In many cases, it could be possible to calculate this term exactly, as it is an integral w.r.t. the
Gaussian measure. In these cases, we may set τ̄ = T , thereby possibly gaining efficiency. In this
light, one may also propose other alternative importance sampling methods. As an example, we
also briefly discuss the following importance sampling method based on Gamma distributions.
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Proposition 7.5 (Gamma sampling). Let {ξi; i ∈ N} be a sequence of i.i.d. r.v.’s with com-
mon Gamma(1 − γ,ϑ) distribution. That is their common density function is given by fξ (x) =

1
�(1−γ )ϑ1−γ

1
xγ e−x/ϑ , x > 0, 1 − α < γ < 1, ϑ > 0 and let N and τi be defined as in Lemma 7.2.

Then the conclusions in Lemma 7.3 holds with

pn(s1, . . . , sn) = �(1 − γ, (T − sn)/ϑ)

�(1 − γ )

(
1

�(1 − γ )ϑ1−γ

)n

e−sn/ϑ
n−1∏
i=0

1

(si+1 − si)γ
,

where

�(s, x) =
∫ ∞

x

ts−1e−t dt,

is the upper incomplete gamma function.

Proof. It is enough to note that

pn(s1, . . . , sn) ≥ �(1 − γ,T /ϑ)

�(1 − γ )

(
1

�(1 − γ )ϑ1−γ

)n

e−T/ϑ
n−1∏
i=0

1

(si − si−1)γ
,

and then the arguments in the proof of Lemma 7.3 applies. �

The parameter ϑ in the Gamma distribution roughly corresponds to the parameter τ̄ in the
Beta distribution. However, the Gamma distribution has the advantage that ϑ is allowed to take
any positive value while τ̄ > T . Thus, the Gamma sampling may have an advantage of being
more flexible. On the other hand, while we can use the inverse method to generate Beta random
variables, generating Gamma random variables is more complicated.

Another way of interpreting the importance sampling procedure is to see that the procedure
above chooses a sampling density for the time steps that is similar to θt (x, y), thereby shifting the
singularity of θt (x, y) to the sampling density and therefore reducing the variance. This choice
also implies a choice of the distribution of N , that is, which levels of the infinite sum we tend
to sample from. As we saw in Section 7.1, we should sample those levels in (4) for which the
summand is large. But for which levels the summand is large is determined by θt (x, y) and
therefore a good choice of sampling density for the time steps will lead to a good choice of levels
for which we are sampling frequently.

We also remark that choosing a distribution for the time steps is equivalent to choosing an
intensity function, or hazard rate, for the Poisson process for which the time until the first event
is the time step. That is, let λ(t) be the time-varying intensity of a Poisson process. Then this
relates to the density function of the time until the first event, ξ , as,

λ(t) = fξ (t)

1 − Fξ (t)
,

fξ (x) = λ(x)e− ∫ x
0 λ(t) dt .
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For example, λ(t) = (1−γ )t−γ

τ̄1−γ −t1−γ , t ∈ (0, τ̄ ), implies a Beta distribution,

λ(t) = β1−γ t−γ

�(1 − γ )�(1 − γ,βt)
e−βt , t > 0,

implies a Gamma distribution and λ(t) = αt−γ t > 0, implies a Weibull distribution. We however
feel that in the importance sampling context it is more natural to specify the distribution of time
steps and not the intensity function.

8. Optimal parameters

After introducing the importance sampling methods proposed in the previous sections, we will
now discuss how to choose the parameters of the method in order to maximize the efficiency.

8.1. Complexity and parameter optimization

The complexity of our algorithm depends on the choice of the importance sampling parameters.
This is because they affect the number of time steps that the simulation will take on average.

Define the process Nt = sup{n|∑n
i=1 τi ≤ t}+1. Nt −1 is thus a renewal process and N ≡ NT

is the number of time steps in our algorithm. One can expect the running time of the algorithm
to be approximately proportional to E [N ] and we thus take this to be the complexity. In general,
it is difficult to calculate E [N ] and to the best of our knowledge there are no closed formulas for
the case of Beta and Gamma distributed inter-arrival times. In the Gamma case, we may use that
the sum of Gamma distributed random variables is again Gamma and we then have that

E [N ] =
∞∑

n=1

P(N ≥ n) =
∞∑

n=1

P

(
n∑

i=1

τi ≤ T

)
=

∞∑
n=1

(
1 − �(n(1 − γ ), T /θ)

�(n(1 − γ ))

)
.

From renewal theory, we however know that E [N ] < ∞ and the elementary renewal theorem
tells us that limt→∞ E [Nt −1]/t = 1/E [τi]. We use it to motivate the following approximations,

Exp(λ) : E [N ] = T λ + 1,

τ̄ Beta(1 − γ,1) : E [N ] ≈ T

E [τi] + 1 = T

τ̄

2 − γ

(1 − γ )
+ 1,

Gamma(1 − γ,ϑ) : E [N ] ≈ T

E [τi] = T

ϑ

1

(1 − γ )
+ 1.

Comparing the above with Remark 7.4 , we see that γ small will imply lower complexity of the
simulation scheme. On the other hand, values of γ close to 1 imply that we will be examining
higher order terms in (4).

Let V (p) be the variance of a single sample from the simulation algorithm which depends
on a parameter p for the importance sampling procedure. We will define the efficiency of the
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algorithm to be the inverse of the product of the computational work and V (p). We will define
the computational work to be the average number of time steps in the method, that is, E [N ]. That
this is a good measure of efficiency is rigorously motivated using limit theorems in [13]. Thus,
our optimization problem is

min
p

E[N ]V (p). (15)

In general, it will be difficult to find the exact theoretical value of the quantity V (p). For this rea-
son, we will address a minimization problem for an upper bound of E[N ]V (p). It thus remains
to find an upper bound of V (p) in order to be able to carry out the minimization procedure.

8.2. Optimal parameters with exponential sampling in the constant
diffusion case

The purpose of this section is to give a benchmark in the case where the time sampling is done
using the exponential distribution and the diffusion coefficient is constant. This will be used later
when comparing with other time sampling schemes. The parameter that we optimize over here
is λ, corresponding to p in the previous section.

The bound on the variance in the forward and backward method with exponential sampling of
the time steps can be summarized as

CT e2λT T −q�(1 − q)Eα,1−q

(
λ−2CT T α�(α)

)
,

where in the forward method q = 0 and in the backward q = 1/2. Thus, the optimization problem
(15) becomes,

min
λ

(λT + 1)e2λT T −q�(1 − q)Eα,1−q

(
λ−2CT T α�(α)

)
.

From the definition of the Mittag–Leffler function, we can see that Eα,β(z) is convex, increas-
ing and non-negative for z ∈ R

+, thus the above objective function is convex and therefore its
minimum exists uniquely and is finite.

After a careful calculation, we may conclude that in the forward case, the optimal λ is increas-
ing in CT and T . Thus, a s.d.e. with less regular coefficients will require a simulation method
that on average uses more time steps. Note that the actual value of CT can be obtained from the
proof of Lemma 5.3 and therefore we see that the constant CT may be small in particular cases.
This seems to be the case in many financial models.

In the backward case, it is more difficult to make the analogous conclusions. However, our
numerical results indicate that the above conclusions in the forward method are also valid in the
backward method.

8.3. Optimal parameters with Beta importance sampling

In this section, we will derive an upper bound on the variance of our estimator in the case of
Beta sampling, the case of Gamma sampling is analogous. Then we will study the minimization
problem as in Section 8.1 for this upper bound.
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We now again apply Corollary 4.2 and make the parameter change β = ζ + γ − 1, noting that
0 < β < ζ . We call β the distance to non-integrability. In fact, ζ measures coefficient regularity,
γ measures the importance sampling index and −1 comes from the degeneration of the corre-
sponding Hermite polynomials from θ . We will optimize over β and τ̄ , corresponding to the p

in (15).
Letting Eα,β denote the Mittag–Leffler function (see Appendix B), we have for

CT
τ̄ζ−β

ζ−β
T β�(β) large enough and β ∈ (0,2)

E

[(
�(Xπ

T )

pN(τ1, . . . , τN)

N−1∏
i=0

θτi+1−τi

(
Xπ

τi
,Xπ

τi+1

))2]

≤ CT

∞∑
n=0

∫
Sn

Cn
T (T − sn)

−q

n−1∏
i=0

(si+1 − si)
−(2−ζ ) 1

pn(s1, . . . , sn)
ds

≤ CT

(
1 −

(
T

τ̄

)ζ−β)−1

(16)

×
[ ∞∑

n=0

Cn
T

(
τ̄ ζ−β

ζ − β

)n ∫
Sn

(T − sn)
−q

n−1∏
i=0

(si+1 − si)
−(1−β) ds

]

= CT

(
1 −

(
T

τ̄

)ζ−β)−1

T −q�(1 − q)Eβ,1−q

(
CT

τ̄ ζ−β

ζ − β
T β�(β)

)

≈ CT

(
1 −

(
T

τ̄

)ζ−β)−1 1

β
�(1 − q)

(
CT

τ̄ ζ−β

ζ − β
�(β)

)q/β

exp

(
T

(
CT

τ̄ ζ−β

ζ − β
�(β)

)1/β)
≡ V (β, τ̄ ). (17)

The approximation in the last step is exact for β = 1, q = 0 and performs well when z =
CT

τ̄ζ−β

ζ−β
T β�(β) > 1 (see Figure 1). However, in situations where this is less than 1, the variance

will be relatively small and there is less need to choose simulation parameters optimally. Also
note that, in our application β ∈ (0,2) is fulfilled.

Here we also see that β measures, in some sense, the distance to non-integrability of the
integral in (16). That is, for 0 ≤ β < 1, the integrand of (16) is Lp integrable in (s1, . . . , sn−1)

for p < 1
1−β

.
We have from (17) that

lim
β→0

E [N ]V (β, τ̄ ) = lim
β→ζ

E [N ]V (β, τ̄ ) = lim
τ̄→T

E [N ]V (β, τ̄ ) = lim
τ̄→∞ E [N ]V (β, τ̄ ) = ∞.

So, by continuity, E [N ]V (β, τ̄ ) achieves its absolute minimum in 0 < β < ζ , T < τ̄ < ∞.
Defining F(τ̄ ,CT ) ≡ ∂τ̄ log(E [N ]V (β�, τ̄ )), a strict optimal τ̄ solves F(τ̄ ,CT ) = 0, with

∂τ̄ F (τ̄ ,CT ) ≥ 0. Now, assuming that β� remains locally constant as a function of CT (see Fig-
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Figure 1. Relative error of exponential approximation of Eβ(z).

ure 2(a)) since

∂CT
F (τ̄ ,CT ) = T (ζ − β�)(CT �(β�)τ̄ ζ−β�

)1/β�

CT β�2
τ̄

> 0,

we get by implicit differentiation that ∂τ̄
∂CT

≤ 0. Thus as general rule we should choose τ̄ relatively

large, thus sampling the lower levels often, when CT is small, and vice versa. Note that this is
the same heuristic conclusion as in Section 8.2.

As the minimization problem can not be solved exactly, we solve it numerically in some cases
and plot the result in Figure 2. We see that as ζ increases, τ̄ increases. Also ζ − β increases,
implying that the optimal importance sampling index γ is decreasing. Values of ζ closer to 1
corresponds to Lipschitz regularity of the coefficients of the s.d.e. Thus for a s.d.e. in such a
case the algorithm can take larger time steps. In Figure 2(b), we see that τ̄ is decreasing in CT .

Figure 2. Optimal parameters in the backward method.
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This situation is analogous to the dependence on ζ . Small CT corresponds to a regular s.d.e., in
a different sense than for ζ . Thus, when CT is small it is possible to take large time steps. The
dependence of β on CT is not as strong. This can be understood if we remember that β has the
purpose of taking care of the integrability, which is not affected by CT . It is also worth noting
that although the optimal τ̄ increases fast for large ζ and small CT the actual difference in the
Beta distribution and the variance bounds may not be that large.

In summary, these results confirm the heuristics that a non-regular s.d.e. requires smaller time
steps, by choosing a small β and τ̄ . We also remark that this is analogous to the conclusions
regarding the dependence of the optimal λ on CT in Section 8.2.

For Gamma sampling, the bound becomes

E

[(
�(Xπ

T )

pN(τ1, . . . , τN)

N−1∏
i=0

θτi+1−τi

(
Xπ

τi
,Xπ

τi+1

))2]

≤ CT eT/ϑ �(ζ − β)

�(ζ − β,T /ϑ)
T −q�(1 − q)Eβ,1−q

(
CT ϑζ−βT β�(ζ − β)�(β)

)

≈ CT

�(ζ − β)�(1 − q)

�(ζ − β,T /ϑ)

eT/ϑ

β

(
CT �(ζ − β)θζ−β�(β)

)q/β

× exp
(
T

(
CT ϑα−β�(ζ − β)�(β)

)1/β)
.

Note also that as the above minimization results will differ from every actual application. We
can only interpret the results as classes. That is, for any class of functions f , a and b such that
the constant CT is smaller than a certain value the above minimization problem result can be
applied. In that sense, the stability properties in the figures are of interest.

9. Simulations

In this section, we apply the simulation methods on two test cases. We begin by treating an
s.d.e. which is expected to show the difference between sampling the random time steps from
an Exponential distribution and a Beta distribution and to confirm our general rules on how to
choose the simulation parameters.

Further, we treat a model that shows that in the case of a Hölder continuous diffusion part,
choosing γ large enough will give a finite variance and thus a fast rate of convergence.

We note, as in Remark 5.2, that although in the examples below f (x) /∈ C∞
c (Rd), the results

from the previous sections could be extended to the examples considered here.

9.1. Choosing simulation parameters

We shall in this section consider the solution of the s.d.e.

dXt = σ
(
sin(ωXt) + 2

)
dWt,
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for σ > 0. Also note that the assumptions of Theorems 5.1 and 6.1 are fulfilled and we thus
expect both the forward and backward method to converge. For both the forward and backward
method ζ = 1, thus β = γ − 1.

We choose to simulate P(X0 − I < XT < X0 + I ), where I is such that the probability is
approximately 0.5, respectively for each parameter choice. Throughout, T = 1 and X0 = 0.

We examine how the performance of the forward and backward methods depends on the choice
of simulation parameters, that is, in Exponential time sampling with parameter λ and in Beta time
sampling with parameters γ and τ̄ . We measure the performance of the method using work ×
variance, where we measure work as the total number of time steps used in the algorithm. In terms
of the optimization problem (15), E [N ] is replaced by the actual work needed to achieve the
variance V (p). We should note here that since the variance is not finite in the case of Exponential
time sampling, the sample variance is not a good measure of performance. We include it here
however as a comparison to the performance obtained using Beta sampling.

We use three different parameter sets, σ = ω = 0.2, 0.3 and 0.4. The results are given in
Figure 3. We see that for γ , τ̄ and λ the curve appears convex and so there is an optimal choice.
All three parameters also appear to follow the general heuristics. That is, the parameter σ = ω

becomes larger, it is necessary to take smaller time steps, i.e. choose larger γ and λ or smaller τ̄ .

Figure 3. Work × variance from simulations. Error bars represent 1 standard deviation. (Some error bars
are too small to be seen.)
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Although not illustrated in the figures, it should also be mentioned here that since γ and τ̄ have
opposite effects on the distribution of the time steps, that is, increasing γ or decreasing τ̄ gives
smaller time steps and vice versa, an increase in γ can somewhat be canceled by a decrease in τ̄ .
Thus, the optimal value of one parameter will depend on the choice of the other.

In Figure 3(d), we see the performance of the different methods, for close to optimal choices
of simulation parameters, as σ = ω varies. Most notably, the performance of the method deterio-
rates quickly as σ increases. In fact, for larger values, the variance becomes difficult to estimate
from the simulations and the estimates become unreliable. We also see that the Beta sampling
method outperforms the Exponential sampling method, at least for larger σ , while it is difficult
to draw any general conclusions about the difference in performance between the backward and
the forward method.

Also in Figure 3(d), we compare the forward and backward method to the unbiased random-
ized multilevel Monte Carlo method (RMLMC) described in [17]. We have implemented what
is referred to in [17] as the single-term estimator and we find the optimal sampling distribution
by estimating the variance of the 10 first terms, using 104 samples, and assuming geometrically
declining variances after that. Note that to implement the RMLMC one needs to know the strong
order of convergence of the Milstein scheme, which is used in the method. However in our case,
where f is not Lipschitz, the order is not known and so it is not clear exactly how the implement
the method. We however implement it as if f was Lipschitz, with the understanding that the
theorems in [17] do not apply. There is however a method described in [9], where the pay-off
function is smoothed using conditional expectations, which could be applied here.

We see that the parametrix methods seem to outperform the RMLMC for smaller σ will the
opposite seems to hold for larger σ . Of course, these results may depend on the particular imple-
mentation of the methods.

9.2. Convergence rate

In this section, we consider

dXt = k(X0 − Xt)dt + σ

√
|X0 − Xt |1/4 + 1dWt ,

where k = 1.5, X0 = 1, σ = 0.01. As in the previous section we wish to simulate P(X0 − I <

XT < X0 + I ), where I is such that the probability is approximately 0.5 and T = 1.
We first note that the diffusion part is not differentiable so that the forward method is not

applicable. Also, the drift and diffusion is not bounded, so Theorem 6.1 does not apply. Nonethe-
less, this is an interesting case since the diffusion is only Hölder continuous and our results in
Section 7 suggests that choosing γ large enough in the Beta sampling should produce a finite
variance. Second, the process is mean-reverting towards the point where the diffusion is Hölder.
This is necessary since to see the effect of the Hölder continuity we need the process to visit this
point frequently. We should also remark that this is also the reason that we have chosen σ quite
small.

We use the Backward method with Beta sampling for γ = 0.1 and 0.9. For increasing sample
sizes, we calculate the mean absolute error. We also calculate the rate of convergence as the slope
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Figure 4. Absolute error and convergence rate with for different γ . Error bars for the absolute error repre-
sent 1 standard deviation. (Most error bars are too small to be seen.)

of the error on the log-scale. The result can be seen in Figure 4. We see that the larger γ gives a
smaller absolute error for all sample sizes and more importantly that the rate of convergence is
faster. While theory implies that in the finite variance case, we should get a convergence rate of
0.5, we get a slightly slower rate at the largest sample size. We believe this to be a finite sample
size effect. That is, that if we were able to make the sample size larger we would approach the
rate 0.5. On the other hand, the smaller γ gives a convergence rate well below 0.5, indicating
that the variance is not finite.

10. Conclusion

The main goal of the present paper is to analyze the performance of the simulation method
which stems from (4). We found that the forward method works well in particular cases. For
example, if the diffusion coefficient is a constant matrix then the variance of the method is finite.
In other cases the variance may be infinite and the simulation method will then suffer from a
poor convergence rate. In these situations, we propose an importance sampling method on the
time steps, using a beta or gamma distribution. This will improve the performance of the method
if the parameters of the importance sampling method are chosen correctly.

As it is usually done in MLMC, we also study the minimization of variance given a restriction
on computational time or vice-versa. This gives us the tools needed to find good parameters
for the importance sampling distribution. We also find certain heuristic guidelines, such as that
irregular s.d.e.’s need parameters that takes more and therefore smaller time steps. Thus, the
importance sampling distribution needs to have more mass closer to 0.

Finally, we provide some simulations to demonstrate the performance of the method. The sim-
ulations confirm the theoretical findings. We also find that the simulation method works well
when parameters are not too large. For larger parameters, the variance becomes large. This prob-
lem may be solved using some importance sampling methods also on the space variables.

There are many issues that have to be studied in the future. In particular, to study by simulation
higher dimensional examples, the implementation of a deterministic time partition in order to re-
duce variance, space importance sampling methods, parametrix methods based on fixed discrete
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time grids and applications to various other stochastic equations remain as some of the subjects
to be studied. This gives a glimpse of the flexibility and the applicability of the method.

Still the problem of the explosion of variance remains an important issue. One solution is
proposed here. There are various other possibilities that one may also entertain if one is willing
to accept again some bias in the method. Such is the case of the localization of weight functions
θ between others.

Appendix A: Gaussian inequalities

In order to explicitly state the bounds for the variances, we define the constant Ca,p(α) :=
(2ρa)

d/(2p)(4āp)α/2a−1.

Lemma A.1. For α ∈ [0,1], p > 0, y ∈ R
d , a ∈ R

d×d such that 0 < aId×d ≤ a ≤ aId×d and
t > 0:

(i)

|y|α∣∣Hi
ta(y)

∣∣ϕta(y)1/p ≤ Ca,p(α + 1)

t(1−α)/2
ϕ2ta(y)1/p.

(ii) Define C′
a,p(α) := Ca,p(2 + α)a−1 + Ca,p(α) then

|y|α∣∣Hij
ta (y)

∣∣ϕta(y)1/p ≤ C′
a,p(α)

t1−α/2
ϕ2ta(y)1/p.

(iii) There exists a constant CT = 2d/2e(1/4)‖b‖0T a−1
such that

ϕ2ta

(
y − x − b(x)t

) ≤ CT ϕ4ta(y − x).

Proof. First, note that

∣∣Hi
ta(y)

∣∣ ≤ |y|
ta

,
∣∣Hi,j

ta (y)
∣∣ ≤ |y|2

t2a2
+ 1

ta
,

ϕta(y) ≤ ρ
d/2
a ϕta(y) = (2ρa)

d/2 exp

{
− 1

4ta
|y|2

}
ϕ2ta(y).

For the proof of (i) we have that,

|y|α∣∣Hi
ta(y)

∣∣ϕta(y)1/p ≤ |y|α+1

ta
(2ρa)

d/(2p) exp

{
− 1

4tap
|y|2

}
ϕ2ta(y)1/p.

We shall also use that vre−v ≤ 1 for v ≥ 0 and 0 ≤ r ≤ 1. Here, take v = 1
4tap

|y|2 and r = α+1
2

and the inequality follows.
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For the proof of inequality (ii), we have that

|y|α∣∣Hij
ta (y)

∣∣ϕta(y)1/p ≤ |y|α
ta

( |y|2
ta

+ 1

)
(2ρa)

d/(2p) exp

{
− 1

4ta
|y|2

}
ϕ2ta(y)1/p.

Now, repeating the same argument as in the proof of (i) with v = |y|2
4ta

, r = α/2 and r = 2+α
2 , we

get (ii).
The proof of (iii) follows by direct calculation. In fact, using Young’s inequality |(y −

x)b(x)| ≤ |y−x|2
2 + |b(x)|2

2 , we obtain the result. �

Appendix B: Mittag–Leffler functions

We need that for ρ,η < 1,

∞∑
n=0

Cn

∫
Sn

(T − sn)
−η

n−1∏
i=0

(si+1 − si)
−ρ ds

= T −η�(1 − η) ×
∞∑

n=0

CnT n(1−ρ) �n(1 − ρ)

�(1 − η + n(1 − ρ))

= T −η�(1 − η)E1−ρ,1−η

(
CT 1−ρ�(1 − ρ)

)
,

where

Eα,β(z) =
∞∑

k=0

zk

�(β + αk)
, z ∈ C,α,β > 0,

is the Mittag–Leffler function, see, for example, [7]. Some special cases are

E0,1(z) = 1

1 − z
, |z| < 1,

E1/2,1
(±z1/2) = ez erfc

(∓z1/2),
E1,1(z) = ez.

We also have that

Eα,β(z) = α−1z(1−β)/α exp
(
z1/α

) + O
(|z|−1), 0 < α < 2, | arg z| < π/2, |z| → ∞.

Later we will use the approximation Eα,β(z) ≈ α−1z(1−β)/α exp(z1/α), somewhat abusing the
above limit approximation.
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