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Parametric estimation for diffusion processes is considered for high frequency observations over a fixed
time interval. The processes solve stochastic differential equations with an unknown parameter in the dif-
fusion coefficient. We find easily verified conditions on approximate martingale estimating functions under
which estimators are consistent, rate optimal, and efficient under high frequency (in-fill) asymptotics. The
asymptotic distributions of the estimators are shown to be normal variance-mixtures, where the mixing
distribution generally depends on the full sample path of the diffusion process over the observation time in-
terval. Utilising the concept of stable convergence, we also obtain the more easily applicable result that for
a suitable data dependent normalisation, the estimators converge in distribution to a standard normal distri-
bution. The theory is illustrated by a simulation study comparing an efficient and a non-efficient estimating
function for an ergodic and a non-ergodic model.

Keywords: approximate martingale estimating functions; discrete time sampling of diffusions; in-fill
asymptotics; normal variance-mixtures; optimal rate; random Fisher information; stable convergence;
stochastic differential equation

1. Introduction

Diffusions given by stochastic differential equations find application in a number of fields where
they are used to describe phenomena which evolve continuously in time. Some examples include
agronomy [47], biology [14], finance [9,41,44,57] and neuroscience [5,11,48].

While the models have continuous-time dynamics, data are only observable in discrete time,
thus creating a demand for statistical methods to analyse such data. With the exception of some
simple cases, the likelihood function is not explicitly known, and a large variety of alternate es-
timation procedures have been proposed in the literature, see, for example, [39,52]. Parametric
methods include the following. Maximum likelihood-type estimation, primarily using Gaussian
approximations to the likelihood function, was considered by [15,18,20,31,38,49,56,58]. Ana-
lytical expansions of the transition densities were investigated by [1,2,43], while approximations
to the score function were studied in [6,27,28,40,53,55]. Simulation-based likelihood methods
were developed by [3,4,7,8,13,23,24,46,51].

A large part of the parametric estimators proposed in the literature can be treated within the
framework of approximate martingale estimating functions, see the review in [54]. In this paper,
we derive easily verified conditions on such estimating functions that imply rate optimality and
efficiency under a high frequency asymptotic scenario, and thus contribute to providing clarity
and a systematic approach to this area of statistics.
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Specifically, the paper concerns parametric estimation for stochastic differential equations of
the form

dXt = a(Xt ) dt + b(Xt ; θ) dWt , (1.1)

where (Wt)t≥0 is a standard Wiener process. The drift and diffusion coefficients a and b are
deterministic functions, and θ is the unknown parameter to be estimated. The drift function a

needs not be known, but as examples in this paper show, knowledge of a can be used in the
construction of estimating functions. For ease of exposition, Xt and θ are both assumed to be
one-dimensional. The extension of our results to a multivariate parameter is straightforward, and
it is expected that multivariate diffusions can be treated in a similar way. For n ∈N, we consider
observations (Xtn0

,Xtn1
, . . . ,Xtnn

) in the time interval [0,1], at discrete, equidistant time-points
tni = i/n, i = 0,1, . . . , n. We investigate the high frequency scenario where n → ∞. The choice
of the time-interval [0,1] is not restrictive since results generalise to other compact intervals by
suitable rescaling of the drift and diffusion coefficients. The drift coefficient does not depend on
any parameter, because parameters that appear only in the drift cannot be estimated consistently
in our asymptotic scenario.

It was shown by [12] and [21] that under the asymptotic scenario considered here, the
model (1.1) is locally asymptotic mixed normal with rate

√
n and random asymptotic Fisher

information

I(θ) = 2
∫ 1

0

(
∂θb(Xs; θ)

b(Xs; θ)

)2

ds. (1.2)

Thus, a consistent estimator θ̂n is rate optimal if
√

n(θ̂n − θ0) converges in distribution to a
non-degenerate random variable as n → ∞, where θ0 is the true parameter value. The estimator
is efficient if the limit may be written on the form I(θ0)

−1/2Z, where Z is standard normal
distributed and independent of I(θ0). The concept of local asymptotic mixed normality was
introduced by [36], and is discussed in for example, [42], Chapter 6, and [32].

Estimation for the model (1.1) under the high frequency asymptotic scenario described above
was considered by [18,19]. These authors proposed estimators based on a class of contrast
functions that were only allowed to depend on the observations and the parameter through
b2(Xtni−1

; θ) and �
−1/2
n (Xtni

− Xtni−1
). The estimators were shown to be rate optimal, and an

efficient contrast function was identified. For particular cases of the model (1.1), estimators were
given by [12]. Apart from one instance, these estimators are not of the type investigated by [18,
19], but all apart from one are covered by the theory in the present paper.

In this paper, we investigate estimators based on the extensive class of approximate martingale
estimating functions

Gn(θ) =
n∑

i=1

g(�n,Xtni
,Xtni−1

; θ)

with �n = 1/n, where the real-valued function g satisfies that Eθ (g(�n,Xtni
,Xtni−1

; θ)|Xtni−1
)

is of order �κ
n for some κ ≥ 2. Estimators are obtained as solutions to the estimating equation
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Gn(θ) = 0 and are referred to as Gn-estimators. Exact martingale estimating functions, where
Gn(θ) is a martingale, constitute a particular case that is not covered by the theory in [18,19]. An
example is the maximum likelihood estimator for the Ornstein–Uhlenbeck process with a(x) =
−x and b(x; θ) = √

θ , for which g(t, y, x; θ) = (y − e−t x)2 − 1
2θ(1 − e−2t ). A simpler example

of an estimating function for the same Ornstein–Uhlenbeck process that is covered by our theory,
but is not of the Genon-Catalot and Jacod-type, is given by g(t, y, x; θ) = (y − (1 − t)x)2 − θt .

The class of approximate martingale estimating functions was also studied by [53], who
considered high frequency observations in an increasing time interval for a model like (1.1)
where also the drift coefficient depends on a parameter. Specifically, the observation times were
tni = i�n with �n → 0 and n�n → ∞. Simple conditions on g for rate optimality and effi-
ciency were found under the infinite horizon high frequency asymptotics. To some extent, the
methods of proof in the present paper are similar to those in [53]. However, while ergodicity of
the diffusion process played a central role in that paper, this property is not needed here. An-
other important difference is that expansions of a higher order are needed in the present paper,
which complicates the proofs considerably. Furthermore, the theory in the current paper requires
a more complicated version of the central limit theorem for martingales, and we need the con-
cept of stable convergence in distribution, in order to obtain practically applicable convergence
results.

First, we establish results on existence and uniqueness of consistent Gn-estimators. We show
that

√
n(θ̂n − θ0) converges in distribution to a normal variance-mixture, which implies rate opti-

mality. The limit distribution may be represented by the product W(θ0)Z of independent random
variables, where Z is standard normal distributed. The random variable W(θ0) is generally non-
degenerate, and depends on the entire path of the diffusion process over the time-interval [0,1].
Normal variance-mixtures were also obtained as the asymptotic distributions of the estimators of
[18]. These distributions appear as limit distributions in comparable non-parametric settings as
well, for example, when estimating integrated volatility [33,45] or the squared diffusion coeffi-
cient [16,30].

Rate optimality is ensured by the condition that

∂yg(0, x, x; θ) = 0 (1.3)

for all x in the state space of the diffusion process, and all parameter values θ . Here
∂yg(0, x, x; θ) denotes the first derivative of g(0, y, x; θ) with respect to y evaluated in y = x.
The same condition was found in [53] for rate optimality of an estimator of the parameter in the
diffusion coefficient, and it is one of the conditions for small �-optimality; see [27,28].

Due to its dependence on (Xs)s∈[0,1], the limit distribution is difficult to use for statistical
applications, such as constructing confidence intervals and test statistics. Therefore, we construct
a statistic Ŵn that converges in probability to W(θ0). Using the stable convergence in distribution
of

√
n(θ̂n − θ0) towards W(θ0)Z, we derive the more easily applicable result that

√
nŴ−1

n (θ̂n −
θ0) converges in distribution to a standard normal distribution.

The additional condition that

∂2
yg(0, x, x; θ) = Kθ

∂θb
2(x; θ)

b4(x; θ)
(1.4)
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(Kθ �= 0) for all x in the state space, and all parameter values θ , ensures efficiency of Gn-
estimators. The same condition for efficiency of estimators of parameters in the diffusion co-
efficient was obtained in [53] for an infinite horizon scenario. It is also identical to a condition
given by [28] for small �-optimality. The identity of the conditions implies that examples of
approximate martingale estimating functions which are rate optimal and efficient in our asymp-
totic scenario may be found in [28] and [53]. In particular, estimating functions that are optimal
in the sense of Godambe and Heyde [22] are rate optimal and efficient under weak regularity
conditions.

The paper is structured as follows: Section 2 presents definitions, notation and terminology
used throughout the paper, as well as the main assumptions. Section 3 states and discusses our
main results, while Section 4 presents a simulation study illustrating the results. Section 5 con-
tains main lemmas used to prove the main theorem, and proofs of the main theorem and the
lemmas. The Appendix consists of auxiliary technical results, some of them with proofs.

2. Preliminaries

2.1. Model and observations

Let (�,F) be a measurable space supporting a real-valued random variable U , and an indepen-
dent standard Wiener process W = (Wt )t≥0. Let (Ft )t≥0 denote the filtration generated by U

and W.
Consider the stochastic differential equation

dXt = a(Xt ) dt + b(Xt ; θ) dWt , X0 = U, (2.1)

for θ ∈ � ⊆ R. The state space of the solution is assumed to be an open interval X ⊆ R, and
the drift and diffusion coefficients, a : X → R and b : X × � → R, are assumed to be known,
deterministic functions. Let (Pθ )θ∈� be a family of probability measures on (�,F) such that
X = (Xt )t≥0 solves (2.1) under Pθ , and let Eθ denote expectation under Pθ .

Let tni = i�n with �n = 1/n for i ∈ N0, n ∈ N. For each n ∈ N, X is assumed to be sampled
at times tni , i = 0,1, . . . , n, yielding the observations (Xtn0

,Xtn1
, . . . ,Xtnn

). Let Gn,i denote the
σ -algebra generated by the observations (Xtn0

,Xtn1
, . . . ,Xtni

), with Gn = Gn,n.

2.2. Polynomial growth

In the following, to avoid cumbersome notation, C denotes a generic, strictly positive, real-valued
constant. Often, the notation Cu is used to emphasise that the constant depends on u in some
unspecified manner, where u may be, for example, a number or a set of parameter values. Note
that, for example, in an expression of the form Cu(1 + |x|Cu), the factor Cu and the exponent Cu

need not be equal. Generic constants Cu often depend (implicitly) on the unknown true parameter
value θ0, but never on the sample size n.

A function f : [0,1] ×X 2 × � → R is said to be of polynomial growth in x and y, uniformly
for t ∈ [0,1] and θ in compact, convex sets, if for each compact, convex set K ⊆ � there exist
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constants CK > 0 such that

sup
t∈[0,1],θ∈K

∣∣f (t, y, x; θ)
∣∣ ≤ CK

(
1 + |x|CK + |y|CK

)
for x, y ∈X .

Definition 2.1. Cpol
p,q,r ([0,1] × X 2 × �) denotes the class of real-valued functions f (t, y, x; θ)

which satisfy that

(i) f and the mixed partial derivatives ∂i
t ∂

j
y ∂k

θ f (t, y, x; θ), i = 0, . . . , p, j = 0, . . . , q and
k = 0, . . . , r exist and are continuous on [0,1] ×X 2 × �.

(ii) f and the mixed partial derivatives from (i) are of polynomial growth in x and y, uniformly
for t ∈ [0,1] and θ in compact, convex sets.

Similarly, the classes Cpol
p,r ([0,1]×X ×�), Cpol

q,r (X 2 ×�), Cpol
q,r (X ×�) and Cpol

q (X ) are defined
for functions of the form f (t, x; θ), f (y, x; θ), f (y; θ) and f (y), respectively.

Note that in Definition 2.1, differentiability of f with respect to x is never required.
For the duration of this paper, R(t, y, x; θ) denotes a generic, real-valued function defined

on [0,1] × X 2 × �, which is of polynomial growth in x and y uniformly for t ∈ [0,1] and
θ in compact, convex sets. The function R(t, y, x; θ) may depend (implicitly) on θ0. Functions
R(t, x; θ), R(y, x; θ) and R(t, x) are defined correspondingly. The notation Rλ(t, x; θ) indicates
that R(t, x; θ) also depends on λ ∈ � in an unspecified way.

2.3. Approximate martingale estimating functions

Definition 2.2. Let g(t, y, x; θ) be a real-valued function defined on [0,1] × X 2 × �. Suppose
the existence of a constant κ ≥ 2, such that for all n ∈N, i = 1, . . . , n, θ ∈ �,

Eθ

(
g(�n,Xtni

,Xtni−1
; θ)|Xtni−1

) = �κ
nRθ (�n,Xtni−1

). (2.2)

Then, the function

Gn(θ) =
n∑

i=1

g(�n,Xtni
,Xtni−1

; θ) (2.3)

is called an approximate martingale estimating function. In particular, when (2.2) is satisfied
with Rθ(t, x) ≡ 0, (2.3) is referred to as a martingale estimating function.

By the Markov property of X, it follows that if Rθ(t, x) ≡ 0, then (Gn,i)1≤i≤n defined by

Gn,i(θ) =
i∑

j=1

g(�n,Xtnj
,Xtnj−1

; θ)
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is a zero-mean, real-valued (Gn,i)1≤i≤n-martingale under Pθ for each n ∈ N. The score function
of the observations (Xtn0

,Xtn1
, . . . ,Xtnn

) is a martingale estimating function under weak regularity
conditions, and an approximate martingale estimating function can be viewed as an approxima-
tion to the score function.

A Gn-estimator θ̂n is essentially obtained as a solution to the estimating equation Gn(θ) = 0.
A more precise definition is given in the following Definition 2.3. Here we make the ω-
dependence explicit by writing Gn(θ,ω) and θ̂n(ω).

Definition 2.3. Let Gn(θ,ω) be an approximate martingale estimating function as defined in
Definition 2.2. Put �∞ = � ∪ {∞} and let

Dn = {
ω ∈ �|Gn(θ,ω) = 0 has at least one solution θ ∈ �

}
.

A Gn-estimator θ̂n(ω) is any Gn-measurable function � → �∞ which satisfies that for Pθ0 -
almost all ω, θ̂n(ω) ∈ � and Gn(θ̂n(ω),ω) = 0 if ω ∈ Dn, while θ̂n(ω) = ∞ if ω /∈ Dn.

For any Mn �= 0, the estimating functions Gn(θ) and MnGn(θ) yield identical estimators of θ

and are therefore referred to as versions of each other. For any given estimating function, it is
sufficient that there exists a version of the function which satisfies the assumptions of this paper,
in order to draw conclusions about the resulting estimators. In particular, we can multiply by a
function of �n.

2.4. Assumptions

We make the following assumptions about the stochastic differential equation.

Assumption 2.4. The parameter set � is a non-empty, open subset of R. Under the probability
measure Pθ , the continuous, (Ft )t≥0-adapted Markov process X = (Xt )t≥0 solves a stochastic
differential equation of the form (2.1), the coefficients of which satisfy that

a(y) ∈ Cpol
6 (X ) and b(y; θ) ∈ Cpol

6,2(X × �).

The following holds for all θ ∈ �.

(i) For all y ∈ X , b2(y; θ) > 0.
(ii) There exists a real-valued constant Cθ > 0 such that for all x, y ∈X ,∣∣a(x) − a(y)

∣∣ + ∣∣b(x; θ) − b(y; θ)
∣∣ ≤ Cθ |x − y|.

(iii) U has moments of any order.

The global Lipschitz condition, Assumption 2.4(ii), ensures that a unique solution X exists.
The Lipschitz condition and (iii) imply that supt∈[0,1] Eθ (|Xt |m) < ∞ for all m ∈ N. Assump-
tion 2.4 is very similar to the corresponding Condition 2.1 of [53]. However, an important differ-
ence is that in the current paper, X is not required to be ergodic. Here, law of large numbers-type
results are proved by what is, in essence, the convergence of Riemann sums.
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We make the following assumptions about the estimating function.

Assumption 2.5. The function g(t, y, x; θ) satisfies (2.2) for some κ ≥ 2, thus defining an ap-
proximate martingale estimating function by (2.3). Moreover,

g(t, y, x; θ) ∈ Cpol
3,8,2

([0,1] ×X 2 × �
)
,

and the following holds for all θ ∈ �.

(i) For all x ∈X , ∂yg(0, x, x; θ) = 0.
(ii) The expansion

g(�,y, x; θ) = g(0, y, x; θ) + �g(1)(y, x; θ) + 1
2�2g(2)(y, x; θ) + 1

6�3g(3)(y, x; θ)
(2.4)

+ �4R(�,y, x; θ)

holds for all � ∈ [0,1] and x, y ∈ X , where g(j)(y, x; θ) denotes the j th partial derivative of
g(t, y, x; θ) with respect to t , evaluated in t = 0.

Assumption 2.5(i) was referred to by [53] as Jacobsen’s condition, as it is one of the conditions
for small �-optimality in the sense of Jacobsen [27], see [28]. The assumption ensures rate
optimality of the estimators in this paper, and of the estimators of the parameters in the diffusion
coefficient in [53]. The assumptions of polynomial growth and existence and boundedness of all
moments serve to simplify the exposition and proofs, and could be relaxed.

2.5. The infinitesimal generator

For λ ∈ �, the infinitesimal generator Lλ is defined for all functions f (y) ∈ Cpol
2 (X ) by

Lλf (y) = a(y)∂yf (y) + 1
2b2(y;λ)∂2

yf (y).

For f (t, y, x, θ) ∈ Cpol
0,2,0,0([0,1] ×X 2 × �), let

Lλf (t, y, x; θ) = a(y)∂yf (t, y, x; θ) + 1
2b2(y;λ)∂2

yf (t, y, x; θ). (2.5)

Often, the notation Lλf (t, y, x; θ) = Lλ(f (t; θ))(y, x) is used, so e.g. Lλ(f (0; θ))(x, x) means
Lλf (0, y, x; θ) evaluated in y = x. In this paper the infinitesimal generator is particularly useful
because of the following result.

Lemma 2.6. Suppose that Assumption 2.4 holds, and that for some k ∈N0,

a(y) ∈ Cpol
2k (X ), b(y; θ) ∈ Cpol

2k,0(X × �) and f (y, x; θ) ∈ Cpol
2(k+1),0

(
X 2 × �

)
.
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Then, for 0 ≤ t ≤ t + � ≤ 1 and λ ∈ �,

Eλ

(
f (Xt+�,Xt ; θ)|Xt

)
=

k∑
i=0

�i

i! L
i
λf (Xt ,Xt ; θ) +

∫ �

0

∫ u1

0
· · ·

∫ uk

0
Eλ

(
Lk+1

λ f (Xt+uk+1,Xt ; θ)|Xt

)
duk+1 · · · du1,

where, furthermore,∫ �

0

∫ u1

0
· · ·

∫ uk

0
Eλ

(
Lk+1

λ f (Xt+uk+1 ,Xt ; θ)|Xt

)
duk+1 · · · du1 = �k+1Rλ(�,Xt ; θ).

The expansion of the conditional expectation in powers of � in the first part of the lemma
corresponds to Lemma 1 in [15] and Lemma 4 in [10]. It may be proven by induction on k

using Itô’s formula, see, for example, the proof of [54], Lemma 1.10. The characterisation of the
remainder term follows by applying Corollary A.5 to Lk+1

λ f , see the proof of [38], Lemma 1.
For concrete models, Lemma 2.6 is useful for verifying the approximate martingale prop-

erty (2.2) and for creating approximate martingale estimating functions. In combination
with (2.2), the lemma is key to proving the following Lemma 2.7, which reveals two impor-
tant properties of approximate martingale estimating functions.

Lemma 2.7. Suppose that Assumptions 2.4 and 2.5 hold. Then

g(0, x, x; θ) = 0 and g(1)(x, x; θ) = −Lθ

(
g(0, θ)

)
(x, x)

for all x ∈X and θ ∈ �.

Lemma 2.7 corresponds to Lemma 2.3 of [53], to which we refer for details on the proof.

3. Main results

Section 3.1 presents the main theorem of this paper, which establishes existence, uniqueness
and asymptotic distribution results for rate optimal estimators based on approximate martingale
estimating functions. In Section 3.2 a condition is given, which ensures that the rate optimal
estimators are also efficient, and efficient estimators are discussed.

3.1. Main theorem

The final assumption needed for the main theorem is as follows.

Assumption 3.1. The following holds Pθ -almost surely for all θ ∈ �.
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(i) For all λ �= θ , ∫ 1

0

(
b2(Xs; θ) − b2(Xs;λ)

)
∂2
yg(0,Xs,Xs;λ)ds �= 0,

(ii) ∫ 1

0
∂θb

2(Xs; θ)∂2
yg(0,Xs,Xs; θ) ds �= 0,

(iii) ∫ 1

0
b4(Xs; θ)

(
∂2
yg(0,Xs,Xs; θ)

)2
ds �= 0.

Assumption 3.1 can be difficult to check in practice because it involves the full sample path
of X over the interval [0,1]. It requires, in particular, that for all θ ∈ �, with Pθ -probability one,
t �→ b2(Xt ; θ)−b2(Xt ;λ) is not Lebesgue-almost surely zero when λ �= θ . As noted by [18], this
requirement holds true (by the continuity of the function) if, for example, X0 = U is degenerate
at x0, and b2(x0; θ) �= b2(x0;λ) for all θ �= λ.

For an efficient estimating function, Assumption 3.1 reduces to conditions on X with no further
conditions on the estimating function, see the next section. Specifically, the conditions involve
only the squared diffusion coefficient b2(x; θ) and its derivative ∂θb

2.

Theorem 3.2. Suppose that Assumptions 2.4, 2.5 and 3.1 hold. Then:

(i) There exists a consistent Gn-estimator θ̂n. Choose any compact, convex set K ⊆ � with
θ0 ∈ intK , where intK denotes the interior of K . Then, the consistent Gn-estimator θ̂n is even-
tually unique in K , in the sense that for any Gn-estimator θ̃n with Pθ0(θ̃n ∈ K) → 1 as n → ∞,
it holds that Pθ0(θ̂n �= θ̃n) → 0 as n → ∞.

(ii) For any consistent Gn-estimator θ̂n, it holds that

√
n(θ̂n − θ0)

D−→ W(θ0)Z. (3.1)

The limit distribution is a normal variance-mixture, where Z is standard normal distributed, and
independent of W(θ0) given by

W(θ0) = (2
∫ 1

0 b4(Xs; θ0)(∂
2
yg(0,Xs,Xs; θ0))

2 ds)1/2∫ 1
0 ∂θb2(Xs; θ0)∂2

yg(0,Xs,Xs; θ0) ds
. (3.2)

(iii) For any consistent Gn-estimator θ̂n,

Ŵn = − (�−1
n

∑n
i=1 g2(�n,Xtni

,Xtni−1
; θ̂n))

1/2∑n
i=1 ∂θg(�n,Xtni

,Xtni−1
; θ̂n)

(3.3)
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satisfies that Ŵn
P−→ W(θ0), and

√
nŴ−1

n (θ̂n − θ0)
D−→N (0,1).

The proof of Theorem 3.2 is given in Section 5.1.
Local asymptotic mixed normality with rate

√
n was shown by [12] and [21], so Theorem 3.2

establishes rate optimality of Gn-estimators.
Observe that the limit distribution in Theorem 3.2(ii) generally depends on not only the un-

known parameter θ0, but also on the concrete realisation of the sample path t �→ Xt over [0,1],
which is only partially observed. Note also that a variance-mixture of normal distributions can be
very different from a Gaussian distribution. It can be much more heavy-tailed and even have no
moments. Theorem 3.2(iii) is therefore important as it yields a standard normal limit distribution,
which is more useful in practical applications.

3.2. Efficiency

Under the assumptions of Theorem 3.2, the following additional condition ensures efficiency of
a consistent Gn-estimator.

Assumption 3.3. Suppose that for each θ ∈ �, there exists a constant Kθ �= 0 such that for all
x ∈X ,

∂2
yg(0, x, x; θ) = Kθ

∂θb
2(x; θ)

b4(x; θ)
.

The local asymptotic mixed normality property holds within the framework considered here
with random Fisher information I(θ0) given by (1.2), see [12] and [21]. Thus, a Gn-estimator θ̂n

is efficient if (3.1) holds with W(θ0) = I(θ0)
−1/2, and the following Corollary 3.4 may easily be

verified.

Corollary 3.4. Suppose that the assumptions of Theorem 3.2 and Assumption 3.3 hold. Then,
any consistent Gn-estimator is also efficient.

It follows from Theorem 3.2 and Lemma 5.1 that if Assumption 3.3 holds, and if Gn is nor-
malized such that Kθ = 1, then

√
nÎ1/2

n (θ̂n − θ0)
D−→ N (0,1),

where

În = 1

�n

n∑
i=1

g2(�n,Xtni
,Xtni−1

; θ̂n).
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It was noted in Section 2.3 that not necessarily all versions of a particular estimating function
satisfy the conditions of this paper, even though they lead to the same estimator. Thus, an esti-
mating function is said to be efficient, if there exists a version which satisfies the conditions of
Corollary 3.4. The same goes for rate optimality.

Assumption 3.3 is identical to the condition for efficiency of estimators of parameters in the
diffusion coefficient in [53], and to one of the conditions for small �-optimality given in [28].

Under suitable regularity conditions on the diffusion coefficient b, the function

ḡ(t, y, x; θ) = ∂θb
2(x; θ)

b4(x; θ)

(
(y − x)2 − tb2(x; θ)

)
(3.4)

yields an example of an efficient estimating function. The approximate martingale property (2.2)
can be verified by Lemma 2.6.

When adapted to the current framework, the contrast functions investigated by [18] have the
form

Un(θ) = 1

n

n∑
i=1

f
(
b2(Xtni−1

; θ),�
−1/2
n (Xtni

− Xtni−1
)
)
,

for functions f (v,w) satisfying certain conditions. For the contrast function identified as efficient
by [18], f (v,w) = logv +w2/v. Using that �n = 1/n, it is then seen that their efficient contrast
function is of the form Ūn(θ) = ∑n

i=1 ū(�n,Xtni
,Xtni−1

; θ) with

ū(t, y, x; θ) = t logb2(x; θ) + (y − x)2/b2(x; θ)

and ∂θ ū(t, y, x; θ) = −ḡ(t, y, x; θ). In other words, it corresponds to a version of the efficient
approximate martingale estimating function given by (3.4). The same contrast function was con-
sidered by [56] in the framework of a more general class of stochastic differential equations.

A problem of considerable practical interest is how to construct estimating functions that are
rate optimal and efficient, that is, estimating functions satisfying Assumptions 2.5(i) and 3.3. Be-
ing the same as the conditions for small �-optimality, the assumptions are, for example, satisfied
for martingale estimating functions constructed by [28].

As discussed by [53], the rate optimality and efficiency conditions are also satisfied by
Godambe–Heyde optimal approximate martingale estimating functions. Consider martingale es-
timating functions of the form

g(t, y, x; θ) = a(x, t; θ)∗
(
f (y; θ) − φt

θf (x; θ)
)
,

where a and f are two-dimensional, ∗ denotes transposition, and φt
θf (x; θ) = Eθ (f (Xt ; θ)|

X0 = x). Suppose that f satisfies appropriate (weak) conditions. Let ā be the weight function
for which the estimating function is optimal in the sense of Godambe and Heyde [22], see, for
example, [25] or [54], Section 1.11. It follows by an argument analogous to the proof of Theorem
4.5 in [53] that the estimating function with

g(t, y, x; θ) = t ā(x, t; θ)∗
[
f (y; θ) − φt

θf (x; θ)
]
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satisfies Assumptions 2.5(i) and 3.3, and is thus rate optimal and efficient. As there is a simple
formula for ā (see Section 1.11.1 of [54]), this provides a way of constructing a large number of
efficient estimating functions. The result also holds if φt

θf (x; θ) and the conditional moments in
the formula for ā are suitably approximated by the help of Lemma 2.6.

Remark 3.5. Suppose for a moment that the diffusion coefficient of (2.1) has the form b2(x; θ) =
h(x)k(θ) for strictly positive functions h and k, with Assumption 2.4 satisfied. This holds
true, for example, for a number of Pearson diffusions, including the (stationary) Ornstein–
Uhlenbeck and square root processes. (See [17] for more on Pearson diffusions.) Then I(θ0) =
(∂θ k(θ0))

2/(2k2(θ0)). In this case, under the assumptions of Corollary 3.4, an efficient Gn-
estimator θ̂n satisfies that

√
n(θ̂n − θ0) −→ Y in distribution where Y is normal distributed with

mean zero and variance 2k2(θ0)/(∂θ k(θ0))
2, that is, the limit distribution is not a normal variance-

mixture depending on (Xt )t∈[0,1]. Note also that when b2(x; θ) = h(x)k(θ) and Assumption 3.3
holds, then Assumption 3.1 is satisfied when, for example, ∂θk(θ) > 0 or ∂θk(θ) < 0.

4. Simulation study

This section presents a simulation study illustrating the theory in the previous section. An ef-
ficient and an inefficient estimating function are compared for two models, an ergodic and a
non-ergodic model. For both models, the limit distributions of the consistent estimators are non-
degenerate normal variance-mixtures.

First, consider the stochastic differential equation

dXt = −2Xt dt + (
θ + X2

t

)−1/2
dWt, X0 = 0, (4.1)

where θ ∈ (0,∞) is an unknown parameter. The solution X is ergodic with invariant probability
density proportional to exp(−2θx2 − x4)(θ + x2), x ∈ R. The process satisfies Assumption 2.4.
We compare the two estimating functions given by

Gn(θ) =
n∑

i=1

g(�n,Xtni
,Xtni−1

; θ) and Hn(θ) =
n∑

i=1

h(�n,Xtni
,Xtni−1

; θ),

where

g(t, y, x; θ) = (
y − (1 − 2t)x

)2 − (
θ + x2)−1

t,

h(t, y, x; θ) = (
θ + x2)10(

y − (1 − 2t)x
)2 − (

θ + x2)9
t.

Both g and h satisfy Assumptions 2.5 and 3.1. Moreover, g satisfies the condition for efficiency,
while h is not efficient.

Let WG(θ0) and WH (θ0) be given by (3.2), that is

WG(θ0) = −
(

1

2

∫ 1

0

1

(θ0 + X2
s )

2
ds

)−1/2

and WH (θ0) = − (
∫ 1

0 2(θ0 + X2
s )

18 ds)1/2∫ 1
0 (θ0 + X2

s )
8 ds

. (4.2)
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Numerical calculations and simulations were done in R 3.1.3 [50]. First, m = 104 trajectories
of the process X given by (4.1) were simulated over the time-interval [0,1] with θ0 = 1. These
simulations were performed using the Milstein scheme as implemented in the R-package sde [26]
with step size 10−5. The simulations were subsampled to obtain samples sizes of n = 103 and
n = 104. Let θ̂G,n and θ̂H,n denote estimates of θ obtained by solving the equations Gn(θ) = 0
and Hn(θ) = 0 numerically, on the interval [0.01,1,99]. Using these estimates, ŴG,n and ŴH,n

were calculated by (3.3). For n = 103, θ̂H,n could not be computed for 30 of the m = 104 sample
paths. For n = 104, and for the efficient estimator θ̂G,n there were no problems.

Figure 1 shows QQ-plots of

ẐG,n = √
nŴ−1

G,n(θ̂G,n − θ0) and ẐH,n = √
nŴ−1

H,n(θ̂H,n − θ0),

compared with a standard normal distribution, for n = 103 and n = 104, respectively. These QQ-
plots suggest that, as n goes to infinity, the asymptotic distribution in Theorem 3.2(iii) becomes
a good approximation faster in the efficient case than in the inefficient case.

Inserting θ0 = 1 into (4.2), the integrals in these expressions may be approximated by Riemann
sums, using each of the simulated trajectories of X (with sample size n = 104). This method
yields a second set of approximations W̃G and W̃H to the realisations of the random variables
WG(θ0) and WH (θ0), presumed to be more accurate than ŴG,104 and ŴH,104 as they utilise the
true parameter value. The density function in R was used (with default arguments) to compute an
approximation to the densities of WG(θ0) and WH (θ0), using the approximate realisations W̃G

and W̃H .
It is seen from Figure 2 that the distribution of WH (θ0) is much more spread out than the distri-

bution of WG(θ0). This corresponds well to the limit distribution in Theorem 3.2(ii) being more
spread out in the inefficient case than in the efficient case. Along the same lines, Figure 3 shows
similarly computed densities based on

√
n(θ̂G,n − θ0) and

√
n(θ̂H,n − θ0) for n = 104, which

may be considered approximations to the densities of the normal variance-mixture limit distri-
butions in Theorem 3.2(ii). These plots also illustrate that the limit distribution of the inefficient
estimator is more spread out than that of the efficient estimator.

Now, consider the stochastic differential equation

dXt = 2Xt dt + (
θ + X2

t

)−1/2
dWt, X0 = 0. (4.3)

For this model, the solution X is not ergodic, but again Assumption 2.4 holds. We compare the
two estimating functions given by

g(t, y, x; θ) = (
y − (1 + 2t)x

)2 − (
θ + x2)−1

t,

h(t, y, x; θ) = (
θ + x2)10(

y − (1 + 2t)x
)2 − (

θ + x2)9
t.

For both g and h Assumptions 2.5 and 3.1 hold, and g is efficient, while h is not.
Simulations were carried out in the same manner as for the ergodic model. In the non-ergodic

case, an estimator was again found for every sample path when the efficient estimating func-



Efficient estimation for high frequency SDE data 1887

Figure 1. QQ-plots comparing ẐG,n (left) and ẐH,n (right) to the N (0,1) distribution in the case of the
ergodic model (4.1) for n = 103 (above) and n = 104 (below).

tion given by g was used. For the inefficient estimating function given by h, there was no so-
lution to the estimating equation (in [0.01,1.99]) in 14% of the samples for n = 104 and in
39% of the samples for n = 103. Figure 4 shows QQ-plots of ẐG,n = √

nŴ−1
G,n(θ̂G,n − θ0) and

ẐH,n = √
nŴ−1

H,n(θ̂H,n − θ0) compared with a standard normal distribution, for n = 103 and

n = 104, respectively. These QQ-plots indicate that in the non-ergodic case there is a slightly
slower convergence to the asymptotic distribution in Theorem 3.2(iii) for the efficient estimating
function, and a considerably slower convergence for the inefficient estimating function, when
compared to the ergodic case.
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Figure 2. Approximation to the densities of WG(θ0) (left) and WH (θ0) (right) based on W̃G and W̃H in
the case of the ergodic model (4.1).

5. Proofs

Section 5.1 states three main lemmas needed to prove Theorem 3.2, followed by the proof of the
theorem. Section 5.2 contains the proofs of the three lemmas.

Figure 3. Estimated densities of
√

n(θ̂G,n − θ0) (solid curve) and
√

n(θ̂H,n − θ0) (dashed curve) for
n = 104 in the case of the ergodic model (4.1).
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Figure 4. QQ-plots comparing ẐG,n (left) and ẐH,n (right) to the N (0,1) distribution in the case of the
non-ergodic model (4.3) for n = 103 (above) and n = 104 (below).

5.1. Proof of the main theorem

In order to prove Theorem 3.2, we use the following lemmas, together with results from [35],
and [54], Section 1.10.

Lemma 5.1. Suppose that Assumptions 2.4 and 2.5 hold. For θ ∈ �, let

Gn(θ) =
n∑

i=1

g(�n,Xtni
,Xtni−1

; θ),
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G
sq
n (θ) = 1

�n

n∑
i=1

g2(�n,Xtni
,Xtni−1

; θ)

and

A(θ; θ0) = 1

2

∫ 1

0

(
b2(Xs; θ0) − b2(Xs; θ)

)
∂2
yg(0,Xs,Xs; θ) ds,

B(θ; θ0) = 1

2

∫ 1

0

(
b2(Xs; θ0) − b2(Xs; θ)

)
∂2
y ∂θg(0,Xs,Xs; θ) ds

− 1

2

∫ 1

0
∂θb

2(Xs; θ)∂2
yg(0,Xs,Xs; θ) ds,

C(θ; θ0) = 1

2

∫ 1

0

(
b4(Xs; θ0) + 1

2

(
b2(Xs; θ0) − b2(Xs; θ)

)2
)(

∂2
yg(0,Xs,Xs; θ)

)2
ds.

Then:

(i) The mappings θ �→ A(θ; θ0), θ �→ B(θ; θ0) and θ �→ C(θ; θ0) are continuous on � (Pθ0 -
almost surely) with A(θ0; θ0) = 0 and ∂θA(θ; θ0) = B(θ; θ0).

(ii) For all t ∈ [0,1],

1√
�n

[nt]∑
i=1

∣∣Eθ0

(
g(�n,Xtni

,Xtni−1
; θ0)|Xtni−1

)∣∣ P−→ 0, (5.1)

1

�n

[nt]∑
i=1

(
Eθ0

(
g(�n,Xtni

,Xtni−1
; θ0)|Xtni−1

))2 P−→ 0, (5.2)

1

�2
n

[nt]∑
i=1

Eθ0

(
g4(�n,Xtni

,Xtni−1
; θ0)|Xtni−1

) P−→ 0 (5.3)

and

1

�n

[nt]∑
i=1

Eθ0

(
g2(�n,Xtni

,Xtni−1
; θ0)|Xtni−1

)
(5.4)

P−→ 1

2

∫ t

0
b4(Xs; θ0)

(
∂2
yg(0,Xs,Xs; θ0)

)2
ds.

(iii) For all compact, convex subsets K ⊆ �,

sup
θ∈K

∣∣Gn(θ) − A(θ; θ0)
∣∣ P−→ 0,

sup
θ∈K

∣∣∂θGn(θ) − B(θ; θ0)
∣∣ P−→ 0,
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sup
θ∈K

∣∣Gsq
n (θ) − C(θ; θ0)

∣∣ P−→ 0.

Lemma 5.2. Suppose that Assumptions 2.4 and 2.5 hold. Then, for all t ∈ [0,1],

1√
�n

[nt]∑
i=1

Eθ0

(
g(�n,Xtni

,Xtni−1
; θ0)(Wtni

− Wtni−1
)|Ftni−1

) P−→ 0. (5.5)

Lemma 5.3. Suppose that Assumptions 2.4 and 2.5 hold, and let

Yn,t = 1√
�n

[nt]∑
i=1

g(�n,Xtni
,Xtni−1

; θ0).

Then the sequence of processes (Yn)n∈N given by Yn = (Yn,t )t∈[0,1] converges stably in distribu-
tion under Pθ0 to the process Y = (Yt )t∈[0,1] given by

Yt = 1√
2

∫ t

0
b2(Xs; θ0)∂

2
yg(0,Xs,Xs; θ0) dBs.

Here B = (Bs)s≥0 denotes a standard Wiener process, which is defined on a filtered extension
(�′,F ′, (F ′

t )t≥0,P
′
θ0

) of (�,F, (Ft )t≥0,Pθ0), and is independent of (U,W).

We denote stable convergence in distribution under Pθ0 as n → ∞ by
Dst−→.

Proof of Theorem 3.2. Let a compact, convex subset K ⊆ � with θ0 ∈ intK be given. The
functions Gn(θ), A(θ, θ0), B(θ, θ0), and C(θ, θ0) were defined in Lemma 5.1.

By Lemma 5.1(i) and (iii),

Gn(θ0)
P−→ 0 and sup

θ∈K

∣∣∂θGn(θ) − B(θ, θ0)
∣∣ P−→ 0 (5.6)

with B(θ0; θ0) �= 0 by Assumption 3.1(ii), so Gn(θ) satisfies the conditions of Theorem 1.58
in [54].

Now, we show (1.161) of Theorem 1.59 in [54]. Let ε > 0 be given, and let B̄ε(θ0) and Bε(θ0),
respectively, denote closed and open balls in R with radius ε > 0, centered at θ0. The compact set
K \Bε(θ0) does not contain θ0, and so, by Assumption 3.1(i), A(θ, θ0) �= 0 for all θ ∈ K \Bε(θ0)

with probability one under Pθ0 .
Because

inf
θ∈K\B̄ε(θ0)

∣∣A(θ, θ0)
∣∣ ≥ inf

θ∈K\Bε(θ0)

∣∣A(θ, θ0)
∣∣ > 0

Pθ0 -almost surely, by the continuity of θ �→ A(θ, θ0), it follows that

Pθ0

(
inf

θ∈K\B̄ε(θ0)

∣∣A(θ, θ0)
∣∣ > 0

)
= 1.
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Consequently, by Theorem 1.59 in [54], for any Gn-estimator θ̃n,

Pθ0

(
θ̃n ∈ K \ B̄ε(θ0)

) → 0 as n → ∞ (5.7)

for any ε > 0.
By Theorem 1.58 in [54], there exists a consistent Gn-estimator θ̂n, which is eventually unique,

in the sense that if θ̄n is another consistent Gn-estimator, then

Pθ0(θ̂n �= θ̄n) → 0 as n → ∞. (5.8)

Suppose that θ̃n is any Gn-estimator which satisfies that

Pθ0(θ̃n ∈ K) → 1 as n → ∞. (5.9)

Combining (5.7) and (5.9), it follows that

Pθ0

(
θ̃n ∈ B̄ε(θ0)

) → 1 as n → ∞, (5.10)

so θ̃n is consistent. Using (5.8), Theorem 3.2(i) follows.
To prove Theorem 3.2(ii), recall that �n = 1/n, and observe that by Lemma 5.3,

√
nGn(θ0)

Dst−→ S(θ0), (5.11)

where

S(θ0) =
∫ 1

0

1√
2
b2(Xs; θ0)∂

2
yg(0,Xs,Xs; θ0) dBs,

and B = (Bs)s∈[0,1] is a standard Wiener process, independent of (U,W). As X is then also
independent of B, S(θ0) is equal in distribution to C(θ0; θ0)

1/2Z, where Z is standard normal
distributed and independent of (Xt )t∈[0,1]. Note that by Assumption 3.1(iii), the distribution of
C(θ0; θ0)

1/2Z is non-degenerate.
Let θ̂n be a consistent Gn-estimator. By (5.6), (5.11) and properties of stable convergence (e.g.,

(2.3) in [29]), (√
nGn(θ0)

∂θGn(θ0)

)
Dst−→

(
S(θ0)

B(θ0; θ0)

)
.

Stable convergence in distribution implies weak convergence, so an application of Theorem 1.60
in [54] yields

√
n(θ̂n − θ0)

D−→ −B(θ0, θ0)
−1S(θ0). (5.12)

The limit is equal in distribution to W(θ0)Z, where W(θ0) = −B(θ0, θ0)
−1C(θ0; θ0)

1/2 and Z

is standard normal distributed and independent of W(θ0). This completes the proof of Theo-
rem 3.2(ii).
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Finally, Lemma 2.14 in [35] is used to write
√

n(θ̂n − θ0) = −B(θ0; θ0)
−1√nGn(θ0) + √

n|θ̂n − θ0|εn(θ0),

where the last term goes to zero in probability under Pθ0 . By the stable continuous mapping
theorem, (5.12) holds with stable convergence in distribution as well. Lemma 5.1(iii) may be used

to conclude that Ŵn
P−→ W(θ0), so Theorem 3.2(iii) follows from the stable version of (5.12) by

application of standard results for stable convergence. �

5.2. Proofs of main lemmas

This section contains the proofs of Lemmas 5.1, 5.2 and 5.3 in Section 5.1. A number of technical
results are utilised in the proofs, these results are summarised in the Appendix, some of them with
a proof.

Proof of Lemma 5.1. First, note that for any f (x; θ) ∈ Cpol
0,0(X × �) and any compact, convex

subset K ⊆ �, there exist constants CK > 0 such that∣∣f (Xs; θ)
∣∣ ≤ CK

(
1 + |Xs |CK

)
for all s ∈ [0,1] and θ ∈ intK . With probability one under Pθ0 , for fixed ω, CK(1 + |Xs(ω)|CK )

is a continuous function and therefore Lebesgue-integrable over [0,1]. Using this method of
constructing integrable upper bounds, Lemma 5.1(i) follows by the usual results for continuity
and differentiability of functions given by integrals. In the rest of this proof, Lemma A.3 and
(A.7) are repeatedly used without reference.

First, inserting θ = θ0 into (A.1), it is seen that

1√
�n

[nt]∑
i=1

∣∣Eθ0

(
g(�n,Xtni

,Xtni−1
; θ0)|Xtni−1

)∣∣ = �
3/2
n

[nt]∑
i=1

R(�n,Xtni−1
; θ0)

P−→ 0,

1

�n

[nt]∑
i=1

(
Eθ0

(
g(�n,Xtni

,Xtni−1
; θ0)|Xtni−1

))2 = �3
n

[nt]∑
i=1

R(�n,Xtni−1
; θ0)

P−→ 0,

proving (5.1) and (5.2). Furthermore, using (A.1) and (A.3),

n∑
i=1

Eθ0

(
g(�n,Xtni

,Xtni−1
; θ)|Xtni−1

) P−→ A(θ; θ0),

n∑
i=1

Eθ0

(
g2(�n,Xtni

,Xtni−1
; θ)|Xtni−1

) P−→ 0,

so it follows from Lemma A.1 that point-wise for θ ∈ �,

Gn(θ) − A(θ; θ0)
P−→ 0. (5.13)
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Using (A.3) and (A.5),

1

�n

[nt]∑
i=1

Eθ0

(
g2(�n,Xtni

,Xtni−1
; θ)|Xtni−1

)
P−→ 1

2

∫ t

0

(
b4(Xs; θ0) + 1

2

(
b2(Xs; θ0) − b2(Xs; θ)

)2
)(

∂2
yg(0,Xs,Xs; θ)

)2
ds

and

1

�2
n

[nt]∑
i=1

Eθ0

(
g4(�n,Xtni

,Xtni−1
; θ)|Xtni−1

) P−→ 0,

completing the proof of Lemma 5.1(ii) when θ = θ0 is inserted, and yielding

G
sq
n (θ) − C(θ; θ0)

P−→ 0 (5.14)

point-wise for θ ∈ � by Lemma A.1, when t = 1 is inserted. Also, using (A.2) and (A.4),

n∑
i=1

Eθ0

(
∂θg(�n,Xtni

,Xtni−1
; θ)|Xtni−1

) P−→ B(θ; θ0),

n∑
i=1

Eθ0

((
∂θg(�n,Xtni

,Xtni−1
; θ)

)2|Xtni−1

) P−→ 0.

Thus, by Lemma A.1, also

∂θGn(θ) − B(θ; θ0)
P−→ 0, (5.15)

point-wise for θ ∈ �. Finally, recall that ∂
j
y g(0, x, x; θ) = 0 for j = 0,1. Then, using Lemmas

A.7 and A.8, it follows that for each m ∈ N and compact, convex subset K ⊆ �, there exist
constants Cm,K > 0 such that for all θ, θ ′ ∈ K and n ∈ N,

Eθ0

∣∣(Gn(θ) − A(θ; θ0)
) − (

Gn

(
θ ′) − A

(
θ ′; θ0

))∣∣2m ≤ Cm,K

∣∣θ − θ ′∣∣2m
,

Eθ0

∣∣(∂θGn(θ) − B(θ; θ0)
) − (

∂θGn

(
θ ′) − B

(
θ ′; θ0

))∣∣2m ≤ Cm,K

∣∣θ − θ ′∣∣2m
, (5.16)

Eθ0

∣∣(Gsq
n (θ) − C(θ; θ0)

) − (
G

sq
n

(
θ ′) − C

(
θ ′; θ0

))∣∣2m ≤ Cm,K

∣∣θ − θ ′∣∣2m
.

By Lemma 5.1(i), the functions θ �→ Gn(θ) − A(θ; θ0), θ �→ ∂θGn(θ) − B(θ; θ0) and θ �→
G

sq
n (θ) − C(θ, θ0) are continuous on �. Thus, using Lemma A.9 together with (5.13), (5.14),

(5.15) and (5.16) completes the proof of Lemma 5.1(iii). �

Proof of Lemma 5.2. The overall strategy in this proof is to expand the expression on the left-
hand side of (5.5) in such a manner that all terms either converge to 0 by Lemma A.3, or are equal
to 0 by the martingale properties of stochastic integral terms obtained by use of Itô’s formula.
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By Assumption 2.5 and Lemma 2.7, the formulae

g(0, y, x; θ) = 1
2 (y − x)2∂2

yg(0, x, x; θ) + (y − x)3R(y, x; θ),
(5.17)

g(1)(y, x; θ) = g(1)(x, x; θ) + (y − x)R(y, x; θ)

may be obtained. Using (2.4) and (5.17),

Eθ0

(
g(�n,Xtni

,Xtni−1
; θ0)(Wtni

− Wtni−1
)|Ftni−1

)
= Eθ0

( 1
2 (Xtni

− Xtni−1
)2∂2

yg(0,Xtni−1
,Xtni−1

; θ0)(Wtni
− Wtni−1

)|Ftni−1

)
+Eθ0

(
(Xtni

− Xtni−1
)3R(Xtni

,Xtni−1
; θ0)(Wtni

− Wtni−1
)|Ftni−1

)
(5.18)

+ �nEθ0

(
g(1)(Xtni−1

,Xtni−1
; θ0)(Wtni

− Wtni−1
)|Ftni−1

)
+ �nEθ0

(
(Xtni

− Xtni−1
)R(Xtni

,Xtni−1
; θ0)(Wtni

− Wtni−1
)|Ftni−1

)
+ �2

Eθ0

(
R(�n,Xtni

,Xtni−1
; θ0)(Wtni

− Wtni−1
)|Ftni−1

)
.

Note that

�ng
(1)(Xtni−1

,Xtni−1
; θ0)Eθ0(Wtni

− Wtni−1
|Ftni−1

) = 0,

and that by repeated use of the Cauchy–Schwarz inequality, Lemma A.4 and Corollary A.5,∣∣Eθ0

(
(Xtni

− Xtni−1
)3R(Xtni

,Xtni−1
; θ0)(Wtni

− Wtni−1
)|Ftni−1

)∣∣ ≤ �2
nC

(
1 + |Xtni−1

|C)
,

�n

∣∣Eθ0

(
(Xtni

− Xtni−1
)R(Xtni

,Xtni−1
; θ0)(Wtni

− Wtni−1
)|Ftni−1

)∣∣ ≤ �2
nC

(
1 + |Xtni−1

|C)
,

�2
n

∣∣Eθ0

(
R(�n,Xtni

,Xtni−1
; θ0)(Wtni

− Wtni−1
)|Ftni−1

)∣∣ ≤ �
5/2
n C

(
1 + |Xtni−1

|C)
for suitable constants C > 0, with

1√
�n

[nt]∑
i=1

�
m/2
n C

(
1 + |Xtni−1

|C) P−→ 0

for m = 4,5 by Lemma A.3. Now, by (5.18), it only remains to show that

1√
�n

[nt]∑
i=1

∂2
yg(0,Xtni−1

,Xtni−1
; θ0)Eθ0

(
(Xtni

− Xtni−1
)2(Wtni

− Wtni−1
)|Ftni−1

) P−→ 0. (5.19)

Applying Itô’s formula with the function

f (y,w) = (y − xtni−1
)2(w − wtni−1

)
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to the process (Xt ,Wt)t≥tni−1
, conditioned on (Xtni−1

,Wtni−1
) = (xtni−1

,wtni−1
), it follows that

(Xtni
− Xtni−1

)2(Wtni
− Wtni−1

)

= 2
∫ tni

tni−1

(Xs − Xtni−1
)(Ws − Wtni−1

)a(Xs) ds +
∫ tni

tni−1

(Ws − Wtni−1
)b2(Xs; θ0) ds

+ 2
∫ tni

tni−1

(Xs − Xtni−1
)b(Xs; θ0) ds (5.20)

+ 2
∫ tni

tni−1

(Xs − Xtni−1
)(Ws − Wtni−1

)b(Xs; θ0) dWs

+
∫ tni

tni−1

(Xs − Xtni−1
)2 dWs.

By the martingale property of the Itô integrals in (5.20),

Eθ0

(
(Xtni

− Xtni−1
)2(Wtni

− Wtni−1
)|Ftni−1

)
= 2

∫ tni

tni−1

Eθ0

(
(Xs − Xtni−1

)(Ws − Wtni−1
)a(Xs)|Ftni−1

)
ds

(5.21)

+
∫ tni

tni−1

Eθ0

(
(Ws − Wtni−1

)b2(Xs; θ0)|Ftni−1

)
ds

+ 2
∫ tni

tni−1

Eθ0

(
(Xs − Xtni−1

)b(Xs; θ0)|Xtni−1

)
ds.

Using the Cauchy–Schwarz inequality, Lemma A.4 and Corollary A.5 again,∣∣∣∣∫ tni

tni−1

Eθ0

(
(Xs − Xtni−1

)(Ws − Wtni−1
)a(Xs)|Ftni−1

)
ds

∣∣∣∣
≤ C�2

n

(
1 + |Xtni−1

|C)
,

and by Lemma 2.6

Eθ0

(
(Xs − Xtni−1

)b(Xs; θ0)|Xtni−1

) = (
s − tni−1

)
R

(
s − tni−1,Xtni−1

; θ0
)
,

so also ∣∣∣∣∫ tni

tni−1

Eθ0

(
(Xs − Xtni−1

)b(Xs; θ0)|Xtni−1

)
ds

∣∣∣∣ ≤ C�2
n

(
1 + |Xtni−1

|C)
.
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Now ∣∣∣∣∣ 1√
�n

[nt]∑
i=1

∂2
yg(0,Xtni−1

,Xtni−1
; θ0)

∫ tni

tni−1

Eθ0

(
(Xs − Xtni−1

)(Ws − Wtni−1
)a(Xs)|Ftni−1

)
ds

∣∣∣∣∣
+

∣∣∣∣∣ 1√
�n

[nt]∑
i=1

∂2
yg(0,Xtni−1

,Xtni−1
; θ0)

∫ tni

tni−1

Eθ0

(
(Xs − Xtni−1

)b(Xs; θ0)|Xtni−1

)
ds

∣∣∣∣∣
≤ �

3/2
n C

[nt]∑
i=1

∣∣∂2
yg(0,Xtni−1

,Xtni−1
; θ0)

∣∣(1 + |Xtni−1
|C)

P−→ 0

by Lemma A.3, so by (5.19) and (5.21), it remains to show that

1√
�n

[nt]∑
i=1

∂2
yg(0,Xtni−1

,Xtni−1
; θ0)

∫ tni

tni−1

Eθ0

(
(Ws − Wtni−1

)b2(Xs; θ0)|Ftni−1

)
ds

P−→ 0.

Applying Itô’s formula with the function

f (y,w) = (w − wtni−1
)b2(y; θ0),

and making use of the martingale properties of the stochastic integral terms, yields∫ tni

tni−1

Eθ0

(
(Ws − Wtni−1

)b2(Xs; θ0)|Ftni−1

)
ds

=
∫ tni

tni−1

∫ s

tni−1

Eθ0

(
a(Xu)∂yb

2(Xu; θ0)(Wu − Wtni−1
)|Ftni−1

)
duds

+ 1

2

∫ tni

tni−1

∫ s

tni−1

Eθ0

(
b2(Xu; θ0)∂

2
yb2(Xu; θ0)(Wu − Wtni−1

)|Ftni−1

)
duds

+
∫ tni

tni−1

∫ s

tni−1

Eθ0

(
b(Xu; θ0)∂yb

2(Xu; θ0)|Ftni−1

)
duds.

Again, by repeated use of the Cauchy–Schwarz inequality and Corollary A.5,∣∣∣∣∫ tni

tni−1

Eθ0

(
(Wtni

− Wtni−1
)b2(Xs; θ0)|Ftni−1

)
ds

∣∣∣∣
≤ C

(
1 + |Xtni−1

|C)(
�2

n + �
5/2
n

)
.
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Now ∣∣∣∣∣ 1√
�n

[nt]∑
i=1

∂2
yg(0,Xtni−1

,Xtni−1
; θ0)

∫ tni

tni−1

Eθ0

(
(Ws − Wtni−1

)b2(Xs; θ0)|Ftni−1

)
ds

∣∣∣∣∣
≤ (

�
3/2
n + �2

n

) [nt]∑
i=1

∣∣∂2
yg(0,Xtni−1

,Xtni−1
; θ0)

∣∣C(
1 + |Xtni−1

|C) P−→ 0,

thus completing the proof. �

Proof of Lemma 5.3. The aim of this proof is to establish that the conditions of Theorem IX.7.28
in [34] hold, by which the desired result follows directly.

For all t ∈ [0,1],

sup
s≤t

∣∣∣∣∣ 1√
�n

[ns]∑
i=1

Eθ0

(
g(�n,Xtni

,Xtni−1
; θ0)|Xtni−1

)∣∣∣∣∣ ≤ 1√
�n

[nt]∑
i=1

∣∣Eθ0

(
g(�n,Xtni

,Xtni−1
; θ0)|Xtni−1

)∣∣
and since the right-hand side converges to 0 in probability under Pθ0 by (5.1) of Lemma 5.1, so
does the left-hand side, that is, Condition 7.27 of Theorem IX.7.28 holds. From (5.2) and (5.4)
of Lemma 5.1, it follows that for all t ∈ [0,1],

1

�n

[nt]∑
i=1

(
Eθ0

(
g2(�n,Xtni

,Xtni−1
; θ0)|Xtni−1

) −Eθ0

(
g(�n,Xtni

,Xtni−1
; θ0)|Xtni−1

)2)
P−→ 1

2

∫ t

0
b4(Xs; θ0)

(
∂2
yg(0,Xs,Xs; θ0)

)2
ds,

establishing that Condition 7.28 of Theorem IX.7.28 is satisfied. Lemma 5.2 implies Condi-
tion 7.29, while the Lyapunov condition (5.3) of Lemma 5.1 implies the Lindeberg Condi-
tion 7.30 of Theorem IX.7.28 in [34], from which the desired result now follows.

Theorem IX.7.28 contains an additional Condition 7.31. This condition has the same form as
(5.5), but with Wtni

− Wtni−1
replaced by Ntni

− Ntni−1
, where N = (Nt )t≥0 is any bounded mar-

tingale on (�,F, (Ft )t≥0,Pθ0), which is orthogonal to W. However, since (Ft )t≥0 is generated
by U and W, it follows from the martingale representation theorem [34], Theorem III.4.33, that
every martingale on (�,F, (Ft )t≥0,Pθ0) may be written as the sum of a constant term and a
stochastic integral with respect to W, and therefore cannot be orthogonal to W. �

Appendix: Auxiliary results

This section contains a number of technical results used in the proofs in Section 5.2.
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Lemma A.1 ([18], Lemma 9). For i, n ∈ N, let Fn,i =Ftni
(with Fn,0 = F0), and let Fn,i be an

Fn,i -measurable, real-valued random variable. If

n∑
i=1

Eθ0(Fn,i |Fn,i−1)
P−→ F and

n∑
i=1

Eθ0

(
F 2

n,i |Fn,i−1
) P−→ 0,

for some random variable F , then

n∑
i=1

Fn,i
P−→ F.

Lemma A.2. Suppose that Assumptions 2.4 and 2.5 hold. Then, for all θ ∈ �,

(i)

Eθ0

(
g(�n,Xtni

,Xtni−1
; θ)|Xtni−1

)
(A.1)

= 1
2�n

(
b2(Xtni−1

; θ0) − b2(Xtni−1
; θ)

)
∂2
yg(0,Xtni−1

,Xtni−1
; θ) + �2

nR(�n,Xtni−1
; θ),

(ii)

Eθ0

(
∂θg(�n,Xtni

,Xtni−1
; θ)|Xtni−1

)
= 1

2�n

(
b2(Xtni−1

; θ0) − b2(Xtni−1
; θ)

)
∂2
y ∂θg(0,Xtni−1

,Xtni−1
; θ) (A.2)

− 1
2�n∂θb

2(Xtni−1
; θ)∂2

yg(0,Xtni−1
,Xtni−1

; θ) + �2
nR(�n,Xtni−1

; θ),

(iii)

Eθ0

(
g2(�n,Xtni

,Xtni−1
; θ)|Xtni−1

)
= 1

2�2
n

(
b4(Xtni−1

; θ0) + 1
2

(
b2(Xtni−1

; θ0) − b2(Xtni−1
; θ)

)2)(
∂2
yg(0,Xtni−1

,Xtni−1
; θ)

)2 (A.3)

+ �3
nR(�n,Xtni−1

; θ),

(iv)

Eθ0

((
∂θg(�n,Xtni

,Xtni−1
; θ)

)2|Xtni−1

) = �2
nR(�n,Xtni−1

; θ), (A.4)

(v)

Eθ0

(
g4(�n,Xtni

,Xtni−1
; θ)|Xtni−1

) = �4
nR(�n,Xtni−1

; θ). (A.5)

Proof. The formulae (A.1), (A.2) and (A.3) are implicitly given in the proofs of [53], Lemmas
3.2 and 3.4. To prove the two remaining formulae, note first that using (2.5), Assumption 2.5(i)



1900 N.M. Jakobsen and M. Sørensen

and Lemma 2.7,

Li
θ0

(
g4(0; θ)

)
(x, x) = 0, i = 1,2,3,

Li
θ0

(
g3(0, θ)g(1)(θ)

)
(x, x) = 0, i = 1,2,

Lθ0

(
g2(0, θ)g(1)(θ)2)(x, x) = 0,

Lθ0

(
g3(0, θ)g(2)(θ)

)
(x, x) = 0,

Lθ0

((
∂θg(0, θ)

)2)
(x, x) = 0.

The verification of these formulae may be simplified by using for example, the Leibniz formula
for the nth derivative of a product to see that partial derivatives are zero when evaluated in
y = x. These results, as well as Lemmas 2.6 and 2.7, and (A.8) are used without reference in the
following.

Eθ0

((
∂θg(�n,Xtni

,Xtni−1
; θ)

)2|Xtni−1

)
= Eθ0

((
∂θg(0,Xtni

,Xtni−1
; θ)

)2|Xtni−1

)
+ 2�nEθ0

(
∂θg(0,Xtni

,Xtni−1
; θ)∂θg

(1)(Xtni
,Xtni−1

; θ)|Xtni−1

)
+ �2

nEθ0

(
R(�n,Xtni

,Xtni−1
; θ)|Xtni−1

)
= (

∂θg(0,Xtni−1
,Xtni−1

; θ)
)2 + �nLθ0

((
∂θg(0, θ)

)2)
(Xtni−1

,Xtni−1
) + �2

nR(�n,Xtni−1
; θ)

+ 2�n

(
∂θg(0,Xtni−1

,Xtni−1
; θ)∂θg

(1)(Xtni−1
,Xtni−1

; θ) + �nR(�n,Xtni−1
; θ)

)
= �2

nR(�n,Xtni−1
; θ),

proving (A.4). Similarly,

Eθ0

(
g4(�n,Xtni

,Xtni−1
; θ)|Xtni−1

)
= Eθ0

(
g4(0,Xtni

,Xtni−1
; θ)|Xtni−1

)
+ 4�nEθ0

(
g3(0,Xtni

,Xtni−1
; θ)g(1)(Xtni

,Xtni−1
; θ)|Xtni−1

)
+ 6�2

nEθ0

(
g2(0,Xtni

,Xtni−1
; θ)g(1)(Xtni

,Xtni−1
; θ)2|Xtni−1

)
+ 2�2

nEθ0

(
g3(0,Xtni

,Xtni−1
; θ)g(2)(Xtni

,Xtni−1
; θ)|Xtni−1

)
+ 4�3

nEθ0

(
g(0,Xtni

,Xtni−1
; θ)g(1)(Xtni

,Xtni−1
; θ)3|Xtni−1

)
+ 6�3

nEθ0

(
g2(0,Xtni

,Xtni−1
; θ)g(1)(Xtni

,Xtni−1
; θ)g(2)(Xtni

,Xtni−1
; θ)|Xtni−1

)
+ 2

3�3
nEθ0

(
g3(0,Xtni

,Xtni−1
; θ)g(3)(Xtni

,Xtni−1
; θ)|Xtni−1

)
+ �4

nEθ0

(
R(�n,Xtni

,Xtni−1
; θ)|Xtni−1

)
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= g4(0,Xtni−1
,Xtni−1

; θ) + �nLθ0

(
g4(0; θ)

)
(Xtni−1

,Xtni−1
) + 1

2�2
nL2

θ0

(
g4(0; θ)

)
(Xtni−1

,Xtni−1
)

+ 1
6�3

nL3
θ0

(
g4(0; θ)

)
(Xtni−1

,Xtni−1
) + 4�ng

3(0,Xtni−1
,Xtni−1

; θ)g(1)(Xtni−1
,Xtni−1

; θ)

+ 4�2
nLθ0

(
g3(0; θ)g(1)(θ)

)
(Xtni−1

,Xtni−1
) + 2�3

nL2
θ0

(
g3(0; θ)g(1)(θ)

)
(Xtni−1

,Xtni−1
)

+ 6�2
ng

2(0,Xtni−1
,Xtni−1

; θ)g(1)(Xtni−1
,Xtni−1

; θ)2

+ 6�3
nLθ0

(
g2(0; θ)g(1)(θ)2)(Xtni−1

,Xtni−1
)

+ 2�2
ng

3(0,Xtni−1
,Xtni−1

; θ)g(2)(Xtni−1
,Xtni−1

; θ) + 2�3
nLθ0

(
g3(0; θ)g(2)(θ)

)
(Xtni−1

,Xtni−1
)

+ 4�3
ng(0,Xtni−1

,Xtni−1
; θ)g(1)(Xtni−1

,Xtni−1
; θ)3

+ 6�3
ng

2(0,Xtni−1
,Xtni−1

; θ)g(1)(Xtni−1
,Xtni−1

; θ)g(2)(Xtni−1
,Xtni−1

; θ)

+ 2
3�3

ng
3(0,Xtni−1

,Xtni−1
; θ)g(3)(Xtni−1

,Xtni−1
; θ)

+ �4
nR(�n,Xtni−1

; θ)

= �4
nR(�n,Xtni−1

; θ),

which proves (A.5). �

Lemma A.3. Let x �→ f (x) be a continuous, real-valued function, and let t ∈ [0,1] be given.
Then

�n

[nt]∑
i=1

f (Xtni−1
)

P−→
∫ t

0
f (Xs) ds.

Lemma A.3 follows easily by the convergence of Riemann sums.

Lemma A.4. Suppose that Assumption 2.4 holds, and let m ≥ 2. Then, there exists a constant
Cm > 0, such that for 0 ≤ t ≤ t + � ≤ 1,

Eθ0

(|Xt+� − Xt |m|Xt

) ≤ Cm�m/2(1 + |Xt |m
)
. (A.6)

Corollary A.5. Suppose that Assumption 2.4 holds. Let a compact, convex set K ⊆ � be given,
and suppose that f (y, x; θ) is of polynomial growth in x and y, uniformly for θ in K . Then, there
exist constants CK > 0 such that for 0 ≤ t ≤ t + � ≤ 1,

Eθ0

(∣∣f (Xt+�,Xt , θ)
∣∣|Xt

) ≤ CK

(
1 + |Xt |CK

)
for all θ ∈ K .

Lemma A.4 and Corollary A.5, correspond to Lemma 6 of [38], adapted to the present as-
sumptions. For use in the following, observe that for any θ ∈ �, there exist constants Cθ > 0
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such that

�n

[nt]∑
i=1

∣∣Rθ(�n,Xtni−1
)
∣∣ ≤ Cθ�n

[nt]∑
i=1

(
1 + |Xtni−1

|Cθ
)
,

so it follows from Lemma A.3 that for any deterministic, real-valued sequence (δn)n∈N with
δn → 0 as n → ∞,

δn�n

[nt]∑
i=1

∣∣Rθ(�n,Xtni−1
)
∣∣ P−→ 0. (A.7)

Note that by Corollary A.5, it holds that under Assumption 2.4,

Eθ0

(
R(�,Xt+�,Xt ; θ)|Xt

) = R(�,Xt ; θ). (A.8)

Lemma A.6. Suppose that Assumption 2.4 holds, and that the function f (t, y, x; θ) satisfies that

f (t, y, x; θ) ∈ Cpol
1,2,1

([0,1] ×X 2 × �
)

with f (0, x, x; θ) = 0 (A.9)

for all x ∈X and θ ∈ �. Let m ∈ N be given, and let Dk(·; θ, θ ′) = k(·; θ)− k(·; θ ′). Then, there
exist constants Cm > 0 such that

Eθ0

(∣∣Df
(
t − s,Xt ,Xs; θ, θ ′)∣∣2m)

≤ Cm(t − s)2m−1
∫ t

s

Eθ0

(∣∣Df1
(
u − s,Xu,Xs; θ, θ ′)∣∣2m)

du (A.10)

+ Cm(t − s)m−1
∫ t

s

Eθ0

(∣∣Df2
(
u − s,Xu,Xs; θ, θ ′)∣∣2m)

du

for 0 ≤ s < t ≤ 1 and θ, θ ′ ∈ �, where f1 and f2 are given by

f1(t, y, x; θ) = ∂tf (t, y, x; θ) + a(y)∂yf (t, y, x; θ) + 1
2b2(y; θ0)∂

2
yf (t, y, x; θ),

f2(t, y, x; θ) = b(y; θ0)∂yf (t, y, x; θ).

Furthermore, for each compact, convex set K ⊆ �, there exists a constant Cm,K > 0 such that

Eθ0

(∣∣Dfj

(
t − s,Xt ,Xs; θ, θ ′)∣∣2m) ≤ Cm,K

∣∣θ − θ ′∣∣2m

for j = 1,2, 0 ≤ s < t ≤ 1 and all θ, θ ′ ∈ K .

Proof. A simple application of Itô’s formula (when conditioning on Xs = xs ) yields that for all
θ ∈ �,

f (t − s,Xt ,Xs; θ) =
∫ t

s

f1(u − s,Xu,Xs; θ) du +
∫ t

s

f2(u − s,Xu,Xs; θ) dWu (A.11)

under Pθ0 .
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By Jensen’s inequality, it holds that for any k ∈ N,

Eθ0

(∣∣∣∣∫ t

s

Dfj

(
u − s,Xu,Xs; θ, θ ′)j

du

∣∣∣∣k)
(A.12)

≤ (t − s)k−1
∫ t

s

Eθ0

(∣∣Dfj

(
u − s,Xu,Xs; θ, θ ′)∣∣jk)

du

for j = 1,2, and by the martingale properties of the second term in (A.11), the Burkholder–
Davis–Gundy inequality may be used to show that

Eθ0

(∣∣∣∣∫ t

s

Df2
(
u − s,Xu,Xs; θ, θ ′)dWu

∣∣∣∣2m)
(A.13)

≤ CmEθ0

(∣∣∣∣∫ t

s

Df2
(
u − s,Xu,Xs; θ, θ ′)2

du

∣∣∣∣m)
.

Now, (A.11), (A.12) and (A.13) may be combined to show (A.10). The last result of the lemma
follows by an application of the mean value theorem. �

Lemma A.7. Suppose that Assumption 2.4 holds, and let K ⊆ � be compact and convex. As-
sume that f (t, y, x; θ) satisfies (A.9) for all x ∈X and θ ∈ �, and define

Fn(θ) =
n∑

i=1

f (�n,Xtni
,Xtni−1

; θ).

Then, for each m ∈N, there exists a constant Cm,K > 0, such that

Eθ0

∣∣Fn(θ) − Fn

(
θ ′)∣∣2m ≤ Cm,K |θ − θ ′|2m

for all θ, θ ′ ∈ K and n ∈N. Define F̃n(θ) = �−1
n Fn(θ), and suppose, moreover, that the functions

h1(t, y, x; θ) = ∂tf (t, y, x; θ) + a(y)∂yf (t, y, x; θ) + 1
2b2(y; θ0)∂

2
yf (t, y, x; θ),

h2(t, y, x; θ) = b(y; θ0)∂yf (t, y, x; θ),

hj2(t, y, x; θ) = b(y; θ0)∂yhj (t, y, x, θ)

satisfy (A.9) for j = 1,2. Then, for each m ∈ N, there exists a constant Cm,K > 0, such that

Eθ0

∣∣F̃n(θ) − F̃n

(
θ ′)∣∣2m ≤ Cm,K |θ − θ ′|2m

for all θ, θ ′ ∈ K and n ∈N.
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Proof. For use in the following, define, in addition to h1, h2 and hj2, the functions

hj1(t, y, x; θ) = ∂thj (t, y, x; θ) + a(y)∂yhj (t, y, x; θ) + 1
2b2(y; θ0)∂

2
yhj (t, y, x; θ),

hj21(t, y, x; θ) = ∂thj2(t, y, x; θ) + a(y)∂yhj2(t, y, x; θ) + 1
2b2(y; θ0)∂

2
yhj2(t, y, x; θ),

hj22(t, y, x; θ) = b(y; θ0)∂yhj2(t, y, x; θ)

for j = 1,2, and, for ease of notation, let

H
n,i
j

(
u; θ, θ ′) = Dhj

(
u − tni−1,Xu,Xtni−1

; θ, θ ′)
for j ∈ {1,2,11,12,21,22,121,122,221,222}, where Dk(·; θ, θ ′) = k(·; θ) − k(·; θ ′). Recall
that �n = 1/n.

First, by the martingale properties of

�n

n∑
i=1

∫ r

0
1(tni−1,t

n
i ](u)H

n,i
2

(
u; θ, θ ′)dWu,

the Burkholder–Davis–Gundy inequality is used to establish the existence of a constant Cm > 0
such that

Eθ0

(∣∣∣∣∣�n

n∑
i=1

∫ tni

tni−1

H
n,i
2

(
u; θ, θ ′)dWu

∣∣∣∣∣
2m)

≤ CmEθ0

(∣∣∣∣∣�2
n

n∑
i=1

∫ tni

tni−1

H
n,i
2

(
u; θ, θ ′)2

du

∣∣∣∣∣
m)

.

Now, using also Ito’s formula, Jensen’s inequality and Lemma A.6,

Eθ0

(∣∣∣∣∣�n

n∑
i=1

Df
(
�n,Xtni

,Xtni−1
; θ, θ ′)∣∣∣∣∣

2m)

≤ CmEθ0

(∣∣∣∣∣�n

n∑
i=1

∫ tni

tni−1

H
n,i
1

(
u; θ, θ ′)du

∣∣∣∣∣
2m)

+ CmEθ0

(∣∣∣∣∣�n

n∑
i=1

∫ tni

tni−1

H
n,i
2

(
u; θ, θ ′)dWu

∣∣∣∣∣
2m)

≤ Cm�n

n∑
i=1

Eθ0

(∣∣∣∣∫ tni

tni−1

H
n,i
1

(
u; θ, θ ′)du

∣∣∣∣2m)

+ CmEθ0

(∣∣∣∣∣�2
n

n∑
i=1

∫ tni

tni−1

H
n,i
2

(
u; θ, θ ′)2

du

∣∣∣∣∣
m)

(A.14)

≤ Cm�2m+1
n

n∑
i=1

(
Eθ0

(∣∣∣∣ 1

�n

∫ tni

tni−1

H
n,i
1

(
u; θ, θ ′)du

∣∣∣∣2m)
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+Eθ0

(∣∣∣∣ 1

�n

∫ tni

tni−1

H
n,i
2

(
u; θ, θ ′)2

du

∣∣∣∣m))

≤ Cm�2m
n

n∑
i=1

(∫ tni

tni−1

Eθ0

(∣∣Hn,i
1

(
u; θ, θ ′)∣∣2m)

du +
∫ tni

tni−1

Eθ0

(∣∣Hn,i
2

(
u; θ, θ ′)∣∣2m)

du

)
≤ Cm,K

∣∣θ − θ ′∣∣2m
�2m

n ,

thus

Eθ0

(∣∣DFn

(
θ, θ ′)∣∣2m) = �−2m

n Eθ0

(∣∣∣∣∣�n

n∑
i=1

Df
(
�n,Xtni

,Xtni−1
; θ, θ ′)∣∣∣∣∣

2m)
≤ Cm,K

∣∣θ − θ ′∣∣2m

for all θ, θ ′ ∈ K and n ∈ N. In the case where also hj and hj2 satisfy (A.9) for all x ∈ X , θ ∈ �

and j = 1,2, use Lemma A.6 to write

Eθ0

(∣∣Hn,i
1

(
u; θ, θ ′)∣∣2m)

≤ Cm

(
u − tni−1

)2m−1
∫ u

tni−1

Eθ0

(∣∣Hn,i
11

(
v; θ, θ ′)∣∣2m)

dv

+ Cm

(
u − tni−1

)m−1
∫ u

tni−1

Eθ0

(∣∣Hn,i
12

(
v; θ, θ ′)∣∣2m)

dv

≤ Cm

(
u − tni−1

)2m−1
∫ u

tni−1

Eθ0

(∣∣Hn,i
11

(
v; θ, θ ′)∣∣2m)

dv

+ Cm

(
u − tni−1

)m−1
∫ u

tni−1

((
v − tni−1

)2m−1
∫ v

tni−1

Eθ0

(∣∣Hn,i
121

(
w; θ, θ ′)∣∣2m)

dw

)
dv

+ Cm

(
u − tni−1

)m−1
∫ u

tni−1

((
v − tni−1

)m−1
∫ v

tni−1

Eθ0

(∣∣Hn,i
122

(
w; θ, θ ′)∣∣2m)

dw

)
dv

≤ Cm,K

∣∣θ − θ ′∣∣2m((
u − tni−1

)2m + (
u − tni−1

)3m)
,

and similarly obtain

Eθ0

(∣∣Hn,i
2

(
u; θ, θ ′)∣∣2m) ≤ Cm,K

∣∣θ − θ ′∣∣2m((
u − tni−1

)2m + (
u − tni−1

)3m)
.

Now, inserting into (A.14),

Eθ0

(∣∣∣∣∣�n

n∑
i=1

Df
(
�n,Xtni

,Xtni−1
; θ, θ ′)∣∣∣∣∣

2m)

≤ Cm,K�2m
n

n∑
i=1

(∫ tni

tni−1

Eθ0

(∣∣Hn,i
1

(
u; θ, θ ′)∣∣2m)

du +
∫ tni

tni−1

Eθ0

(∣∣Hn,i
2

(
u; θ, θ ′)∣∣2m)

du

)
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≤ Cm,K

∣∣θ − θ ′∣∣2m
�2m

n

n∑
i=1

∫ tni

tni−1

((
u − tni−1

)2m + (
u − tni−1

)3m)
du

≤ Cm,K

∣∣θ − θ ′∣∣2m(
�4m

n + �5m
n

)
,

and, ultimately,

Eθ0

(∣∣DF̃n

(
θ, θ ′)∣∣2m) = Eθ0

(∣∣∣∣∣�−1
n

n∑
i=1

Df
(
�n,Xtni

,Xtni−1
; θ, θ ′)∣∣∣∣∣

2m)

= �−4m
n Eθ0

(∣∣∣∣∣�n

n∑
i=1

Df
(
�n,Xtni

,Xtni−1
; θ, θ ′)∣∣∣∣∣

2m)

≤ Cm,K

∣∣θ − θ ′∣∣2m
(1 + �n)

≤ Cm,K

∣∣θ − θ ′∣∣2m
. �

Lemma A.8. Suppose that Assumption 2.4 is satisfied. Let f ∈ Cpol
0,1(X × �). Define

F(θ) =
∫ 1

0
f (Xs; θ) ds

and let K ⊆ � be compact and convex. Then, for each m ∈ N, there exists a constant Cm,K > 0
such that for all θ, θ ′ ∈ K ,

Eθ0

∣∣F(θ) − F
(
θ ′)∣∣2m ≤ Cm,K

∣∣θ − θ ′∣∣2m
.

Lemma A.8 follows from a simple application of the mean value theorem.

Lemma A.9. Let K ⊆ � be compact. Suppose that Hn = (Hn(θ))θ∈K defines a sequence
(Hn)n∈N of continuous, real-valued stochastic processes such that

Hn(θ)
P−→ 0

point-wise for all θ ∈ K . Furthermore, assume that for some m ∈ N, there exists a constant
Cm,K > 0 such that for all θ, θ ′ ∈ K and n ∈N,

Eθ0

∣∣Hn(θ) − Hn

(
θ ′)∣∣2m ≤ Cm,K

∣∣θ − θ ′∣∣2m
. (A.15)

Then,

sup
θ∈K

∣∣Hn(θ)
∣∣ P−→ 0.
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Proof. (Hn(θ))n∈N is tight in R for all θ ∈ K , so, using (A.15), it follows from [37], Corol-
lary 16.9 and Theorem 16.3, that the sequence of processes (Hn)n∈N is tight in C(K,R), the
space of continuous (and bounded) real-valued functions on K , and thus relatively compact in
distribution. Also, for all d ∈N and (θ1, . . . , θd) ∈ Kd ,⎛⎜⎝

Hn(θ1)

...

Hn(θd)

⎞⎟⎠ D−→
⎛⎜⎝0

...

0

⎞⎟⎠ ,

so by [37], Lemma 16.2, Hn
D−→ 0 in C(K,R) equipped with the uniform metric. Finally, by the

continuous mapping theorem, supθ∈K |Hn(θ)| D−→ 0, and the desired result follows. �
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