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The problem of universal search and stop using an adaptive search policy is considered. When the unique
target location is searched, the observation is distributed according to the target distribution, otherwise it is
distributed according to the absence distribution. A universal scheme for search and stop is proposed using
only the knowledge of the absence distribution, and its asymptotic performance is analyzed. The universal
test is shown to yield a vanishing error probability, and to achieve the optimal reliability when the target is
present, universally for every target distribution. Consequently, it is established that the knowledge of the
target distribution is only useful for improving the reliability for detecting that the target is missing. It is
also shown that a multiplicative gain for the search reliability equal to the number of searched locations is
achieved by allowing adaptivity in the search.
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1. Introduction

We study the problem of universal search and stop using an adaptive policy to sequentially search
among a finite number of locations. The unique target could be missing or present in one of the
search locations, and when present it is stationary. When the target is present and when the
unique target location is searched, the observation is assumed to be distributed according to the
target distribution, otherwise it is distributed according to the absence distribution. We assume
that only the absence distribution is known, and the target distribution can be arbitrarily distinct
from the absence distribution. We also assume a “noisy” situation in which both the target and
absence distributions have full supports. This means that even when the search has covered all the
locations, it is not possible to determine the target location or if it is missing with perfect certainty.
An adaptive search policy specifies the current search location based on the past observations and
past search locations. At the stopping time, the target location is determined or it is decided that
it is missing. The overall goal is to achieve a certain level of accuracy for the final decision
using the fewest number of observations. A canonical example for this universal search and stop
problem is environment monitoring in a sensor network where the absence distribution could be
from a pure noisy observation collected at most sensors covering “uninteresting” regions and the
target distribution represents the distribution of the observation at a unique sensor effected by the
“interested” event or phenomenon. Our main interest is in the asymptotic regime of vanishing
error probability (for the final decision), whereupon the number of searches (up to the stopping
time) has to go to infinity, yielding asymptotically large number of recurrent searches at each
location. In terms of the theoretical contributions of this work, the results in this paper should be
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regarded as a contribution to the long-studied area of search theory (see, e.g., [1–3,10,13,21]), in
particular, searching for a stationary target in discrete time and space with a discrete search effort
(cf. [3], Section 4.2).

Since we assume that the observations at all locations without the target follow the same
absence distribution, a desirable goal of the search at each location should be to decide if the
target is there or not (elsewhere or missing entirely). To this end, a universal sequential test
for two hypotheses could be used at each location to collect multiple subsequent observations
that will eventually lead to a binary outcome of whether the target is there or not. To improve
reliability for this binary decision at a particular search location, one could use a test that takes
more observations at that location. If we insist on using the mentioned sequential binary test
at each location as an “inner” test, then it is convenient to select the current search location
based on the past binary outcomes of the subsequent binary tests, each resulting from multiple
subsequent observations at a particular location, instead of all the past outcomes of the individual
searches, often taken multiple times at each of the locations. With this imposition, the search and
stop problem could be conceptually reduced to the problem of constructing an “outer” test for a
sequential design of such inner experiments. This intuitive decomposition leads to our proposed
universal test for search and stop.

Universal sequential testing for two hypotheses was first considered for certain parametric
families of distributions for continuous observation spaces in [8,9,14,20], the latest of which
employed the concept of time-dependent thresholding. Here in Section 4.1, we look at a non-
parametric family of distributions for a finite observation space, for which we propose a universal
test using a suitable time-dependent threshold and analyze its performance.

The sequential design of experiments with a uniform experimental cost was first considered in
[4,7] under a certain positivity assumption for the model, which was successfully dispensed with
later in [17,18]. A generalization of the model with a more complicated memory structure for the
experimental outcomes and with a non-uniform experimental cost was studied in [19].

We show that when the target is present, the proposed universal test based on the aforemen-
tioned decomposition yields a vanishing error probability, and achieves the optimal reliability,
in terms of a suitable exponent for the error probability with respect to the expected stopping
time, universally for every target distribution. Consequently, we establish that the knowledge of
the target distribution is only useful for improving the reliability for detecting that the target is
missing. We also show that a multiplicative gain for the search reliability equal to the number
of searched locations is achieved by allowing adaptivity in the search. We also would like to
stress that our results and proof methods hold only in the scope of discrete observations each
coming from a fixed finite set, wherein a certain probability mass function of the finite set could
be unknown. This setting is quite different from the typical non-parametric setting in statistics,
wherein continuous observations are often considered. Consequently, since our universal opti-
mality claim mainly concerns the asymptotic regime of vanishing probability of error, in this
regime, the negate of the exponent of the error is typically much larger than the finite size of the
observation space.

Another line of research that is related to the current work is adaptive sensing for sparse re-
covery [5,6,12]. Instead of focusing on the case of the single signal support, corresponding to
the unique target as in our setting, these authors considered general sparse sets of the signal
support. On the other hand, they considered only the Gaussian case and did not cover the fully
non-parametric universal setting (albeit for only finite observation spaces) like in our study.
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We review the pertinent result on the sequential design of experiments in Section 2.1. The gen-
eral model for universal search and stop is set up in Section 3. We present the universal sequential
test for search and stop and state the main results pertaining to its asymptotic performance in Sec-
tion 4.

2. Preliminaries

Throughout the paper, random variables (r.v.s) are denoted by capital letters, and their realizations
are denoted by the corresponding lower-case letters. All r.v.s are assumed to take values in finite
sets, and all logarithms are the natural ones. For a finite set X , and a probability mass function
(p.m.f.) p on X we write X ∼ p to denote that the r.v. X is distributed according to p.

The following technical facts will be useful; their derivations can be found in [11], Chap-
ter 11. Consider random variables Yn = (Y1, . . . , Yn) which are independent and identically
distributed (i.i.d.) according to a p.m.f. p on a finite set Y , that is, Yi ∼ p, i = 1, . . . , n. Let
yn = (y1, . . . , yn) ∈ Yn be a sequence with an empirical distribution γ = γ (n) on Y . It follows
that the probability of such sequence yn, under the i.i.d. assumption according to the p.m.f. p, is

p
(
yn
) =

∏
y∈Y

p(y)|{i=1,...,n,Yi=y}|

= e
−n(

∑
y∈Y |{i=1,...,n,Yi=y}|/n log(1/p(y)))

(2.1)
= e

−n(
∑

y∈Y γ (y) log(γ (y)/p(y))+∑y∈Y γ (y) log(1/γ (y)))

= e−n[D(γ ‖p)+H(γ )],

where D(γ ‖p) and H(γ ) are the relative entropy of γ and p, and entropy of γ , defined as

D(γ ‖p)�
∑
y∈Y

γ (y) log
γ (y)

p(y)
,

and

H(γ ) � −
∑
y∈Y

γ (y) logγ (y),

respectively. Consequently, it holds that for each yn, the p.m.f. p that maximizes p(yn) is p = γ ,
and the associated maximal probability of yn is

γ
(
yn
)= e[−nH(γ )]. (2.2)

Next, for each n ≥ 1, the number of all possible empirical distributions from a sequence of length
n in Yn is upper bounded by (n + 1)|Y | (cf. [11], Theorem 11.1.1). In particular, using this and
the fact that the number of all sequences of length n with a feasible empirical distribution γ is
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upper bounded by enH(γ ) (cf. [11], Theorem 11.1.3), we get that for any ε > 0, it holds that the
probability of the i.i.d. sequence Yn under p satisfies

P
[
D(γ ‖p) ≥ ε

] =
∑

γ :feasible empirical
distribution in Yn

with D(γ ‖π)≥ε

∑
yn with empirical
distribution=γ

e−n[D(γ ‖p)+H(γ )]

≤ (n + 1)|Y |enH(γ )e−n[ε+H(γ )] (2.3)

= (n + 1)|Y |e−nε.

We now review the relevant result on the model-based sequential design of experiments with
a varying experimental cost. This result will be key to our proposed universal test for search and
stop.

2.1. Sequential design of experiments with varying experimental cost

Consider the problem of the sequential design of experiments to facilitate the eventual test-
ing for H hypotheses. We assume a (conditionally) memoryless model for the experimental
outcome conditioned on the currently chosen experiment. In particular, under the ith hypoth-
esis, i ∈ {1, . . . ,H } = [H ], and conditioned on the current experiment ut = u ∈ U , at time
t = 1,2, . . . , the current outcome of the experiment, denoted by Zt , is assumed to be condition-
ally independent of all past outcomes and past experiments Zt−1,U t−1, and to be conditionally
distributed according to a p.m.f. pu

i on Z . There is a cost function c : [H ] × U → R
+, and the

current experiment ut is assumed to incur a cost of c(i, ut ) under the ith hypothesis. We assume
that for every i = 1, . . . ,H,u ∈ U , z ∈ Z,pu

i (z) > 0, c(i, u) > 0. A test consists of an adaptive
policy φ that chooses each experiment as a suitable (possibly randomized) function of past ex-
periments and their outcomes, a stopping time τ , and a final decision rule δ that outputs a guess
of the true hypothesis in [H ]. In particular, a policy φ specifies the experiments Ut , t = 1,2, . . . ,

according to conditional distributions q(u1), q(ut |zt−1, ut−1), t = 2,3, . . . . The joint distribution
of all experiments and their outcomes up to time n under hypothesis i = 1, . . . ,H , is given by
q(u1)p

u1
i (z1)[∏n

t=2 q(ut |zt−1, ut−1)p
ut

i (zt )]. The goal is to design a test to optimize the tradeoff
between the cost accumulated up to the stopping time, as measured by

∑τ
t=1 c(i,Ut ), i ∈ [H ],

and the accuracy of the final decision, as measured by Pmax � maxi=1,...,H Pi[δ(Zτ ) �= i]. The
problem is model-based: all the (conditional) distributions pu

i , i ∈ [H ], u ∈ U , and the cost func-
tion c are assumed to be known.

For each hypothesis i ∈ [H ], let

q∗
i (u) � argmax

q

minj �=i

∑
u q(u)D(pu

i ‖pu
j )∑

u q(u)c(i, u)
. (2.4)

Then an asymptotically optimal test can be specified based on these distributions as follows. At
each time t ≥ 1, the maximum likelihood (ML) estimate of the true hypothesis î can be computed
based on past experiments and their outcomes ut−1, zt−1 using the model pu

i , i ∈ [H ], u ∈ U
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(ties are broken arbitrarily). For b > 0, during the sparse occasions t = 
eb��, � = 0,1, . . . , the
experiment is selected to explore all possible options in U in a round-robin manner independently
of î: for U = {u1, . . . , u|U |},

ut = u(� mod |U |)+1. (2.5)

At all other times, the current (random) experiment is selected as Ut ∼ q∗
î

. Denote the joint dis-
tribution under the ith hypothesis of all experiments and their outcomes up to time t (induced
by the control policy) by pi(z

t , ut ). This policy affords a suitable tradeoff between exploiting
the control policy (2.4) that best facilitates detection and exploring among all possible experi-
ments (2.5) to ensure the consistency of the ML estimate of the hypothesis in closed loop [18,19].
Had we not performed the sparse exploration in (2.5), the ML estimate of the hypothesis might
not converge to the true hypothesis or not quickly enough. This is because a particular experi-
ment may only be useful to differentiate some hypotheses from the others, but not to differentiate
among all hypotheses. We have to be careful when we close the loop between the ML estimation
and using it to select the instantaneous experiment.

For a threshold a′ > 1, the test stops at time τ ∗ and decides in favor of the ML hypothesis
according to the rule δ∗, where

τ ∗ � argmin
t

min
j �=î

p
î
(zt , ut )

pj (zt , ut )
> a′, δ∗(zτ∗

, uτ∗)= î. (2.6)

Note that as the q∗
i , i ∈ [H ], are, in general, not point-mass distributions, in addition to the

realization of all experimental outcomes zt , we also need to account for the realization of the
experiments ut as well in the instantaneous computation of the ML hypothesis and checking the
stopping criterion (2.6). If the experiments have been chosen deterministically at all times, we can
just use the joint distributions of all experimental outcomes pi(z

t ), i ∈ [H ], t = 1,2, . . . , in these
computations. The resulting test is asymptotically optimal and its performance is characterized
in Proposition 2.1 as follows.

Proposition 2.1 ([19])1. For b > 0, in (2.5) chosen to be sufficiently small, and as a′ → ∞, the
test in (2.4), (2.5), (2.6) yields a vanishing error probability P ∗

max → 0, and satisfies for each
i = 1, . . . ,H , that

Ei

[
τ∗∑
t=1

c(i,Ut )

]
= − logP ∗

max

maxq

minj �=i

∑
u q(u)D(pu

i ‖pu
j )∑

u q(u)c(i,u)

(
1 + o(1)

)
.

1The result in [19] was proven for the model in which the cost function depends only on the experiment; however, the
proof generalizes to the current setting when the cost function also depends on the hypothesis.
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In addition, the proposed test is asymptotically optimal simultaneously under all hypotheses in
the sense that any sequence of tests (φ, τ, δ) that achieve Pmax → 0 must satisfy

Ei

[
τ∑

t=1

c(i,Ut )

]
≥ − logPmax

maxq

minj �=i

∑
u q(u)D(pu

i ‖pu
j )∑

u q(u)c(i,u)

(
1 + o(1)

)
,

for every i = 1, . . . ,H .

3. Model for search and stop

Consider searching for a single target located in one of M locations. At each time k ≥ 1, if a
location without the target is searched, then the observation Yk ∈ Y is assumed to be conditionally
independent of all past observations and past search locations, and to be conditionally distributed
according to the absence distribution π . The distribution π represents pure noise, and we shall
assume that this distribution is known to the searcher. On the other hand, if the target location
is searched, then the observation would be conditionally distributed according to the “target”
distribution μ (same no matter where the target is) on Y (and would be conditionally independent
of past observations and search locations). We assume that both μ and π have full supports on Y .
Other than this assumption, the searcher has no knowledge of the target distribution and it could
be arbitrarily close to the absence distribution.

We also allow for the possibility that the target is absent. In this latter case, the observations at
all locations are distributed according to π . Denote the search location at time k ≥ 1 by Uk ∈ [M],
which is allowed to be any function of all past observations Y k−1 = (Y1, . . . , Yk−1) and past
search locations Uk−1 = (U1, . . . ,Uk−1).

It is interesting to note that the most basic search problem with an overlook probability α > 0
(see, e.g., Chapters 4, 5 of [21] and Section 4.2 of [3]) that is same over all locations, corresponds
to a special case of our general model wherein Y = {0,1},μ(0) = α,π(0) = 1. In contrast, our
model allows for any general (finite) observation set Y , but assumes that both μ and π have full
supports. The degeneracy in the model for the classic search problem as mentioned affords the
construction of a search plan that is more efficient than that for our model (with the assump-
tion of the full support). The main concern for the classic search problem has been to come up
with the search plan that is absolutely optimal (non-asymptotically), whereas our main concern
is to construct a universal test that is asymptotically efficient in the regime of vanishing error
probability.

We seek to design a universal sequential test to search the target (or to decide that it is miss-
ing). Precisely speaking, a test consists of a sequential search policy, a stopping rule and a final
decision rule. The stopping rule defines a stopping time, denoted by N , which is the number
of searches taken until the final decision is made. At the stopping time, the final decision for
the target location is made based on the decision rule δ : YN × [M]N → {0,1, . . . ,M}, where
the 0 output corresponds to the final decision that the target is missing. The overall goal is to
achieve a certain level of accuracy for the final decision using the fewest number of observations,
universally for all μ �= π .
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3.1. Fundamental performance limit

When both μ and π are known, the search and stop problem falls under the umbrella of the
sequential design of experiments with a uniform experimental cost [7]. In particular, there are
M + 1 hypotheses: 0,1, . . . ,M , where the null (0th) hypothesis corresponds to the case that the
target is missing. Each ith hypothesis, i = 1, . . . ,M , corresponds to each possible location of the
present target. The experiment set corresponds to U = [M], and each experiment corresponds to
where to search next. The model pu

i (y), i = 0, . . . ,M , for the sequential design of experiments
can be identified as

pu
i = μ, u = i, pu

i = π, u �= i, i = 1, . . . ,M,
(3.1)

pu
0 = π, u = 1, . . . ,M.

Then in this idealistic situation when the probabilistic model (both μ and π ) is known, by particu-
larizing the characterization of the asymptotically optimal performance in Proposition 2.1 to our
search and stop problem using (3.1) and c(i, u) = 1, for each i = 0, . . . ,M, and for each u ∈ U ,
we get that as the error probability Pmax = maxi=0,...,M Pi[δ∗(YN∗

,UN∗
) �= i] is driven to zero,

the optimal asymptotes of Ei[N∗], i = 0, . . . ,M , can be characterized as follows.

Proposition 3.1. There exists a sequence of tests to search the target with a stopping time N∗
that satisfy P ∗

max → 0 and yield

Ei

[
N∗]=

⎧⎪⎪⎨
⎪⎪⎩

− logP ∗
max

D(π‖μ)/M

(
1 + o(1)

)
, i = 0,

− logP ∗
max

D(μ‖π)

(
1 + o(1)

)
, i = 1, . . . ,M .

(3.2)

Furthermore, the asymptotic performance in (3.2) (each term in the denominators) is optimal for
every i = 0, . . . ,M simultaneously. In particular, any sequence of tests with a stopping time N

that achieve Pmax → 0 must simultaneously satisfy

E0[N ] ≥ − logPmax

D(π‖μ)/M

(
1 + o(1)

)
,

Ei[N ] ≥ − logPmax

D(μ‖π)

(
1 + o(1)

)
, i = 1, . . . ,M.

Of course, the asymptotic performance in Proposition 3.1 is idealistic, as it requires the knowl-
edge of μ (with π being already known). When μ is not known, since μ can be arbitrarily close
to π , this asymptotic performance cannot be achieved universally. Nevertheless, our main con-
tribution (Theorem 4.1) described below shows that one can design a universal test (without the
knowledge of μ) that drives the error probability to zero and achieves the optimal exponent of
D(μ‖π) under all the non-null hypotheses universally for any μ �= π .
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4. Proposed universal scheme for search and stop and
its performance

Since we assume that the observations at all locations without the target follow the same absence
distribution, a desirable goal of the search at each location should be to determine if the target
is there or not (elsewhere or missing entirely). To this end, a universal sequential test for two
hypotheses can be used at each location to collect multiple subsequent observations that will
eventually lead to a binary outcome (say 1 if it is guessed that the target is there, and 0 otherwise).
We now discuss this universal sequential testing for two hypotheses.

4.1. Universal sequential testing for two hypotheses at each location

Consider sequential testing between the null hypothesis H0 (for the case that the target is not
at the currently searched location) with i.i.d. observations Yk ∈ Y, k = 1,2, . . . , according to a
p.m.f. π on Y , and the alternative hypothesis H1 (for the case that the target is at the currently
searched location) with i.i.d. Yk, k = 1,2, . . . , according to a p.m.f. μ �= π , where only π is
known, and nothing is known about μ (except that both μ and π have full supports on Y).

The goal for the binary testing at a particular searched location is to construct a test consisting
of a stopping time Nb and a binary decision rule δb to efficiently decide whether the target is
there at the searched location or not (elsewhere or missing entirely). For a parameter a > 1, our
goal is to construct a universal sequential test for the two hypotheses with the maximal error
probability being max(P0[δb(N

b) = 1],P1[δb(N
b) = 0]) ≤ 1

a
. To this end, we shall employ a

sequential binary test defined in terms of the following (Markov) time:2

Ñb � argmin
n≥1

[
nD(γ ‖π) >

(
loga + n2/3 + |Y| log (n + 1)

)]
, (4.1)

where γ denotes the empirical distribution of the observation sequence (y1, . . . , yn). The test
stops at this time or 
a(loga)ρ1� for some ρ1 > 1, depending on which one is smaller, that is, it
stops at time Nb, where

Nb � min
(
Ñb,

⌊
a(loga)ρ1

⌋)
. (4.2)

Correspondingly, the final decision is made according to

δb

(
YNb)=

{
1, if Ñb ≤ a(loga)ρ1 ,

0, if Ñb > a(loga)ρ1 .
(4.3)

The stopping time Nb in (4.2) means that for a parameter a > 1, the search at each particular
location would take no more than 
a(loga)ρ1� subsequent observations before deciding whether

2The term n2/3 on the right-hand side of (4.1) below is necessary to obtain the upper bound of 1
a in (4.4). With only the

log(n + 1) term, we can only achieve an upper bound of K
a , where K > 1, for an arbitrarily large coefficient in front of

the log(n + 1) term. See also equation (A.3) in the proof of Lemma 4.1.
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the target is there or not. In particular, the decision is made based on whether the time-dependent
threshold loga + n2/3 + |Y| log (n + 1) in (4.1) is crossed by nD(γ ‖π), which is supposed to
be large when the target is at the searched location, after the time n = 
a(loga)ρ1� or not. As a

grows, the error in the binary decision making is smaller, but the number of subsequent observa-
tions taken at the location gets larger as well.

Lemma 4.1. With μ and π having full supports on Y , for some ρ1 > 1 and for every a > 1, the
sequential test in (4.1), (4.2), (4.3) yields that

αa � P0
[
δb

(
YNb)= 1

]≤ 1

a
. (4.4)

In addition, for any ν < 1, μ �= π and every a ≥ a∗(ν,μ,π), the test also yields that

ca � E1
[
Nb

]≤ E1
[
Ñb

]≤ loga

νD(μ‖π)
, (4.5)

κa � E0
[
Nb

]≤ a(loga)ρ1 , (4.6)

βa � P1
[
δb

(
YNb)= 0

]≤ 1

νD(μ‖π)a(loga)(ρ1−1)
. (4.7)

The proof of Lemma 4.1 will be given in Section A.1.

4.2. Proposed universal test for search and stop

If we use the mentioned sequential binary test at each location as the “inner” test, then it is con-
venient to select the current search location based on the past binary outcomes of the subsequent
binary tests (instead of the past Y-ary outcomes of the individual searches, often taken multiple
times at each of the locations). With this imposition, the search and stop problem can be reduced
to a problem of constructing an “outer” test for the sequential design of such inner experiments,
each of which has a binary outcome.

Mathematically speaking, we have reduced the original problem of sequential design of Y-ary-
output experiments specified by the (conditional) distributions as in (3.1) to one of the sequential
design of binary-output experiments specified as

μb(0) = 1 − μb(1) = βa, πb(1) = 1 − πb(0) = αa, (4.8)

and

pu
i = μb, u = i, pu

i = πb, u �= i, i = 1, . . . ,M,
(4.9)

pu
0 = πb, u = 1, . . . ,M,

where αa,βa are as defined in (4.4), (4.7), respectively. On the other hand, each binary-output
experiment will not have the same cost as for the original Y-ary-output experiment. In particular,
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the cost of each binary-output experiment can be specified as

c(i, u) = ca, u = i, c(i, u) = κa, u �= i, i = 1, . . . ,M,
(4.10)

c(0, u) = κa, u = 1, . . . ,M,

where ca, κa are as defined in (4.5) and (4.6), respectively.
There is still a large gap in turning the motivation described above into a “working” test for

search and stop. To this end, there are two major challenges. First, the optimal test for the sequen-
tial design of experiments in (2.4), (2.5), (2.6), achieving the performance stated Proposition 3.1,
requires precise knowledge of the model. In contrast, the induced model for the sequential de-
sign of binary-output experiments in (4.8), (4.9), (4.10) is a complicated function of the inner
threshold a for the sequential binary test in (4.1), (4.2), (4.3). Only an estimate of this “true”
induced model is available through the bounds for αa,βa, ca, κa stated in (4.4), (4.7), (4.5), (4.6)
of Lemma 4.1, respectively. Second, as the threshold a′ for the optimal test in (2.4), (2.5), (2.6)
increases, the model for the sequential design of experiments in Proposition 3.1 remains fixed. In
contrast, in our proposed test, the “outer” threshold for the test for the sequential design of binary-
output experiments increases together with the inner threshold a, the latter of which determines
the induced model in (4.8), (4.9), (4.10). Consequently, the analysis leading to Proposition 3.1
does not apply to our proposed test. Our main technical contributions are precisely, first, to over-
come these challenges through the proposed test described below in Section 4.2, employing an
outer threshold, which is chosen to be an appropriate function of the inner threshold, and, second,
to provide the analysis for its performance, stated in Theorem 4.1 below.

As mentioned in the previous subsection, the “true” induced model for the sequential design
of the binary-output experiments in (4.8), (4.9), (4.10) is a complicated function of the inner
threshold a and is not available to us. Nevertheless, Lemma 4.1 yields that for a sufficiently
large (as a function of ν, in (4.5), (4.7) and μ,π ),

αa,βa ≤ 1

a
. (4.11)

Our idea would be to use a mismatched model defined in terms of μb,πb , where

μb(0) = 1 − μb(1) = πb(1) = 1 − πb(0) = 1

a
(4.12)

to perform the sequential design of the binary-output experiments. Specifically, instead of (4.8),
(4.9), consider the following mismatched model for the sequential design of binary-output ex-
periments

pu
i = μb, u = i, pu

i = πb, u �= i, i = 1, . . . ,M,
(4.13)

pu
0 = πb, u = 1, . . . ,M.

Heuristically speaking, by (4.11), this mismatched model is “more noisy” than the true model
(for large a); hence, the test designed based on this mismatched model should be conservative
enough to work well for the true model as well. This intuition will be proven to be correct.
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With the mismatched model specified in (4.13), we can now describe our universal test as
follows. At each time t ≥ 1, we compute the estimate of the true hypothesis î based on past
searched locations and their binary outcomes ut−1, zt−1 using the (mismatched) model pu

i , i =
0, . . . ,M,u ∈ [M] in (4.13). Denote N(i,1),N(i,0), i ∈ [M], as the number of times the ith
location was searched and the sequential binary test in (4.1), (4.2), (4.3) decides that the target is
there, and that the target is not there, respectively. By the reciprocity of μb and πb , in (4.12), the
computation of this estimate can be simplified as

î =
⎧⎨
⎩

argmax
i∈[M]

N(i,1) − N(i,0), if max
i∈[M]N(i,1) − N(i,0) > 0,

0, if max
i∈[M]N(i,1) − N(i,0) ≤ 0.

(4.14)

The estimation in (4.14) is quite intuitive, as the difference between the numbers of “searched-
and-found” and “searched-and-not-found” at the ith location: N(i,1) − N(i,0), i ∈ [M], should
approximate the likelihood that the target is there. When all these numbers are negative, it is most
likely that the target is missing.

For b > 0, during the sparse occasions t = 
eb��, � = 0,1, . . . , the experiment is selected to
explore all locations in a round-robin manner as

ut = (� mod M) + 1 (4.15)

independently of î. At all the other times, if î �= 0, we shall search at the îth location, i.e.,

ut = î, if î �= 0. (4.16)

If î = 0, we search among all locations with equal frequency, namely,

ut = (it ′ mod M) + 1, (4.17)

where it ′ was the search location at the last time t ′ < t such that î = 0. Denote the joint (mis-
matched) distribution under the ith hypothesis of all binary searched outcomes up to time t

(induced by the above control policy) by pi(z
t ). The test stops at time τ and decides in favor of

the current estimate of the hypothesis as:

τ � argmin
t

[(
min

j=0,...,M,

j �=î

p
î
(zt )

pj (z
t )

)
> eaρ2 (loga)ρ1

]
, δ

(
zτ
)= î, (4.18)

where a is the inner threshold for the binary test in (4.1), (4.2), (4.3) and some ρ2 > 1. As
clarified at the end of the paragraph preceding Proposition 2.1, since the search policy in (4.15),
(4.16), (4.17) specifies the search location as a deterministic function of the current estimate
of the hypothesis at all times, it suffices to work with the joint distribution pi(z

t ) instead of
pi(z

t , ut ), that is, ut can be written as a deterministic function of zt .
Using (4.12), (4.13), we can simplify (4.18) as

τ = argmin
t

[
min
j �=î

(
S(î) − S(j)

)
>

aρ2(loga)ρ1

log (a − 1)

]
, δ

(
zτ
)= î, (4.19)
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where S(i), i = 0, . . . ,M , represent indices of the corresponding hypotheses defined as

S(i) =
{

0, i = 0,

N(i,1) − N(i,0), i = 1, . . . ,M .
(4.20)

Note that the total number of Y-ary-output observations N used to produce the search result
is related to the stopping time τ above as

N =
τ∑

t=1

Nb
t ,

where each Nb
t , t = 1, . . . , τ , is the number of observations taken at each location until the se-

quential test in (4.1), (4.2), (4.3) produces a binary result Zt . Consequently, we get from suc-
cessive uses of the property of conditional expectation and (4.10) that under the true hypothesis
i = 0, . . . ,M , it holds that

Ei[N ] = Ei

[
τ−1∑
t=1

Nb
t +Ei

[
Nb

τ |Y (
∑τ−1

t=1 Nb
t )
]]

= Ei

[
τ−1∑
t=1

Nb
t +Ei

[
Nb

τ |Uτ

]]

= Ei

[
τ−1∑
t=1

Nb
t + c(i,Uτ )

]
, by (4.10), (4.5), (4.6)

= Ei

[
τ∑

t=1

c(i,Ut )

]
.

4.3. Performance of proposed test

Theorem 4.1. For any ν < 1 in (4.5), (4.7) and for b > 0 used in (4.15) chosen to be sufficiently
small, as a → ∞, the test in (4.14), (4.15), (4.16), (4.17), (4.18) yields a vanishing error prob-
ability Pmax= maxi=0,...,M Pi[δ �= i] → 0 and also satisfies simultaneously for each hypothesis
i = 1, . . . ,M , with a present target that

Ei[N ] = Ei

[
τ∑

t=1

c(i,Ut )

]
≤ − logPmax

νD(μ‖π)

(
1 + o(1)

)
, i = 1, . . . ,M, (4.21)

universally for every μ �= π .

Remark 4.1. Compared to the idealistically optimal performance (when μ is known) in Propo-
sition 3.1, it is interesting to note that our universal test is universally asymptotically optimal,
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except only when the target is missing. In other words, the knowledge of the target distribution
is only useful in improving reliability for detecting that the target is missing. This consequence
of our result is directly relevant to practical settings, wherein the knowledge of the target distri-
bution μ would be lacking before the target is found.

4.4. Comparison with universal non-adaptive scheme for search and stop

Our main result in Theorem 4.1 illustrates that one can construct a test with adaptive search
policy, using only the knowledge of π , that yields a vanishing error probability and achieves the
exponent of D(μ‖π) universally for every μ �= π when the target is present. A natural question
that arises is how much can be gained by employing such an adaptive search policy beyond a non-
adaptive one. A non-adaptive search policy φ has to specify the sequence of search locations at
the outset and cannot adapt to the outcomes of the instantaneous searches. By the symmetry of the
problem, there is no reason for a non-adaptive search policy to favor any location. Consequently,
the only non-adaptive search policy that should be considered in the universal setting is the one
that searches all locations with equal frequency:

uk = (k mod M) + 1, k ≥ 0. (4.22)

We denote this non-adaptive search policy by φ
∗
. With this search policy, an efficient universal

test has been constructed in [16], which we now describe.
For each time k = �M,� = 1,2, . . . , let γi, i = 1, . . . ,M denote the empirical distribution of

the observations when the ith location is searched, namely, γi = (yi, yM+i , . . . , y(�−1)M+i ), i =
1, . . . ,M . Next, denote the estimate of the target location î as

î = argmax
i∈[M]

D(γi‖π). (4.23)

With the non-adaptive search policy φ
∗
, consider the stopping rule defined in terms of the fol-

lowing Markov time:

N
′ � M × argmin

�≥1

[(
D(γ

î
‖π) − max

j �=î

D(γj‖π)
)

> loga + M|Y| log (� + 1)
]
. (4.24)

The test stops at time N , where

N � min
(
N

′
, 
a loga�). (4.25)

Correspondingly, the final decision is made according to

δ
(
YN

)=
{

î, if N
′ ≤ a loga,

0, if N
′
> a loga.

(4.26)

The performance of this test with the non-adaptive search scheme follows from the result
in [16].
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Proposition 4.1 ([16]). With the non-adaptive search policy φ
∗

in (4.22), the test in (4.23),
(4.24), (4.25), (4.26) yields a vanishing error probability Pmax → 0 and also satisfies

Ei[N ] ≤ − logPmax

D(μ‖π)/M

(
1 + o(1)

)
, i = 1, . . . ,M, (4.27)

universally for every μ �= π .

In summary, adaptivity offers a multiplicative gain of M for search reliability beyond non-
adaptive searching. This gain increases with the size of the area to be searched.

Remark 4.2. Note that for the test in (4.22), (4.23), (4.24), (4.25), (4.26), the maximal error
probability Pmax decays only subexponentially with E0[N ]. The additional exponential decay
cannot be obtained on top of the ones for all the other hypotheses with a present target (cf. (4.27)),
because we are considering the universal setting in which only π is known (contrary to the result
in Proposition 3.1 with both μ and π being known). For any sequence of universal tests, a bad μ

can always be selected to be sufficiently close to π to render such a subexponential decay.

Appendix

A.1. Proof of Lemma 4.1

The proof relies on the following lemmas.

Lemma A.1 ([15]). For any p.m.f.s μ,π on Y with full supports and with B(μ,π) being the
Bhattacharyya distance between μ and π defined as B(μ,π) � − log (

∑
y∈Y μ(y)1/2π(y)1/2)

[11], it holds that

2B(μ,π) = min
q

(
D(q‖μ) + D(q‖π)

)
, (A.1)

where the minimum above is over all p.m.f.s on Y .

Lemma A.2. Under the alternative hypothesis, it holds for every n ≥ 1, that

P1
[
Ñb ≥ n

]≤ ae−(n−1)2B(μ,π)n2|Y |e(n−1)2/3
.

Proof.

P1
[
Ñb ≥ n

] ≤ P1
[
(n − 1)D(γ ‖π) ≤ loga + (n − 1)2/3 + |Y| log (n)

]
= P1

[
D(γ ‖μ) ≥ − (loga + (n − 1)2/3 + |Y| logn)

n − 1
+ D(γ ‖μ) + D(γ ‖π)

]

≤ P1

[
D(γ ‖μ) ≥ − (loga + (n − 1)2/3 + |Y| logn)

n − 1
+ 2B(μ,π)

]

≤ ae−(n−1)2B(μ,π)n2|Y |e(n−1)2/3
,
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where the second inequality follows from Lemma A.1 and the last inequality follows from (2.3).
�

First, we prove (4.4). It follows from (4.2), (4.3) that

P0[δ = 1] = P0
[
Nb = Ñb

]
≤ P0

[
Ñb ≤ a(loga)ρ1

]≤ ∞∑
n=1

P0
[
Ñb = n

]

≤
∞∑

n=1

P0
[
nD(γ ‖π) >

(
loga + n2/3 + |Y| log (n + 1)

)]

≤
∞∑

n=1

1

a
e−n2/3

(A.2)

≤ 1

a
, (A.3)

where (A.2) follows from (2.3). In addition (A.3) follows from the fact that

∞∑
n=1

e−n2/3 ≤
5∑

n=1

e−n2/3 +
∫ ∞

5
e−x2/3

dx

=
5∑

n=1

e−n2/3 + 3
∫ ∞

51/3
e−y2

y2 dy

=
5∑

n=1

e−n2/3 − 3

2

∫ ∞

51/3
y d

(
e−y2)

=
5∑

n=1

e−n2/3 − 3

2

[
− 51/3

e52/3 −
∫ ∞

51/3
e−y2

dy

]

=
5∑

n=1

e−n2/3 + 3

2

51/3

e52/3 + 3
√

π

4
erfc

(
51/3)≤ 1.

Equation (4.6) follows trivially from the definition of Nb in (4.2).
It now remains to prove the inequality in (4.5), as the inequality in (4.7) would follow from it

and from the definition of Nb in (4.2) upon noting that

βa � P1
[
δb

(
YNb)= 0

]= P1
[
Ñb > a(loga)ρ1

]
≤ E1[Ñb]

a(loga)ρ1
≤ 1

νD(μ‖π)a(loga)(ρ1−1)
.
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To this end, it suffices to show that under the alternative hypothesis and as a → ∞,

E1[Ñb]
loga

→ 1

D(μ‖π)
. (A.4)

First observe that under the alternative hypothesis P1, by the strong law of large numbers, we
have that for every y ∈ Y, 1

n

∑n
k=1 I[Yk = y] converges to μ(y) a.s. Consequently, we have that

γ (n) → μ a.s. Next, we get from Lemma 4.1 that for every a > 1,

P1
[
Ñb = ∞]≤ lim

n→∞P1
[
Ñb ≥ n

]= 0. (A.5)

It then follows from (A.5) and (4.1) that

D
(
γ (Ñb)‖π) >

loga + (Ñb)2/3 + |Y| log (Ñb + 1)

Ñb
, (A.6)

D
(
γ (Ñb−1)‖π) ≤ loga + (Ñb − 1)

2/3 + |Y| log (Ñb)

Ñb − 1
. (A.7)

Next, by observing that for any distribution q,D(q‖π) ≤ log( 1
miny π(y)

), we get from (A.6) that

P1
[
Ñb ≤ n

] ≤ P1
[
ÑbD

(
γ (Ñb)‖π)> loga; Ñb ≤ n

]
≤ P1

[
n log

(
1

miny π(y)

)
> loga

]

= 0, for every n <
loga

log(1/miny π(y))
,

thereby yielding that Ñb → ∞ a.s. as a → ∞ under P1. Consequently, we conclude from the
continuity of D(·‖π) that under P1,D(γ (Ñb)‖π),D(γ (Ñb−1)‖π) → D(μ‖π) a.s. as a → ∞.
We now get from this, (A.6), and (A.7) that

Ñb

loga

a.s.→ 1

D(μ‖π)
. (A.8)

To go from convergence a.s. (A.8) to convergence in mean (A.4), it now suffices to prove

that the sequence of r.v.s Ñb

loga
is uniformly integrable as a → ∞. To this end, for any η > 0,

sufficiently large, we shall upper bound the following quantity using Lemma A.2 as follows.

E1

[
Ñb

loga
I{Ñb/loga≥η}

]
≤ E1

[
(Ñb − 
η loga� + η loga)

loga
I{Ñb≥
η loga�}

]

≤ 1

loga
E1
[(

Ñb − 
η loga�)I{Ñb−
η loga�≥0}
]
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+ η loga

loga
P1
[
Ñb ≥ 
η loga�]

= 1

loga

∞∑
�=1

P1
[
Ñb ≥ 
η loga� + �

]
(A.9)

+ ηP1
[
Ñb ≥ 
η loga�]

≤ a

loga

∞∑
�=1

e−(η loga+�−2)2B(μ,π)+(η loga+�)2/3(
η loga� + �
)2|Y |

+ ηae−(η loga−2)2B(μ,π)+(η loga)2/3(
η loga�)2|Y |

≤ a

loga

∞∑
�=1

e−(η loga+�−4)B(μ,π)
(
η loga� + �

)2|Y |

+ ηae−(η loga−4)B(μ,π)
(
η loga�)2|Y |

,

for any η > 1
B(μ,π)

and a sufficiently large such that (η loga)B(μ,π) ≥ (η loga)2/3.
Continuing from (A.9), upon noting that for a sufficiently large, it holds that 
η loga� + � ≤

2
η loga��, we get

E1

[
Ñb/ logaI{Ñb/ loga≥η}

]
≤ a

loga

∞∑
�=1

e−(η loga+�−4)B(μ,π)
(
2
η loga��)2|Y |

+ ηae−(η loga−4)B(μ,π)
(
η loga�)2|Y |

= a

loga

(
2
η loga�)2|Y |

e−ηB(μ,π) loga

×
(

e4B(μ,π)
∞∑

�=1

e−B(μ,π)��2|Y |
)

+ ηa
(
η loga�)2|Y |

e−ηB(μ,π) loga × e4B(μ,π),

which vanishes as a → ∞, for any η > 1
B(μ,π)

, thereby establishing the uniform integrability.

A.2. Proof of Theorem 4.1

The proof of Theorem 4.1 relies on the following two lemmas.

Lemma A.3. For any λ > 2, when the parameter b used in (4.15) is selected to be sufficiently
close to 0, it holds for any true non-null hypothesis i = 1, . . . ,M , and any ε > 0, that the first
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time T from which the estimate î in (4.14) always equals the true hypothesis i, satisfies

Pi[T > εn] = O
(
n−λ

)
. (A.10)

Proof. We first note that for any other hypothesis j �= i, j = 0, . . . ,M , and n′ ≥ 
εn�,

Pi

[
n′∑

t=1

log

(
p

Ut

i (Zt )

p
Ut

j (Zt )

)
≤ 0

]
≤ Ei

[
e
−1/2(

∑n′
t=1 log (p

Ut
i (Zt )/p

Ut
j (Zt )))

]
, (A.11)

where pu
i , i = 0, . . . ,M,u = 1, . . . ,M are as defined in (4.13).

First, note that for j = 1, . . . ,M, j �= i, and for any time t when Ut = s, s �= i, s �= j , we get
from (4.12), (4.13) that

Ei

[
e
−1/2(log (p

Ut
i (Zt )/p

Ut
j (Zt )))|Ut = s

]= Ei

[
e−1/2(log 1)|Ut = s

]= 1 a.s. (A.12)

On the other hand, for the time t when Ut = i or Ut = j , we get from (4.12), (4.13) that

Ei

[
e
−1/2(log (p

Ut
i (Zt )/p

Ut
j (Zt )))|Ut = i

]
= βae

−1/2 log (1/(a−1)) + (1 − βa)e
−1/2 log (a−1)

(A.13)

= βa(a − 1) + (1 − βa)√
(a − 1)

= βaa + 1 − 2βa√
(a − 1)

≤ 2√
(a − 1)

< 1;

Ei

[
e
−1/2(log (p

Ut
i (Zt )/p

Ut
j (Zt )))|Ut = j

]
= αae

−1/2 log (1/(a−1)) + (1 − αa)e
−1/2 log (a−1) (A.14)

≤ 2√
(a − 1)

< 1,

for a > 5, and where the inequalities in (A.13) and (A.14) follow from (4.11).
Similarly, we get from (4.12), (4.13) that for any time t when Ut = s �= i,

Ei

[
e−1/2(log (p

Ut
i (Zt )/p

Ut
0 (Zt )))|Ut = s

]= 1 a.s. (A.15)

On the other hand, for the time t when Ut = i, we get from (4.12), (4.13) that

Ei

[
e−1/2(log (p

Ut
i (Zt )/p

Ut
0 (Zt )))|Ut = i

]≤ 2√
(a − 1)

< 1, (A.16)

for a > 5.
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Consequently, we get from (4.15), (A.11), (A.13), (A.14), and (A.16) by successive uses of
the smoothing property of conditional expectation that

Pi[T > εn] ≤
∞∑

n′=
εn�
Pi

[
pi

(
Zn′)≤ pj

(
Zn′)]+ Pi

[
pi

(
Zn′)≤ p0

(
Zn′)]

≤
∞∑

n′=
εn�

(
2√

a − 1

)(2 logn′)/(Mb)

+
(

2√
a − 1

)(logn′)/(Mb)

= O
(
n−λ

)
,

for a > 5 and for b used in (4.15) chosen sufficiently close to 0. �

For ν < 1, ρ1 > 1 as in Lemma 4.1 and a sufficiently large, let

c(i, u) �

⎧⎨
⎩

loga

νD(μ‖π)
, i = 1, . . . ,M,u = i,

a(loga)ρ1, i = 1, . . . ,M,u �= i

(A.17)

that are the upper bounds for ca, κa , as in Lemma 4.1, respectively. Let us consider the “true”
model for the sequential design of binary-output experiments specified as (4.8), (4.9), induced
by using the sequential binary test (4.1), (4.2), (4.3) as the “inner” test at each location. Also
consider the “mismatched” model (for a sufficiently large) as in (4.12), (4.13) satisfying (4.11)
(cf. Lemma 4.1). In addition, for i = 1, . . . ,M , let

d
a

i = μb(0) log (μb(0)/πb(0)) + μb(1) log (μb(1)/πb(1))

(loga)/(νD(μ‖π))

= βa log (1/(a − 1)) + (1 − βa) log (a − 1)

(loga)/(νD(μ‖π))
(A.18)

→ νD(μ‖π), as a → ∞.

Then, we have the following lemma.

Lemma A.4. When the causal control policy (4.14), (4.15), (4.16), (4.17) is applied perpetually,
it holds for any true non-null hypothesis i ∈ [M], any other hypothesis j = 0,1, . . . ,M, j �= i,
any small ε′ > 0, any λ > 2, and for all n sufficiently large (for b > 0 in (4.15) chosen sufficiently
small) that

Pi

[
log

(
pi(Z

n)

pj (Z
n)

)
<

(
n∑

t=1

c(i,Ut )

)(
d

a

i − ε′)]= O
(
n−λ

)
. (A.19)
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Proof. We first note that with c = loga
νD(μ‖π)

, and, hence, c(i, u) ≥ c, we get that

Pi

[
log

(
pi(Z

n)

pj (Z
n)

)
<

(
n∑

t=1

c(i,Ut )

)(
d

a

i − ε′)]

≤ Pi

[
n∑

t=1

(
log

(
p

Ut

i (Zt )

p
Ut

j (Zt )

)
−Ei

[
log

(
p

Ut

i (Zt )

p
Ut

j (Zt )

)∣∣∣Ut

])
< −nc

ε′

2

]
(A.20)

+ Pi

[
n∑

t=1

(
Ei

[
log

(
p

Ut

i (Zt )

p
Ut

j (Zt )

)∣∣∣Ut

]
− d

a

i c(i,Ut )

)
< −nc

ε′

2

]
.

The proof that the probability of the first term on the right-hand side of (A.20) goes to zero
exponentially fast in n follows from observing that the sequence

Mn =
n∑

t=1

(
log

(
p

Ut

i (Zt )

p
Ut

j (Zt )

)
−Ei

[
log

(
p

Ut

i (Zt )

p
Ut

j (Zt )

)∣∣∣Ut

])

is a martingale and can be carried out by invoking the Chernoff bounding argument similar to the
argument leading to equation (5.10) in [7]. In addition, we note that for a sufficiently large,

min
j �=i

min
k=1,...,M

Ei

[
log

(
p

Ut

i (Zt )

p
Ut

j (Zt )

)∣∣∣Ut = k

]
≥ 0;

(A.21)
max

u=1,...,M
c(i, u) ≤ a(loga)ρ1 .

Next, for the T in Lemma A.3, we get from (4.15), (A.18), (A.17) that for all t ≥ T , t �=

eb��, � = 0,1, . . . , that

Ei

[
log

(
p

Ut

i (Zt )

p
Ut

j (Zt )

)∣∣∣Ut

]
= Ei

[
log

(
p

Ut

i (Zt )

p
Ut

j (Zt )

)∣∣∣Ut = i

]

= d
a

i

(
loga

νD(μ‖π)

)
(A.22)

= d
a

i c(i,Ut ).

Consequently, from (A.21) and by selecting ε in Lemma A.3 sufficiently small, we have that the
second term on the right-hand side of (A.20) can be upper bounded according to Lemma A.3 as

Pi

[
n∑

t=1

(
Ei

[
log

(
p

Ut

i (Zt )

p
Ut

j (Zt )

)∣∣∣Ut

]
− d

a

i c(i,Ut )

)
< −nc

ε′

2

]

≤ Pi

[(
T + logn

b

)
a(loga)ρ1 > nc

ε′

2

]
(A.23)

≤ Pi

[
T >

ε

2
n

]
= O

(
n−λ

)
,
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thereby completing the proof of Lemma A.4. �

To prove Theorem 4.1, we first shall prove that the stopping and final decision rules in (4.18)
yield that

Pmax ≤ M

eaρ2 (loga)ρ1
. (A.24)

To this end, we consider two separate cases: when the true hypothesis is a non-null hypothesis,
and when the true hypothesis is the null hypothesis.

First consider the case when the true hypothesis is a non-null hypothesis, say i ∈ [M]. For any
t ≥ 1 and a realization zt of the binary search results of the search policy in (4.15), (4.16), (4.17),
as in the paragraph preceding (4.14), we let N(i,1),N(i,0), i ∈ [M], denote the number of times
(up to time t ) that the ith location is searched and the sequential binary test in (4.1), (4.2), (4.3)
decides that the target is there, and that the target is not there, respectively. Then, we get from
(4.12) that for any other non-null hypothesis j ∈ [M], j �= i, it holds that

pj (z
t )

pi(z
t )

=
(

1/a

1 − 1/a

)N(j,0)(1 − 1/a

1/a

)N(j,1)(1 − 1/a

1/a

)N(i,0)( 1/a

1 − 1/a

)N(i,1)

. (A.25)

Now, for each such j �= i, consider a pair of distributions μ̃b, π̃b (which are functions of both
i, j ) defined according to

μ̃b(0) = (1 − αa)
1/a

1 − 1/a
= (

1 − πb(1)
) 1/a

1 − 1/a
;

(A.26)

π̃b(1) = (1 − βa)
1/a

1 − 1/a
= (

1 − μb(0)
) 1/a

1 − 1/a
.

From (4.11), and (A.26), we get by an easy calculation that

1 − μ̃b(0)

πb(1)
≥ 1 − 1/a

1/a
≥ 1;

(A.27)
1 − π̃b(1)

μb(0)
≥ 1 − 1/a

1/a
≥ 1,

for a large. Now consider another probability distribution, p̃j (z
t ), defined as a function of both

j and i, based on the same search policy according to

p̃u
j = μ̃b, u = j, p̃u

j = π̃b, u = i, p̃u
j = πb, u �= i, j. (A.28)

Then, it holds that

p̃j (z
t )

pi(zt )
=
(

μ̃b(0)

1 − πb(1)

)N(j,0)(1 − μ̃b(0)

πb(1)

)N(j,1)

(A.29)

×
(

1 − π̃b(1)

μb(0)

)N(i,0)(
π̃b(1)

1 − μb(0)

)N(i,1)

.
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Consequently, we get from (A.25), (A.29), (A.26) and (A.27) that

p̃j (z
t )

pi(zt )
≥ pj (z

t )

pi(z
t )

. (A.30)

Similarly, by observing that

p0(z
t )

pi(z
t )

=
(

1/a

1 − 1/a

)N(i,1)(1 − 1/a

1/a

)N(i,0)

, (A.31)

and define p̃0(z
t ) according to

p̃u
0 = π̃b, u = i, p̃u

0 = πb, u �= i, (A.32)

we get from (A.32), the second equality of (A.26), the second inequality of (A.27) and (A.31)
that

p̃0(z
t )

pi(zt )
=
(

π̃b(1)

1 − μb(0)

)N(i,1)(1 − π̃b(1)

μb(0)

)N(i,0)

≥ p0(z
t )

pi(z
t )

. (A.33)

Hence, under the non-null hypothesis i, the error probability incurred by the rules (4.18) can
be upper bounded as

Pi

[
δ
(
Zτ
) �= i

] =
M∑

j=0
j �=i

∞∑
t=1

Pi

[
δ
(
Zt
)= j, τ = t

]

≤
M∑

j=0
j �=i

∞∑
t=1

Pi

[
p̃j (Z

t )

pi(Zt )
> eaρ2 (loga)ρ1

, τ = t

]

(A.34)

<

M∑
j=0
j �=i

∑∞
t=1 P̃j [τ = t]
eaρ2 (loga)ρ1

≤ M

eaρ2 (loga)ρ1
,

where the first inequality above follows from the stopping rule in (4.18), (A.30) and (A.33), and
the second inequality follows from a change of measure argument.

The error probability under the null hypothesis can be analyzed in a similar manner. In partic-
ular, for any non-null hypothesis j ∈ [M], we have that

pj (z
t )

p0(z
t )

=
(

1/a

1 − 1/a

)N(j,0)(1 − 1/a

1/a

)N(j,1)

. (A.35)
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By defining p̃j (z
t ) according to

p̃u
j = μ̃b, u = j, p̃u

j = πb, u �= j, (A.36)

we get from the first equality of (A.26), the first inequality of (A.27), and (A.35) that

p̃j (z
t )

p0(zt )
=
(

μ̃b(0)

1 − πb(1)

)N(j,0)(1 − μ̃b(0)

πb(1)

)N(j,1)

≥ pj (z
t )

p0(z
t )

. (A.37)

Using (A.37) and the arguments similar to the one leading to (A.34), we get that

P0
[
δ
(
Zτ
) �= 0

]≤ M

eaρ2 (loga)ρ1
, (A.38)

thereby, together with (A.34), yielding (A.24).
Next, for a non-null hypothesis i = 1, . . . ,M , and any other hypothesis j = 0,1, . . . ,M, j �= i,

let τj denote the smallest time for which log (
pi(Z

t )

pj (Zt )
) > aρ2(loga)ρ1 for all t ≥ τj . Now for any

δ > 0 and A >
aρ2 (loga)ρ1

d
a
i −δ

, where d
a

i is as in (A.18) and with c̃ = a(loga)ρ1 , it follows that for a

large,

Pi

[ τj∑
t=1

c(i,Ut ) > A

]
≤ Pi

[τj −1∑
t=1

c(i,Ut ) > A − c̃; (τj − 1) ≥
⌊

A

2c̃

⌋]

≤ Pi

[τj −1∑
t=1

c(i,Ut ) >
aρ2(loga)ρ1

(d
a

i − δ)
− c̃; (τj − 1) ≥

⌊
A

2c̃

⌋]

≤
∞∑

n=
A/(2c̃)�
Pi

[
n∑

t=1

c(i,Ut ) >
log (pi(Z

n)/pj (Z
n))

(d
a

i − δ/2)

]
(A.39)

≤
∞∑

n=
A/(2c̃)�
O
(
n−λ

)= O

((
A

2c̃

)−λ+1)
, (A.40)

where (A.39) follows from the fact that for a large, c̃
aρ2 (loga)ρ1 → 0, and (A.40) follows from

Lemma A.4. Consequently, we get from (A.40) that for any j �= i,

Ei

[ τj∑
t=1

c(i,Ut )

]
≤ aρ2(loga)ρ1

d
a

i − δ

(
1 +

∫ ∞
aρ2 (loga)ρ1

d
a
i −δ

O

((
A

2c̃

)−λ+1)
dA

)

≤ aρ2(loga)ρ1

d
a

i − δ

(
1 + 2c̃O

(( aρ2 (loga)ρ1

d
a
i −δ

2c̃

)−λ+2))
(A.41)
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≤ aρ2(loga)ρ1

d
a

i − δ

(
1 + 2a(loga)ρ1O

((
aρ2−1

d
a

i − δ

)−λ+2))

= aρ2(loga)ρ1

d
a

i − δ

(
1 + o(1)

)
,

for λ sufficiently large so that (λ − 2)(ρ2 − 1) > 1.
Last, it follows from (4.18) that τ ≤ maxj �=i τj . Consequently, we get from (A.41), (A.18) by

virtue of the fact that c(i, u) ≥ c(i, u) (cf. Lemma 4.1 and (A.17)), that

Ei

[
τ∑

t=1

c(i,Ut )

]
≤ aρ2(loga)ρ1

d
a

i − δ

(
1 + o(1)

)

= aρ2(loga)ρ1

νD(μ‖π) − δ

(
1 + o(1)

)
,

thereby, together with (A.24), yielding (4.21) and, hence, completing the proof, as δ and ν can
be arbitrarily close to 0 and 1, respectively.
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