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We establish general moment estimates for the discrete and continuous exit times of a general Itô process
in terms of the distance to the boundary. These estimates serve as intermediate steps to obtain strong con-
vergence results for the approximation of a continuous exit time by a discrete counterpart, computed on a
grid. In particular, we prove that the discrete exit time of the Euler scheme of a diffusion converges in the
L1 norm with an order 1/2 with respect to the mesh size. This rate is optimal.
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1. Introduction

This paper is motivated by the study of the strong convergence rate of the discrete time approxi-
mation of the first exit time θ of a process Z from a non-empty open subset O.

The interest for numerical discretization of diffusion processes dates back to the sixties, see
[28,33] and [27] for general references. Different approaches can be used to approximate the first
exit time of a diffusion. We briefly recall them for the sake of completeness and to make clear
the contribution of this paper.

a. By the very nature of the problem, space discretization schemes naturally appear. The first
version is based on the Walk On Sphere (WOS) schemes introduced in [33]. In the Brownian mo-
tion case, one simulates its position by the first hitting time of a ball contained in the domain and
centered at the starting point: the position is uniformly distributed on the sphere and thus straight-
forward to sample. The sampled point is then used as a new starting point. One repeats the above
procedure until one gets close enough to the boundary of O. For a time-homogeneous diffusion
process X, the scheme is modified using small balls and an Euler–Maruyama approximation. In
[29,31], strong error estimates on the exit position Xθ are proved, assuming in particular that the
domain O is convex and that the diffusion coefficient satisfies a uniform ellipticity condition.
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These results do not include an approximation of the exit time θ . Weak approximation results
that is, for E[ϕ(Xθ)] with ϕ continuous and bounded, are established in [30].

b. For polygonal domains moving from spheres to spheres may not be suitable because of the
corners. One has to replace balls by parallelepipeds (tensor products of intervals). Exit times from
parallelepipeds are easy to sample. Faure [10] was probably the first one who developed these
ideas. In [32], these ideas are further analyzed for diffusion processes with time-dependency by
exploiting small parallelepipeds. Strong error estimates of the exit position and the exit time are
established: the order of convergence of the exit time approximation is 1 − ε with respect to the
space step (for any 0 < ε < 1), that is, equivalently 1

2 − ε (for any 0 < ε < 1/2) with respect
to the time step, see [32], Theorem 8.2. Here again, convexity of O and strong ellipticity were
assumed. Related simulations are discussed in [38]. Extensions to non-small parallelepipeds are
investigated in [9].

c. To maintain a certain simplicity of the simulation, one can alternatively perform the usual
Euler scheme X̄ on a grid π with deterministic time step |π | and stop when it exits O. Namely,
approximate θ by

θ̄ π := min{t ∈ π : X̄t /∈ O}.
This is a crude approximation, nevertheless the simplest and quickest to use: this is why it has
gained much interest in the applied probability community. It results in an order of weak con-
vergence equal to 1

2 with respect to |π |, see [15,21]. Interestingly, it is shown in [20] that this
order of weak convergence remains valid for general Itô processes, far beyond the usual diffusion
framework in which one can rely on PDE tools to decompose the error. The strong convergence
of the exit time is stated in [18], Theorem 4.2, but without speed. Finally, note that different tech-
niques can be used to speed-up the convergence in the weak sense: sampling the continuous time
exit using diffusion bridge techniques [2,3,15] (possibly with local modifications of the boundary
[7,16] or exponential-time stepping [26]) or using discrete exit times combined with an inward
shifting of the boundary [21]. To our knowledge, no strong error estimates are available for these
schemes.

As a matter of fact, until recently only little was known about the rate of L1 convergence of
the discrete exit time θ̄π of an Euler scheme of a diffusion towards the exit time θ of the exact
diffusion, although there are important fields where the L1 criterion is the only relevant one.
As examples, let us mention the approximation of backward stochastic differential equations
considered in a domain [6] and the multi level Monte Carlo methods [14,24]. In [6], Theorem 3.1,
the authors prove that the convergence rate of the discrete exit time of the Euler scheme is of order
1
2 − ε with respect to |π | (for any 0 < ε < 1/2). Because of the aforementioned applications
the question whether one can take ε = 0 in the previous estimate has been raised. Also, their
arguments are restricted to finite time horizons and the question whether they could be extended
to an infinite time horizon was open. A slightly more precise result was obtained later on by [25],
Theorem 3.1, in which the ε is replaced by a | log(|π |)|1/2 term: their upper-bound behaves
like |π |1/2| log(|π |)|1/2. However, it is tight to the a-priori knowledge of the existence of rather
involved weak bounds of the same order proved for exit times in [21]. And the question whether
the good speed is of order of |π |1/2 was still open.

In this paper, we answer these questions to the positive (see Theorem 3.11). We emphasize that
our contribution is also to consider unbounded state and times domains, to leave the Markovian
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setting, and not being restricted to the Euler scheme. The abstract results, we obtain, include as
a special case:

Theorem A. Let X be the solution of a Brownian stochastic differential equation with bounded
Lipschitz coefficients and let X̄ be its Euler scheme. Assume that Assumption 3.8 below about the
non-characteristic boundary condition holds, then for all T > 0, there exist c, ε > 0 such that,
for |π | ≤ ε,

E
[∣∣[θ∧T ] − [

θ̄π∧T
]∣∣] ≤ c|π |1/2 and

(
E

[∣∣Xθ∧T − X̄θ̄π∧T

∣∣2])1/2 ≤ c|π |1/4.

Theorem A can be seen as a corollary and, at the same time, as a motivation for the abstract
setting of this paper.

The restriction in Theorem A to a finite time interval is not important in the above. In particular,
the discrete exit time of an Euler scheme converges at the rate 1/2 in the L1 norm, even if the time
horizon is unbounded, see Theorem 3.9 below. Theorems 3.9 and 3.11 follow from an abstract
version1 stated in Theorem 3.2, which we establish in a non-Markovian setting in the spirit
of [20]. As a first step of our analysis, we provide general controls on the expected time to exit in
terms of the distance to the boundary, see Theorems 2.3 and 2.4 below. They are established both
for continuous exit times and for discrete exit times, that is, the latter are restricted to take values
on a discrete grid. Essentially, we only use a mild non-characteristic boundary type condition
and a uniform bound on the conditional expected times to exit. The fact that, as opposed to most
of the papers quoted above, we analyze situations with unbounded time horizon in a L∞ sense
is delicate because the usual finite-time error estimates, for example, on Euler schemes, blow up
exponentially with respect to the time horizon.

In fact, our results allow to address much more general problems than the first exit time approx-
imations for Markovian stochastic differential equations. In terms of applications, many optimal
stopping, impulse control, singular control or optimal monitoring problems have solutions given
by the hitting times of a domain O by a state process Z, see, for example, [4,12,17,34,36,37]. In
practice, the process Z is only monitored in discrete time and one needs to know how well these
hitting times will be approximated by counterparts computed on a finite grid. In terms of model-
ing, there is also an increasing need in non-Markovian or infinite dimensional settings, in which
there is no clear connection between exit times and PDEs with Dirichlet boundary conditions.
A typical example is the HJM framework for interest rates, see [23], but this can more gener-
ally refer to path-dependent SDEs, see, for example, [8], or to stochastic evolution equations on
Banach spaces, see, for example, [22].

The variety of possible applications motivates the abstract setting of Sections 2 and 3.1 in
which we provide our general moment and approximation estimates on the first exit time of
a process Z from a domain O. This process does not need to be neither Markov, nor finite
dimensional, we only impose an Itô dynamic for the distance to the boundary and assume that it
satisfies a non-characteristic type boundary condition, see Assumption (P). In this general setting,

1If not interested by this abstract part, the reader may proceed directly to Section 3.2 that is dedicated to the Euler scheme.
It is self-contained, and can be read – up to the proofs – without going through the previous sections.
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we prove in particular that

E
[∣∣θ − θπ

∣∣] = O
(|π |1/2),

where θ is the first exit time of Z, and θπ is its counterpart computed on a time grid π , with
modulus |π |, see Theorem 3.2 applied to Z = X = X̄. The result remains true when an extra
approximation is made on Z and the corresponding distance process converges in L1 at a rate
1/2. We shall check our general assumptions in details only for the application to the first exit
time approximation of SDEs, see Section 3.

We would like to insist on the fact that, even in the simpler context of a Markovian SDE,
the advantage of the abstract results of Section 2 is that they can be applied simultaneously and
without extra effort to the original diffusion process and to its Euler scheme. We are not aware of
any specific proof that would simplify and shorten our argumentation when using the particular
setting of Markovian SDEs.

The paper is organized as follows: In Section 2, we introduce a general set-up followed by the
statement of our quantitative results on the moments of the first time to exit. The proof of the
main results, Theorems 2.3 and 2.4, is split into several subsections. We first establish general
Freidlin type inequalities on moments of exit times, which will be controlled in terms of the
probability of sub-harmonic paths in Section 2.4. Estimates on this probability yield to the proof
of Theorem 2.3, that applies to continuous exit times. A final recursion argument is needed to
pass from continuous exit times to discrete exit times, see Section 2.6. The application to the
exit time approximation error is discussed in Section 3, first in an abstract setting, then for the
solution of a stochastic differential equation whose exit time is estimated by the discrete exit time
of its Euler scheme.

Throughout this paper, we let (�,F,P) be a complete probability space supporting a d-
dimensional Brownian motion W . We denote by F := (Ft )t≥0 the right-continuous completion
of the natural filtration induced by W . The symbol T denotes the set of stopping times that are
finite a.s. We write Eτ and Pτ for the conditional expectation and probability, respectively, given
Fτ . Inequalities between random variables are usually understood in the a.s.-sense without men-
tioning it. Finally, given a vector a ∈ Rd or a matrix A ∈ Rm×n, the notation |a| and |A| stands
for the Euclidean and the Hilbert–Schmidt norm, respectively.

2. Moment estimates for continuous and discrete exit times

The main results of this section are Theorems 2.3 and 2.4. They are the basis to prove Theo-
rem 3.2, which is the main result of the paper in its abstract form.

2.1. Assumptions

Let (Z, dZ ) be a metric space equipped with the Borel σ -algebra generated by the open sets. In
the following, we fix an open set O of Z with

∅ �=O � Ō �Z,
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in which Ō denotes the closure of O, and let (Zt )t≥0 be a continuous F-adapted Z-valued process
starting in Z0 ≡ z0 ∈ O.

The two main results of this section concern estimates on the time taken by the process Z

to reach the boundary of O, where the corresponding exit time takes values in a set π which
either coincides with R+ or equals to a countable subset of R+, that can be thought to be the
discretisation points in time of an approximation scheme. Therefore the standing assumption of
this section is that either:

(a) π =R+,
(b) or π consists of a strictly increasing sequence 0 = t0 < t1 < t2 < · · · with limn tn = ∞ and

|π | = supn≥1 |tn − tn−1| ≤ 1.

In both cases, we set

φt := max{s ∈ π : s ≤ t} and φ+
t := min{s ∈ π : s ≥ t}, (2.1)

which are the closest points in π to the left and to the right of t .
Our first assumption concerns the path regularity of the process Z.

Assumption (Z) (Regularity of Z along π ). There is a locally bounded map κ : R+ × (0,∞) 	→
R+ such that

Pτ

[
sup

τ≤t≤τ+T

dZ (Zt ,Zφt∨τ ) > ρ
]

≤ κ(T ,ρ)|π |

for all τ ∈ T , T ≥ 0, and ρ > 0.

Although the condition (Z) is – so far – a condition on a single fixed time-net π , we require the
upper bound in a form of a product κ(T ,ρ)|π |. As shown in Lemma A.1 below, this is a typical
form that is also required in our later computations. Our next set of assumptions concerns the
behaviour of the process Z close to the boundary ∂O of O.

Assumption (P) (Distance process δ(Z)). There exist L ≥ 1 and an L-Lipschitz function δ :
Z 	→ R such that δ > 0 on O, δ = 0 on ∂O, and δ < 0 on Ōc. In addition, the process P := δ(Z)

admits the Itô process decomposition

Pt = P0 +
∫ t

0
bs ds +

∫ t

0
a�
s dWs (2.2)

for t ≥ 0, where

(i) (P, b, a) is a predictable process with values in [−L,L]d+2,
(ii) there is a fixed r ∈ (0,L−3/4) and a set �r ∈ F of measure one, such that |Pt (ω)| ∨

dZ (Zt ,Zφt )(ω) ≤ r implies that |at (ω)| ≥ 1/L whenever ω ∈ �r and t ≥ 0.

Before we continue, let us comment on the latter assumptions.
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Remark 2.1. (a) The process P = δ(Z) measures the algebraic distance of Z to the boundary
∂O in terms of the function δ. The existence of a signed distance δ that is 1-Lipschitz can be
checked in various settings easily (starting from the usual distance one can check whether for
all segments [x, y] = {z ∈ Z : dZ (x, z) + dZ (z, y) = dZ (x, y)} with x ∈ O and y ∈ (Ō)c the
intersection [x, y] ∩ ∂O is non-empty), and it can be modified outside a suitable neighborhood
of ∂O in order to be uniformly bounded.

(b) The Itô decomposition (2.2) may implicitly impose additional smoothness assumptions on
∂O: for instance, if Z is an Rd -valued Itô process, then P is also an Itô process provided that the
domain is C2 with compact boundary, see [20], Proposition 2.1. Hence, the condition (i) is not
too restrictive.

(c) The coefficients b and a may depend on π . This will be the case in Section 3.2 when our
abstract results will be applied to an Euler scheme.

(d) The condition (ii) is a uniform non-characteristic boundary condition. It ensures that the
fluctuation of the paths of Z are not tangential to the boundary. When Z solves a SDE with diffu-
sion coefficient σ(·), i.e. a�

t = Dδ(Zt )σ (Zt ), see Section 3.2, then the natural non-characteristic
boundary condition is ∣∣Dδ(z)σ (z)

∣∣ ≥ 1/L if
∣∣δ(z)∣∣ ≤ r, (2.3)

that is, |at | ≥ 1/L if |Pt | ≤ r . In the case of an Euler scheme Z̄, see (3.3), we have ā�
t =

Dδ(Z̄t )σ (Z̄φt ) and P̄t = δ(Z̄t ). The natural condition (2.3) is no more sufficient to ensure that
|āt | ≥ 1/L if |P̄t | ≤ r . But, by a continuity argument, it is satisfied if the point Z̄φt at which the
diffusion coefficient is evaluated is not too far from the current position Z̄t , that is, dZ (Zt ,Zφt )

is small as well. See Lemma A.3 below. Finally, we would like to stress that without any non-
characteristic boundary condition pathological phenomena may occur, see [15], Remark 1.1, and
[19], Remark 7. The latter gives an example where σ vanishes almost linearly at the boundary,
for θ – the exit of the exact diffusion at the boundary – one has θ = +∞ a.s. and for θ̄ π – the
exit of the Euler scheme at the time-grid – one has θ̄π < +∞ a.s.

Now we can define the main objects of this section: given � ≥ 0, τ ∈ T , and an integer p ≥ 1,
we set

θ�(τ ) := inf{t ≥ τ : Pt ≤ �},
θπ
� (τ ) := inf{t ≥ τ : t ∈ π,Pt ≤ �},

�
p
� (τ ) := Eτ

[(
θ�(τ ) − τ

)p]1/p
,

�
p,π

� (τ ) := Eτ

[(
θπ
� (τ ) − τ

)p]1/p
.

Our aim is to provide pointwise estimates on �1
0(τ ) and �

1,π
0 (τ ). Our arguments require an

additional control on the first conditional moment of the times to exit.

Assumption (L) (Uniform bound on expectations of exit times). One has that �
1,π
0 (τ ) ≤ L for

all τ ∈ T .
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In Assumption (L) (similarly in Proposition 2.2 and Lemma 2.8 below), we keep in mind that
θ0(τ ) ≤ θπ

0 (τ ). Therefore, one has �1
0(τ ) ≤ �

1,π
0 (τ ), so that �

1,π
0 (τ ) ≤ L automatically implies

�1
0(τ ) ≤ L. It should be emphasized that Assumption (L) concerns the given process (Zt )t≥0 and

distance δ, and therefore the fixed distance process (Pt )t≥0, and that the same constant L ≥ 1 as
before is taken for notational simplicity. We refer to [11], Chapter III, Lemma 3.1, for sufficient
conditions ensuring that the exit times of a stochastic differential equation have finite moments,
that are bounded only in terms of the diameter of the domain, the bounds on the coefficients of
the stochastic differential equation and a partial ellipticity condition.

In Lemma 2.8 below, we show that Assumption (L) implies that θπ
0 (τ )− τ has finite exponen-

tial moments, uniformly in τ ∈ T . We conclude this subsection with some equivalent variants of
condition (L). The proof is provided in the Appendix.

Proposition 2.2. The condition (L) is equivalent to either of the following ones:

(L′) There is a L′ ≥ 1 such that, for all τ ∈ T ,

�
1,π
0 (τ ) ≤ L′ a.s. on {Pτ > 0}.

(L′′) There exist c > 0 and α ∈ (0,1) such that, for all τ ∈ T ,

Pτ

[
θπ

0 (τ ) ≥ τ + c
] ≤ α.

2.2. First moment control near the boundary

Now we are in a position to state the main results of this section. We will denote by T π the set of
stopping times with values in π . Remember that the following can be applied to situations where
π =R+, in which case Assumption (Z) is automatically satisfied and the extra term |π |1/2 below
vanishes.

Theorem 2.3. Let the Assumptions (Z), (P) and (L) be satisfied.

(a) If τ ∈ T π , then

�1
0(τ ) ≤ c(2.3)

[
Pτ + |π |]1{Pτ ≥0},

where c(2.3) = c(2.3)(r,L, d, κ) > 0.
(b) If τ ∈ T , then

�1
0(τ ) ≤ d(2.3)

[
Pτ + |π |1/2]1{Pτ ≥0},

where d(2.3) = d(2.3)(r,L, d, κ) > 0.

The proof of this theorem will be given in Section 2.5 below. Its counterpart for discrete exit
times corresponds to the following statement when π �=R+, and is proved in Section 2.6.
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Theorem 2.4. Let the Assumptions (Z), (P) and (L) be satisfied. Then there exists an ε(2.4) =
ε(2.4)(r,L, d, κ) > 0 such that if |π | ≤ ε(2.4) then one has

�
1,π
0 (τ ) ≤ d(2.4)

[|Pτ | + |π |1/2] for τ ∈ T ,

where d(2.4) = d(2.4)(r,L, d, κ) > 0.

Theorem 2.3 is similar to [20], Lemma 4.2, in which the time horizon is bounded and the
counterpart of (P)(ii) does not require dZ (Z,Zφ) ≤ r . Our additional requirement yields to a
weaker assumption and explains the presence of the additional |π |-terms in our result. We also
refer to [11], Chapter III, Section 3.3, who considers a Markovian setting for a uniformly fast
exit of a diffusion from a domain.

Theorem 2.4 is of similar nature but is much more delicate to establish. An attempt to obtain
such a result for the Euler scheme of stochastic differential equations on a finite time horizon
can be found in [6] by a combination of their Lemmas 5.1, 5.2 and 5.3. However, they were only
able to achieve a bound in O|π |→0(|π |1/2−ε) for all 0 < ε < 1/2. We shall comment on this in
Section 3 below. The absolute values on Pτ account for the case where Zτ is outside O and
τ /∈ T π yielding a positive time to exit.

The proofs of the above theorems are divided in several steps and provided in the next sub-
sections (see Sections 2.5 and 2.6 for the final arguments). Both start with arguments inspired
by [11] and that were already exploited in [6]. One important novelty is our set of assumptions
where we do not use any Markovian hypothesis and where we only assume that the delay to exit
is uniformly bounded in expectation with respect to the initial time. Furthermore, we also refine
many important estimates of [6] and use a new final recursion argument which is presented in
Section 2.6. This recursion is crucial in order to recover the bound O|π |→0(|π |1/2), in contrast to
the bound O|π |→0(|π |1/2−ε) in [6].

Remark 2.5. Lemma 2.8 below implies the same estimates for (�
p

0 (τ ))p and (�
p,π

0 (τ ))p , p ≥ 2,

as obtained for �1
0(τ ) and �

1,π
0 (τ ) in Theorems 2.3 and 2.4.

Remark 2.6. Theorems 2.3 and 2.4 extend to the case where O is the intersection of countable
many (Oi )i∈I satisfying the Assumptions (P) and (L) for some family of processes (P i)i∈I with
the same L ≥ 1 and r ∈ (0,L−3/4). Indeed, denote by �

1,π
0i and �1

0i the counterparts of �
1,π
0

and �1
0 associated to Oi , i ∈ I , then we have, a.s.,

�1
0(τ ) ≤ inf

i∈I
�1

0i (τ ) and �
1,π
0 (τ ) ≤ inf

i∈I
�

1,π
0i (τ )

whenever O = ⋂
i∈I Oi .

Remark 2.7. Take d = 1, O = (−∞,1) ⊂ Z = R, π = R+, and let Z = |W |2 + z0 with 1/2 <

z0 < 1. As distance function take an appropriate δ ∈ C∞(R) with δ constant outside (0,2) and
δ(z) = 1 − z on [1/2,3/2]. Then the Conditions (Z), (P) and (L) are satisfied and �1

0(0) =
E[θ0(0)] = E[|Wθ0(0)|2] = 1 − z0 = P0, which coincides with the upper-bound of Theorem 2.3
up to a multiplicative constant.
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2.3. Freidlin type inequalities on moments of exit times

We start with a-priori estimates inspired by the proof of the exponential fast exit of Freidlin [11],
Lemma 3.3, Chapter 3: A uniform bound on the conditional expected times to exit implies the
existence of uniform conditional exponential moments for these exit times. We adapt Freidlin’s
arguments to our setting.

Lemma 2.8. Let Assumption (L) hold, p ≥ 1 be an integer, L(p) := p!Lp , and τ ∈ T . Then we
have (

�
p

0 (τ )
)p ≤ cp,(2.8)�

1
0(τ ) and

(
�

p,π

0 (τ )
)p ≤ cp,(2.8)�

1,π
0 (τ )

with cp,(2.8) := pL(p−1). Consequently,(
�

p,π

0 (τ )
)p ≤ L(p),

Eτ

[
ec(θπ

0 (τ )−τ)
] ≤ (1 − cL)−1,

where c ∈ [0,L−1).

Proof. 1. The estimates for �
p

0 (τ ) and �
p,π

0 (τ ) are obtained in the same way, we only detail
the second one by an induction over p. The case p = 1 is an identity. Assume that the statement
is proven for some p ≥ 1 and all τ ∈ T . Observe that, on {θπ

0 (τ ) > t ≥ τ } = {∀s ∈ [τ, t] ∩ π :
Zs ∈O}, we have

θπ
0 (τ ) = inf{s ≥ τ : s ∈ π,Zs /∈O} = inf{s ≥ t ∨ τ : s ∈ π,Zs /∈O} = θπ

0 (t ∨ τ).

Hence, for A ∈Fτ we can write

E[(�p+1,π

0 (τ ))p+11A]
p + 1

=
∫ ∞

0
E

[
1A

(
θπ

0 (τ ) − t
)p1{θπ

0 (τ )>t≥τ }
]
dt

=
∫ ∞

0
E

[
1AEt∨τ

[(
θπ

0 (t ∨ τ) − t ∨ τ
)p]

1{θπ
0 (τ )>t≥τ }

]
dt

≤ p!Lp−1
∫ ∞

0
E

[
1AEt∨τ

[
θπ

0 (t ∨ τ) − t ∨ τ
]
1{θπ

0 (τ )>t≥τ }
]
dt

≤ p!Lp

∫ ∞

0
E[1A1{θπ

0 (τ )>t≥τ }]dt

≤ L(p)E
[
1AEτ

[
θπ

0 (τ ) − τ
]]

,

so that the proof is complete because A ∈Fτ was arbitrary.
2. The consequently part is now obvious. �
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2.4. An a-priori control in terms of the probability of strictly
sub-harmonic paths

Now we provide a control on �1
0(τ ) in terms of the conditional probability of

Aτ
0 := {

2Pb + |a|2 ≥ L−2/2 on
[
τ, θ0(τ )

]}c
.

Intuitively we can say, the more non-degenerate the process P 2
t from τ to θ0(τ ) is, the smaller is

the time of exit.

Lemma 2.9. Let Assumptions (L) and (P)(i) be satisfied. Then there exists a constant c(2.9) =
c(2.9)(L, d) > 0 such that, for all τ ∈ T ,

�1
0(τ ) ≤ c(2.9)Pτ

[
Aτ

0

]
.

Proof. Let E := {Pτ ≥ 0} ∈ Fτ so that Pθ0(τ ) = 0 on E and �1
0(τ ) = 0 on Ec. Moreover, on E

we obtain that

θ0(τ ) − τ ≤ 1(Aτ
0)c2L2

∫ θ0(τ )

τ

(
2Psbs + |as |2

)
ds + (

θ0(τ ) − τ
)
1Aτ

0

= 1(Aτ
0)c2L2(|Pθ0(τ )|2 − |Pτ |2

) − 1(Aτ
0)c2L2

∫ θ0(τ )

τ

2Psa
�
s dWs

+ (
θ0(τ ) − τ

)
1Aτ

0

≤ −1(Aτ
0)c4L2

∫ θ0(τ )

τ

Psa
�
s dWs + (

θ0(τ ) − τ
)
1Aτ

0
.

Using the bound on �1
0(τ ) from Assumption (L) and the bounds from Assumption (P)(i), we

obtain E
∫ ∞

0 1{τ<s≤θ0(τ )}P 2
s |as |2 ds < ∞ and, on E,

Eτ

[
−1(Aτ

0)c

∫ θ0(τ )

τ

Psa
�
s dWs

]
= Eτ

[
1Aτ

0

∫ θ0(τ )

τ

Psa
�
s dWs

]

≤ L2
√

dPτ

[
Aτ

0

]1/2(
�1

0(τ )
)1/2

.

On the other hand, Lemma 2.8 implies

Eτ

[(
θ0(τ ) − τ

)
1Aτ

0

] ≤ �2
0(τ )Pτ

[
Aτ

0

]1/2 ≤ [
c2,(2.8)�

1
0(τ )Pτ

[
Aτ

0

]]1/2
.

Combining the above estimates and using the inequality ab ≤ a2 + 1
4b2 gives, on E,

�1
0(τ ) ≤ 4L4

√
dPτ

[
Aτ

0

]1/2(
�1

0(τ )
)1/2 + [

c2,(2.8)�
1
0(τ )Pτ

[
Aτ

0

]]1/2

≤ 16L8dPτ

[
Aτ

0

] + 1
4�1

0(τ ) + c2,(2.8)Pτ

[
Aτ

0

] + 1
4�1

0(τ ),
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which leads to the required result. �

2.5. Proof of Theorem 2.3

We start by two lemmas before we turn to the proof of Theorem 2.3.

Lemma 2.10. Assume that (P) and (L) hold. Let � ∈ {�1
0,�

1,π
0 } and assume that there is a

constant c > 0 such that for all τ ∈ T π one has that

�(τ) ≤ c
[
Pτ + |π |1/2]1{0≤Pτ ≤r} + L1{r<Pτ }.

Then for all 0 < r̃ < r there is a d(2.10) = d(2.10)(r − r̃,L, d, c) > 0 such that for all τ ∈ T one
has that

�(τ) ≤ d(2.10)

[|Pτ | + |π |1/2]1{|Pτ |≤r̃} + L1{r̃<|Pτ |}.

Proof. The case π =R+ is trivial because �(τ) ≤ L so that we can assume that π �=R+. Using

�(τ) ≤ Eτ

[
�

(
φ+

τ

) + |π |]
and

Eτ

[|Pφ+
τ

− Pτ |
] ≤ L[1 + √

d]|π |1/2 =: A|π |1/2,

we can conclude by

�(τ) ≤ Eτ

[
�

(
φ+

τ

) + |π |]1{|Pτ |≤r̃} + L1{r̃<|Pτ |}

≤ Eτ

[
c
[
Pφ+

τ
+ |π |1/2]1{0≤P

φ
+
τ

≤r} + L1{r<P
φ
+
τ

} + |π |]1{|Pτ |≤r̃}

+ L1{r̃<|Pτ |}

≤ [
c|Pτ | +

[
c(1 + A) + 1

]|π |1/2]1{|Pτ |≤r̃}
+ LPτ

[
r < Pφ+

τ
, |Pτ | ≤ r̃

]
1{|Pτ |≤r̃} + L1{r̃<|Pτ |}

≤ [
c|Pτ | +

[
c(1 + A) + 1

]|π |1/2]1{|Pτ |≤r̃}
+ LPτ

[|Pφ+
τ

− Pτ | ≥ r − r̃
]
1{|Pτ |≤r̃} + L1{r̃<|Pτ |}

≤
[
c|Pτ | +

[
c(1 + A) + 1 + LA

r − r̃

]
|π |1/2

]
1{|Pτ |≤r̃} + L1{r̃<|Pτ |}. �

Next, we control the quantity Pτ [Aτ
0] to make Lemma 2.9 applicable.

Lemma 2.11. Assume that (Z) and (P) hold. Then for all c > 0 there exists an η(c) =
η(c, r,L,d) > 0 such that

Pτ

[
Aτ

0

] ≤ η(c)Pτ + c�1
0(τ ) + κ

(
2

c
, r

)
|π | a.s. on

{
Pτ ∈ [0, r]}, (2.4)
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where τ ∈ T π and Aτ
0 := {2Pb + |a|2 ≥ L−2/2 on [τ, θ0(τ )]}c .

Proof. For ease of notations, we set γ (t, s) := dZ (Zt ,Zs), for t, s ≥ 0. Let θ̃r (τ ) := inf{t ≥ τ :
Pt = r} ∈ [0,∞]. Assumption (P)(ii) implies 2Pb + |a|2 ≥ L−2/2 P-a.s. on {|P | ∨ γ (·, φ) ≤ r}
for r ≤ L−3/4. It follows from the restriction τ ∈ T π that on

E := {
Pτ ∈ [0, r]}

we have, P-a.s., that

(
Aτ

0

)c ⊇
{

sup
τ≤t≤θ0(τ )

|Pt | ≤ r
}

∩
{

sup
τ≤t≤θ0(τ )

γ (t, φt ∨ τ) ≤ r
}

⊇ {
θ0(τ ) ≤ θ̃r (τ )

} ∩
{

sup
τ≤t≤θ0(τ )

γ (t, φt ∨ τ) ≤ r
}
.

Setting BT := {supτ≤t≤τ+T γ (t, φt ∨ τ) ≤ r} for T := 2c−1, we continue on E with

Pτ

[
Aτ

0

] ≤ Pτ

[
Aτ

0, θ0(τ ) ≤ τ + T ,BT

]
+ Pτ

[
θ0(τ ) > τ + T

] + Pτ

[
Bc

T

]
≤ Pτ

[
θ̃r (τ ) < θ0(τ ) ≤ τ + T ,BT

] + Pτ

[
θ0(τ ) > τ + T

]
(2.5)

+ Pτ

[
Bc

T

]
≤ Pτ

[
θ̃r (τ ) < θ0(τ ) ≤ τ + T ,BT

] + c

2
�1

0(τ ) + κ

(
2

c
, r

)
|π |,

where the last inequality follows from Chebyshev’s inequality and Assumption (Z). To treat the
first term in (2.5) we set, for T ≥ 0,

θT
0,r := θ0(τ ) ∧ θ̃r (τ ) ∧ (τ + T ).

In view of Assumption (P), we can define Q ∼ P by the density

dQ

dP
= H := E

(
−

∫ ·

τ

λ�
s dWs

)
θT

0,r

,

where

λ := a
[|a|−2 ∧ L2]b1[τ,θT

0,r ] so that |λ| ≤ L4
√

d =: λ∞,

and deduce from Girsanov’s theorem (cf. [5], page 163) that

WQ := W + 1[τ,∞)

∫ θT
0,r∧·

τ

λs ds
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is a Brownian motion associated to Q. For any given � > 1, we obtain

Pτ

[
θ̃r (τ ) < θ0(τ ) ≤ τ + T ,BT

]
≤ Pτ

[
H−1 > �

] +EQ
τ

[
H−11{H−1≤�}1{θ̃r (τ )<θ0(τ )≤τ+T }1BT

]
(2.6)

≤ Pτ

[
H−1 > �

] + �Qτ

[
θ̃r (τ ) < θ0(τ ) ≤ τ + T ,BT

]
.

The first term above can be estimated, by using Chebyshev’s inequality, the inequality θT
0,r ≤

θ0(τ ), and Lemma 2.8:

Pτ

[
H−1 > �

] ≤ 1

| log�|2 2Eτ

[
1

4
λ4∞

∣∣θT
0,r − τ

∣∣2 + λ2∞
(
θT

0,r − τ
)]

(2.7)

≤ (Lλ4∞ + 2λ2∞)

| log�|2 �1
0(τ ) ≤ c

2
�1

0(τ ),

where the last inequality holds by taking the constant � = �(c,L,d) large enough. To handle the
second term in (2.6), set

Mt := E
Q
t [Pτ ] + 1[τ,∞)(t)

∫ t

τ

1{s<θT
0,r }a

�
s dWQ

s for t ≥ 0

so that M is a uniformly integrable Q-martingale. Let θM
0 (τ ) and θM

r (τ ) be the first hitting

times after τ of levels 0 and r by M , and set θ
M,T
0,r := θM

0 (τ ) ∧ θM
r (τ ) ∧ (τ + T ). Recalling

Assumption (P), we see that

1[τ,∞)(t)

∫ t

τ

1{s<θT
0,r }a

�
s λs ds = 1[τ,∞)(t)

∫ t

τ

1{s<θT
0,r }bs ds on BT ∩ E.

Hence, on BT ∩E the processes M and P coincide on [τ, θT
0,r ]. By the optional sampling theorem

and the non-negativity of (Mt)t∈[τ,θM,T
0,r ] a.s. on E, we then deduce

Pτ 1E = Mτ 1E = EQ
τ (1EM

θ
M,T
0,r

) ≥ 1ErQτ

(
θM
r (τ ) < θM

0 (τ ) ∧ (τ + T )
)

≥ 1ErQτ

(
θ̃r (τ ) < θ0(τ ) < τ + T ,BT

)
.

Plugging this inequality together with (2.7) into (2.6), gives on E that

Pτ

[
θ̃r (τ ) < θ0(τ ) ≤ τ + T ,BT

] ≤ c

2
�1

0(τ ) + �(c,L,d)

r
Pτ . �

Proof of Theorem 2.3. Part (a): For τ ∈ T π and c > 0, Lemmas 2.9 and 2.11 imply

�1
0(τ ) ≤ c(2.9)Pτ

[
Aτ

0

] ≤ c(2.9)

[
η(c)Pτ + c�1

0(τ ) + κ

(
2

c
, r

)
|π |

]
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a.s. on {Pτ ∈ [0, r]}. Specializing to c = 1/(2c(2.9)) leads to

�1
0(τ ) ≤ 2c(2.9)

[
η
(
(2c(2.9))

−1)Pτ + κ(4c(2.9), r)|π |]
on {Pτ ∈ [0, r]}. On {Pτ < 0} we simply have �1

0(τ ) = 0, while �1
0(τ ) ≤ L on {Pτ > r} by

Assumption (L).
This implies

�1
0(τ ) ≤ c̄(2.3)

[
Pτ + |π |]1{0≤Pτ ≤r} + L1{r<Pτ }, (2.8)

where c̄(2.3) = c̄(2.3)(r,L, d, κ) > 0. By a change of the constant c̄(2.3) the assertion follows.
Part (b): Combining (2.8) and Lemma 2.10, we derive

�1
0(τ ) ≤ d̄(2.3)

[|Pτ | + |π |1/2]1{|Pτ |≤r̃} + L1{r̃<|Pτ |}

for 0 < r̃ < r and τ ∈ T , where d̄(2.3) = d̄(2.3)(r, r̃,L, d, κ) > 0. Observe that �1
0(τ ) = 0 for

Pτ ≤ 0, thus the above r.h.s. needs to be specialized only for Pτ ≥ 0. Then, choosing r̃ = r/2
and adapting d̄(2.3), we obtain part (b). �

2.6. Proof of Theorem 2.4

Now we are in a position to conclude the proof of Theorem 2.4. It is based on a recursion argu-
ment. Namely, given τ ∈ T such that 0 ≤ Pτ ≤ r , we wait until the next time ϑ in R+ such that
Z hits the boundary. The time it takes, ϑ − τ , is controlled by Theorem 2.3. If Zφ+

ϑ
/∈ O, then

we stop: θπ
0 (τ ) − τ ≤ ϑ − τ + |π |. If not, then we know from standard estimates (Lemma 2.12

below) that Pφ+
ϑ

∈ [0, r], up to some event with a probability controlled by O(|π |1/2). In this

case, one can restart the above procedure from φ+
ϑ ∈ π . Again, one waits for the next time in R+

such that Z reaches the boundary and stops if Z /∈ O at the following time in π . One iterates
this procedure. The key point is that the probability of the event set {Zφ+

ϑ
∈ O} is uniformly

controlled by some α < 1 (see Lemma 2.13 below).
Before we start with the proof of Theorem 2.4, we state two lemmas that are needed. The first

one can be verified by Doob’s maximal inequality and Assumption (P)(i):

Lemma 2.12. Under the Assumption (P)(i) one has, for all τ ∈ T and λ > 0,

Pτ

[
max

τ≤t≤φ+
τ

|Pt − Pτ | ≥ λ
]

≤ 1

λ
Eτ

[
max

τ≤t≤φ+
τ

|Pt − Pτ |2
]1/2 ≤ c(2.12)

λ
|π |1/2,

where c(2.12) := L + 2
√

dL.

Lemma 2.13. Let Assumptions (Z) and (P) hold. Then there exists an 0 < α(2.13) =
α(2.13)(r,L, d, κ) < 1 such that, a.s.,

Pτ [Pφ+
τ

> 0] ≤ α(2.13) on

{
dZ (Zτ ,Zφτ ) ≤ r

2
,Pτ = 0

}
∈Fτ
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for all τ ∈ T and 0 < |π | ≤ ε(2.13) = ε(2.13)(r,L, d, κ).

Proof. For ease of notations, we set γ (t, s) := dZ (Zt ,Zs), for t, s ≥ 0. It is sufficient to check
for B ∈ Fτ of positive measure with

B ⊆
{
γ (τ,φτ ) ≤ r

2
,Pτ = 0

}

that

P[Pφ+
τ

> 0,B] ≤ α(2.13)P[B].
Let

B :=
{

max
τ≤t≤φ+

τ

(|Pt | ∨ γ (t, φt ∨ τ)
) ≤ r

2

}
∩ B

so that

B ⊆
{

max
τ≤t≤φ+

τ

(|Pt | ∨ γ (t, φt )
) ≤ r

}
. (2.9)

We use Assumptions (P), (Z) and Lemma 2.12 to continue with

P[Pφ+
τ

> 0,B]

= P

[∫ φ+
τ

τ

bs ds +
∫ φ+

τ

τ

a�
s dWs > 0,B

]

≤ P

[∫ φ+
τ

τ

a�
s dWs > −L

(
φ+

τ − τ
)
,B

]
+ P

[
Bc ∩ B

]

≤ P

[∫ φ+
τ

τ

a�
s dWs > −L

(
φ+

τ − τ
)
,B

]

+
[
κ

(
1,

r

2

)
|π | + 2c(2.12)

r
|π |1/2

]
P[B].

Assuming that we are able to show that

P

[∫ φ+
τ

τ

a�
s dWs > −L

(
φ+

τ − τ
)
,B

]
≤ θP[B] (2.10)

for some θ = θ(L,d) ∈ (0,1), the proof would be complete as

P[Pφ+
τ

> 0,B] ≤
[
θ + κ

(
1,

r

2

)
|π | + 2c(2.12)

r
|π |1/2

]
P[B]

and ε(2.13) = ε(2.13)(r,L, d, κ) > 0 can be taken small enough to guarantee

P[Pφ+
τ

> 0,B] ≤ αP[B]
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for some α = α(r,L,d, κ) ∈ (0,1). In order to check (2.10), we let

Mt := e�Wt∧τ +
∫ τ∨t

τ

ā�
s dWs,

where ās := as1{s≤φ+
τ } + e1{s>φ+

τ } with e = d−1/2(1, . . . ,1)�. Define �(s) := inf{t ≥ 0 : 〈M〉t >

s}. Applying the Dambis–Schwarz theorem [35], page 181, yields that B := M� is a Brow-
nian motion in the filtration G = (Gt )t≥0 defined by G = F� and M = B〈M〉. One can also
check that Fτ ⊆ G〈M〉τ . Letting η := φ+

τ − τ (which is Fτ -measurable), observing η ≤ √
η and

ηL−2 ≤ 〈M〉τ+η − 〈M〉τ ≤ ηdL2 on B by Assumption (P) and (2.9), and taking an auxiliary
one-dimensional Brownian motion B̃ defined on some (�̃, P̃), we conclude by

P

[∫ φ+
τ

τ

a�
s dWs > −L

(
φ+

τ − τ
)
,B

]

= P
[
B〈M〉

φ
+
τ

− B〈M〉τ > −L
(
φ+

τ − τ
)
,B

]
≤ P

[
sup

t∈[〈M〉τ +ηL−2,〈M〉τ +ηdL2]
Bt − B〈M〉τ > −Lη,B

]

≤ P
[

sup
t∈[〈M〉τ +ηL−2,〈M〉τ +ηdL2]

Bt − B〈M〉τ > −Lη,B
]

≤ P̃× P
[

sup
ηL−2≤u≤ηdL2

B̃u > −L
√

η,B
]

≤ P̃× P
[

sup
L−2≤u≤dL2

B̃u > −L,B
]

= P̃
[

sup
L−2≤u≤dL2

B̃u > −L
]
P[B]

=: θP[B]. �

Proof of Theorem 2.4. (a) First, we assume that τ ∈ T π . For i ≥ 0, we define

ϑ0 := θ0(τ ), ϑi+1 := θ0
(
φ+

ϑi

)
, ϑπ

0 := θπ
0 (τ ), ϑπ

i+1 := θπ
0

(
φ+

ϑi

)
,

Ei := {Pφ+
ϑi

> 0} and Ai :=
⋂

0≤j≤i

Ej ∈Fφ+
ϑi

.

1. From the definitions, we obtain for i ≥ 0:

(a) ϑi+1 ≤ ϑπ
i+1 (by definitions of the stopping times);

(b) φ+
ϑi+1

≤ ϑi+1 + |π | (by the definition of φ+);

(c) ϑπ
i+1 = ϑπ

i+2 on Ei+1 = {Zφ+
ϑi+1

∈O} (since φ+
ϑi+1

< ϑπ
i+1 on Ei+1);

(d) ϑπ
i+1 ≤ ϑi+1 + |π | on (Ei+1)

c = {Zφ+
ϑi+1

/∈ O} (by definition of the stopping time ϑπ
i+1).
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Item (c) leads to

ϑπ
i+1 = ϑπ

i+21Ei+1 + ϑπ
i+11[Ei+1]c ,

ϑπ
i+1 − φ+

ϑi
= (

ϑπ
i+2 − φ+

ϑi+1

)
1Ei+1 + (

φ+
ϑi+1

− φ+
ϑi

)
1Ei+1 + (

ϑπ
i+1 − φ+

ϑi

)
1[Ei+1]c .

With (b) and (d), we continue to

ϑπ
i+1 − φ+

ϑi
≤ (

ϑπ
i+2 − φ+

ϑi+1

)
1Ei+1 + (

ϑi+1 + |π | − φ+
ϑi

)
1Ei+1

+ (
ϑi+1 + |π | − φ+

ϑi

)
1[Ei+1]c

= (
ϑπ

i+2 − φ+
ϑi+1

)
1Ei+1 + |π | + (

ϑi+1 − φ+
ϑi

)
and

Eτ

[(
ϑπ

i+1 − φ+
ϑi

)
1Ai

] ≤ Eτ

[(
ϑπ

i+2 − φ+
ϑi+1

)
1Ai

1Ei+1

]
+ |π |Pτ [Ai] +Eτ

[(
ϑi+1 − φ+

ϑi

)
1Ai

]
= Eτ

[(
ϑπ

i+2 − φ+
ϑi+1

)
1Ai+1

]
+ |π |Pτ [Ai] +Eτ

[(
ϑi+1 − φ+

ϑi

)
1Ai

]
.

Summing up the above inequalities from i = 0 to i = n − 1 yields

Eτ

[(
ϑπ

1 − φ+
ϑ0

)
1A0

] ≤ Eτ

[(
ϑπ

n+1 − φ+
ϑn

)
1An

]
(2.11)

+
n−1∑
i=0

(|π |Pτ [Ai] +Eτ

[(
ϑi+1 − φ+

ϑi

)
1Ai

])
.

2. For σ ∈ T set Aσ := {γ (σ,φσ ) ≤ r/2} ∈ Fσ , with γ (t, s) := dZ (Zt ,Zs), for t, s ≥ 0. Then,
for i ≥ 1,

Pτ [Ai] = Eτ

[
1Ai−1 1Aϑi Pϑi

[Ei]
] +Eτ

[
1Ai−1Pφ+

ϑi−1

[[
Aϑi

]c ∩ Ei

]]
≤ α(2.13)Pτ [Ai−1] +Eτ

[
1Ai−1Pφ+

ϑi−1

[[
Aϑi

]c ∩ Ei

]]
,

because of Fφ+
ϑi−1

⊆ Fϑi
, Lemma 2.13, and Pϑi

= 0 on Ai−1. To treat the second term, we take

a fixed T > 0 and use (Z) and (L) to get

Pφ+
ϑi−1

[[
Aϑi

]c ∩ Ei

] ≤ Pφ+
ϑi−1

[{
γ (ϑi,φϑi

) > r/2
} ∩ {

ϑi ≤ φ+
ϑi−1

+ T
}]

+ Pφ+
ϑi−1

[
ϑi > φ+

ϑi−1
+ T

]
≤ Pφ+

ϑi−1

[
sup

φ+
ϑi−1

≤t≤φ+
ϑi−1

+T

γ
(
t, φt ∨ φ+

ϑi−1

)
> r/2

]
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+ Pφ+
ϑi−1

[
ϑi > φ+

ϑi−1
+ T

]
≤ κ(T , r/2)|π | +Eφ+

ϑi−1

[
θ0

(
φ+

ϑi−1

)]
/T

≤ κ(T , r/2)|π | + L/T .

By taking T > 0 large enough and then ε(2.12) ∈ (0, ε(2.13)] small enough such that

α(2.13) + κ(T , r/2)ε(2.12) + L

T
=: α < 1

and assuming that |π | ≤ ε(2.12), we obtain Pτ [Ai] ≤ αPτ [Ai−1] and, by induction,

Pτ [Aj ] ≤ αj for all j ≥ 0. (2.12)

3. Let us set Fi := {Pφ+
ϑi

> r} for i ≥ 0. Because of φ+
ϑi

∈ T π , applying (2.8) from the proof of

Theorem 2.3 and using the fact that Ai ∈Fφ+
ϑi

and Assumption (L), lead to

Eτ

[(
ϑi+1 − φ+

ϑi

)
1Ai

]
= Eτ

[
Eφ+

ϑi

[(
ϑi+1 − φ+

ϑi

)
1Ai

]]
≤ Eτ

[
c̄(2.3)

(
(Pφ+

ϑi

)+ + |π |)1Ai−1 1Ei∩[Fi ]c
] + LPτ [Ai ∩ Fi]

≤ Eτ

[
c̄(2.3)

(
(Pφ+

ϑi

)+ + |π |)1Ai−1

] + LEτ

[
1Ai−1Pϑi

[Fi]
]
,

where A−1 := �. Because Pϑi
≤ 0, Lemma 2.12 implies

Eϑi

[
(Pφ+

ϑi

)+
] ≤ c(2.12)|π |1/2 and Pϑi

[Fi] ≤ c(2.12)

r
|π |1/2,

and (2.12) yields

Eτ

[(
ϑi+1 − φ+

ϑi

)
1Ai

]
≤ Eτ

[
c̄(2.3)

(
c(2.12)|π |1/2 + |π |1/2)1Ai−1

] + LPτ [Ai−1]c(2.12)

r
|π |1/2

≤ D|π |1/2α(i−1)+

with D := c̄(2.3)c(2.12) + c̄(2.3) + Lc(2.12)/r . If we insert the last estimate into (2.11) and let
n → +∞, then we get

Eτ

[(
ϑπ

1 − φ+
ϑ0

)
1A0

] ≤ |π |1/2 |π |1/2 + (2 − α)D

1 − α
,

where we exploit Lemma 2.8 to check

Eτ

[∣∣ϑπ
n+1 − φ+

ϑn

∣∣1An

] ≤
√

L(2)Pτ [An]1/2.
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Observe now that

θπ
0 (τ ) = [

φ+
ϑ0

+ (
ϑπ

1 − φ+
ϑ0

)]
1A0 + φ+

ϑ0
1[A0]c ≤ |π | + ϑ0 + (

ϑπ
1 − φ+

ϑ0

)
1A0,

so that by an application of the previous estimate, (2.8) and Assumption (L) we obtain

�
1,π
0 (τ ) ≤ c̄(2.4)

[
Pτ + |π |1/2]1{0≤Pτ ≤r} + L1{r<Pτ }, (2.13)

for τ ∈ T π and c̄(2.4) = c̄(2.4)(r,L, d, κ) > 0.
(b) We now consider the general case τ ∈ T . Applying Lemma 2.10 to (2.13), we obtain for

0 < r̃ < r that

�
1,π
0 (τ ) ≤ d̄(2.4)

[|Pτ | + |π |1/2]1{|Pτ |≤r̃} + L1{r̃<|Pτ |},

where d̄(2.4) = d̄(2.4)(r, r̃,L, d, κ) > 0. Taking r̃ = r/2 and adapting d̄(2.4), we obtain the state-
ment of the theorem. �

3. General L1-error for exit time approximations

The main application we develop in this paper is the study of the error made by estimating the
exit time θ of a diffusion X from a domain O by the discrete exit time θ̄ of an approximation
process X̄, which can be X itself or its Euler or Milstein scheme etc, computed on a grid π̄ . We
only assume that the corresponding distance processes remain close, at least at the order |π̄ |1/2

in L1. If X exits before X̄, then our assumptions imply that X̄ is close to the boundary as well.
If we also know that the expectation of the time it takes to the approximation scheme X̄ to exit
the domain is proportional to its distance to the boundary up to an additional term |π̄ |1/2, then
we can conclude that E[|θ̄ − θ |1{θ≤θ̄}] is controlled in |π̄ |1/2. The same idea applies if X̄ exits
before X. In this section, we show how Theorems 2.3 and 2.4 are used to follow this idea. We
start with an abstract statement and then specialize it to the case where X solves a stochastic
differential equation and X̄ is its Euler scheme.

3.1. Upper-bound in an abstract setting

We fix an open non-empty subset O of a metric space (Z, dZ ), satisfying the assumptions of Sec-
tion 2.1, and two Z-valued processes X and X̄. We consider the first exit time θ0 := θ0(0) of X

on π := R+ and θ̄ π̄
0 := θ̄ π̄

0 (0) of X̄ on π̄ �R+ (where π̄ satisfies the conditions of Section 2.1),
that is,

θ0 := inf{t ≥ 0 : Xt /∈ O} and θ̄ π̄
0 := inf{t ≥ 0 : t ∈ π̄ and X̄t /∈O}.

We let φ̄ and φ̄+ be the functions defined in (2.1) associated to π̄ .
We also fix a distance function δ : Z 	→ R such that δ > 0 on O, δ = 0 on ∂O, and δ < 0 on

Ōc, and set P := δ(X) and P̄ := δ(X̄).
Throughout this subsection we assume the following.
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Assumption 3.1. Assumptions (Z), (P) and (L) of Section 2.1 hold for (X,π,P ), (X̄, π̄ , P̄ ), and
δ with the same (r,L, κ).

Obviously, the estimate contained in (Z) is trivial for (X,π,P ) since π = R+ and φ is the
identity.

Theorem 3.2. Let Assumption 3.1 hold. Assume a stopping time υ : � → [0,∞] and some ρ > 0
such that

E
[|Pϑ − P̄ϑ |] ≤ ρ|π̄ |1/2 for all ϑ ∈ T with ϑ ≤ θ0 ∧ υ. (3.1)

Then for all integers p ≥ 1 there exist c(3.2) = c(3.2)(r,L, d, κ,p,ρ) > 0 and ε(3.2) = ε(3.2)(r,L,

d, κ) > 0 such that, for |π̄ | ≤ ε(3.2),

E
[∣∣[θ0 ∧ υ] − [

θ̄ π̄
0 ∧ υ

]∣∣p] ≤ c(3.2)|π̄ |1/2.

Proof. Define υ0 := θ0 ∧ υ and ῡ0 := θ̄ π̄
0 ∧ υ . We observe that

Eῡ0

[[υ0 − ῡ0]p
] ≤ (

�
p

0 (ῡ0)
)p

on {υ0 ≥ ῡ0},
Eυ0

[[ῡ0 − υ0]p
] ≤ (

�
p,π

0 (υ0)
)p on {υ0 < ῡ0}

and continue with Lemma 2.8 to get

Eῡ0

[[υ0 − ῡ0]p
] ≤ p!Lp−1�1

0(ῡ0) on {υ0 ≥ ῡ0},
Eυ0

[[ῡ0 − υ0]p
] ≤ p!Lp−1�

1,π
0 (υ0) on {υ0 < ῡ0}.

Applying Theorem 2.3 to (X,π,P ) and τ = ῡ0 we get

Eῡ0

[[υ0 − ῡ0]p
] ≤ p!Lp−1c(2.3)Pῡ01{Pῡ0 ≥0}

≤ p!Lp−1c(2.3)|Pῡ0 − P̄ῡ0 |
on {υ0 > ῡ0}, where we use that on {υ0 > ῡ0} we have ῡ0 = θ̄ π̄

0 and therefore P̄ῡ0 = P̄θ̄ π̄
0

≤ 0.
Consequently,

Eῡ0

[[υ0 − ῡ0]p
] ≤ p!Lp−1c(2.3)|Pῡ0 − P̄ῡ0 | on {υ0 ≥ ῡ0}.

Applying Theorem 2.4 to (X̄, π̄ , P̄ ) and τ = υ0 implies

Eυ0

[[ῡ0 − υ0]p
] ≤ p!Lp−1d(2.4)

[|P̄υ0 | + |π̄ |1/2]
= p!Lp−1d(2.4)

[|P̄υ0 − Pυ0 | + |π̄ |1/2]
on {υ0 < ῡ0}, where (similarly as above) on this set υ0 = θ0 and therefore Pυ0 = Pθ0 = 0. Letting
ϑ := υ0 ∧ ῡ0, the above inequalities imply

Eϑ

[|υ0 − ῡ0|p
] ≤ p!Lp−1[c(2.3) ∨ d(2.4)]

[|Pϑ − P̄ϑ | + |π̄ |1/2],
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which, by Assumption (3.1), leads to the desired result. �

We conclude this section with sufficient conditions ensuring that (3.1) holds. In the following,
‖ · ‖q denotes the Lq -norm for q ≥ 1. The proof being standard, it is postponed to the Appendix.

Lemma 3.3. Assume ϑ, τ ∈ T such that 0 ≤ ϑ ≤ τ .

(a) We have that

∥∥dZ (Xϑ, X̄ϑ)
∥∥

1 ≤ inf
1<q<∞

∞∑
k=0

P[τ ≥ k](q−1)/q
∥∥∥ sup

t∈[k,k+1)

dZ (Xt , X̄t )

∥∥∥
q
.

(b) Assume α > 0, 0 < β < ∞, 1 < q < ∞, and Q(·, q) : {0,1,2, . . .} →R+ such that
(i) P[τ ≥ k] ≤ αe−βk for k = 0,1,2, . . . .

(ii) ‖ supt∈[k,k+1) dZ (Xt , X̄t )‖q ≤ Q(k,q)|π̄ |1/2 for k = 0,1,2, . . . .

(iii) c := ∑∞
k=0 eβ(1/q−1)kQ(k, q) < ∞.

Then one has ‖dZ (Xϑ, X̄ϑ)‖1 ≤ α1−1/qc|π̄ |1/2 = O(|π̄ |1/2).

Here we have some kind of trade-off between the decay of P[τ ≥ k], measured by β , and the
growth of ‖ supt∈[k,k+1) dZ (Xt , X̄t )‖q measured by Q(·, ·). In the product eβ(1/q−1)kQ(k, q), the
factor Q(k,q) is thought to be increasing in q , but the factor eβ(1/q−1)k decreases as β and q

increase.
Combining Theorem 3.2 and Lemma 3.3, and using

|Pθ − P̄θ | =
∣∣δ(Xθ ) − δ(X̄θ )

∣∣ ≤ LdZ (Xθ , X̄θ ),

gives the following corollary.

Corollary 3.4. Let Assumption 3.1 hold. Let υ be a stopping time. Assume that the conditions
of Lemma 3.3(b) are satisfied with τ = θ0∧υ , and let p ≥ 1 be an integer. Then there is a c > 0,
depending at most on (r,L,d, κ,p,α,β, q,Q), such that

E
[∣∣[θ0∧υ] − [

θ̄ π̄
0 ∧υ

]∣∣p] ≤ c|π̄ |1/2 whenever |π̄ | ≤ ε(3.2)

with ε(3.2) > 0 taken from Theorem 3.2.

3.2. Application to the Euler scheme approximation of the first exit time of
a SDE

Now we specialize the discussion to the case where Z = Rd endowed with the usual Euclidean
norm | · | and where X is the strong solution of the stochastic differential equation

Xt = x0 +
∫ t

0
μ(Xs) ds +

∫ t

0
σ(Xs) dWs

for some fixed x0 ∈O, where (μ,σ ) : Rd → Rd ×Rd×d satisfy
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Assumption 3.5. There exists 0 < Lμ,Lσ ≤ L such that, for all x, y ∈Rd ,∣∣μ(x) − μ(y)
∣∣ ≤ Lμ|x − y|, ∣∣σ(x) − σ(y)

∣∣ ≤ Lσ |x − y|,
and |μ(x)| + |σ(x)| ≤ L.

Remark 3.6. As usual some rows or columns of σ can be equal to 0. In particular, the first
component of X can be seen as the time component by setting the first entry of μ equal to 1
and the first row of σ equal to 0, that is, Xt = (t,X

�
t ) where X� is a diffusion process in Rd−1.

This allows to consider time dependent coefficients (where one could investigate to what extent
weaker assumptions on the first coordinate of μ and σ , like 1/2-Hölder continuity, would be
sufficient for the purpose of this paper). This formalism allows also to consider time-dependent
domains as in [21], that is, O = ⋃

t≥0({t} ×O�
t ) where (O�

t )t≥0 is a family of domains in Rd−1.

Then the distance function δ((t, x�)) shall be the signed spatial distance to the boundary O�
t .

Remark 3.7. In practice, it suffices that Assumption 3.5 holds on a neighborhood of O. Indeed,
we can apply Urysohn’s lemma to find a C∞

b function ϕε such that ϕε = 1 on Ō and ϕε = 0 on
(O+ Bε)

c , where Bε is the ball of center 0 and radius ε > 0. Let us assume that (O+ Bε)
c �=∅.

Then, (μ̃, σ̃ ) := (μ,σ )ϕε satisfies Assumption 3.5 whenever it is satisfied by (μ,σ ) on the ε-
neighborhood of O with possibly different constants. Now we can solve the SDE with (μ̃, σ̃ )

and obtain a solution X and its Euler scheme which uses only (μ,σ ) until stopped at θ0 and θ̄ π̄
0 ,

respectively. Similarly, if O is convex, we can simply assume that Assumption 3.5 holds on Ō as
we can replace (μ,σ ) by (μ̃, σ̃ ) := (μ,σ ) ◦ �O , in which �O is the projection operator on Ō.

In the following, we denote by Dδ and D2δ the gradient (considered as row vector) and the
Hessian matrix of δ, respectively. To verify condition (P), we use the following sufficient as-
sumption.

Assumption 3.8. There exists a bounded C2
b function δ : Rd 	→ R such that δ > 0 on O, δ = 0

on ∂O and δ < 0 on Ōc , which satisfies |Dδ| ≤ 1 and the non-characteristic boundary condition

|Dδσ | ≥ 2L−1 on
{|δ| ≤ r

}
. (3.2)

Note that this condition is usually satisfied if σ is uniformly elliptic on a neighborhood of the
boundary of the domain,2 and if this boundary is C2 and compact, see, for example, [13].

We let X̄ be the Euler scheme based on the grid π̄ , that is,

X̄t = x0 +
∫ t

0
μ(X̄φ̄s

) ds +
∫ t

0
σ(X̄φ̄s

) dWs (3.3)

with φ̄t := max{s ∈ π̄ : s ≤ t}. We recall that

θ0 := inf{t ≥ 0 : Xt /∈O} and θ̄ π̄
0 := inf{t ≥ 0 : t ∈ π̄ and X̄t /∈ O}.

2For example, although not uniformly elliptic, the CIR process satisfies this condition whenever 0 /∈ ∂O.
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We are now in a position to state the main results of this section, whose proofs are postponed to
the end of the section. Note that a sufficient condition for the assumption (3.4) below is given in
Lemma A.4. See also [11], Chapter 3.

Theorem 3.9. Let the Assumptions 3.5 and 3.8 hold and assume that

Eτ

[∣∣θ̄ π̄
0 (τ ) − τ

∣∣ + ∣∣θ0(τ ) − τ
∣∣] ≤ L for all τ ∈ T . (3.4)

Let υ be a stopping time with values in R+ ∪ {∞}. Assume that there are ρ > 0, 4 ≤ q < ∞, and
β >

qd
q−1 (6Lμ + 3qL2

σ ) such that3

P[θ0∧υ ≥ k] ≤ ρe−βk for all k = 0,1,2, . . . . (3.5)

Then there exist c, ε > 0 and, for any integer p ≥ 1, a constant cp > 0 such that, for |π̄ | ≤ ε,

E
[∣∣[θ0∧υ] − [

θ̄ π̄
0 ∧υ

]∣∣p] ≤ cp|π̄ |1/2 and
(
E

[∣∣Xθ0∧υ − X̄θ̄ π̄
0 ∧υ

∣∣2])1/2 ≤ c|π̄ |1/4.

Remark 3.10. Assuming (for example) υ ≡ ∞, for the purpose of this paper the estimate E[|θ0 −
θ̄ π̄

0 |p] ≤ cp|π̄ |1/2 is sufficient, as we know from [15,21] that it cannot be improved for p = 1.
However, it would be of interest to find the optimal exponents αp > 0 such that E[|θ0 − θ̄ π̄

0 |p] ≤
cp|π̄ |αp , in the case p > 1. This is left for future studies.

In the case where we are only interested in a finite horizon problem, then the integrability
condition (3.4) is not necessary.

Theorem 3.11. Let the Assumptions 3.5 and 3.8 hold. Fix T > 0. Then there exist c, ε > 0 and,
for any integer p ≥ 1, a constant cp > 0 such that, for |π̄ | ≤ ε,

E
[∣∣[θ0∧T ] − [

θ̄ π̄
0 ∧T

]∣∣p] ≤ cp|π̄ |1/2 and
(
E

[∣∣Xθ0∧T − X̄θ̄ π̄
0 ∧T

∣∣2])1/2 ≤ c|π̄ |1/4.

Remark 3.12. The main aim of [6] was to study the strong error made when approximating
the solution of a BSDE whose terminal condition is of the form g(Xθ0∧T ), for some Lipschitz
map g and T > 0, by a backward Euler scheme; see [6] for the corresponding definitions and
references. Theorem 3.11 complements [6], Theorem 3.1, in which the upper-bound takes the
form O|π̄ |→0(|π̄ |1/2−ε) for all 0 < ε < 1/2. Moreover, the upper-bound of the second inequality
of [6], Theorem 3.3, is of the form O|π̄ |→0(|π̄ |1/4−ε) for all 0 < ε < 1/4. This comes from the
control they obtained on the exit time of their Theorem 3.1. With Theorem 3.11 of this paper it
can be reduced to O|π̄ |→0(|π̄ |1/4). Our results open the door to the study of backward Euler type
approximations of BSDEs with a terminal condition of the form g(Xθ0), that is, there is no finite
time horizon T > 0. This will however require to study at first the regularity of the solution of
the BSDE, which is beyond the scope of this paper.

3Note that the q can be chosen. The optimal one is given by 4 ∨ (1 +
√

1 + 2Lμ/L2
σ ).
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Proof of Theorems 3.9 and 3.11. (a) Theorem 3.9 is an immediate consequence of Lemmas 3.3,
A.1, A.2 and A.3 (see the Appendix below) and Corollary 3.4.

(b) Note that (3.5) automatically holds when υ ≡ T ∈ R+. To prove Theorem 3.11, we argue
exactly as in (a) above but for an augmented state process X# and for its exit time θ#

0 from an
augmented domain O#. It goes together with its Euler scheme X̄# whose discrete exit time is
θ̄

π̄ ,#
0 . It is constructed in such a way that Assumption 3.1 of Corollary 3.4 holds, in particular

(3.4), that is, (L), is satisfied.
Hence, results of Theorem 3.9 hold for (X#, θ#

0 , X̄#, θ̄
π̄ ,#
0 ). On the other hand, it will be clear

from our construction that θ0 ∧ T = θ#
0 ∧ T , θ̄ π̄

0 ∧ T = θ̄
π̄ ,#
0 ∧ T , and that the first d components

of (X#, X̄#) coincide with (X, X̄) on [0, T ]. Thus, leading to the required result.
First, we extend Rd to Rd+1 equipped with the Euclidean metric and consider a function

� ∈ C2
b(R) such that

1. � ≤ 0 and �(0) = 0,
2. � is strictly increasing on [−2L,0] and strictly decreasing on [0,2L],
3. � ≡ −A on [−2L,2L]c for some A > L,
4. D� = 1 on [−L − (r/2),−(r/2)] and D� = −1 on [(r/2),L + (r/2)].

Note that our assumptions 0 < r < 1/(4L3) and L ≥ 1 guarantee the existence of such a �.
Moreover, we can assume that |δ|∞ ≤ L as P and P̄ take values in [−L,L] only. We define the
Lipschitz function δ# :Rd+1 → R by

δ#(x, y) := δ(x) + �(y)

and extend the open set O to an open set

O# := {
δ# > 0

} ⊆Rd+1.

By our construction, we have that

1. ∅ �=O# �O# �Rd+1,
2. O# ⊆Rd × [−2L,2L],
3. δ# is a distance function for O# in the sense of Assumption (P).

Assume an auxiliary one-dimensional Brownian motion B = (Bt )t≥0 on a complete probability
space (�′,F ′,P′) and define �̄ := � × �′ equipped with the completion F̄ of F ⊗ F ′ with
respect to P̄ := P ⊗ P′. We extend the processes W , B , X and X̄ canonically to �̄ (where we
keep the notation of the processes) and define the additional process Y by Yt := Bt∨T − BT .
The right-continuous augmentation of the natural filtration of the (d + 1)-dimensional Brownian
motion (W,B) is denoted by (F̄t )t≥0. Therefore, letting

X# :=
(

X

Y

)
, X̄# :=

(
X̄

Y

)
and

(
P #, P̄ #) := (

δ#(X#), δ#(X̄#)),
we obtain a setting that fulfills the assumptions of this paper. It remains to check that (X#,π,P #)

and (X̄#, π̄ , P̄ #) satisfy the conditions (Z), (P) and (L) with possibly modified parameters
(κ,L, r) (i.e., Assumption 3.1).
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Assumption (Z): For (X#,π,P #) the assumption is trivial, the case (X̄#, π̄ , P̄ #) follows from
the proof of Lemma A.1.

Assumption (P) for (X#,π,P #): The process P # admits an Itô decomposition

dP # = b# dt + a#�d

(
W

B

)
,

where b# is uniformly bounded and

a#� :=
(

Dδ(X)σ(X) 0

(0, . . . ,0) D�(Y )1[T ,∞)

)

is also bounded. The condition (P)(ii) follows from the observation that |δ#| ≤ r/2 implies either
|δ| ≤ r or r/2 ≤ |�| ≤ r/2 + L.

Assumption (P) for (X̄#, π̄ , P̄ #): Similarly, using (P)(ii) for r/2, implies that |P̄t | ≤ r and
|X̄t − X̄φt | ≤ r/2, or r/2 ≤ |�| ≤ r/2 + L.

Assumption (L): It is sufficient to check the exit time of the process Y from [−2L,2L] com-
puted on π̄ . This follows by the arguments of the proof of Lemma A.4. �

Appendix

A.1. Proof of Proposition 2.2

(L) ⇐⇒ (L′): The condition (L) obviously implies (L′). Conversely, since �
1,π
0 (τ ) ≤

Eτ [�1,π
0 (φ+

τ )] + |π |, where |π | ≤ 1, and �
1,π
0 (φ+

τ ) = 0 on {Pφ+
τ

≤ 0}, the assumption (L′)
implies that �

1,π
0 (τ ) ≤ L′ + 1 for all τ ∈ T .

(L) ⇐⇒ (L′′): Indeed, (L) implies (L′′) by Markov’s inequality applied to the level c := L/α

for a given α ∈ (0,1). Conversely, the fact that θπ
0 (τ + kc) = θπ

0 (τ ) on {θπ
0 (τ ) ≥ τ + kc} implies

that

Pτ

[
θπ

0 (τ ) ≥ τ + (k + 1)c
] = Eτ

[
1{θπ

0 (τ )≥τ+kc}Pτ+kc

[
θπ

0 (τ + kc) ≥ τ + (k + 1)c
]]

.

Applying (L′′) inductively, allows us to conclude that the left-hand side above is controlled by
αk+1. It follows that

Eτ

[
θπ

0 (τ ) − τ
] ≤ c + c

∑
k≥0

Pτ

[
θπ

0 (τ ) ≥ τ + (k + 1)c
]

≤ c + c
∑
k≥0

αk+1 = c/(1 − α)=: L.

This proves that (L′′) implies (L).
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A.2. Proof of Lemma 3.3

(a) For q > 1, we simply observe that

∥∥dZ (Xϑ, X̄ϑ)
∥∥

1 ≤
∞∑

k=0

E
[

sup
t∈[k,k+1)

dZ (Xt , X̄t )1ϑ∈[k,k+1)

]

≤
∞∑

k=0

P
[
ϑ ∈ [k, k + 1)

](q−1)/q
∥∥∥ sup

t∈[k,k+1)

dZ (Xt , X̄t )

∥∥∥
q

≤
∞∑

k=0

P[τ ≥ k](q−1)/q
∥∥∥ sup

t∈[k,k+1)

dZ (Xt , X̄t )

∥∥∥
q
,

(b) follows immediately.

A.3. Verification of the assumptions for the Euler scheme approximation

All over this section, we work under the framework of Section 3.2. We start with the condition
(Z) that is – in a sense – independent from the set O.

Lemma A.1. Under the Assumption 3.5 the processes X and X̄ satisfy condition (Z), where the
function κ : R+ × (0,∞) →R+ depends at most on (L,d).

Proof. For the process X with the time-net π = R+, it is trivially satisfied. Let us fix τ ∈ T ,
A ∈Fτ of positive measure, T > 0 and set

Yt := X̄τ+tT 1A for t ∈ [0,1].
For 2 < p < ∞ Assumption 3.5 implies that

E
[|Yt − Ys |p

] ≤ c
[
T p + T p/2]|t − s|p/2P[A]

for some c = c(L,d,p) > 0 independent from the choice of A ∈ Fτ . Fix α ∈ (0, 1
2 − 1

p
). Then it

follows from the continuity of Y and (the proof of) Kolmogorov’s theorem in [35]. Theorem 2.1,
page 26, that

E
[
1A sup

τ≤t≤τ+T

|X̄t − X̄φ̄t∨τ |p
]

≤ E
[
1A sup

|t−s|≤|π̄ |/T

|Yt − Ys |p
]

≤ |π̄ |pα

T pα
E

[
1A sup

|t−s|≤|π̄ |/T ;s,t∈D

|Yt − Ys |p
(|π̄ |/T )pα

]

≤ |π̄ |pα

T pα
E

[
1A sup

0≤s<t≤1;s,t∈D

|Yt − Ys |p
|t − s|pα

]

≤ |π̄ |pα

T pα
c′[T p + T p/2]P[A],
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where c′ = c′(c,p,α) > 0 and D ⊆ [0,1] are the dyadic points. Choosing p = 6 and α = 1/6 ∈
(0, 1

2 − 1
p
) = (0, 2

6 ) gives

Eτ

[
sup

τ≤t≤τ+T

|X̄t − X̄φ̄t∨τ |p
]

≤ c′[T 5 + T 2]|π̄ |

and

Pτ

[
sup

τ≤t≤τ+T

|X̄t − X̄φ̄t∨τ | ≥ ρ
]

≤ c′[T 5 + T 2]
ρp

|π̄ | for ρ > 0. �

The next lemma is similar to [1], Theorem A.1, see also [27], Theorem 9.6.2, page 324, which
however involves a T 2 term in the exponent, while we need a linear term. It corresponds to the
condition (b)(ii) of Lemma 3.3.

Lemma A.2. If Assumption 3.5 holds, then one has for all 4 ≤ q < ∞ that∥∥∥ sup
t∈[0,T ]

|Xt − X̄t |
∥∥∥

q
≤ Q(T,q)|π̄ |1/2,

where Q(T,q) := cQq(T )eαT with c > 0 depending at most on (q,L,Lμ,Lσ , d), a non-
negative polynomial Qq , and α := d(6Lμ + 3qL2

σ ).

Proof. 1. Let 2 ≤ v < ∞ and set � := X − X̄. It follows from Itô’s lemma that

|�s |2v =
∫ s

0
2v|�u|2v−2��

u d�u +
d∑

i=1

∫ s

0
v|�u|2v−2 d

〈
�i

〉
u

+
d∑

i,j=1

2v(v − 1)

∫ s

0
�i

u�
j
u|�u|2v−4 d

〈
�i,�j

〉
u
.

Under Assumption 3.5, we obtain

E
[|�s |2v

]
≤

∫ s

0
2vE

[|�u|2v−1|μ(Xu) − μ(X̄φ̄u
)
∣∣]du

+
∫ s

0
v
(
1 + 2d(v − 1)

)
E

[|�u|2v−2
∣∣σ(Xu) − σ(X̄φ̄u

)
∣∣2]

du

≤ A

∫ s

0
E

[|�u|2v−1(|�u| + |X̄u − X̄φ̄u
|)]du

+ B

∫ s

0
E

[|�u|2v−2
∣∣|�u|2 + |X̄u − X̄φ̄u

|2∣∣]du
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= [A + B]
∫ s

0
E

[|�u|2v
]
du + A

∫ s

0
E

[|�u|2v−1|X̄u − X̄φ̄u
|]du

+ B

∫ s

0
E

[|�u|2v−2|X̄u − X̄φ̄u
|2]du

for A := 2vLμ and B := 2v(1 + 2d(v − 1))L2
σ ≤ 6dv2L2

σ . Exploiting

|�u|2v−1|X̄u − X̄φ̄u
| ≤ 2v − 1

2v
|�u|2v + 1

2v
|X̄u − X̄φ̄u

|2v

and

|�u|2v−2|X̄u − X̄φ̄u
|2 ≤ v − 1

v
|�u|2v + 1

v
|X̄u − X̄φ̄u

|2v

we arrive at

E
[|�s |2v

]
≤

[
A + B + A

2v − 1

2v
+ B

v − 1

v

]∫ s

0
E

[|�u|2v
]
du

+
[

A

2v
+ B

v

]∫ s

0
E

[|X̄u − X̄φ̄u
|2v

]
du

≤ 2[A + B]
∫ s

0
E

[|�u|2v
]
du +

[
A

2v
+ B

v

]∫ s

0
E

[|X̄u − X̄φ̄u
|2v

]
du

≤ 12d
[
vLμ + v2L2

σ

] ∫ s

0
E

[|�u|2v
]
du

+ 6d
[
Lμ + vL2

σ

] ∫ s

0
E

[|X̄u − X̄φ̄u
|2v

]
du.

Exploiting

sup
u≥0

E
[|X̄u − X̄φ̄u

|2v
] ≤ cv|π̄ |v

for some constant cv = c(v,L) > 0, where we use the boundedness part of Assumption 3.5, we
derive

E
[|�s |2v

] ≤ 12d
[
vLμ + v2L2

σ

] ∫ s

0
E

[|�u|2v
]
du + 6d

[
Lμ + vL2

σ

]
scv|π̄ |v

and, by Gronwall’s lemma,

E
[|�s |2v

] ≤ 6d
[
Lμ + vL2

σ

]
cvse

s12d[vLμ+v2L2
σ ]|π̄ |v.
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2. Using the Itô decomposition of |�|2 and the Burkholder–Davis–Gundy and Hölder inequali-
ties, we obtain (for another constant c′

v = c′(v,Lμ,Lσ ) > 0) that

E
[

sup
0≤s≤T

|�s |2v
]

≤ c′
v

[
T v−1 + T v/2−1]∫ T

0
E

[|�u|2v + |X̄u − X̄φ̄u
|2v

]
du

≤ c′
v

[
T v + T v/2]|π̄ |v[cv + 6d

[
Lμ + vL2

σ

]
cve

12dT [vLμ+v2L2
σ ]]

≤ c′
vcv

[
T v + T v/2][1 + 6d

[
Lμ + vL2

σ

]]
e12dT [vLμ+v2L2

σ ]|π̄ |v.
Consequently, for q ≥ 4,∥∥∥ sup

0≤s≤T

|�s |
∥∥∥

q
≤ C(q,L,Lμ,Lσ , d)Qq(T )eT d[6Lμ+3qL2

σ ]|π̄ |1/2. �

Now, we verify Assumption (P):

Lemma A.3. Let the Assumptions 3.5 and 3.8 hold. Then P and P̄ satisfy the condition (P) for
r > 0 small enough and L ≥ 1 large enough, independently of |π̄ |.

Proof. First, we apply Itô’s lemma to obtain that dP̄t = b̄t dt + ā�
t dWt with

b̄t := Dδ(X̄t )μ(X̄φ̄t
) + 1

2 Tr
[(

σσ�)
(X̄φ̄t

)D2δ(X̄t )
]

and ā�
t := Dδ(X̄t )σ (X̄φ̄t

).

Up to an increase of L in Assumption (P) (which potentially leads to a decrease of r to satisfy
0 < r < 1/(4L3)), condition (i) is satisfied because δ,μ,σ,Dδ,D2δ are bounded. Since Dδ is
bounded by L and σ is L-Lipschitz,∣∣Dδ(X̄t )σ (X̄φ̄t

) − Dδ(X̄t )σ (X̄t )
∣∣ ≤ L2|X̄φ̄t

− X̄t |.
Consequently,

|āt | ≥ ∣∣Dδ(X̄t )σ (X̄t )
∣∣ − ∣∣Dδ(X̄t )σ (X̄φ̄t

) − Dδ(X̄t )σ (X̄t )
∣∣

≥ ∣∣Dδ(X̄t )σ (X̄t )
∣∣ − L2

∣∣X̄t − X̄φ̄t

∣∣.
For |P̄t | ≤ r , |X̄t − X̄φ̄t

| ≤ r and 0 < r < 1/(4L3) this finally gives |āt | ≥ 1/L so that P̄ satisfies
(P)(ii). The argument for P is analogous. �

We finally consider the Assumption (L). Conditions of type (A.1) below can be found in [11],
Chapter 3.

Lemma A.4. Let Assumption 3.5 be satisfied and assume an R > 0 and a non-increasing func-
tion ϕ : [0,∞) → (0,∞) with limT →∞ ϕ(T ) = 0 such that

sup
x∈O

P
[
θx

0 (R) ≥ T
] ≤ ϕ(T ) for all T ≥ 0, (A.1)
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where the open set O(R) := O + BR (BR is the open ball centered at zero with radius R > 0)
satisfies O(R) � O(R) � Rd and θx

0 (R) := inf{t ≥ 0 : Xx
t /∈ O(R)} for x ∈ O with (Xx

t )t≥0

being the diffusion started in x ∈ Rd . Then there exist ε̄ ∈ (0,1] and a constant K > 0 such that
|π̄ | ≤ ε̄ implies

Eτ

[
θ̄ π̄

0 (τ ) − τ
] +Eτ

[
θ0(τ ) − τ

] ≤ K for all τ ∈ T .

Proof. We only consider the estimate which involves θ̄ π̄
0 (τ ) (the other one follows directly from

Proposition 2.2). By Proposition 2.2, the case θ̄ π̄
0 (τ ) can be reduced to find α ∈ (0,1) and c > 0

with

Pτ

[
θ̄ π̄

0 (τ ) − τ ≥ c
] ≤ α for all τ ∈ T . (A.2)

Because for c > 1 one has

Pτ

[
θ̄ π̄

0 (τ ) − τ ≥ c
] ≤ Eτ

[
Pφ̄+

τ

[
θ̄ π̄

0

(
φ̄+

τ

) − φ̄+
τ ≥ c − 1

]]
,

it is sufficient to check (A.2) for τ ∈ T π̄ . Given τ ∈ T π̄ , we let

X̌t = x0 +
∫ t

0
μ̌s ds +

∫ t

0
σ̌s dWs

with μ̌t := 1(0,τ ](t)μ(X̌φ̄t
) + 1(τ,∞)(t)μ(X̌t ) and with the corresponding definition for σ̌ . Let

θ̌0(τ,R) := inf{t ≥ τ : X̌t /∈ O(R)}. For c ≥ 2 and τ ∈ T π̄ with |π̄ | ≤ ε̄, where ε̄ ∈ (0,1] is
chosen at the end of the proof, we get from Lemma A.2, applied to q = 4 and some T0 > 0, for
a set A ∈ Fτ of positive measure with A ⊆ {τ = t} ∩ {X̄π̄

t ∈ O} (note that τ takes only countable
many values) that

P
[
A ∩ {

θ̄ π̄
0 (τ ) − τ ≥ c

}]
= P

[
A ∩ {

θ̄ π̄
0 (t) − t ≥ c

}]
≤ P

[
A ∩ {

θ̌0(t,R) − t ≥ c/2
}]

+ P
[
A ∩ {|X̌

θ̌0(t,R)
− X̄

θ̌0(t,R)
| ≥ R/2

}]
+ P

[
A ∩ {|X̄φ̄+

θ̌0(t,R)

− X̄
θ̌0(t,R)

| ≥ R/2
}]

≤ P[A]
[

sup
x∈O

P
[
θx

0 (R) ≥ c/2
]

+ sup
x∈O

sup
|π̃ |≤ε̄

P
[∣∣Xx

θx
0 (R)

− X̄
x,π̃

θx
0 (R)

∣∣ ≥ R/2
] + c′(L)

R2
|π̄ |

]

≤ P[A]
[

sup
x∈O

P
[
θx

0 (R) ≥ c/2
]+ sup

x∈O
P
[
θx

0 (R) ≥ T0
]



First time to exit of a continuous Itô process 1661

+ sup
x∈O

sup
|π̃ |≤ε̄

P
[∣∣Xx

θx
0 (R)∧T0

− X̄
x,π̃

θx
0 (R)∧T0

∣∣ ≥ R/2
] + c′(L)

R2
|π̄ |

]

≤ P[A]
[
ϕ

(
c

2

)
+ ϕ(T0) +

(
2

R
Q(A.2)(T0,4)

)4

ε̄2 + c′(L)

R2
ε̄

]
,

where X̄x,π̃ is the Euler scheme for Xx based on the net π̃ . First, we choose c ≥ 2 and T0 >

0 large enough, then ε̄ small enough in order to arrange (A.2) for all τ ∈ T π̄ and some α ∈
(0,1). �
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