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Predictive constructions are a powerful way of characterizing the probability laws of stochastic processes
with certain forms of invariance, such as exchangeability or Markov exchangeability. When de Finetti-like
representation theorems are available, the predictive characterization implicitly defines the prior distribu-
tion, starting from assumptions on the observables; moreover, it often helps in designing efficient compu-
tational strategies. In this paper we give necessary and sufficient conditions on the sequence of predictive
distributions such that they characterize a Markov exchangeable probability law for a discrete valued pro-
cess X. Under recurrence, Markov exchangeable processes are mixtures of Markov chains. Our predictive
conditions are in some sense minimal sufficient conditions for Markov exchangeability; we also provide
predictive conditions for recurrence. We illustrate their application in relevant examples from the literature
and in novel constructions.

Keywords: Bayesian inference; edge reinforced random walks; Markov exchangeability; predictive
distributions; recurrence; reinforced processes

1. Introduction

Predictive characterization of the probability law of a stochastic process is a fundamental prob-
lem in probability and statistics. Informally, this means characterizing the probability law P of
a process (Xn,n ≥ 1) through the sequence of predictive distributions (Pn,n ≥ 1), such that X1
has distribution P1 and Xn+1|X1, . . . ,Xn has distribution Pn for n ≥ 1. The sequence (Pn) char-
acterizes a probability measure P for the stochastic process (Xn) under general assumptions,
by the Ionescu–Tulcea theorem. The problem of interest is to determine the conditions under
which it characterizes a law P with some given properties, and in particular, some specific in-
variance property. Necessary and sufficient conditions under which the sequence of predictive
distributions (Pn) characterizes an exchangeable P are given in [15]. In the present paper, we
give necessary and sufficient conditions for the sequence (Pn) to characterize a P which is par-
tially exchangeable in the sense of Diaconis and Freedman [10] – or, using the terminology of
Zaman [43] and Zabell [42], Markov exchangeable.

In Bayesian statistics, predictive characterizations have fundamental and practical relevance.
Prediction is often the main goal of statistical analysis and, from a Bayesian perspective, the pre-
dictive approach seems natural. Even in the context of independent replicates of an experiment,
probabilistic dependence is introduced through the assumption of exchangeability and prediction
is naturally solved through the conditional distributions of future results given the observed facts.
Indeed, according to de Finetti [7], a statistical model is just a link of the probabilistic chain that
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leads from past to future events. Thus, at least in principle, models and priors on non-observable
parameters can and should be induced by probability assertions on the observable Xn, such as
exchangeability and predictive structures. The predictive characterization of prior distributions
is a long studied problem in Bayesian statistics. Dirichlet conjugate priors for exchangeable
categorical sequences have been characterized by Zabell [41] based on Johnson’s sufficiency
postulate. Diaconis and Ylvisaker [12] characterize conjugate priors for the natural exponential
family through predictive conditions. Powerful predictive constructions have also been given in
Bayesian nonparametrics. The predictive characterization of the Dirichlet process in terms of
Pólya sequences [5] clarifies the relationship with random partitions in combinatorics and popu-
lation biology [13]. Walker and Muliere [39] characterize neutral to the right processes through
an extension of Johnson’s sufficiency postulate. The general class of species sampling priors
[30], which includes the Dirichlet process and the two parameter Poisson–Dirichlet process [29],
is characterized in terms of the predictive distributions. Zabell [42] extends the characterization
of Dirichlet conjugate priors through Johnson’s sufficiency postulate to Markov exchangeable
sequences. Reinforced processes [6,27,28] play an important role in predictive constructions of
exchangeable and Markov exchangeable sequences; references include [24,38]. Diaconis and
Rolles [11] provide a predictive characterization of conjugate priors for the transition matrix of
a reversible Markov chain through edge reinforced random walks on a graph. Developments for
variable order reversible Markov chains are found in [2] and [3]. Connections with the theory of
vertex-reinforced jump processes are studied in [33]. Beyond the foundational issues, predictive
characterizations are powerful tools in hierarchical modeling of symmetry structures and as gen-
erating algorithms which can be exploited for computational purposes, as recent developments
at the interface between statistics and machine learning show. See, for example, the predictive
construction of Markov exchangeable processes with countable unknown state space by Beal,
Ghahramani and Rasmussen [4] (see also [35] and [16]), which has a wide application in hierar-
chical clustering and infinite hidden Markov models; or the predictive construction of the Indian
buffet process [17] for latent features allocation, whose de Finetti-like representation has been
later provided in [36]. Refer to [34] for an overview and further references.

We recall the main concepts and provide some preliminary results in Section 2. We first review
two characterizations of mixtures of Markov chains, in terms of Markov exchangeability of the
process and of partial exchangeability of the matrix of successor states. The main point of this
section is to revisit main basic results in a predictive approach and relate the prior to the predictive
distributions. For exchangeable sequences, the prior measure is the limit law of the sequence of
predictive distributions; we formalize an analogous result for recurrent Markov exchangeable
sequences in Section 2.3. This result further enhances the interest for predictive constructions
and, therefore, for sufficient predictive conditions for Markov exchangeability.

Addressing the latter question is the main theoretical contribution of the paper, presented
in Section 3. We give necessary and sufficient conditions on the sequence of predictive rules
(Pn) under which they characterize a Markov exchangeable P for a discrete valued process
(Xn,n ≥ 1). Furthermore, we give some predictive conditions for recurrence in Section 4. Under
recurrence, a Markov exchangeable sequence is a mixture of recurrent Markov chains and the
predictive structure characterizes the mixing distribution; that is, in a subjective, Bayesian ap-
proach, the prior distribution on the unknown transition matrix. Thus, our results are useful for
verifying if a predictive scheme characterizes a prior for Bayesian inference on Markov chains.
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In Section 5, we illustrate the results through a novel predictive construction, defined as an
edge reinforced random walk on a colored graph. To some extent, the proposed scheme is a gen-
eralization of the edge reinforced random walks of [11], where colors allow the reinforcement
of edges even when they are not crossed. The motivating idea is to introduce forms of prob-
abilistic dependence or constraints on the random transition matrix through the reinforcement
of both edges and colors. The predictive conditions given in the previous sections are used to
establish when the proposed predictive scheme characterizes a Markov exchangeable process.
Several proposals in the literature can be recovered as special cases of colored edge reinforced
random walks, which, in this sense, offer a unifying framework. An advantage of the predictive
approach is that it encourages prior distributions that are closed under sampling, as we illustrate
in Section 5.1. We provide examples of colored edge reinforced random walks for which the
prior distribution can incorporate information and constraints on the transition matrix, and can
be easily updated given the data. Finally, we discuss extensions through the introduction of latent
variables which may complicate the analytic computations, but can be easily simulated.

Some complements to these results and detailed proofs are provided in the Appendix.

2. Overview and preliminary results

2.1. Markov exchangeability

Let S be a finite or countable set, containing at least two elements, and X = (Xn,n ≥ 0) be a
discrete-time stochastic process taking values in S and starting at a specific state x0 ∈ S. The
process X is a mixture of Markov chains if there exists a probability law μ on the set P of
stochastic matrices on S × S endowed with the topology of element-wise convergence and the
corresponding Borel sigma-algebra, such that, for every x = (x1, . . . , xn),

p(x) =
∫
P

n∏
k=1

p̃xk−1,xk
μ(dp̃), (1)

where p(x) = P(X1:n = x) with X1:n = (X1, . . . ,Xn). Equivalently, X is a mixture of Markov
chains if there exists a P-valued random element P̃ such that, conditionally on P̃ , X is a Markov
chain with transition matrix P̃ . In Bayesian inference for Markov chains, the probability law μ(·)
plays the role of the prior distribution on the unknown transition matrix.

In a predictive approach, interest is in understanding what probabilistic assumptions on
the observable process X imply (1), that is, the existence of a prior distribution on the non-
observable matrix P̃ . A main result by Diaconis and Freedman [10] shows that, for recurrent
processes, such assumption is Markov exchangeability. Recurrence here means that P(Xn =
x0 infinitely often) = 1. Markov exchangeability is defined as invariance under a certain kind of
symmetry. Two finite strings z and z′ are equivalent, written z ∼ z′, if z and z′ have the same
first element and exhibit the same number of transitions from i to j , for every pair of states i

and j . The process X is Markov exchangeable if (x0,x) ∼ (x0,x′) implies p(x) = p(x′). It can
be proved ([10], Lemma 5) that, if z′ ∼ z, then z and z′ have the same length, end at the same
state and visit each state the same number of times. Hence, Markov exchangeability can be seen
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as invariance with respect to a class of permutations, namely those permutations that do not al-
ter the number of transitions between any two states. This motivates the original term of partial
exchangeability used by Diaconis and Freedman.

Markov exchangeability is a necessary condition for the process to be representable as a mix-
ture of Markov chains; under recurrence, it is also sufficient. The proof of this result is based
on the exchangeability of the sequence of x0-blocks. A x0-block is defined as a finite sequence
of states that begins at x0 and contains no further instances of x0. Recurrence of the process
X ensures that the sequence of x0-blocks is infinite. Under recurrence, Markov exchangeability
implies exchangeability of the sequence of x0-blocks. Because a Markov exchangeable sequence
with independent and identically distributed x0-blocks is a Markov chain, it follows that X is
a mixture of Markov chains ([10], Proposition 15 and Theorem 7). Thus, a recurrent Markov
exchangeable process is a mixture of recurrent Markov chains.

An important point is that, if X is a mixture of recurrent Markov chains for some specified μ,
one can determine μ from X. Let Ti,j (x0,x) denote the number of transitions from i to j

in the finite sequence (x0,x), T(x0,x) = [Ti,j (x0,x)]i,j∈S be the matrix of transition counts,
Ti (x0,x) be the ith row of T(x0,x) and Ti,·(x0,x) = ∑

j Ti,j (x0,x). Define T̂i,j (x0,x) =
Ti,j (x0,x)/Ti,·(x0,x) if Ti,·(x0,x) > 0 and T̂i,j (x0,x) = Ti,j (x0,x) = 0 if Ti,·(x0,x) = 0. Then
T̂i,j (x0,X1:n) converges to P̃i,j almost surely (a.s.) as n → ∞ ([10], Section 4). The limit matrix
P̃ may not be a stochastic matrix on S × S, as the sum of the elements in a row corresponding
to a state that is not visited is zero. In fact, P̃ is a stochastic matrix on the random set of the
visited states, say AP̃

. In order for the limit matrix P̃ to be a stochastic matrix (almost surely),
we can use a conventional enlargement of the state space, as in [14]. Let us introduce an addi-
tional state ∂ and denote by S∗ the enlarged space S ∪ {∂}. Then set T̂i,∂ = 1 − ∑

j∈S T̂i,j and

T̂∂,∂ = 1. The enlarged matrix [T̂i,j ]i,j∈S∗ converges pointwise almost surely to a stochastic ma-
trix P̃ on S∗ × S∗. The mixing measure μ in (1) is uniquely determined as the probability law
of P̃ . We have understood that the probability measure P on S∞ has been extended to (S∗)∞,
and P represents the class of stochastic matrices on S∗. For the sake of simplicity, we keep the
same notation, and keep denoting by X the coordinate process on (S∗)∞; the distinction is clear
from the context.

2.2. Partial exchangeability of successor states

A different characterization of mixtures of recurrent Markov chains, hinted in [8] and [42], is
developed by Fortini et al. [14], in terms of partial exchangeability of the matrix of successor
states. The nth successor of a state i ∈ S is the state that follows the nth visit to i. More formally,
for every i ∈ S∗, let τn(i) be the time of the nth visit to i, with the proviso that τn(i) = ∞
if state i is not visited n times. The nth successor state of i is defined as Vi,n = Xτn(i)+1 if
τn(i) < ∞ and Vi,n = ∂ otherwise. The successor matrix associated to X is then defined as the
array V = [Vi,n, i ∈ S∗, n ≥ 1]. If the process X is recurrent and Markov exchangeable, then it
is also strongly recurrent [14]; that is, if a state i is visited, it is visited infinitely often, almost
surely. Thus, the rows of the matrix V are infinite sequences, the ith row being a sequence in S∞
if i is visited, or a sequence equal to (∂, ∂, . . .) if i is not visited, or if i = ∂ . Fortini et al. [14]
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show that the process X is recurrent and Markov exchangeable if and only if the successor matrix
V is partially exchangeable by rows, in the sense of de Finetti, that is, there exists a stochastic
matrix P̃ on S∗ such that, conditionally on P̃ , the random variables (Vi,n, i ∈ S∗, n ≥ 1) are
independent with P(Vi,n = j |P̃ ) = P̃i,j . By the properties of partially exchangeable sequences,
the random matrix P̃ is determined as

P̃i,j = lim
n→∞

1

n

n∑
k=1

δVi,k

({j }) a.s., (2)

where δ is the degenerate measure defined by δa({a}) = 1. This gives an interpretation of the
prior μ in (1) as the limit law of the empirical distributions of the successor states. Another char-
acterization can be given in terms of predictive distributions, as we discuss in the next subsection.

2.3. Predictive properties

The directing measure of an infinite exchangeable sequence can be characterized as the limit of
the sequence of the predictive distributions P(Xn+1 ∈ ·|X1, . . . ,Xn), which converges weakly
almost surely to a random distribution F such that the Xi |F are a random sample from F ; see
[1], page 60. Similar properties hold for recurrent Markov exchangeable processes. In this case,
from the characterization in terms of partial exchangeability of the successor matrix V, discussed
in the previous section, it follows that, almost surely

lim
n→∞P(Vi,n = j |Vi,1, . . . , Vi,n−1)

= lim
n→∞P(Vi,n = j |Vi,1, . . . , Vi,n−1,Vl,k, k = 1,2, . . . , l ∈ S, l 
= i) = P̃i,j , j ∈ S.

The predictive rules above refer to the successors states. In terms of the sequence X, the following
result based on stopping times holds. Recall that τn(i) is the time of the nth visit to state i, and let
Fτn(i) be the sigma-algebra of the events until the nth visit of X to state i. Let Xτn(i)+1 = Xk+1
if τn(i) = k, and Xτn(i)+1 = ∂ if τn(i) = ∞.

Theorem 1. Let X be a mixture of recurrent Markov chains with random transition matrix P̃ .
Then, for every i ∈ S∗,

lim
n→∞P(Xτn(i)+1 = j |Fτn(i)) = P̃i,j a.s.

Proof. The result is immediate for i = ∂ . Consider i ∈ S. Denote by F
P̃

the sigma-algebra
generated by P̃ , and by Fτn(i) ∨F

P̃
the sigma algebra generated by Fτn(i) ∪F

P̃
. Then

P(Xτn(i)+1 = j |Fτn(i)) = P(Vi,n = j |Fτn(i)) = E
(
P(Vi,n = j |Fτn(i) ∨F

P̃
)|Fτn(i)

)
.

Partial exchangeability of the successors matrix V implies that Vi,n is conditionally independent
of the other successor states (Vi,k, k < n;Vj,l, j ∈ S∗, j 
= i, l ≥ 1), given P̃ . As formally proved
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in Lemma 4 in the Appendix, Fτn(i) is included in the sigma algebra generated by (Vi,k, k <

n;Vj,l, j ∈ S∗, j 
= i, l ≥ 1); therefore, Vi,n is also conditionally independent of Fτn(i), given P̃ .
Hence

P(Xτn(i)+1 = j |Fτn(i)) = E(P̃i,j |Fτn(i)),

which converges to E(P̃i,j |Fτ∞(i)), where Fτ∞(i) = ∨
n Fτn(i) is the sigma-algebra generated

by
⋃∞

n=1 Fτn(i). Since Vi,k is measurable with respect to Fτ∞(i) for all k ≥ 1, then P̃i,j =
limn→∞ 1

n

∑n
k=1 δVi,k

({j}) is Fτ∞(i)-measurable, too. Thus, E(P̃i,j |Fτ∞(i)) = P̃i,j almost surely
and the proof is complete. �

A mixture of recurrent Markov chains has a random transition matrix with independent rows if
and only if the probability of observing a transition from i to j depends only on the past transition
from state i.

Corollary 1. Let X be a mixture of recurrent Markov chains with random transition matrix P̃ .
The rows of P̃ are stochastically independent if and only if, for all n ≥ 1, Xn+1 is conditionally
independent of X1:n given (Xn,TXn(x0,X1:n)).

Although this fact appears to be known in the literature (hints are in [42]; see also, for example,
[4,24]), for completeness we provide a proof in Appendix (Corollary 3), based on Theorem 1.
Informally, the result follows from partial exchangeability of the matrix V of successors states.
For any i and j , the probability of a transition to j , given past observations ending at i, is equal
to the probability that Vi,ni+1 = j conditionally on the sequence of successors, where ni is the
number of past successors of state i. If such probability only depends on i and on the transitions
from i, the probability distribution of Vi,ni+1, given the other successor states, only depends on
the successors of i; thus, the rows of V are independent. By (2), it follows that P̃ has independent
rows. Conversely, if P̃ has independent rows, then partial exchangeability by rows of V reduces
to independence and internal exchangeability of the rows, therefore the probability of a transition
from i to j only depends on transitions from i.

3. Predictive characterization of Markov exchangeability

The basic question studied in this work is: when does a sequence of predictive rules characterize
a Markov exchangeable process? Before stating the results, let us introduce some simplifying
notation. We continue to denote finite sequences of elements in S by bold letters, (e.g., x,y, . . .),
while non-bold letters (e.g., x, y, . . .) denote single elements of S. Unless otherwise specified, a
string can coincide with the empty string, denoted by ∅. The predictive probabilities are denoted
by p(y|x0,x). Hence, p(y|x0,x) = p(x,y)/p(x) if p(x) 
= 0 and p(y|x0,x) is defined arbitrarily
if p(x) = 0. A string (x0,x, i) should be interpreted as a string of any length starting at x0 and
ending at i; this includes the string of length one: (x0), when i = x0.

Markov exchangeability clearly implies the following predictive properties:

(A) p(y|x0,x, i) = p(y|x0,x′, i) for every y and every i,x,x′ such that (x0,x, i) ∼ (x0,x′, i);
(B) p(y|x0,x, i) = p(y′|x0,x, i) for every i,x and every y,y′ such that (i,y) ∼ (i,y′).
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Condition (B) is sufficient for Markov exchangeability; in fact, condition (B) for (x0,x, i) =
x0 is the definition of Markov exchangeability. Thus, verifying (B) is not easier than verifying
Markov exchangeability directly from the joint distribution. Our aim is to show that a predictive
condition weaker than (B) and a simpler form of condition (A) are jointly sufficient for Markov
exchangeability.

Condition (A) is the joint predictive sufficiency of the last state and the transition counts: for
every n ≥ 1, (Xn+1,Xn+2, . . .) are conditionally independent of X1:n, given (Xn,T(x0,X1:n)).
This is because T(x0,x1:n) = T(x0,x′

1:n) and xn = x′
n imply (x0, x1, . . . , xn, xn+1, . . . , xn+k) ∼

(x0, x
′
1, . . . , x

′
n, xn+1, . . . , xn+k). This property is the analogous, for Markov exchangeable pro-

cesses, of predictive sufficiency of the empirical distribution for exchangeable sequences.
Clearly, a predictive sufficient statistic is also one-step-ahead predictive sufficient, that is, for
any n, Xn+1 is conditionally independent of X1:n, given the statistic. Predictive sufficiency and
one-step-ahead predictive sufficiency are different conditions, in general. But in the specific case
where the statistic has the form (Xn,T(x0,X1:n)), they turn out to be equivalent.

Proposition 1. Let X be an S-valued process starting at x0. Then, for any n, (Xn,T(x0,X1:n))
is predictive sufficient if and only if it is one-step-ahead predictive sufficient.

Proof. In order to show the non-obvious implication, it is sufficient to write the conditional
distribution of Xn+1, . . . ,Xn+k , given X1, . . . ,Xn, as a product of conditional distributions
and notice that (x0,x1:n) ∼ (x0,x′

1:n) implies xn = x′
n and (x0, x1, . . . , xn, xn+1, . . . , xn+j ) ∼

(x0, x
′
1, . . . , x

′
n, xn+1, . . . , xn+j ) for every j = 1, . . . , k. �

Thus, we can replace condition (A) with one-step-ahead predictive sufficiency of (Xn,T(x0,

X1:n)). However, such condition alone does not imply Markov exchangeability. As a coun-
terexample, consider S = {0,1,2, . . .}, x0 = 0 and for n ≥ 1, p(j |x0, x1, . . . , xn−1) = 1/n

for j = 1, . . . , n and zero otherwise. Since n = 1 + ∑
i,j Ti,j (x0, x1, . . . , xn−1), the vector

(Xn,T(x0,X1:n)) is one-step-ahead predictive sufficient. However, X is not Markov exchange-
able. For example, p(1,3,1,2,3) = 0 while p(1,2,3,1,3) 
= 0.

On the other hand, one-step-ahead predictive sufficiency of the transition counts, together with
a weaker form of condition (B), implies Markov exchangeability. This is shown in the following
theorem. We denote by {x} the set of distinct elements in x.

Theorem 2. Let X = (Xn,n ≥ 0) be an S-valued process such that X0 = x0. Then X is Markov
exchangeable if and only if both the following conditions hold:

(a) p(y|x0,x, i) = p(y|x0,x′, i) for every y ∈ S and every i,x,x′ such that (x0,x, i) ∼
(x0,x′, i);

(b) p(y|x0,x, i) = p(y′|x0,x, i) for every i, x, y and y′ such that y = (u,w, i,v,w, i) and
y′ = (v,w, i,u,w, i) with {i}, {u}, {v}, {w} disjoint.

The proof makes use of some lemmas, given below. Before proceeding, some remarks are in
order.

Remark 1. Under condition (a), condition (b) is equivalent to simultaneously having:
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(bi) p(u, i, i|x0,x, i) = p(i,u, i|x0,x, i) for every u, i with {i}, {u} disjoint;
(bii) p(u, i,v, i|x0,x, i) = p(v, i,u, i|x0,x, i) for every u,v, i with {i}, {u}, {v} disjoint;

(biii) p(u, j,w, i,v, j |x0,x, i) = p(v, j,w, i,u, j |x0,x, i) for every u,v,w, i, j with {i}, {u},
{v}, {j,w} disjoint.

Conditions (bi) and (bii) are obtained from (b) by setting w = v = ∅ and w = ∅, respectively;
(biii) is recovered by substituting w with (j,w) and canceling p(w|x0,x, i,u, j,w, i,v, j) from
the left-hand side and p(w|x0,x, i,v, j,w, i,u, j) from the right-hand side. Similarly for show-
ing that (bi)–(biii) imply (b).

Remark 2. For a recurrent process X, when conditions (a) and (b) of Theorem 2 hold for any
u,v,w not including i, they imply exchangeability of the i-blocks, by Theorem 3.1 in [15].
For a general process, if conditions (bi)–(biii) hold for any u, v and w not including i, they
are equivalent to invariance under block-switch transformations, which in turn is equivalent to
Markov exchangeability ([10], Section 4). Theorem 2 says that, under condition (a), it is enough
to check block-switch invariance on a subset of disjoint strings.

Before proving Theorem 2, we introduce some convenient notation. The length of a string z is
denoted by |z|. Given two finite strings z and z′, we say that z is shorter than z′ and write z � z′,
if there exists x such that (x, z) ∼ z′; if x 
= ∅, we say that z is strictly shorter than z′ and write
z ≺ z′. Given a class C of nonempty S-valued finite strings, an element z∗ is called minimal in C
if z∗ ∈ C and there is no z ∈ C that is strictly shorter than z∗.

Lemma 1. Let x0 = (u0, j, j,v0, k, j) with k 
= j and let C = {x � x0 : x = (u, j, j,v, k, j)}.
Then there exists a minimal element x∗ in C, given by x∗ = (j, j,v∗, k, j) with j /∈ {v∗}.

Proof. The lemma is proved by contradiction. If there was no minimal element, we could find
an infinite sequence x0,x1,x2, . . . of strings in C such that x0 � x1 � x2 � · · · . In that case,
|x0| > |x1| > |x2| > · · ·, which is impossible, since |x0| is finite. Thus, a minimal element exists.
Let such minimal element be x∗ = (u∗, j, j,v∗, k, j). Then, u∗ has to be empty, as otherwise
a shorter element of C could be obtained by deleting u∗. Furthermore, should v∗ contain j ,
we would have x∗ = (j, j,v∗

1, j,v∗
2, k, j) ∼ (j,v∗

1, j, j,v∗
2, k, j) and a shorter string could be

obtained by deleting (j,v∗
1). �

Lemma 2. Let j, k, k′ be distinct elements of S and let x = (u, k, j,v, k′, j) and x′ =
(u′, k′, j,v′, k, j) be such that x ∼ x′. Then, either {u, k} ∩ {j,v, k′} 
=∅ or {u′, k′} ∩ {j,v′, k} 
=
∅ or both.

Proof. By contradiction: suppose that j /∈ {u}, j /∈ {u′}, {u, k} ∩ {v, k′} = ∅ and {u′, k′} ∩
{v′, k} = ∅. Then k /∈ {v} and k /∈ {u′}. Let u = (u1, . . . , um). We show by backward induc-
tion on s that us ∈ {v′, k} for every s = 1, . . . ,m. um is a predecessor of k in x and therefore in
x′. Since k /∈ {u′}, then um ∈ {v′}. Now, suppose that us ∈ {v′}. Since us−1 is a predecessor of us

in x, it is also a predecessor of us in x′. Since us /∈ {u′}, then us−1 ∈ {v′}. It follows by induction
that us ∈ {v′} for every s. Since u1 ∈ {v′} and {u′} ∩ {v′} = ∅, then u1 /∈ {u′}. Hence, the first
element of x′ is not u1, which contradicts x ∼ x′. �
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Lemma 3. Let j, k, k′ be distinct elements of S and let x0 = (u0, k, j,v0, k
′, j) with {u0, k} ∩

{j,v0, k
′} 
= ∅. Let C = {x � x0 : x = (u, k, j,v, k′, j), {u, k} ∩ {j,v, k′} 
= ∅}. Then, there

exists a minimal element x∗ = (u∗, k, j,v∗, k′, j) in C which is either of the form x∗ =
(j,u, k, j,v, k′, j), with {j}, {k}, {k′}, {u}, {v} disjoint, or x∗ = (i,u, k, j,w, i,v, k′, j), with
{i}, {k}, {k′}, {u}, {v}, {j,w} disjoint.

The existence of a minimal element can be proved as for Lemma 1. The rest of the proof is by
contradiction: if x∗ does not have the above structure, one can make a switch transformation by
moving a piece of x∗ in front, and, by deleting such a piece, obtain a string in C which is shorter
than x∗. A detailed proof is provided in the Appendix.

Proof of Theorem 2. Markov exchangeability implies conditions (a) and (b). In order to prove
that, under (a) and (b), (x0, z) ∼ (x0, z′) implies p(z) = p(z′), we proceed by induction on n =
|z|. It is convenient to use the conditions (bi)–(biii). The thesis is true for n = 1. Suppose it is true
for all sequences of length k ≤ n and let z = (z1, . . . , zn+1), z′ = (z′

1, . . . , z
′
n+1) be two strings

such that (x0, z) ∼ (x0, z′). Since equivalent strings end at the same state, zn+1 = z′
n+1. We treat

separately the cases zn = z′
n and zn 
= z′

n.
If zn = z′

n, then (x0, z1, . . . , zn) ∼ (x0, z
′
1, . . . , z

′
n). By the induction hypothesis, p(z1, . . . ,

zn) = p(z′
1, . . . , z

′
n). Hence,

p(z) = p(zn+1|x0, z1, . . . , zn)p(z1, . . . , zn) = p
(
z′
n+1|x0, z

′
1, . . . , z

′
n

)
p
(
z′

1, . . . , z
′
n

) = p
(
z′),

where we have used zn+1 = z′
n+1 and condition (a).

Suppose, now, that zn 
= z′
n. Let zn = k, z′

n = k′ and zn+1 = z′
n+1 = j . It is enough to distin-

guish two cases: (I): j = k′ and (II): j 
= k, k′.

(I) Since (x0, z′) contains the transition (j, j) and (x0, z) ∼ (x0, z′), (x0, z) also contains
(j, j). Hence we can write (x0, z) = (x0,u0, j, j,v0, k, j) with k 
= j . The last expression should
be intended as a string starting at x0, containing the transition (j, j) in some position and the tran-
sition (k, j) in the last position. Such strings include (x0, x0,v0, k, x0), for j = x0. By Lemma 1,
there exist x and v∗ such that (x0, z) ∼ (x0,x, j, j,v∗, k, j) with j /∈ {v∗}. Let u = (v∗, k).
Since zn = k, again as in the first part of the proof, p(z) = p(x, j, j,v∗, k, j). Furthermore,
p(z) = p(x, j)p(j,u, j |x0,x, j) and, by condition (bi), with i = j , p(x, j)p(j,u, j |x0,x, j) =
p(x, j)p(u, j, j |x0,x, j). Hence, p(z) = p(x, j,u, j, j). Since z′

n = j , reasoning as in the first
part of the proof, p(x, j,u, j, j) = p(z′). Thus, p(z) = p(z′).

(II) We can write (x0, z) = (u0, k, j,v0, k
′, j) and (x0, z′) = (u′

0, k
′, j,v′

0, k, j). By Lemma 2,
without loss of generality, we can suppose that {u0, k}∩ {j,v0, k

′} 
=∅. Let us consider the class
C = {(u, k, j,v, k′, j) � (x0, z) : {u, k} ∩ {j,v, k′} 
= ∅}. By Lemma 3, a minimal element in
C exists and can be written either as x∗ = (j,u, k, j,v, k′, j), with {j }, {k}, {k′}, {u}, {v} dis-
joint, or as x∗ = (i,u, k, j,w, i,v, k′, j), with {i}, {k}, {k′}, {u}, {v}, {j,w} disjoint. In the first
case, there exists x such that (x0, z) ∼ (x0,x, j,u, k, j,v, k′, j). Since zn = k′, again as in
the first part of the proof, p(z) = p(x, j,u, k, j,v, k′, j). Furthermore p(x, j,u, k, j,v, k′, j) =
p(x, j)p(u, k, j,v, k′, j |x0,x, j), which, by (bii) with i = j , is equal to

p(x, j)p
(
v, k′, j,u, k, j |x0,x, j

) = p
(
x, j,v, k′, j,u, k, j

)
.
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Since z′
n = k, then p(x, j,v, k′, j,u, k, j) = p(z′). If the minimal element is x∗ = (i,u, k, j,w,

i,v, k′, j) the proof can be obtained along the same steps by using property (biii).
�

Example 1 (Edge reinforced random walks). Edge reinforced random walks (ERRW) are pre-
dictive schemes that characterize conjugate priors for reversible Markov chains [6,11,31]. Con-
sider a finite undirected graph G with vertex set V and edge set E (possibly including loops). All
edges in E are given a strictly positive weight; at time zero, edge e has weight αe > 0. An edge-
reinforced random walk on G with starting point x0 ∈ V is defined as follows. The process starts
at x0 at time 0. At each step, the random walker traverses an edge with probability proportional
to its weight. Each time an edge in E, that is not a loop, is traversed, its weight is increased by 1.
Each time a loop in E is traversed, its weight is increased by 2. Thus, the predictive probability
of traversing edge e = (i, j) is

p(j |x0,x, i) = α(i,j) + Ti,j (x0,x, i) + Tj,i (x0,x, i)

α(i,·) + Ti,·(x0,x, i) + T·,i (x0,x, i)
, (3)

where α(i,·) = ∑
k α(i,k) is the sum of the weights of the edges incident to i, and Ti,· = ∑

j ′ Ti,j ′
and T·,i = ∑

j ′ Tj ′,i are the transitions from and to state i, respectively. ERRWs are known to
generate Markov exchangeable processes. We notice that Markov exchangeability can be easily
verified through Theorem 2. Condition (a) is immediate, as (3) depends on (x0,x, i) only through
the transitions and the last state i. Condition (b) is satisfied if p(y|x0,x, i) = p(y′|x0,x, i) for
vectors y,y′ of the form y = (u,w, i,v,w, i) and y′ = (v,w, i,u,w, i) with {i}, {u}, {v}, {w}
disjoint. Direct computation of the above conditional probabilities involves the product of terms
of the form (3) recursively updated. The transition counts satisfy

Tul−1,ul
(x0,x, i,v,w, i, u1, . . . , ul−1) = Tul−1,ul

(x0,x, i, u1, . . . , ul−1)

and similarly for Tul,ul−1 and for all the transition counts in the numerator of (3). Analogous
equations hold for the denominators, with the exception of the terms involving i and w, which
satisfy

Ti,·(x0,x, i,u,w, i) = Ti,·(x0,x, i,v,w, i) = Ti,·(x0,x, i) + 1,

and similarly for T·,i (x0,x, i) and w. The above equations imply condition (b).

If (Xn,TXn(x0,X1:n)) is one-step-ahead predictive sufficient, that is, p(j |x0,x, i) is a function
π(j |Ti , i) of the last element i and of the transition counts Ti = Ti (x0,X1:n) from i, then the
conditions for Markov exchangeability simplify greatly.

Corollary 2. Let X be an S-valued stochastic process starting at x0 and such that (Xn,TXn) is
one-step-ahead predictive sufficient. Then the process X is Markov exchangeable if and only if,
for every i, u, v,

π(u|Ti , i)π(v|Ti + eu, i) = π(v|Ti , i)π(u|Ti + ev, i), (4)

where Ti + ek is the vector Ti with the kth element incremented by one.
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Proof. The proof is simple, applying Theorem 2. Condition (a) holds by assumption. We need to
show that, under the assumptions of the corollary, (4) is equivalent to condition (b) of Theorem 2,
that is, for any i, u = (u1,u′), v = (v1,v′), w = (w1,w′) disjoint,

p
(
u1,u′,w1,w′, i, v1,v′,w1,w′|x0,x, i

) = p
(
v1,v′,w1,w′, i, u1,u′,w1,w′|x0,x, i

)
. (5)

Writing both sides as products of conditional probabilities, and noticing that

p
(
u′|x0,x, i, u1

) = p
(
u′|x0,x, i,v,w, i, u1

);
p(w1|x0,x, i,u) = p(w1|x0,x, i,v,w, i,u);

p
(
w′|x0,x, i,u,w1

) = p
(
w′|x0,x, i,v,w1

);
p(i|x0,x, i,u,w) = p(i|x0,x, i,v,w);

p
(
v′|x0,x, i,u,w, i, v1

) = p
(
v′|x0,x, i, v1

);
p(w1|x0,x, i,u,w, i,v) = p(w1|x0,x, i,v);

p
(
w′|x0,x, i,u,w, i,v,w1

) = p
(
w′|x0,x, i,v,w, i,u,w1

)
,

by the predictive sufficiency assumptions, one can easily verify that (5) holds if and only
if p(u1|x0,x, i)p(v1|x0,x, i,u,w, i) = p(v1|x0,x, i)p(u1|x0,x, i,v,w, i), which, again by the
predictive sufficiency assumptions, corresponds to (4). �

An alternative proof, which however requires the additional assumption that X is recurrent, can
be given in terms of the successor states. If X is recurrent, the matrix V has rows of infinite length
in S and, under the assumptions of Corollary 2, such rows are independent. Then, condition (4)
is equivalent to exchangeability of the sequence of successor states of i, by Theorem 3.1 in [15],
for any i; therefore, it is equivalent to Markov exchangeability, as shown in Section 2.

Example 2 (Reinforced urn schemes). Let S be finite or countable. Consider the following
predictive probabilities

p(j |x0,x, i) = π(j |Ti , i) = αiqi(j) + Ti,j

αi + Ti,·
, (6)

where
∑

j∈S qi(j) = 1 and αi > 0 for any i. The predictive probability of observing state j is a
weighted average of an initial weight qi(j) and the relative transition counts from the last ele-
ment in the sample, Ti,j /Ti,·. This is a simple example of a predictive structure as considered in
Corollary 2. It is immediate to verify that (4) holds; thus, by Corollary 2, the sequence of predic-
tive distributions (6) characterizes a Markov exchangeable probability law for the process X.

For a finite state space S, the predictive rule (6) has been derived by Zabell [42] from Johnson’s
sufficiency postulate: he shows that, if X is recurrent and Markov exchangeable, and the predic-
tive probability p(j |x0,x, i) is a function of i, j,Ti,j (x0,x, i),Ti,·(x0,x, i) for each j , then such
function has to be of the linear form (6). Here, the linear structure (6) of the predictive probabili-
ties is an assumption, while Markov exchangeability is deduced by Corollary 2. Muliere, Secchi
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and Walker [24] construct the predictive rule (6) through a reinforced urn process. An extension
of their construction, for a countable state space S, can be obtained through a reinforced Hoppe’s
urn scheme. A Hoppe urn [18] is associated to each state, with urn i having initial number of
black balls αi and color distribution qi(·) on S. The process starts at x0. At step n, a ball is drawn
from urn xn−1 and, if colored, it is returned in the urn together with an additional ball of the same
color; if black, a color is picked from the color distribution qxn−1(·) and a ball of the sampled
color is added in the urn, together with the black ball. The process then moves to the urn asso-
ciated with the color of the additional ball, and so on. Xn represents the color of the additional
ball at the nth step. The predictive law of the process X defined in such way is (6). If the process
X is recurrent, then it is a mixture of recurrent Markov chains, whose random transition matrix
has independent rows. From the results discussed in Section 2, the ith row is the random limit
of the sequence of predictive distributions of the successors of state i; here, the draws from the
urn associated to state i. These form an exchangeable sequence with predictive rule (6) which
characterizes a Dirichlet prior distribution with parameters (αiqi(j), j ∈ S) when S is finite, or
a Dirichlet process with parameter αqi(·), denoted DP(αqi(·)), if S is countable. Extensions of
the predictive rule (6), introducing dependence across the rows of the transition matrix, are given
in [4,16,35], using hierarchical Hoppe’s urns.

A mixture of Markov chains with random transition matrix having independent Dirichlet rows
has predictive rule (6). Thus, the Markov exchangeable process X characterized by (6) can be
represented as a mixture of Markov chains; but without recurrence such representation may not
be unique. We provide predictive conditions for recurrence in the next section.

4. Predictive conditions for recurrence

A Markov exchangeable process X is a mixture of processes of the following kinds ([10],
page 124): (1) recurrent Markov chains, (2) processes starting with a string of transient states
and continuing as recurrent Markov chains, (3) totally transient processes. It is of interest to have
conditions under which X is a mixture of Markov chains, thus excluding mixing of processes
of kind 2 and of processes of kind 3 which are not Markov chains. Recurrence is a sufficient
condition for restricting to mixtures of processes of kind 1. A recurrent process X is Markov
exchangeable if and only if it is a mixture of recurrent Markov chains. In this sense, recurrence
is a simplifying assumption.

Proving recurrence of a general Markov exchangeable process is a difficult task, and results are
mostly available for specific constructions. In a predictive approach, interest is in conditions on
the predictive distributions that imply recurrence. We provide below a sufficient predictive con-
dition for recurrence, for a general process. For a Markov exchangeable process, this condition
is also necessary.

Theorem 3. If, for any (x1, x2, . . .) in a set of probability one,

∞∑
n=0

p(x0|x0, x1, . . . , xn) = ∞, (7)
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then X is recurrent. Conversely, if X is Markov exchangeable and recurrent, then (7) holds,
almost surely.

Proof. We first prove that (7) implies recurrence. The proof is based on Lévy’s extension of the
Borel Cantelli lemma. Let An = {Xn = x0} and Fn the sigma-algebra generated by X1:n. Then
An ∈ Fn and (7) can be rewritten as

∑∞
k=1 P(Ak|Fk−1) = ∞, almost surely. This implies (see,

e.g., [40], Section 12.15) ∑n
k=1 1Ak∑n

k=1 P(Ak|Fk−1)
→ 1 a.s.

as n → ∞, where 1A is the indicator of event A. In turn, this entails P(An infinitely often) = 1.
Now we prove the second assertion. If X is recurrent and Markov exchangeable, it is a mix-

ture of recurrent Markov chains. The process X is also strongly recurrent, that is, P(Xn =
i infinitely often|i is visited) = 1, for any state i. Furthermore, the set of elementary events
(x1, x2, . . .) such that p̃i,x0 = 0 for every visited i, has probability zero as, otherwise, x0 would
not be visited infinitely many times with probability one. It follows that, for any (x1, x2, . . .) in a
set of probability one, there exists a state i, generally depending on (x1, x2, . . .), that is visited in-
finitely many times, has positive transition probability p̃i,x0 and satisfies p(x0|x0, . . . , xτn(i)) →
p̃i,x0 > 0, where the last assertion follows from Theorem 1. Therefore,

∞∑
n=0

p(x0|x0, . . . , xn) ≥
∞∑

n=1

p(x0|x0, . . . , xτn(i)) = ∞.
�

Theorem 3 offers a strategy to prove recurrence; in some cases, one can find a lower bound for
p(x0|x0, . . . , xn) and easily prove that the series diverges.

Example 2 – Ctd. Consider again the reinforced Hoppe’s urns of Example 2 and suppose that
αi = α and qi(·) = q(·) for every i (all urns have the same initial number of black balls and the
same color distribution), with q(x0) > 0. In this case, recurrence is an immediate consequence of
Theorem 3, since

∑∞
n=0 p(x0|x0, x1, . . . , xn) ≥ ∑∞

n=0 αq(x0)/(α + n) = ∞. For this particular
case, recurrence was verified in [16] through a different approach. The general case (different αi

and qi ) is still immediate if infi αiqi(x0) > 0. A simple example is obtained when the state space
is finite and qi(x0) > 0 for any i.

In the example above, if qi(x0) = 0 for some state i, recurrence is more difficult to prove. In
fact, if there exists some i ∈ S that is visited infinitely many times almost surely and such that
qi(x0) > 0, we could still apply Theorem 3. However the existence of such i depends precisely
on the recurrence property that we are exploring. The following theorem can be useful in this
situation. Recall that Fτn(i) is the sigma-field generated by all events until the nth visit of X to
state i.
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Theorem 4. Given i, j ∈ S, if

∞∑
n=1

[
P(Xτn(i)+1 = j |Fτn(i))1{τn(i)<∞} + 1{τn(i)=∞}

] = ∞ (8)

almost surely, then P((Xn = i for finitely many n) ∪ (Xn = j infinitely often)) = 1.

Proof. For every n ≥ 1, let An+1 = (τn(i) = +∞) ∪ (Xτn(i)+1 = j) and Gn = Fτn(i). Then,
An ∈ Gn, and (8) can be written as

∑∞
n=1 P(An+1|Gn) = ∞, almost surely. By Lévy’s extension

of the Borel–Cantelli lemma, ∑n
k=2 1Ak∑n

k=2 P(Ak|Gk−1)
→ 1

almost surely, as n → ∞. This implies that
∑∞

k=2 1Ak
= ∞ a.s. The thesis follows. �

Theorem 4 implies that, if there exists a state i that is visited infinitely often, it is sufficient to
check that (8) holds with j = x0 to have recurrence.

Example 2 – Ctd. Consider the urn scheme of Example 2 with general weights αiqi(·). Let Q

denote the stochastic matrix with (i, j)th entry Qi,j = qi(j). Consider two states i and j such
that qi(j) > 0. Then, almost surely,

∞∑
n=1

[
P(Xτn(i)+1 = j |Fτn(i))1{τn(i)<∞} + 1{τn(i)=∞}

]

≥
∞∑

n=1

[
αiqi(j)

αi + n
1(τn(i)<∞) + 1(τn(i)=∞)

]
= ∞.

Hence, by Theorem 4, if the chain visits i infinitely many times, it also visits j infinitely many
times. In the case when qi(j) = 0, if state j can be reached from i in a finite number of steps,
that is, there exist u1, . . . , uk such that Qi,u1 · · ·Quk,j > 0, we can use the same reasoning to
show that condition (8) holds for each pair of those states. Thus, if j is accessible from i and i is
recurrent, then j is recurrent as well. A recurrent state i certainly exists if the state space is finite.
Thus, in the finite case, we can give a simple sufficient condition for recurrence: if the matrix Q

is the transition matrix of an irreducible Markov chain, then X is recurrent.

We should notice that these techniques are mostly useful for processes with a finite state space,
where one can assume that at least one state is recurrent. Although they can also be helpful in
fairly simple constructions with countable state space, such as in Example 2, proving recurrence
in the infinite case is generally far more difficult than in the finite case and requires more sophis-
ticated techniques.

Recurrence has been studied in depth for edge reinforced random walks. A phase transition in
the recurrence and transience of ERRWs on an infinite binary tree has been shown by Pemantle
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[26]. For ERRWs on finite graphs, Keane and Rolles ([19], Proposition 1) proved recurrence
using techniques similar to those used here for proving Theorems 1 and 2. Exploiting recurrence,
and developing a conjecture in [9], they also show that an ERRW can be represented as a random
walk on a graph with random edge weights (a random walk on a random environment), whose
distribution is the limit law of the fractions of time spent by the process on the edges. Recalling
the representation of reversible Markov chains as random walks on undirected graphs (see, e.g.,
[11]), this result implies that ERRWs are mixtures of reversible Markov chains, and leads to the
mixing distribution.

To extend the results to infinite graphs, more refined techniques are needed. Merkl and Rolles
[21] proved that, for any locally finite graph, an ERRW is a mixture of reversible Markov chains,
irrespectively whether it is recurrent or not. To show this, they first obtain more detailed proper-
ties of the random environment for a finite graph, then treat the infinite case by approximating
the infinite (but locally finite) graph with a sequence of finite graphs. In the finite case, they study
the predictive distribution of successor states of a state i, as considered here in Theorem 1. In
this theorem, we show that such sequence of predictive distributions converges to the random
transition P̃i,j , while [21] give more refined results on the limit law. By comparing the predictive
distribution of successor states with a Polya urn, whose asymptotic behaviour is well understood,
they obtain bounds on the tails of the distribution of the random transition probabilities P̃i,j . Such
bounds are uniform in the size of the graph. Thus, they can be exploited in the approximation
of the infinite graph by finite graphs, to show that the ERRW is a mixture of reversible Markov
chains, by also taking into account that, for a reversible Markov chain, there is a relationship
between the transition probabilities and the edge weights in its graph representation. Although
the work by Merkl and Rolles [21] does not deal with recurrence explicitly, their results give
a valuable contribution to the study of recurrence for the infinite case. A reversible irreducible
Markov chain is recurrent if and only if, in its graph representation, the sum of the edge weights
is finite. Thus, once it is proved that an ERRW can be represented as a random walk on a random
environment, controlling the tails of the distribution of the random edge weights is a technique
to show that they are strictly positive and summable, almost surely and, therefore, the process
is recurrent. Proving such bounds is technically hard. Extending results in [20] and [32], Merkl
and Rolles [22] study the asymptotic behavior of ERRWs on general multi-level ladders; in par-
ticular, they show that the edge weights decay exponentially in space, and prove recurrence.
Developing on the results in [21], Merkl and Rolles [23] prove recurrence of ERRW on a large
class of periodic graphs satisfying certain symmetry properties. A different technique based on a
representation of ERRWs in terms of vertex-reinforced jump process is used by Sabot and Tarres
[33], who show that ERRWs on Zd are strongly recurrent for any d , for large reinforcement,
under mild conditions.

Although reversible Markov chains have specific features, some of these techniques, possibly
the approximation by finite graphs to obtain detailed results on the limit law of the predictive
distribution of successor states, could be helpful for other Markov exchangeable processes.

5. Colored edge reinforced random walks

In this section, we provide an illustration of the previous results through a novel predictive con-
struction. To some extent, the predictive scheme proposed here is a generalization of ERRWs,
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with colored edges. Introducing colors allows to reinforce groups of edges, even if they are not
crossed. Colors’ reinforcement could be exploited to express restrictions or global properties of
the process. We use Theorem 2 to study the conditions under which this predictive scheme char-
acterizes a Markov exchangeable process, and provide examples which satisfy such conditions.
These include processes found in the literature as well as novel characterizations.

Informally, the process is described as a random walk on a colored graph where edges and col-
ors are reinforced when crossed. Consider a directed graph with vertices in a finite or countable
set S and with edge set E. Each directed edge (i, j) in E is given a color c(i, j) from a set of
colors C and a weight βi,j > 0. Each color c is assigned an initial weight αc > 0. For each vertex
i, let C(i) denote the set of colors of all the edges starting at i and let αC(i) = ∑

c∈C(i) αc be the
overall weight of all colors from i. For each color c, let Ec denote the set of all edges of color
c in the graph, and βi,Ec = ∑

j :(i,j)∈Ec
βi,j be the overall weight of all edges of color c starting

from i. We assume αC(i) < ∞ and βi,Ec < ∞ for every i and every c.
Let x0 be the starting point of the random walk. At step one, a color c is selected among the

colors in C(x0), with probability αc/αC(x0). Then, a directed edge (x0, x1) is selected among the
edges of color c from x0, with probability βx0,x1/βx0,Ec . The process moves to X1 = x1 and both
the weight of color c and of edge (x0, x1) are incremented by one. The walk is repeated in the
same way, this time starting from x1 and with the new weights; and so on for the following steps.

Let X denote the process generated in this manner, and let T(x0,X1:n) be its transitions count
process, with Ti,j denoting the number of transitions across edge (i, j) in (x0,X1:n). The result-
ing predictive probabilities for the process X are as follows. For (i, y) ∈ Ec,

p(y|x0,x, i) = αc + TEc(x0,x, i)

αC(i) + TC(i)(x0,x, i)

βi,y + Ti,y(x0,x, i)

βi,Ec + Ti,Ec (x0,x, i)
, (9)

where, for each color c, TEc = ∑
(u,v)∈Ec

Tu,v is the number of transitions over edges of color c,
and for each vertex i, TC(i) = ∑

c∈C(i) TEc and Ti,Ec = ∑
u:(i,u)∈Ec

Ti,u. Notice that, if there is
only one edge of color c from i, the second factor in (9) is equal to one, thus the predictive
probabilities reduce to the color updating. Analogously, if all edges from i have the same color,
the first factor in (9) is one and the predictive probabilities reduce to the edge’s weight updating.
Also, one could allow reinforcements different from one, or no reinforcement at all, and this
could be done both for colors and for edges.

Proposition 2. The sequence of predictive rules (9) defines a Markov exchangeable process if
and only if

m∏
l=2

[
αC(yl−1) + TC(yl−1)(x0,x, i, y1, . . . , yl−1)

]
(10)

=
m∏

l=2

[
αC(y′

l−1)
+ TC(y′

l−1)

(
x0,x, i, y′

1, . . . , y
′
l−1

)]

for every i, x and y = (y1, . . . , ym), y′ = (y′
1, . . . , y

′
m) such that y = (u,w, i,v,w, i) and y′ =

(v,w, i,u,w, i), with {u}, {v}, {w}, {i} disjoint.
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Proof. The sequence of predictive rules (9) defines a Markov exchangeable process if and only
if it satisfies conditions (a) and (b) of Theorem 2. Condition (a) is immediate, as (9) depends on
(x0,x, i) only through the transitions and the last state i. Direct computation of p(y|x0,x, i) in-
volves the product of terms of the form (9) recursively updated, and one can easily check that con-
dition (b) is satisfied if, for vectors y,y′ of the form y = (u,w, i,v,w, i) and y′ = (v,w, i,u,w, i)

with {i}, {u}, {v}, {w} disjoint, the following equivalences hold:∏m
l=1[αc(yl−1,yl ) + TEc(yl−1,yl )

(x0, . . . , yl−1)]∏m
l=1[αC(yl−1) + TC(yl−1)(x0, . . . , yl−1)]

(11)

=
∏m

l=1[αc(y′
l−1,y

′
l )

+ TEc(y′
l−1,y′

l
)
(x0, . . . , y

′
l−1)]∏m

l=1[αC(y′
l−1)

+ TC(y′
l−1)

(x0, . . . , y
′
l−1)]

;
∏m

l=1[βyl−1,yl
+ Tyl−1,yl

(x0, . . . , yl−1)]∏m
l=1[βyl−1,Ec(yl−1,yl )

+ Tyl−1,Ec(yl−1,yl )
(x0, . . . , yl−1)]

(12)

=
∏m

l=1[βy′
l−1,y

′
l
+ Ty′

l−1,y
′
l
(x0, , . . . , y

′
l−1)]∏m

l=1[βy′
l−1,Ec(y′

l−1,y′
l
)
+ Ty′

l−1,Ec(y′
l−1,y′

l
)
(x0, . . . , y

′
l−1)]

,

where y0 = y′
0 = i. The factors on both sides of (12) only depend on the last state and the tran-

sitions from it. Similarly to the proof of Corollary 2, one can see that (12) always holds. As for
condition (11), the numerators on the left hand side only depend on the number of times colors
c(yl−1, yl) are visited in (x0,x, i,y), which remain unchanged in (x0,x, i,y′). Thus, condition (b)
of Theorem 2 is satisfied if the denominators on both sides of (11) are equal, that is equivalent
to (10). Since (12) is always true, condition (10) is also necessary. �

Condition (10) has to be checked case by case, depending on the structure of the graph and
of the reinforcement. Reinforced Hoppe’s urns and ERRWs are special cases of the predictive
scheme (9), for which (10) holds.

Reinforced Hoppe’s urn schemes discussed in Example 2 are a particular case of (9) for which
all edges in the graph have the same color. Then, the predictive rule (9) reduces to (6); for which
condition (10) is immediate. Some extensions will be given in Section 5.1.

ERRWs are defined for undirected graphs, but they can be framed in our scheme by assigning
to every pair of directed edges (i, j) and (j, i) the same color, with a different color for each
different pair, and augmenting the graph by associating to each vertex i an auxiliary vertex, say
i∗, to represent loops (i, i) as the pair of directed edges (i, i∗), (i∗, i). Then, when edge (i, j)

is crossed, both (i, j) and (j, i) are reinforced by one, and loops are reinforced by 2. In this
case, the predictive rule (9) reduces to the predictive rule that characterizes ERRWs. Markov
exchangeability can be easily verified through condition (10), as it only involves disjoint vectors
v,w,w, i, and, in this case, colors between the vertices of disjoint vectors are all distinct. Thus,
for any element ul of u

TC(ul)(x0,x, i, u1, . . . , ul) = TC(ul)(x0,x, i,v,w, i, u1, . . . , ul),
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and similarly for v. For vertex i, the terms involved in (10) are TC(i)(x0,x, i) and TC(i)(x0,x, i,u,

w, i) = TC(i)(x0,x, i,v,w, i) = TC(i)(x0,x, i) + 2. Similarly for w.

5.1. Colored edge reinforced random walks with partitioned colors

Suppose that the graph’s colors are partitioned into groups {C1, . . . ,CN }, N ≤ ∞, such that, for
all i, there exist m ≤ N such that C(i) = Cm. In other words, for every pair of vertices i and
j , either C(i) = C(j) or C(i) ∩ C(j) = ∅. As a consequence, the left hand side of (10) only
depends on the transitions through edges with colors in the sets C1, . . . ,CN in (i,y), which are
the same for (i,y′) if y = (u,w, i,v,w, i) and y′ = (v,w, i,u,w, i). Thus, (10) holds and the
process X is Markov exchangeable.

The process is recurrent if infi αc(i,x0) > 0 and infi βi,x0 > 0, by Theorem 3. Recurrence holds
under a milder restriction if the state space is finite. Let Q = [Qi,j ] be the matrix of normalized
edge weights Qi,j = βi,j /

∑
j ′ βi,j ′ , with Qi,j = 0 if the edge (i, j) is not present in the graph.

Proposition 3. Let X be a colored edges reinforced random walk with partitioned set of colors,
finite state space and irreducible weight matrix Q. Then X is recurrent.

The proof is given in the Appendix. One first shows that, in this case, if a set of colors Cm

is visited infinitely often, then every color in Cm is visited infinitely often, almost surely; and if
a set of edges Ec is visited infinitely often, every edge in Ec is visited infinitely often, almost
surely.

It follows from Proposition 3 that a colored edge reinforced random walk X with partitioned
set of colors, finite state space and irreducible weight matrix Q is a mixture of recurrent Markov
chains. The prior is the limit probability law of the predictive distributions, as discussed in Sec-
tion 3. Consider a state i with C(i) = Cm for some m ∈ {1, . . . ,N}. From expression (9), in
the notation of Theorem 1, P(Xτn(i)+1 = j |Fτn(i)) is the product of two terms, the predictive
probability of choosing the color, say c, of the edge (i, j), times the predictive probability, given
Fτn(i) and the color c chosen, of picking the edge (i, j) among the edges of color c from i.
One can easily see that the two terms have the expression of the predictive probabilities of hav-
ing next color c and next state j for two independent exchangeable sequences, respectively:
an exchangeable sequence of colors in Cm, with directing measure (P̃m(c), c ∈ Cm) having
Dirichlet distribution with parameters (α(c), c ∈ Cm), and an exchangeable sequence of states
in Ai,c = {j ′ : c(i, j ′) = c}, with directing measure (P̃ (j |i, c), j ∈ Ai,c) having Dirichlet dis-
tribution with parameters (βi,j , j ∈ Ai,c), independently of P̃m. Because, for exchangeable se-
quences, the predictive distributions converge almost surely to the directing measure, it follows
that P(Xτn(i)+1 = j |Fτn(i)) converges almost surely to

P̃i,j = P̃m

(
c(i, j)

)
P̃

(
j |i, c(i, j)

)
.

Thus, for a state i with C(i) = Cm, the ith row of the random transition matrix, as a measure
on S, is given by

P̃i(·) =
∑
c∈Cm

P̃m(c)
∑

y∈Ai,c

P̃ (y|i, c)δy(·), (13)
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where (P̃m(c), c ∈ Cm) ∼ Dirichlet(α(c), c ∈ Cm), (P̃ (j |i, c), j ∈ Ai,c) ∼ Dirichlet(βi,j , j ∈
Ai,c) for any c ∈ Cm, and P̃m and the P̃ (·|i, c) are independent. In other words, the colors of the
edges from i determine a partition of the sample space, and the transition probability P̃i(·) from i

first picks a region Ai,c in the partition, with probability P̃m(c), then selects a state y ∈ Ai,c , with
probability P̃ (y|i, c). The rows of the random transition matrix are in general dependent, through
the common component P̃m(c). The same results hold for infinite state space if the process X
is recurrent, with the understanding that, if Cm or Ai,c are countable, the Dirichlet distributions
above become the appropriate Dirichlet processes.

Regarding the transition probability law P̃i as a probability measure on C(i) × S, the prior re-
veals some analogies with the Enriched Dirichlet process [37] for a bivariate random distribution,
which arises as a nonparametric extension of the generalized Dirichlet distribution.

Let μ(·;x0,α,β) be the prior distribution defined by (13) for a colored ERRW with weights
α,β , and let D denote the family of such prior distributions for different starting values and
weights. The family D is closed under sampling, that is, the posterior distribution still belongs
to D. Moreover, there exists a closed-form mapping to the posterior parameters (sometimes
called functional conjugacy; see the discussion in [25]): if X has prior μ(·;x0,α,β), then the
posterior distribution, given X1:n = x1:n, is μ(·;xn,α(x0,x1:n),β(x0,x1:n)), where

α(x0,x1:n) = αc + TEc(x0,x1:n), β(x0,x1:n)i,j = βi,j + Ti,j (x0,x1:n). (14)

This implies that the posterior distribution belongs to D, thus D is closed under sampling. To
prove (14), notice that the conditional distribution of (Xn+1,Xn+2, . . .), given X1:n = x1:n, is
the distribution of the same colored edge reinforced random walk, but with initial state xn and
weights α(x0,x1:n),β(x0,x1:n).

The following examples provide further insights into the nature of the process.

Example 3 (Independent enriched Dirichlet rows). Suppose that the set of colors associated to
distinct vertices are all different, that is, C(i) ∩ C(j) =∅ for i 
= j . In this case, no probabilistic
dependence is induced through the predictive distributions and the resulting random transition
matrix has independent rows. As the Dirichlet process, the prior distribution on the rows is closed
under sampling, but allows more flexibility in having the choice of two scale parameters, rather
than just one. For example, suppose that the graph represents a physical network whose nodes
are partitioned in local nets A1, . . . ,Ak , with X describing some flow of information through the
network, and assume one wishes to express the prior information that, from a node i, many local
networks Am are visited, but only a few states inside each local network tend to be visited. Such
prior information could not be expressed by a Dirichlet process, but, by the clustering properties
of Dirichlet processes, it could be incorporated in the prior (13) by choosing a large value of the
normalizing constant αC(i) and small values for βi,Ec .

Example 4 (Analytic constraints). The case where some vertices share the same group of colors
is somehow opposite to the previous example. The predictive probabilities (9) imply analytic
constraints on the random transition matrix. Indeed, from (13), we obtain∑

y∈Ai,c

P̃i,y =
∑

y∈Ai′,c

P̃i′,y = P̃m(c). (15)
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Thus, sums, by row, of probabilities of transitions along edges of the same color are constant.
As a simple example, consider a graph with loops. Let the loops be colored in red and all other
edges be colored in blue. The predictive distributions induce a mixture of random walks with
equal transition probabilities on loops.

Example 5 (Colored edge reinforced random walks with dummy states). One way of intro-
ducing dependence among the rows of the random transition matrix, without strictly imposing
constraints as those of expression (15), is to augment the graph G with auxiliary dummy states
and edges, as follows. Consider a graph G, that can have partitioned colors or not. For an edge
(i, j) in G, let us introduce a new vertex i∗ between i and j , by adding a state i∗ together with
the edges (i, i∗) and (i∗, j). The construction is repeated, adding one or more dummy vertices
for each edge (i, j) in a set I . Let I∗

i,j denote the set of dummy states between i and j ; I ∗ the set
of dummy states and S∗ = S ∪ I ∗.

If the augmented graph G∗ has partitioned colors, then an ERRW X∗ on G∗, with weights
α∗,β∗, and starting at x0 ∈ S, is Markov exchangeable. Moreover, if recurrent, X∗ is a mixture
of Markov chains with prior distribution μ∗(·;x0,α

∗,β∗) on the random transition matrix P̃ ∗.
Now, let X be the process defined by deleting the dummy states from the paths of X∗. The

process X is well defined and its probability distribution can be recovered from the law of X∗, as

p(x) = P(X1:n = x) =
∑

(x0,x∗)∈A(x0,x)

P
(
X∗

1:n+m = x∗) =
∑

(x0,x∗)∈A(x0,x)

p∗(x∗), (16)

where (n + m) is the length of x∗ and the sum is taken over the set A(x0,x) of all sequences
(x0,x∗) consistent with (x0,x); that is, sequences that start and end as (x0,x) and lead to (x0,x)

when deleting the dummy states. The process X is Markov exchangeable. If (x0,x) ∼ (x0,x′), it
is fairly simple to see that the elements of A(x0,x) and A(x0,x′) are pairwise equivalent. Thus,
p(x) = p(x′).

Moreover, if X∗ is recurrent, then X is recurrent, as well, because x0 ∈ S. In this case, X is a
mixture of recurrent Markov chains, and the random transition probabilities P̃i,j can be obtained
by the transformation

P̃i,j = P̃ ∗
i,j +

∑
i∗∈I∗

i,j

P̃ ∗
i,i∗

of the random transition probabilities [P̃ ∗
i,j ] ∼ μ∗(·;x0,α,β) for the process X∗. The prior dis-

tribution for P̃ redistributes the masses assigned by μ∗ according to the dummy states that have
been introduced, and generally expresses correlation across the rows of the transition matrix.

As an illustration, consider a monochromatic finite graph G, of color c1, with k vertices, in-
cluding loops. As discussed before, a colored ERRW on G with edge weights βi,j is a Hoppe
reinforced urn process with αiqi(j) = βi,j . When recurrent, such process is a mixture of Markov
chains, with independent Dirichlet(βi,1, . . . , βi,k) distributions on the rows of the transition ma-
trix. Let us augment the graph by adding, for every vertex i, a dummy vertex i∗ along with edges
(i, i∗) and (i∗, i). We color all edges (i, i∗) with a single color c2 
= c1, and the edges (i∗, i)
with a color c3 different from c1 and c2. This results in partitioned colors on the extended graph
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G∗, the partition being (C1 = (c1, c2),C2 = (c3)). Let X∗ be a recurrent colored ERRW on the
augmented graph, and X defined from X∗ as discussed above. Then, X is a mixture of Markov
chains with random transition probabilities:

P̃i,j = P̃ ∗
i,j = P̃ ∗

1 (c1)P̃
∗(j |i, c1) for j 
= i,

P̃i,i = P̃ ∗
i,i + P̃ ∗

i,i∗ = P̃ ∗
1 (c1)P̃

∗(i|i, c1) + (
1 − P̃ ∗

1 (c1)
)
.

The ith row of the transition matrix P̃ is a mixture of the probability distribution (P̃ ∗(j |i, c1), j ∈
S) ∼ Dirichlet(β∗

i,1, . . . , β
∗
i,k), the same distribution as for a Hoppe reinforced urn process, and

a degenerate distribution on i, with mixing weight P̃ ∗
1 (c1) ∼ Beta(α∗

c1
, α∗

c2
), independent of the

P̃ ∗(j |i, c1). The probability of a loop is a weighted average of P̃ ∗(i|i, c1) and P̃ ∗(i∗|i, c2) = 1,
thus it is higher than for the corresponding reinforced urn process. The rows of the transition ma-
trix are correlated, due to the common random variable P̃ ∗

1 (c1), but no strict equality is imposed,
differently from Example 4.

As a further example, dummy states can be used to express prior inequalities between the
elements of the random transition matrix. Suppose that, in the original graph G, edges (i, j) and
(i′, j ′), j and j ′ distinct or not, have the same color c1 and are the only edges from i and from
i′ with color c1. A dummy state i∗ is added between i and j , together with edges (i, i∗) and
(i∗, j). The edge (i, i∗) is given a color c2 
= c1. If necessary, other dummy vertices are added,
until the extended graph has partitioned colors, never including edges of color c1 from i or from
i′, nor dummy vertices between i′ and j ′. The processes X∗ and X are constructed as above. The
random transition probabilities for the process X satisfy

P̃i,j = P̃ ∗
1 (c1) + P̃ ∗

1 (c2)P̃
∗(j |i, c2); P̃i′,j ′ = P̃ ∗

1 (c1).

Hence, P̃i,j > P̃i′,j ′ .
The construction by dummy states can be quite flexible in expressing prior beliefs. Notice that

it is always possible to augment a graph G until the extended graph has partitioned colors, hence,
the proposed construction can be used to define a Markov exchangeable reinforced random walk
on any graph G. However, while the prior distribution μ∗ for the process X∗ is closed under
sampling, this is no longer true for the prior μ for X. In principle, computing the posterior
distribution μ(·|x) on the random transition matrix P̃ for X, given observations x = x1:n, remains
simple, since

μ(·|x) =
∑

(x0,x∗)∈A(x0,x)

μ∗(·;xn,α
∗(x0,x∗),β∗(x0,x∗))pX∗|X

(
x∗|x)

, (17)

where the conditional probability pX∗|X(x∗|x) = p∗(x∗)/p(x) can be easily computed from p∗
and using (16). The summation in (16) can actually be rearranged into a smaller number of terms.
The set A(x0,x) can be partitioned in classes of equivalent vectors Am = {(x0,x∗) ∈ A(x0,x∗) :
m(x0,x∗) = m}, where m(x0,x∗) = m(x0,x∗) = (mi∗(x0,x∗), i∗ ∈ I ∗) and mi∗(x0,x∗) denotes
the number of visits to the dummy state i∗ in (x0,x∗). For any m, all the strings in Am are
equivalent and, therefore, have the same probability. A simple combinatorial argument shows
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that the cardinality of Am is

Nm =
∏

(i,j)∈I

Ti,j (x0,x)!
(Ti,j (x0,x) − m∗

i,j )!
∏

i∗∈I∗
i,j

mi∗ ! ,

where m∗
i,j = ∑

i∗∈I∗
i,j

mi∗ . Thus,

p(x) =
∑

m

p∗(x∗
m

)
Nm, (18)

where (x0, x
∗
m) is any string in Am. Although reduced with respect to (16), the number of terms

in (18) still explodes for long paths, or when the number of dummy states is large. Yet, simulation
techniques can be used to sample from pX∗|X(x∗|x) and to compute a Monte Carlo approximation
of (17). To simulate from pX∗|X , one has to simulate the possibly missing passages through
dummy states. Notice that a string (x0,x∗) in A(x0,x) can be described in terms of the successors
states: each state xi /∈ I in the observed sample (x0,x) has a known successor state in x∗; while
for each observed pair of consecutive values (xi, j), where xi ∈ I , the successor of xi in x∗
can be any state in the set {j, I ∗

xi ,j
}. By construction, the successor of a dummy state i∗ ∈ I ∗

i,j is
always equal to j . Thus, generating x∗ from pX∗|X(x∗|x) is equivalent to generating the sequence
of unknown successor states V∗ from the conditional distribution P(V∗ = v∗|V = v,V∗ ∈ B),
given the known successors V and the appropriate constraints on the remaining ones, denoted
by V∗ ∈ B . The simplest Gibbs sampling scheme consists in generating the V∗ one at the time
from their full conditional distributions. Assume that we want to generate a successor Vi of
state i, corresponding to consecutive observations (i, j) in (x0,x). By partial exchangeability of
the matrix of successor states, one can permute the successors so that Vi is the last successor
of state i. Then, its full conditional distribution selects a state k in {j, I ∗

i,j } with probability
proportional to

α∗
c(i,k) + Tc(i,k)

α∗
C(i) + TC(i)

β∗
i,k + Ti,k

β∗
i,Ec(i,k)

+ Ti,Ec(i,k)

,

where the transitions counts are computed on all the other successor states.

Appendix: Complements and proofs

A.1. Complements for Section 2

We following lemma is used for the proof of Theorem 1. For a state i, let FV�
i,n

denote the sigma

algebra generated by (Vi,k, k < n;Vj,l, j ∈ S∗, j 
= i, l ≥ 1).

Lemma 4. Under the hypotheses of Theorem 1, Fτn(i) ⊆FV�
i,n

.
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Proof. Let us consider B ∈Fτn(i) and show that B ∈ FV�
i,n

. One can express B as

B =
∞⋃

k=1

(
B ∩ (

τn(i) = k
)) ∪ (

B ∩ (
τn(i) = ∞))

.

We show that the events: (i) B ∩ (τn(i) = k), k ≥ 1 and (ii) B ∩ (τn(i) = ∞) belong to FV�
i,n

.

(i) Let Fk be the sigma-field generated by X1:k . Since B ∩ (τn(i) = k) ∈ Fk , there exists Bn,k

such that

B ∩ (
τn(i) ≤ k

) =
⋃

x1:k∈Bn,k

(X1:k = x1:k).

It is proved in [14] that, for any x1:k , there exist m, s1, . . . , sm, ns1, . . . , nsm and vs1,1, . . . ,

vs1,ns1
, . . . , vsm,1, . . . , vsm,nsm

such that

(X1:k = x1:k)
(19)

= (Vs1,1 = vs1,1, . . . , Vs1,ns1
= vs1,ns1

, . . . , Vsm,1 = vsm,1, . . . , Vsm,nsm
= vsm,nsm

).

For x1:k ∈ Bn,k , one has (X1:k = x1:k) ⊆ (τn(i) = k), thus ni = n − 1; therefore, B ∩ (τn(i) =
k) ∈FV�

i,n
.

(ii) To prove that B ∩ (τn(i) = ∞) ∈ FV�
i,n

, let C = {A ∈ F : A ∩ (τn(i) = ∞) ∈ FV�
i,n

}. It is

easy to verify that C is a sigma-algebra. Furthermore, for every k and x1:k ∈ Sk , the event (X1:k =
x1:k) belongs to C. Indeed, if m, s1, . . . , sm, ns1, . . . , nsm and vs1,1, . . . , vs1,ns1

, . . . , vsm,1, . . . ,

vsm,nsm
satisfy (19), then (X1:k = x1:k) ∩ (τn(i) = ∞) = ∅ if ni ≥ n or if ni = n − 1 and xk = i;

while, for ni < n − 1 or for ni = n − 1, with xk 
= i, one has

(X1:k = x1:k) ∩ (
τn(i) = ∞)

=
(

m⋂
j=1

nsj⋂
l=1

(Vsj ,l = vsj ,l)

)
∩

(⋂
sj 
=i

∞⋂
l=nsj

+1

(Vsj ,l 
= i)

)
∩

( ⋂
s 
=s1,...,sm

∞⋂
l=1

(Vs,l 
= i)

)
.

Therefore, for every k and x1:k , the event (X1:k = x1:k) belongs to C. It follows that Fk ⊆ C
for every k. Since C is a sigma-algebra and includes

⋃∞
k=1 Fk , it includes the sigma-algebra∨

k Fk generated by
⋃∞

k=1 Fk . Let B ∈ Fτn(i). Since Fτn(i) ⊆ ∨
k Fk , then B ∈ C; therefore,

B ∩ (τn(i) = ∞) ∈ FV�
i,n

. �

The following corollary rephrases and proves Corollary 1.

Corollary 3. Let X be a mixture of recurrent Markov chains with random transition matrix P̃ .
The rows of P̃ are stochastically independent if and only if

P
(
Xτn(i)+1 = j |T(x0,X1:τn(i))

) = P
(
Xτn(i)+1 = j |Ti (x0,X1:τn(i))

)
a.s.
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Furthermore, in this case,

P
(
Xτn(i)+1 = j |Ti (x0,X1:τn(i)) = ti

) = P

(
Vi,n = j

∣∣∣ n−1∑
l=1

δVi,l
(k) = ti,k : k ∈ S

)

almost surely with respect to the probability distribution of Ti (x0,X1:τn(i)).

Proof. Suppose first that the rows of P̃ are stochastically independent. By Lemma 4, Fτn(i) ⊆
FV�

i,n
for i ∈ S, and by the independence assumption,

P(Vi,n = j |FV�
i,n

) = P(Vi,n = j |Vi,1, . . . , Vi,n−1).

Hence, the predictive probabilities from i satisfy

P(Xτn(i)+1 = j |Fτn(i)) = E
(
P(Vi,n = j |FV�

i,n
)|Fτn(i)

)
= E

(
P(Vi,n = j |Vi,1, . . . , Vi,n−1)|Fτn(i)

)
(20)

= P(Vi,n = j |Vi,1, . . . , Vi,n−1).

This proves that the transition probabilities from i depend on X1:τn(i) only through the transition
counts from i.

Conversely, suppose that, for every j , n and x1:n, the predictive probability p(j |x0,x1:n) is
a function π(j |xn,Txn) of xn and of the transition counts Txn from xn. Then P(Xτn(i)+1 =
j |Fτn(i)) is a function of Vi,1, . . . , Vi,n−1. This implies that the rows of the array (Vi,n, i ∈ S,n ≥
1) are stochastically independent. Since the random transition probability P̃i,j is the limit of the
relative frequency of j in Vi,1,Vi,2, . . . , then the rows of P̃ are stochastically independent as
well.

To prove the last assertion, notice that, if the sequences (Vi,n, n ≥ 1)i∈S∗ are independent, then
(20) follows, and by exchangeability of (Vi,n, n ≥ 1) we have the thesis. �

A.2. Complements for Section 3

Proof of Lemma 3. The existence of a minimal element can be proved as for Lemma 1. We
want to prove that the minimal element x∗ = (u∗, k, j,v∗, k′, j ′) satisfies:

(1) {u∗, k} ∩ {j,v∗, k′} contains only one element, say i, that appears once in (u∗, k), as the
first element, and once in (j,v∗, k′);

(2) if i 
= j , then (v∗, k′) contains no j after i, and the strings before and after i in v∗ have no
common elements.

Let us prove (1). Had (u∗, k) and (j,v∗, k′) more than one common element, we could delete the
first part of x∗ and obtain a string in C that is shorter than x∗. Let us denote by i the only common
element. For the same reason, the state i has to appear once in (u∗, k), as its first element. For
showing that i appears only once in (j,v∗, k′), assume by contradiction that i appears at least
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twice. Let us distinguish the following cases: i = j , i = k, i = k′ and i 
= j, k, k′. If i = j , then,
by the above result, j is the first element of u∗, say u∗ = (j,u∗

1); then v∗ cannot contain j ,
otherwise we could write

x∗ = (
j,u∗

1, k, j,v∗
1, j,v∗

2, k
′, j

) ∼ (
j,v∗

1, j,u∗
1, k, j,v∗

2, k
′, j

)
and obtain a shorter string in C by deleting (j,v∗

1). Similarly, for i = k, we could write
x∗ = (k,u∗, k, j,v∗

1, k,v∗
2, k,v∗

3, k
′, j) ∼ (k,v∗

2, k,u∗, k, j,v∗
1, k,v3, k

′, j) and obtain a shorter
element of C by deleting (k,v∗

2). For i = k′, we could set x∗ = (k′,u∗, k, j,v∗
1, k

′,v∗
2, k

′, j) ∼
(k′,v∗

2, k
′,u∗, k, j,v∗

1, k
′, j) and a shorter element could be obtained by deleting (k′,v∗

2). For i 
=
j, k, k′, we could write x∗ = (i,u∗, k, j,v∗

1, i,v∗
2, i,v3, k

′, j) ∼ (i,v∗
2, i,u∗, k, j,v∗

1, i,v3, k
′, j)

and we could delete (i,v∗
2).

Let us prove assertion (2). We distinguish the following cases: i = k; i = k′, and i 
= k, k′.
Suppose, by contradiction, that (2) does not hold. Then:

If i = k, we could write x∗ = (k, j,v∗
1, k,v∗

2, j,v∗
3, k

′, j) ∼ (k,v∗
2, j,v∗

1, k, j,v3, k
′, j) and ob-

tain an element of C that is shorter than x∗ by deleting (k,v∗
2); furthermore, we could write

x∗ = (k, j,v∗
1,w,v∗

2, k,v∗
3,w,v∗

4, k
′, j) ∼ (k,v∗

3,w,v∗
2, k, j,v∗

1,w,v∗
4, k

′, j) and obtain a shorter
element by deleting (k,v∗

3);
If i = k′, we could write x∗ = (k′,u∗, k, j,v∗

1, k
′,v∗

2, j,v∗
3, k

′, j) ∼ (k′,v∗
2, j,v∗

1, k
′,u∗, k, j,

v∗
3, k

′, j) and x∗ = (k′,u∗, k, j,v∗
1,w,v∗

2, k
′,v∗

3,w,v∗
4, k

′, j) ∼ (k′,v∗
3,w,v∗

2, k
′,u∗, k, j,v∗

1,w,

v∗
4, k

′, j), and obtain shorter elements in C by deleting (k′,v∗
2) and (k′,v∗

3), respectively;
If i 
= k, k′, we could write x∗ = (i,u∗, k, j,v∗

1, i,v∗
2, j,v3, k

′, j) ∼ (i,v∗
2, j,v∗

1, i,u∗, k, j,v∗
3,

k′, j) and x∗ = (i,u∗, k, j,v∗
1,w,v∗

2, i,v∗
3,w,v∗

4, k
′, j) ∼ (i,v∗

3,w,v∗
2, i,u∗, k, j,v∗

1,w,v∗
4,

k′, j) and obtain shorter elements by deleting (i,v∗
2) and (i,v∗

3), respectively. �

A.3. Complements for Section 5

Proof of Proposition 3. Let X be a colored edge reinforced random walk with partitioned colors
{C1, . . . ,CN }, finite state space and irreducible normalized weights matrix Q. We first show
that:

(a) If a set of colors Cm is visited infinitely often, then every color c ∈ Cm is visited infinitely
often, almost surely.

(b) If a set of edges Ec is visited infinitely often, then every edge in Ec is visited infinitely
often, almost surely.

Let us prove (a). For every c ∈ C(i), let Ai,c = {j : c(i, j) = c}. We have

P
(
Xn+1 ∈ Ai,c|X1:n = (x, i)

) = αc + TEc(x0,x, i)

αC(i) + TC(i)(x0,x, i)
.

Hence, if c ∈ Cm and τn(Cm) = inf{t ≥ τn−1(Cm) : C(Xt) = Cm} is the time of the nth visit to a
state with color set equal to Cm, we have

P
(
c(Xτn(Cm),Xτn(Cm)+1) = c|τn(Cm) < ∞) ≥ αc

αCm + n
.
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It follows that

∞∑
n=1

[
P

(
c(Xτn(Cm),Xτn(Cm)+1) = c|Fτn(Cm)

)
1{τn(Cm)<∞} + 1{τn(Cm)=∞}

] = ∞ a.s.

Reasoning as in the proof of Theorem 4, we obtain that, if Cm is visited infinitely often, then
every c ∈ Cm is visited infinitely often, almost surely.

(b). Let (i, y) ∈ Ec and T(x0,x) = T. Then

P
(
Xn+1 = y|X1:n−1 = x, c(Xn,Xn+1) = c

)
=

∑
i:c(i,y)=c P (Xn+1 = y|X1:n = (x, i))P (Xn = i|X1:n−1 = x)∑

i:c(i,y)=c P (c(Xn,Xn+1) = c|X1:n = (x, i))P (Xn = i|X1:n−1 = x)

≥ mini:(i,y)∈Ec P (Xn+1 = y|X1:n = (x, i))

maxi:(i,y)∈Ec P (c(Xn,Xn+1) = c|X1:n = (x, i))

≥ αc + TEc

αc + TEc + 1

mini:(i,y)∈Ec βi,y

maxi:(i,y)∈Ec βi,y + TEc

.

Let τn(c) be the nth time the chain visits Ec. Then, for every y such that c(i, y) = c for some i,

P
(
Xτn(c)+1 = y|τn(c) < ∞) ≥ αc + TEc

αc + TEc + 1

mini:(i,y)∈Ec βi,y

maxi:(i,y)∈Ec βi,y + n
.

Hence,

∞∑
n=1

[
P(Xτn(c)+1 = y|Fτn(c))1{τn(c)<∞} + 1{τn(c)=∞}

] = ∞ a.s.

Again as in the proof of Theorem 4, we obtain that, if Ec is visited infinitely often, then every
edge in Ec is visited infinitely often, almost surely.

To conclude the proof, let i and u be such that Qi,u > 0. If i is visited infinitely often, then
C(i) is visited infinitely often; by (a), every Ec with c ∈ C(i) is visited infinitely often and, by
(b), every y ∈ Ai,c is visited infinitely often. Hence, u is visited infinitely often. Since S is finite,
for every path of the process there exists a state i that is visited infinitely often. Then, every state
j , such that Qi,u1Qu1,u2 · · ·Qun,j > 0 for some u1, . . . , un and n, is visited infinitely often. Since
Q is irreducible, for every pair i, j there exist such u1, . . . , un. Hence, the process is recurrent.

�
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