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We consider the problem of multiple change-point estimation in the mean of an AR(1) process. Taking into
account the dependence structure does not allow us to use the dynamic programming algorithm, which is
the only algorithm giving the optimal solution in the independent case. We propose a robust estimator of
the autocorrelation parameter, which is consistent and satisfies a central limit theorem in the Gaussian case.
Then, we propose to follow the classical inference approach, by plugging this estimator in the criteria used
for change-points estimation. We show that the asymptotic properties of these estimators are the same as
those of the classical estimators in the independent framework. The same plug-in approach is then used to
approximate the modified BIC and choose the number of segments. This method is implemented in the R
package AR1seg and is available from the Comprehensive R Archive Network (CRAN). This package is
used in the simulation section in which we show that for finite sample sizes taking into account the de-
pendence structure improves the statistical performance of the change-point estimators and of the selection
criterion.

Keywords: auto-regressive model; change-points; model selection; robust estimation of the AR(1)

parameter; time series

1. Introduction

Change-point detection problems arise in many fields, such as genomics [8,9,31], medical imag-
ing [20], earth sciences [15,36], econometrics [17,19] or climate [25,28]. In many of these prob-
lems, the observations cannot be assumed to be independent. Indeed the autocovariance structure
of the time series display more complex patterns and might be taken into account in change-point
estimation.

An abundant literature exists about the statistical theory of change-point detection. Only speak-
ing about Gaussian processes, various frameworks have been considered ranging from the inde-
pendent case with changes in the mean [6], to more complex structural changes [3], dependent
processes [19] or processes with changes in all parameters [5].

[19,21] proved that, if the number of changes is known, the least-squares estimators of the
change-point locations and of the parameters of each segment are consistent under very mild
conditions on the autocovariance structure of the process with changes in the mean. A quasi-
likelihood approach is also proved to provide consistent estimates for the model with changes in
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all parameters [5]. Many model selection criteria have also been proposed to estimate the number
of changes, mostly in the independent case (see, for example, [20,22,37,39]).

Change-point detection also raises algorithmic issues as the determination of the optimal set
of change-point locations is a discrete optimization problem. Several approximate solutions to
this problem exist [12,16,29,35]. However, the dynamic programming algorithm introduced by
[2] and its refinements [27,32] are the only efficient and exact algorithms to recover this optimal
segmentation. The computational complexity of this algorithms is quadratic relatively to the
length of the series.

However, the dynamic programming algorithm only applies when (i) the loss function (e.g.,
the negative log-likelihood) is additive with respect to the segments and when (ii) no parameter
to be estimated is common to several segments. These requirements are met by the least-square
criterion (which corresponds to the negative log-likelihood in the Gaussian homoscedastic inde-
pendent model with changes in the mean) or by the model and criterion considered by [5]. In
other cases, iterative and stochastic procedures are needed [4,24].

In this paper, we consider the segmentation of an AR(1) process with homogeneous auto-
correlation coefficient ρ�:

yi = μ�
k + ηi, t�n,k + 1 ≤ i ≤ t�n,k+1,0 ≤ k ≤ m�,1 ≤ i ≤ n, (1)

where (ηi)i∈Z is a zero-mean second-order stationary AR(1) process defined as the solution of

ηi = ρ�ηi−1 + εi, (2)

where |ρ�| < 1 and (εi)i∈Z is a white noise with variance σ�2. We further also assume that y0 is
a r.v. with mean μ�

0 and variance σ�2/(1 − ρ�2). Actually, most of the results we provide in this
paper hold without the Gaussian assumption, even if the Gaussian likelihood is considered.

Note that this model is different from the ones considered by [12] and [5]. Indeed, [12] consid-
ered the segmentation issue of a non-stationary time series which consists of blocks of different
autoregressive processes where all the parameters of the autoregressive processes change from
one segment to the other. [5] proposed a methodology for estimating the change-points of a non-
stationary time series built from a general class of models having piecewise constant parameters.
In this framework, all the parameters may change jointly at each change-point. This differs from
our model (1) where the parameters ρ� and σ� are not assumed to change from one segment
to the other. The direct maximum-likelihood inference for such a process violates both require-
ments (i) and (ii). Indeed the log-likelihood is not additive with respect to the segments because
of the dependence that exists between data from neighbor segments and the unknown coefficient
ρ� needs to be estimated jointly over all segments.

Our aim is to propose a methodology for estimating both the change-point locations tn� =
(t�n,k)1≤k≤m� and the means μ� = (μ�

k)0≤k≤m� , accounting for the existence of the auto-
correlation ρ�.

In the sequel, we shall use the following conventions: t�n,0 = 0, t�n,m�+1 = n and assume that
there exists τ � = (τ �

k )0≤k≤m+1 such that, for 0 ≤ k ≤ m + 1, t�n,k = �nτ�
k �, �x� denoting the

integer part of x. Consequently, τ �
0 = 0 and τ �

m�+1 = 1.
If ρ� was known, the series could be decorrelated and the dynamic programming algorithm

could then be used for the segmentation of this decorrelated series (yi − ρ�yi−1)i≥1. Here, ρ� is
unknown, but is estimated, and this estimator is then used to decorrelate the series.
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To this aim, we borrow techniques from robust estimation [26]. Briefly speaking, we consider
the data observed at the change-point locations as outliers and propose an estimate of ρ� that is
robust to the presence of such outliers. We shall prove that the estimate we propose is consistent
and satisfies a central limit theorem.

We shall prove that the resulting change-point estimators satisfy the same asymptotic proper-
ties as those proposed by [5,21]. Finally, we propose a model selection criterion inspired by the
one proposed by [39] and prove some asymptotic properties of this criterion.

This method is implemented in the R package AR1seg and is available from the Comprehen-
sive R Archive Network (CRAN).

This paper is organized as follows. In Section 2, we propose a robust estimator for ρ� and
establish its asymptotic properties in the Gaussian case. In Section 3, we prove that the change-
point estimators defined in (11) are consistent in both the Gaussian and the non-Gaussian case. In
Section 4, we provide a consistent model selection criterion in the non-Gaussian case and derive
an approximation of a Gaussian criterion. In Section 5, we illustrate by a simulation study the
performance of this approach for time series having a finite sample size.

2. Robust estimation of the parameter ρ�

The aim of this section is to provide an estimator of ρ� which can deal with the presence of
change-points in the data. In the absence of change-points (m� = 0 in (1)), a consistent estimator
of ρ� could be obtained by using the classical autocorrelation function estimator of (yi)0≤i≤n

computed at lag 1. Since change-points can be seen as outliers in the AR(1) process, we shall
propose a robust approach for estimating ρ�. [26] propose a robust estimator of the autocorre-
lation function of a stationary time series based on the robust scale estimator proposed by [33].
More precisely, the approach of [26] would result in the following estimate of ρ�:

ρ̂MG = Q2
n(y

+) − Q2
n(y

−)

Q2
n(y

+) + Q2
n(y

−)
,

where y+ = (yi+1 + yi)0≤i≤n−1, y− = (yi+1 − yi)0≤i≤n−1 and Qn is the scale estimator of [33]
which is such that Qn(x) is proportional to the first quartile of{|xi − xj |;0 ≤ i < j ≤ n

}
.

The asymptotic properties of this estimator are studied by [23] for Gaussian stationary pro-
cesses with either short-range or long-range dependence. However, as we shall see in the
simulation section we can provide an estimator of ρ� which is more robust to the presence of
change-points than ρ̂MG. The asymptotic properties of this novel robust estimator are given in
Proposition 2.1.

Proposition 2.1. Let y0, . . . , yn be (n + 1) jointly Gaussian observations satisfying (1) and let

ρ̃n = (med0≤i≤n−2|yi+2 − yi |)2

(med0≤i≤n−1|yi+1 − yi |)2
− 1, (3)
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where medxi denotes the median. Then, ρ̃n satisfies the following central limit theorem

√
n
(
ρ̃n − ρ�

) d−→ N
(
0, σ̃ 2), as n → ∞, (4)

where

σ̃ 2 = E
[
�(η0, η1, η2)

2]+ 2
∑
k≥1

E
[
�(η0, η1, η2)�(ηk, ηk+1, ηk+2)

]
, (5)

and the function � is defined by

� : (x0, x1, x2)
(6)


→ − (1 + ρ�)

	−1(3/4)ϕ(	−1(3/4))
[1{|x2−x0|≤

√
2σ�2	−1(3/4)} − 1{|x1−x0|≤

√
2σ�2/(1+ρ�)	−1(3/4)}],

where 	 and ϕ denote the cumulative distribution function and the probability distribution func-
tion of a standard Gaussian r.v., respectively.

The proof of Proposition 2.1 is given in Appendix A.1.

Remark 2.1. Observe that the classical correlation could not be used here. Indeed, let ρ̂n(1)

be the standard sample lag 1 autocorrelation of the series y0, . . . , yn satisfying (1). One can
easily show that (ρ̂n(1)) tends in probability to γ (1)+A

γ (0)+A
, where γ is the autocovariance function

of (ηi)i∈Z and A =∑m�

k=0(τ
�
k+1 − τ �

k )μ�2
k − (

∑m�

k=0(τ
�
k+1 − τ �

k )μ�
k)

2, as n tends to infinity. Our
estimator avoids this asymptotic bias since it is robust to the presence of changes in the mean.

Remark 2.2. Note that the asymptotic distribution given in (4) allows to define a test of (H0):
‘ρ� = 0’ as the asymptotic variance σ̃ 2 does not depend on any unknown parameter under H0.

Remark 2.3. Since the estimator (3) involves differences of the process (yi) at different instants,
it can only be used in the case of stable distributions as defined by [14]. Among them, we can
quote the Cauchy, Lévy and Gaussian distributions, where the Gaussian distribution is the only
one to have a finite second order moment. We give some hints in Appendix A.2 to explain why,
in the case of the Cauchy distribution, taking˜̃ρn defined as follows leads to an accurate estimator
of ρ�:

˜̃ρn =
{

−1 +√1 + ρ̃n, if ρ̃n ≥ 0,

−√1 − √
1 + ρ̃n, if ρ̃n < 0,

(7)

where ρ̃n is defined by (3). Some simulations are also provided in Section 5.4 to illustrate the
finite sample size properties of this estimator.

3. Change-points and expectations estimation

In this section, the number of change-points m� is assumed to be known. In the sequel, for
notational simplicity, m� will be denoted by m. Our goal is to estimate both the change-points
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and the means in model (1). A first idea consists in using the following criterion which is based
on a Gaussian quasi-likelihood conditioned on y0 and on the reparametrization δk = (1 − ρ)μk ,
and to minimize it with respect to ρ:

m∑
k=0

tk+1∑
i=tk+2

(yi − ρyi−1 − δk)
2

+
m∑

k=1

{(
ytk+1 − δk

1 − ρ

)
− ρ

(
ytk − δk−1

1 − ρ

)}2

+ (y1 − ρy0 − δ0)
2.

Due to the term that involves both δk−1 and δk , this criterion cannot be efficiently minimized.
Therefore, we propose to use an alternative criterion defined as follows:

SSm(y,ρ, δ, t) =
m∑

k=0

tk+1∑
i=tk+1

(yi − ρyi−1 − δk)
2. (8)

Note that SSm(z,ρ, (1 − ρ)μ, t) corresponds to −n/2 times the Gaussian log-likelihood of the
following model maximized with respect to σ :

zi − μ�
k = ρ�

(
zi−1 − μ�

k

)+ εi, t�n,k + 1 ≤ i ≤ t�n,k+1,0 ≤ k ≤ m,1 ≤ i ≤ n, (9)

and where z0 is a r.v. with mean μ�
0 and variance σ�2/(1 −ρ�2) and (εi)i∈Z is a white noise with

variance σ�2. In this model, which is a subset of a model belonging to the class considered in
[5], the expectation changes are not abrupt anymore as in model (1).

The parameter ρ, involved in each term of (8), is still a problem in order to minimize SSm with
respect to ρ, δ and t. This minimization problem is a complex discrete and global optimization
problem. Dynamic Programming [2] cannot be used in this case. Only iterative methods are
suitable to this minimization problem, without any guarantee to converge to the global minimum.

However, if ρ is replaced by an estimator ρn, SSm(y,ρn, δ, t) can be minimized with respect
to δ and t by Dynamic Programming. Proposition 3.2 gives asymptotic results for the estimators
resulting from this method.

Proposition 3.1. Let z = (z0, . . . , zn) be a finite sequence of real-valued r.v.’s satisfying (9) and
(ρn) a sequence of real-valued r.v.’s. Let δ̂n(z, ρn) and t̂n(z, ρn) be defined by(̂

δn(z, ρn),̂ tn(z, ρn)
) = arg min

(δ,t)∈Rm+1×An,m

SSm(z,ρn, δ, t), (10)

τ̂n(z, ρn) = 1

n̂
tn(z, ρn), (11)

where

An,m = {(t0, . . . , tm+1); t0 = 0 < · · · < tm+1 = n,∀k = 1, . . . ,m + 1, tk − tk−1 ≥ n

}
(12)
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and where (n) is a real sequence such that n−1n −→n→∞ 0 and n−αn −→n→∞ +∞ with
α > 0. Assume that (

ρn − ρ�
)= OP

(
n−1/2), (13)

as n tends to infinity. Then,∥∥τ̂n(z, ρn) − τ �
∥∥= OP

(
n−1), ∥∥̂δn(z, ρn) − δ�

∥∥= OP

(
n−1/2),

where ‖ · ‖ is the Euclidean norm and

δ� = (δ�
0, . . . , δ

�
m+1

)= (1 − ρ�
)(

μ�
0, . . . ,μ

�
m+1

)
.

Proposition 3.2. The results of Proposition 3.1 still hold under the same assumptions when z is
replaced with y satisfying (1).

Remark 3.1. Observe that, similarly to most of the papers dedicated to multiple change-points
estimation [3,21,38], we assume that the number of change-points m is fixed and does not depend
on the number of observations.

The proofs of Propositions 3.1 and 3.2 are given in Appendix A.3 and A.4, respectively. Note
that the estimators defined in these propositions have the same asymptotic properties as those of
the estimators proposed by [21]. In the Gaussian framework, the estimator ρ̃n defined in Sec-
tion 2 satisfies the same properties as ρn and can thus be used in the criterion SSm for providing
consistent estimators of the change-points and of the means.

4. Selecting the number of change-points

We now consider the selection of the number of change-points. We first propose a penalized
contrast criterion, which we prove to be consistent in the non-Gaussian case. The penalty has
a general form, which needs to be specified for a practical use. Therefore, we also derive an
adaptation of the modified BIC criterion proposed by [39] in the Gaussian context. This criterion
does not rely on any tuning parameter and has been shown to be efficient in practical cases [30].

4.1. Consistent model selection criterion

We propose to select the number of change-points m as follows

m̂ = arg min
0≤m≤mmax

1

n
SSm(z,ρn) + βnm, (14)

where mmax ≥ m�, (βn)n≥1 is a sequence of positive real numbers, ρn satisfies the assumptions
of Proposition 3.1 and

SSm(z,ρ) = min
δ,t∈An,m

SSm(z,ρ, δ, t), (15)

An,m being defined in (12). In practice, mmax is an upper bound provided by the user.
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Proposition 4.1. Under the assumptions of Proposition 3.1, and if

βn −→
n→∞ 0, n1/2βn −→

n→∞+∞, nβn −→
n→∞+∞,

where n is defined in Proposition 3.1, m̂ defined by (14) converges in probability to m�.

Proposition 4.2. The result of Proposition 4.1 still holds under the same assumptions when z is
replaced by y satisfying (1).

The proofs of Propositions 4.1 and 4.2 are given in Appendix A.5 and A.6, respectively.

Remark 4.1. If βn = n−β , the assumptions of Propositions 4.1 and 4.2 are fulfilled if and only if
0 < β < min(α,1/2), where α is defined in Proposition 3.1. α stands for the usual bound for the
control of the minimal segment length [21]. The 1/2 bound is the price to pay for the estimation
of ρ�.

4.2. Modified BIC criterion

Reference [39] proposed a modified Bayesian information criterion (mBIC) to select the number
m of change-points in the particular case of segmentation of an independent Gaussian process x.
This criterion is defined in a Bayesian context in which a non informative prior is set for the
number of segments m. mBIC is derived from an OP (1) approximation of the Bayes factor be-
tween models with m and 0 change-points, respectively. The mBIC selection procedure consists
in choosing the number of change-points as:

m̂ = arg max
m

Cm(x,0), (16)

where the criterion Cm(y,ρ) is defined for a process y as

Cm(y,ρ) = −n − m + 1

2
logSSm(y,ρ) + log�

(
n − m + 1

2

)

− 1

2

m∑
k=0

lognk

(̂
t(y,ρ)

)− m logn,

where � is the usual Gamma function. In the latter equation

nk

(̂
t(y,ρ)

)= t̂k+1(y,ρ) − t̂k(y, ρ), (17)

where t̂(y,ρ) = (̂t1(y,ρ), . . . , t̂m(y,ρ)) is defined as t̂(y,ρ) = arg mint∈An,m
minδ SSm(y,ρ,

δ, t).
Note that, in model (9), the criterion could be directly applied to the decorrelated series v� =

(v�
i )1≤i≤n = (yi − ρ�yi−1)1≤i≤n since

Cm

(
y,ρ�

)= Cm

(
v�,0

)
.
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We propose to use the same selection criterion, replacing ρ� by some relevant estimator ρn.
The following two propositions show that this plug-in approach result in the same asymptotic
properties under both model (9) and (1).

Proposition 4.3. For any positive m, for a Gaussian process z satisfying (9) and under the
assumptions of Proposition 3.1, we have

Cm(z,ρn) = Cm

(
z,ρ�

)+ OP (1), as n → ∞.

Proposition 4.4. For any positive m, for a Gaussian process y satisfying (1) and under the
assumptions of Proposition 3.2, we have

Cm(y,ρn) = Cm

(
y,ρ�

)+ OP (1), as n → ∞.

The proofs of Propositions 4.3 and 4.4 are given in Appendix A.7 and A.8, respectively.
In practice, we propose to take ρn = ρ̃n which satisfies the condition of Proposition 4.4 to

estimate the number of segments by

m̂ = arg max
m

[
−
(

n − m + 1

2

)
logSSm(y, ρ̃n) + log�

(
n − m + 1

2

)
(18)

− 1

2

m∑
k=0

lognk

(̂
t(y, ρ̃n)

)− m logn

]
,

where SSm(·, ·) and nk(·, ·) are defined in (15) and (17), respectively.

Remark 4.2. Since the definition of the original mBIC criterion is intrinsically related to normal-
ity, we did not study precisely the quality of our approximation without the normality assumption.

5. Numerical experiments

5.1. Practical implementation

Our decorrelation procedure introduces spurious change-points in the series, at distance 1 of the
true change-points (see Figure 1, top). Since these artifacts may affect our procedure, we propose
a post-processing to the estimated change-points t̂n, which consists in removing segments of
length 1:

PP (̂tn) = {̂tn,k ∈ t̂n} \ {̂tn,i such that t̂n,i = t̂n,i−1 + 1 and t̂n,i+1 = t̂n,i + 1}.
This post-processing results in a smaller number of change-points. Figure 1 summarizes the
whole processing.

In practice, it may also be useful to have some guidance on how to check that the assumptions
underpinning our approach are satisfied for a given data set. A possible approach is to subtract
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Figure 1. Top left: a series around two changes, with ρ� = 0.5. Top right: the decorrelated series in the
same region. Bottom left: before post-processing, two pairs of adjacent change-points are found. Bottom
right: post-processing removes the last change-point of each pair of adjacent ones.

the estimated piecewise constant function from the original series. If the model is the expected
one, this new series should be a realization of a centered AR(1) process. Hence, the residuals
built by decorrelation of this series should be mutually uncorrelated. One way to check this is to
perform a Portmanteau test on this series of residuals.

5.2. Simulation design

To assess the performance of the proposed method, we used a simulation design inspired from the
one conceived by [18]. We considered Gaussian series of length n ∈ {100,200,400,800,1600}
with autocorrelation at lag 1, denoted by ρ�, ranging from −0.9 to 0.9 (by steps of 0.1) and
residual standard deviation σ� between 0.1 and 0.6 (by steps of 0.1). All series were affected by
m� = 6 change-points located at fractions 1/6 ± 1/36,3/6 ± 2/36,5/6 ± 3/36 of their length.
Each combination was replicated S = 100 times. The mean within each segment alternates be-
tween 0 and 1, starting with μ1 = 0.

Estimation of ρ�

For each generated series, two different estimates ρn of ρ� were computed: the original estimate
ρn = ρ̂MG proposed by [26] and our revised version ρn = ρ̃n. We carried the same study on
series with no change-point (centered series).

Estimation of the segmentation parameters

For each generated series, we estimated the change-point locations τ̂n(y,ρn) using Proposi-
tion 3.1 for each m from 1 to mmax = 75 and with different choices of ρn: ρ̃n (our estimator),
ρ� (the true value) and zero (which does not take into account for the autocorrelation). For each
choice of ρn, we then selected the number of change-points m̂ using (18). Actually, the last
choice ρn = 0 corresponds to the classical least-squares framework. In addition, we shall also
use the post-processing described in Section 5.1 for the cases where ρn = ρ̃n and ρ�.
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To study the quality of the proposed model selection criterion, we computed the distribution of
m̂ for each estimate ρn ∈ {ρ̃n, ρ

�,0} with post-processing or not for the first two estimates of ρ�.
In order to assess the performance of the estimation of the change-point locations, we com-

puted the Hausdorff distance defined in the segmentation framework as follows, see [7,16]:

d
(
τ �, τ̂n(y,ρn)

)= max
(
d1
(
τ �, τ̂n(y,ρn)

)
, d2
(
τ �, τ̂n(y,ρn)

))
, (19)

where

d1(a,b) = sup
b∈b

inf
a∈a

|a − b|, and (20)

d2(a,b) = d1(b,a). (21)

d1 close to zero means that an estimated change-point is likely to be close to a true change-point.
A small value of d2 means that a true change-point is likely to be close to each estimated change-
point. A perfect segmentation results in both null d1 and d2. Over-segmentation results in a small
d1 and a large d2. Under-segmentation results in a large d1 and a small d2, provided that the
estimated change-points are correctly located.

5.3. Results

Estimation of ρ�

In Figure 2, we compare the performance of our robust estimator of ρ�: ρ̃n with the ones of the
estimator ρ̂MG in the case where there are no change-points in the observations. More precisely,
in this case, the observations y are generated under the model (1) with μ�

k = 0, for all k. We
observe that the estimator proposed by [26] performs better than our robust estimator. However,
it is not the case anymore in the presence of change-points in the data as we can see in Figure 3.
In the latter case, our robust estimator ρ̃n outperforms the estimator ρ̂MG for almost all values
of ρ�.

Model selection

In Figures 4 and 5, we compare the estimated number of change-points m̂ in two different con-
figurations of signal-to-noise ratio (σ� = 0.1 and σ� = 0.5) and with three different values of ρ�

(ρ� = 0.3, 0.6 and 0.8). In these figures, the notation LS, Robust and Oracle correspond to the
cases where ρn = 0, ρn = ρ̃n and ρn = ρ�, respectively. Moreover, we use the notation-P when
the post-processing described in Section 5.1 is used. In the situations where σ� and ρ� are small,
all the methods provide an accurate estimation of the number of change-points. In the other cases,
LS tends to strongly overestimate the number of change-points. Robust and Oracle tend to se-
lect twice the true number of change-points due to the artifactual presence of change-points in
the decorrelated series as explained in Section 5.1. This is corrected by the post-processing and
Robust-P provides the correct number of change-points in most of the considered configurations.
Moreover, we also observe that the performance of Robust and Robust-P are similar to these
of Oracle and Oracle-P: the robust decorrelation procedure we propose performs as well as if
ρ� was known for n = 1600. It has to be noted that the post-processing would not improve the
performance on LS so we did not considered it.
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Figure 2. Boxplots of ρ̂MG − ρ� in red and ρ̃n − ρ� in black for different values of ρ� in the case where
there are no change-points in the data with n = 400 (plots on the left), n = 1600 (plots on the right),
σ� = 0.2 (top) and σ� = 0.6 (bottom).

Change-point locations

Figures 6 and 8 display the boxplots of the two parts d1 and d2 of the Hausdorff distance defined
in (20) and (21), respectively for different values of ρ� when σ� = 0.5. d2 is displayed in Figure 7
for σ� = 0.1; for this value of σ�, d1 was found null for all methods and all values of ρ�.

When the noise is small (σ� = 0.1), the robust procedure we propose performs well for the
whole range of correlation. On the contrary, the performance of LS are deprecated when the
correlation increases, whereas these of LS� still provide accurate change-point locations. This
shows that the least-square approach only fails because it turns to overestimate the number of
change-points. This is all the more true for LS when the variance of the noise is large (σ� =
0.5). When the problem gets difficult (both σ� and ρ� large), our robust procedure tends to
underestimate the number of change-points (which was expected) and the estimated change-
points are close to true ones.

An other way to illustrate the performance of the estimation of the change-point locations is
the histograms of these estimates. We provide these plots only for LS, Robust-P and Oracle-P,
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Figure 3. Boxplots of ρ̂MG − ρ� in red and ρ̃n − ρ� in black for different values of ρ� in the case where
there are change-points in the data with n = 400 (plots on the left), n = 1600 (plots on the right), σ� = 0.2
(top) and σ� = 0.6 (bottom).

Figure 4. Boxplots for the estimated number of change-points for n = 1600 when ρn = 0 (LS), ρn = ρ̃n

(Robust and Robust-P with post-processing) and ρn = ρ� (Oracle and Oracle-P with post-processing) with
σ� = 0.1 and ρ� = 0.3 (left), ρ� = 0.6 (middle) and ρ� = 0.8 (right). The true number of change-points is
equal to 6 (red horizontal line).
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Figure 5. Boxplots for the estimated number of change-points for n = 1600 when ρn = 0 (LS), ρn = ρ̃n

(Robust and Robust-P with post-processing) and ρn = ρ� (Oracle and Oracle-P with post-processing) with
σ� = 0.5 and ρ� = 0.3 (left), ρ� = 0.3 (middle) and ρ� = 0.8 (right). The true number of change-points is
equal to 6 (red horizontal line).

because Post-processing does not change significantly LS estimates, and, furthermore, Robust
(respectively, Oracle) method’s histograms with or without Post-Processing are very similar, see
Figures 9 and 10. These figures illustrate that in case of over-estimation of the number of changes
by LS method, the additional change-points seem to be uniformly distributed.

5.4. Additional simulation studies

5.4.1. Comparison with [5]

The quasi-maximum likelihood method proposed by [5], when applied to an AR(1) process
with changes in the mean (y0, . . . , yn), consists in the minimization with respect to ρ =

Figure 6. Boxplots for the first part of the Hausdorff distance (d1) for n = 1600 when ρn = 0 (LS and LS∗
when the true number of change-points is known), ρn = ρ̃n (Robust and Robust-P with post-processing) and
ρn = ρ� (Oracle and Oracle-P with post-processing) with σ� = 0.5 and ρ� = 0.3 (left), ρ� = 0.6 (middle)
and ρ� = 0.8 (right).
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Figure 7. Boxplots for the second part of the Hausdorff distance (d2) for n = 1600 when ρn = 0 (LS and
LS∗ when the true number of change-points is known), ρn = ρ̃n (Robust and Robust-P with post-process-
ing) and ρn = ρ� (Oracle and Oracle-P with post-processing) with σ� = 0.1 and ρ� = 0.3 (left), ρ� = 0.6
(middle) and ρ� = 0.8 (right).

(ρ0, . . . , ρm),σ = (σ0, . . . , σm), δ = (δ0, . . . , δm) and t = (t0, . . . , tm) of the following function:

(ρ,σ , δ, t) 
→
m∑

k=0

{
(tk+1 − tk) log

(
σ 2

k

)+ 1

σ 2
k

tk+1∑
i=tk+1

(yi − ρkyi−1 − δk)
2

}
. (22)

Indeed, in the class of models considered in [5], changes in all the parameters are possible at
each change-point. Using this method to estimate the change-point locations for data satisfying
model (1) or (9) boils down to ignore the stationarity of (ηi)i≥0 as defined in (2). It can lead to
a poor estimation of change-point locations, especially when there are many changes close to
each other. To illustrate this fact, we compared our estimator of change-point locations to the
estimates given by the minimization of (22). We generated 100 Gaussian series of length 400,
under model (1), with ρ� = 0.3 and σ� = 0.4. The number of change-points, their locations and

Figure 8. Boxplots for the second part of the Hausdorff distance (d2) when ρn = 0 (LS and LS∗ when
the true number of change-points is known), ρn = ρ̃n (Robust and Robust-P with post-processing) and
ρn = ρ� (Oracle and Oracle-P with post-processing) with σ� = 0.5 and ρ� = 0.3 (left), ρ� = 0.6 (middle)
and ρ� = 0.8 (right).
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Figure 9. Frequencies of each possible change-point estimator, with σ� = 0.1 and n = 1600. Tick-marks
on bottom-side axis represent the true change-point locations. ρn = 0 (LS, top line), ρn = ρ̃n (Robust-P,
middle line) and ρn = ρ� (Oracle-P, bottom line) with ρ� = 0.3 (left), ρ� = 0.6 (middle) and ρ� = 0.8
(right).

the means within segments are the same as in Section 5.2. The number of changes is assumed
to be known and we did not post-process the estimates. Simulations show that using the method
of [5] in this case can lead to a poor estimation of close change-points, while our method is less
affected by the length of segments (see Figure 11). For example, the boundaries of the smallest
segment are recovered in less than half of the simulations when minimizing (22).

5.4.2. Robustness to model mis-specification

In this section, we study the behaviour of our proposed robust procedure (Robust-P) when the
signal is corrupted by an AR(2) Gaussian process, for example, in model 1, ηi is a zero-mean

Figure 10. Frequencies of each possible change-point estimator, with σ� = 0.5 and n = 1600. Tick-marks
on bottom-side axis represent the true change-point locations. ρn = 0 (LS, top line), ρn = ρ̃n (Robust-P,
middle line) and ρn = ρ� (Oracle-P, bottom line) with ρ� = 0.3 (left), ρ� = 0.6 (middle) and ρ� = 0.8
(right).
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Figure 11. Frequencies of each possible change-point location estimate. Tick-marks on bottom-side axis
represent the true change-point locations. Left: Estimation by the minimization of (22). Right: Our method.

stationary process such that

ηi = φ�
1ηi−1 + φ�

2ηi−2 + εi,

where |φ2| < 1, φ1 + φ2 < 1 and φ2 − φ1 < 1. We considered series of fixed length n = 1600,
a residual standard deviation σ� = 0.1, φ�

1 = 0.3 and φ�
2 in {−0.9,−0.8,−0.7, . . . ,0.5,0.6}. We

used the same segmentation design as in Section 5.1. Each combination was replicated 100 times.
All the results are displayed in Figure 12.

The procedure performs well when φ�
2 belongs to the interval [−0.5,0.2] as expected (similar

to the case of AR(1)): the estimated segmentation is close to the true one. When φ�
2 > 0.2, it

tends to over-estimate the number of change-points. The true change-points are detected (d1 is
close to zero, e.g., the decorrelation procedure with the obtained negative estimation of ρ� leads
to an increasing in the mean differences) but false change-points are added (large d2). When
φ�

2 < −0.5, under-segmentation is observed: the decorrelation procedure with a large estimated
value of ρ� leads to a difficult segmentation problem.

Figure 12. Left: Boxplots for the estimated number of change-points. Center and right: Boxplots for the
first part of the Hausdorff distance (d1) and for the second part of the Hausdorff distance (d2) with n = 1600,
σ� = 0.1 and φ�

1 = 0.3 with respect to different values of φ�
2.
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Figure 13. Boxplots of ˜̃ρn − ρ� for different values of ρ� when n = 1600 and σ� = 0.1.

5.4.3. Estimator of ρ� in the case of the Cauchy distribution

In Section 2, an analogous estimator of ρ� in the case of Cauchy distributed observations is
proposed. We follow the simulation design described in Section 5.2, where the Gaussian r.v.’s
are replaced by Cauchy r.v.’s. More precisely, the expectation parameters are replaced by the
location parameters of the Cauchy distribution and σ� is replaced by the scale parameter of the
Cauchy distribution. We can see from Figure 13 that ˜̃ρn is an accurate estimator of ρ� except
when ρ� is close to zero. When this estimator of ρ� is used in our change-point estimation
method, it leads to poor estimations of the change-points since the Cauchy distribution does not
have finite second order moment (simulations not shown).

6. Conclusion

In this paper, we propose a novel approach for estimating multiple change-points in the mean
of an AR(1) process. Our approach is based on two main stages. The first one consists in build-
ing a robust estimator of the autocorrelation parameter which is used for whitening the original
series. In the second stage, we apply the inference approach commonly used to estimate change-
points in the mean of independent random variables. The Gaussianity assumption is only made
in the Propositions 2.1 (proposed auto-correlation estimator), 4.3 and 4.4 (mBIC criterion). In
the course of this study, we have shown that our approach, which is implemented in the R pack-
age AR1seg, is a very efficient technique both on a theoretical and practical point of view. More
precisely, it has two main features which make it very attractive. First, the estimators that we pro-
pose have the same asymptotic properties as the classical estimators in the independent frame-
work which means that the performances of our estimators are not affected by the dependence
assumption. Second, from a practical point of view, AR1seg is computationally efficient and ex-
hibits better performance on finite sample size data than existing approaches which do not take
into account the dependence structure of the observations.

Appendix: Proofs

A.1. Proof of Proposition 2.1

Let F1 and F2 denote the cumulative distribution functions (c.d.f.) of (|yi+1 − yi |) for i =
t�n,1, . . . , t

�
n,m� and (|yi+2 − yi |) for i = t�n,1 − 1, . . . , t�n,m� − 1, respectively. By (1), (yi −
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E(yi))0≤i≤n are (n + 1) observations of a AR(1) stationary Gaussian process thus for any
i = t�n,1, . . . , t

�
n,m� , (yi+1 − yi) and for any i = t�n,1 − 1, . . . , t�n,m� − 1, (yi+2 − yi) are zero-

mean Gaussian r.v.’s with variances equal to 2σ�2/(1 + ρ�) and 2σ�2, respectively. Hence, for
all t in R,

F1 : t 
→ 2	

(
t

√
1 + ρ�

2σ�2

)
− 1 and F2 : t 
→ 2	

(
t

√
1

2σ�2

)
− 1, (23)

where 	 denotes the cumulative distribution function of a standard Gaussian r.v.
Let also denote by F1,n and F2,n−1 the empirical cumulative distribution functions of (|yi+1 −

yi |)0≤i≤n−1 and (|yi+2 − yi |)0≤i≤n−2, respectively. Observe that for all t in R,

√
n
(
F1,n(t) − F1(t)

)
= 1√

n

n−1∑
i=0

(
1{|yi+1−yi |≤t} − F1(t)

)
(24)

= 1√
n

∑
i∈{t�n,1,...,t

�
n,m� }

(
1{|yi+1−yi |≤t} − F1(t)

)+ 1√
n

∑
0≤i≤n−1

i /∈{t�n,1,...,t
�
n,m� }

(
1{|yi+1−yi |≤t} − F1(t)

)

= 1√
n

∑
0≤i≤n−1

(
1{|zi |≤t} − F1(t)

)+ Rn(t),

where supt∈R |Rn(t)| = op(1), the zi = yi+1 − yi except for i = t�n,1, . . . , t
�
n,m� , where zi =

ηi+1 − ηi , (ηi) being defined in (2).
Thus, by using the theorem of [11], we obtain that the first term in the right-hand side of (24)

converges in distribution to a zero-mean Gaussian process G in the space of càdlàg functions
equipped with the uniform norm. Since the second term in the right-hand side tends uniformly to
zero in probability, we get that

√
n(F1,n −F1) converges in distribution to a zero-mean Gaussian

process in the space of càdlàg functions equipped with the uniform norm and that the same holds
for

√
n − 1(F2,n−1 − F2).

By Lemma 21.3 of [34], the quantile function T : F 
→ F−1(1/2) is Hadamard differentiable
at F tangentially to the set of càdlàg functions h that are continuous at F−1(1/2) with derivative
T ′

F (h) = −h(F−1(1/2))/F ′(F−1(1/2)). By applying the functional delta method [34], Theo-
rem 20.8, we get that

√
n(T (F1,n) − T (F1)) converges in distribution to T ′

F1
(G). Moreover, by

the Continuous mapping theorem, it is the same for T ′
F1

{√n(F1,n − F1)}. Thus,

√
n
(
F−1

1,n (1/2) − F−1
1 (1/2)

) = T ′
F1

{√
n(F1,n − F1)

}+ op(1)

= − 1√
n

∑n−1
i=0 (1{|yi+1−yi |≤F−1

1 (1/2)} − 1/2)

F ′
1(F

−1
1 (1/2))

+ op(1).



1426 Chakar, Lebarbier, Lévy-Leduc and Robin

In the same way,

√
n − 1

(
F−1

2,n−1(1/2) − F−1
2 (1/2)

)
= − 1√

n − 1

∑n−2
i=0 (1{|yi+2−yi |≤F−1

2 (1/2)} − 1/2)

F ′
2(F

−1
2 (1/2))

+ op(1).

By applying the Delta method [34], Theorem 3.1, with the transformation f (x) = x2, we get

√
n
(
F−1

1,n (1/2)2 − F−1
1 (1/2)2)

= −2F−1
1 (1/2)√

n

∑n−1
i=0 (1{|yi+1−yi |≤F−1

1 (1/2)} − 1/2)

F ′
1(F

−1
1 (1/2))

+ op(1),

√
n − 1

(
F−1

2,n−1(1/2)2 − F−1
2 (1/2)2)

= −2F−1
2 (1/2)√
n − 1

∑n−2
i=0 (1{|yi+2−yi |≤F−1

2 (1/2)} − 1/2)

F ′
2(F

−1
2 (1/2))

+ op(1).

Note that by (23), we obtain that

F−1
1 (1/2) =

√
2σ�2

1 + ρ�
	−1(3/4) and F−1

2 (1/2) =
√

2σ�2	−1(3/4). (25)

Moreover,

F ′
1

(
F−1

1 (1/2)
) = 2

√
1 + ρ�

2σ�2
ϕ
(
	−1(3/4)

)
and

(26)

F ′
2

(
F−1

2 (1/2)
) = 2

√
1

2σ�2
ϕ
(
	−1(3/4)

)
,

where ϕ denotes the probability distribution function of a standard Gaussian r.v.
Observe that

√
n(ρ̃n − ρ�) can be rewritten as follows:

√
n
(
ρ̃n − ρ�

) = √
n
F−1

2,n (1/2)2 − (1 + ρ�)F−1
1,n (1/2)2

F−1
1,n (1/2)2

= √
n
(F−1

2,n−1(1/2)2 − F−1
2 (1/2)2) − (1 + ρ�)(F−1

1,n (1/2)2 − F−1
1 (1/2)2)

F−1
1,n (1/2)2

(27)

+ √
n
F−1

2 (1/2)2 − (1 + ρ�)F−1
1 (1/2)2

F−1
1,n (1/2)2

.
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By (25) the last term in the right-hand side of (27) is equal to zero. Thus,

F−1
1,n (1/2)2√n

(
ρ̃n − ρ�

)
= 1√

n − 1

n−2∑
i=0

{
a2(1{|yi+2−yi |≤F−1

2 (1/2)} − 1/2) − a1
(
1 + ρ�

)
(1{|yi+1−yi |≤F−1

1 (1/2)} − 1/2)
}

+ op(1),

where, by (26),

a2 = − 2F−1
2 (1/2)

F ′
2(F

−1
2 (1/2))

= −2σ�2 	−1(3/4)

ϕ(	−1(3/4))
and

a1 = − 2F−1
1 (1/2)

F ′
1(F

−1
1 (1/2))

= − 2σ�2

1 + ρ�

	−1(3/4)

ϕ(	−1(3/4))
.

By (25),
√

n(ρ̃n − ρ�) can thus be rewritten as follows:

F−1
1,n (1/2)2√n

(
ρ̃n − ρ�

)= 2σ�2	−1(3/4)2

1 + ρ�

1√
n − 1

∑
0≤i≤n−2

�(ηi, ηi+1, ηi+2) + op(1),

where � is defined in (6) and (ηi) is defined in (2). Since � is a function on R
3 with Hermite

rank greater than 1 and (ηi)i≥0 is a stationary AR(1) Gaussian process, and since F−1
1,n (1/2)2

converges in probability to F−1
1 (1/2)2, (4) follows by applying [1], Theorem 4, Slutsky’s lemma

and equation (25).

A.2. Hints for (7)

Note that if X has a Cauchy(x0, γ ) distribution then the characteristic function ϕX of X can
be written as ϕX(t) = eix0t−γ |t |. Moreover, the c.d.f. FX of X is such that F−1

X (3/4) = x0 +
γ . Thus, ηi = ∑k≥0(ρ

�)kεi−k has a Cauchy(
x0

1−ρ� ,
γ

1−|ρ�| ) distribution and (ρ� − 1)ηi has a

Cauchy(−x0,
γ |ρ�−1|
1−|ρ�| ) distribution. Since ηi+1 −ηi = (ρ�−1)ηi +εi is a sum of two independent

Cauchy r.v.’s, it is distributed as a Cauchy(0, γ (1 + | ρ�−1
1−|ρ�| |)) distribution. In the same way,

ηi+2 − ηi = (ρ�2 − 1)ηi + ρ�εi + εi+2 is a sum of three independent Cauchy r.v.’s and has
thus a Cauchy(0,2γ (1 + |ρ�|)). Let F1 and F2 denote the c.d.f. of (ηi+1 − ηi) and (ηi+2 − ηi),
respectively. By using the properties of the c.d.f. of a Cauchy distribution, we get, on the one
hand, that F−1

2 (3/4) = 2γ (1 + |ρ�|) and, on the other hand, that

F−1
1 (3/4) =

⎧⎨⎩
2γ, if ρ� > 0,

2γ

1 + ρ�
, if ρ� < 0.
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From this we get that(
F−1

2 (3/4)

F−1
1 (3/4)

)2

− 1 =
{

ρ�
(
2 + ρ�

)
, if ρ� > 0,

ρ�2(ρ�2 − 2
)
, if ρ� < 0.

The definition of ˜̃ρn comes by inverting these last two functions.

A.3. Proof of Proposition 3.1

In the sequel, we need the following definitions, notations and remarks. Observe that (9) can be
rewritten as follows:

z = ρ∗Bz + T
(
t�n
)
δ� + ε, (28)

where

z =
⎛⎝ z1

...

zn

⎞⎠ , Bz =
⎛⎝ z0

...

zn−1

⎞⎠ , δ� =
⎛⎜⎝ δ�

0
...

δ�
m

⎞⎟⎠ , ε =
⎛⎝ ε1

...

εn

⎞⎠ , (29)

where δ�
k = (1 − ρ�)μ�

k , for 0 ≤ k ≤ m, and T (t) is an n × (m + 1) matrix where the kth column
is (0, . . . ,0︸ ︷︷ ︸tk−1

1, . . . ,1︸ ︷︷ ︸tk−tk−1

0, . . . ,0︸ ︷︷ ︸n−tk

)T .

Let us define the exact and estimated decorrelated series by

w� = z − ρ�Bz, (30)

w = z − ρnBz. (31)

For any vector subspace E of Rn, let πE denote the orthogonal projection of Rn on E. Let
also ‖ · ‖ be the Euclidean norm on R

n, 〈·, ·〉 the canonical scalar product on R
n and ‖ · ‖∞ the

sup norm. For x a vector of Rn and t ∈ An,m, let

Jn,m(x, t) = 1

n

(∥∥πEt�n
(x)
∥∥2 − ∥∥πEt(x)

∥∥2)
, (32)

written Jn(x, t) in the sequel for notational simplicity. In (32), Et�n and Et correspond to the
linear subspaces of Rn generated by the columns of T (t�n) and T (t), respectively. We shall use
the same decomposition as the one introduced in [21]:

Jn(x, t) = Kn(x, t) + Vn(x, t) + Wn(x, t), (33)

where

Kn(x, t) = 1

n

∥∥(πEt�n
− πEt)Ex

∥∥2
, (34)

Vn(x, t) = 1

n

(∥∥πEt�n
(x −Ex)

∥∥2 − ∥∥πEt(x −Ex)
∥∥2)

, (35)



Change-points in the mean of an AR(1) process 1429

Wn(x, t) = 2

n

(〈
πEt�n

(x −Ex),πEt�n
(Ex)

〉− 〈πEt(x −Ex),πEt(Ex)
〉)

. (36)

We shall also use the following notations:

λ = min
1≤k≤m

∣∣δ�
k − δ�

k−1

∣∣, (37)

λ = max
1≤k≤m

∣∣δ�
k − δ�

k−1

∣∣, (38)

τ � = min
1≤k≤m+1

(
τ �
k − τ �

k−1

)
, (39)

Cν,γ,n,m = {t ∈An,m;νλ−2 ≤ ∥∥t − t�n
∥∥≤ nγτ �

}
, (40)

C′
ν,γ,n,m = Cν,γ,n,m ∩ {t ∈An,m; ∀k = 1, . . . ,m, tk ≥ t�n,k

}
, (41)

C′
ν,γ,n,m(I) = {t ∈ C′

ν,γ,n,m;
(42)

∀k ∈ I, νλ−2 ≤ tk − t�n,k ≤ nγτ � and ∀k /∈ I, tk − t�n,k < νλ−2},
for any ν > 0, 0 < γ < 1/2 and I ⊂ {1, . . . ,m}. We shall also need the following lemmas in
order to prove Proposition 3.1 which are proved below.

Lemma A.1. Let (z0, . . . , zn) be defined by (1) or (9), then

‖Bz‖ = OP

(
n1/2), (43)

‖z‖ = OP

(
n1/2), (44)

as n tends to infinity, where Bz and z are defined in (29).

Lemma A.2. Let (z0, . . . , zn) be defined by (1) or (9) then, for all t ∈ An,m,

∣∣Jn(w, t) − Jn

(
w�, t

)∣∣≤ 2
|ρ� − ρ|

n
‖Bz‖(∣∣ρ� + ρ

∣∣‖Bz‖ + 2‖z‖)= OP

(
n−1/2)= oP (1),

as n → ∞, where Jn is defined in (32), Bz and z are defined in (29), w� is defined in (30) and w

is defined in (31).

Lemma A.3. Under the assumptions of Proposition 3.1, ‖τn − τ �‖∞ converges in probability
to 0, as n tends to infinity.

Lemma A.4. Under the assumptions of Proposition 3.1 and for any ν > 0, 0 < γ < 1/2 and
I ⊂ {1, . . . ,m},

P

(
min

t∈C′
ν,γ,n,m(I)

(
1

2
Kn

(
w�, t

)+ Vn

(
w�, t

)+ Wn

(
w�, t

))≤ 0

)
−→ 0, as n → ∞,

where C′
ν,γ,n,m(I) is defined in (42) and w� is defined in (30).
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Lemma A.5. Under the assumptions of Proposition 3.1 and for any ν > 0, 0 < γ < 1/2 and
I ⊂ {1, . . . ,m},

P
(

min
t∈C′

ν,γ,n,m(I)
Jn(w, t) ≤ 0

)
−→ 0, as n → ∞,

where C′
ν,γ,n,m(I) is defined in (42) and w is defined in (31).

Lemma A.6. Under the assumptions of Proposition 3.1,∥∥τ̂n(z, ρn) − τ �
∥∥∞ = OP

(
n−1).

Proof of Lemma A.1. Without loss of generality, assume (z0, . . . , zn) is defined by (9). ‖z‖2 −
‖Bz‖2 = z2

n − z2
0 = OP (1) thus we only need to prove (43). ‖Bz‖2 =∑n−1

i=0 z2
i then Markov

inequality implies that ‖Bz‖2 = OP (n). �

Proof of Lemma A.2. By (30), w = w� + (ρ� − ρn)Bz. Thus, by (32), we get

Jn(w, t) − Jn

(
w�, t

)
= (ρ� − ρn)

2

n

∥∥πEt� (Bz)
∥∥2 + 2(ρ� − ρn)

n

〈
πEt�

(
z − ρ�Bz

)
,πEt� (Bz)

〉
(45)

− (ρ� − ρn)
2

n

∥∥πEt(Bz)
∥∥2 − 2(ρ� − ρn)

n

〈
πEt

(
z − ρ�Bz

)
,πEt(Bz)

〉
.

Observe that the sum of the first two term in the right-hand side of (45) can be rewritten as
follows:

1

n

(
ρ� − ρn

)〈
πEt� (Bz),

(
ρ� − ρn

)
πEt� (Bz) + 2πEt�

(
z − ρ�Bz

)〉
= 1

n

(
ρ� − ρn

)〈
πEt� (Bz),πEt�

(
2z − (ρ� + ρn

)
Bz
)〉

.

Since the same can be done for the last two terms in the right-hand side of (45), the Cauchy–
Schwarz inequality and the 1-Lipschitz property of projections give

∣∣Jn(w, t) − Jn

(
w�, t

)∣∣≤ 2
|ρ� − ρn|

n
‖Bz‖(∣∣ρ� + ρn

∣∣‖Bz‖ + 2‖z‖).
The conclusion follows from (13) and Lemma A.1. �

Proof of Lemma A.3. [21], proof of Theorem 3, give the following bounds for any t ∈An,m:

Kn

(
w�, t

) ≥ λ2 min

(
1

n
max

1≤k≤m

∣∣tk − t�n,k

∣∣,τ �

)
, (46)
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Vn

(
w�, t

) ≥ −2(m + 1)

nn

(
max

1≤s≤n

(
s∑

i=1

εi

)2

+ max
1≤s≤n

(
n∑

i=n−s

εi

)2)
, (47)

∣∣Wn

(
w�, t

)∣∣ ≤ 3(m + 1)2λ

n

(
max

1≤s≤n

∣∣∣∣∣
s∑

i=1

εi

∣∣∣∣∣+ max
1≤s≤n

∣∣∣∣∣
n∑

i=n−s

εi

∣∣∣∣∣
)

, (48)

where λ, λ and τ � are defined in (37)–(39). For any ν > 0, define, as in [21], proof of Theo-
rem 3,

Cn,m,ν = {t ∈An,m;∥∥t − t�n
∥∥∞ ≥ nν

}
. (49)

For 0 < ν < τ � , we have:

P
(∥∥̂tn(z, ρn) − t�n

∥∥∞ ≥ nν
) ≤ P

(
min

t∈Cn,m,ν

Jn(w, t) ≤ 0
)

≤ P
(

min
t∈Cn,m,ν

(
Jn(w, t) − Jn

(
w�, t

))≤ −νλ2
)

+ P
(

min
t∈Cn,m,ν

(
Vn

(
w�, t

)+ Wn

(
w�, t

))≤ −νλ2
)

(50)
≤ P

(
min

t∈Cn,m,ν

(
Jn(w, t) − Jn

(
w�, t

))≤ −νλ2
)

+ P

(
max

1≤s≤n

(
s∑

i=1

εi

)2

+ max
1≤s≤n

(
n∑

i=n−s

εi

)2

≥ cλ2nnν

)

+ P

(
max

1≤s≤n

∣∣∣∣∣
s∑

i=1

εi

∣∣∣∣∣+ max
1≤s≤n

∣∣∣∣∣
n∑

i=n−s

εi

∣∣∣∣∣≥ cλ2nνλ
−1

)

for some positive constant c. The last two terms of this sum go to 0 when n goes to infinity [21],
proof of Theorem 3. To show that the first term shares the same property, it suffices to show that
Jn(w, t) − Jn(w

�, t) is bounded uniformly in t by a sequence of r.v.’s which converges to 0 in
probability. This result holds by Lemma A.2. �

Proof of Lemma A.4. Using equations (64)–(66) of [21], one can show the bound (73) of [21]
on

P
(

min
t∈C′

ν,γ,n,m(I)

(
Kn

(
w�, t

)+ Vn

(
w�, t

)+ Wn

(
w�, t

))≤ 0
)
.

Using the same arguments, we have the same bound on

P

(
min

t∈C′
ν,γ,n,m(I)

(
1

2
Kn

(
w�, t

)+ Vn

(
w�, t

)+ Wn

(
w�, t

))≤ 0

)
.

We conclude using equations (67)–(71) of [21]. �
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Proof of Lemma A.5. By (33),

P
(

min
t∈C′

ν,γ,n,m(I)
Jn(w, t) ≤ 0

)
≤ P

(
min

t∈C′
ν,γ,n,m(I)

(
Jn(w, t) − Jn

(
w�, t

)+ 1

2
Kn

(
w�, t

))≤ 0

)

+ P

(
min

t∈C′
ν,γ,n,m(I)

(
1

2
Kn

(
w�, t

)+ Vn

(
w�, t

)+ Wn

(
w�, t

))≤ 0

)
.

By Lemma A.4, the conclusion thus follows if

P

(
min

t∈C′
ν,γ,n,m(I)

(
Jn(w, t) − Jn

(
w�, t

)+ 1

2
Kn

(
w�, t

))≤ 0

)
−→ 0, as n → ∞.

Since mint∈C′
ν,γ,n,m(I) Kn(w

�, t) ≥ (1 − γ )τ �ν [21], equation (65),

P

(
min

t∈C′
ν,γ,n,m(I)

(
Jn(w, t) − Jn

(
w�, t

)+ 1

2
Kn

(
w�, t

))≤ 0

)

≤ P

(
min

t∈C′
ν,γ,n,m(I)

(
Jn(w, t) − Jn

(
w�, t

))≤ 1

2
(γ − 1)τ �ν

)
,

and we conclude by Lemma A.2. �

Proof of Lemma A.6. For notational simplicity, t̂n(z, ρn) will be replaced by tn in this proof.
Since for any ν > 0,

P
(∥∥tn − t�n

∥∥∞ < νλ−2)= P
(∥∥tn − t�n

∥∥∞ ≤ nγτ �

)− P(tn ∈ Cν,γ,n,m),

it is enough, by Lemma A.3, to prove that

P(tn ∈ Cν,γ,n,m) −→ 0, as n → ∞,

for all ν > 0 and 0 < γ < 1/2. Since

Cν,γ,n,m =
⋃

I⊂{1,...,m}
Cν,γ,n,m ∩ {t ∈ An,m; ∀k ∈ I, tk ≥ t�n,k

}
,

we shall only study one set in the union without loss of generality and prove that

P
(
tn ∈ C′

ν,γ,n,m

)−→ 0, as n → ∞,

where C′
ν,γ,n,m is defined in (41). Since C′

ν,γ,n,m =⋃I⊂{1,...,m} C′
ν,γ,n,m(I), we shall only study

one set in the union without loss of generality and prove that

P
(
tn ∈ C′

ν,γ,n,m(I)
)−→ 0, as n → ∞.
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Since

P
(
tn ∈ C′

ν,γ,n,m(I)
)≤ P

(
min

t∈C′
ν,γ,n,m(I)

Jn(w, t) ≤ 0
)
,

the proof is complete by Lemma A.5. �

Proof of Proposition 3.1. For notational simplicity, δ̂n(z, ρn) will be replaced by δn in this
proof. By Lemma A.6, the last result to show is∥∥δn − δ�

∥∥= OP

(
n−1/2),

that is, for all k, δn,k − δ�
k = OP (n−1/2). By (30) and (31),

δn,k = 1

tn,k+1 − tn,k

tn,k+1∑
i=tn,k+1

wi

= 1

n(τn,k+1 − τn,k)

( tn,k+1∑
i=tn,k+1

w�
i + (ρ� − ρn

) tn,k+1∑
i=tn,k+1

zi−1

)
.

By the Cauchy–Schwarz inequality,

∣∣∣∣∣
tn,k+1∑

i=tn,k+1

zi−1

∣∣∣∣∣≤ (tn,k+1 − tn,k)
1/2(z2

tn,k
+ · · · + z2

tn,k+1−1

)1/2 ≤ n1/2‖Bz‖ = OP (n),

where the last equality comes from Lemma A.1. Hence by (13) and Lemma A.6,

δn,k = 1

n(τn,k+1 − τn,k)

tn,k+1∑
i=tn,k+1

w�
i + OP

(
n−1/2)

= 1

n(τn,k+1 − τn,k)

( tn,k+1∑
i=tn,k+1

Ew�
i +

tn,k+1∑
i=tn,k+1

εi

)
+ OP

(
n−1/2),

where the last equality comes from (28) and (30).
Let us now prove that

1

n(τn,k+1 − τn,k)

tn,k+1∑
i=tn,k+1

εi = OP

(
n−1/2). (51)
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By Lemma A.3, n−1(τn,k+1 − τn,k)
−1 = OP (n−1). Moreover,

tn,k+1∑
i=tn,k+1

εi =
t�n,k+1∑

i=t�n,k+1

εi ±
t�n,k∑

i=tn,k+1

εi ±
tn,k+1+1∑
i=t�n,k+1

εi . (52)

By the Chebyshev inequality, the first term in the right-hand side of (52) is OP (n1/2). By using

the Cauchy–Schwarz inequality, we get that the second term of (52) satisfies: |∑t�n,k

i=tn,k+1 εi | ≤
|t�n,k − tn,k|1/2(

∑n
i=1 ε2

i )1/2 = OP (1)OP (n1/2) = OP (n1/2), by Lemma A.6. The same holds for
the last term in the right-hand side of (52), which gives (51). Hence,

δn,k − δ�
k = 1

n(τn,k+1 − τn,k)

tn,k+1∑
i=tn,k+1

(
Ew�

i − δ�
k

)+ OP

(
n−1/2)

= 1

n(τn,k+1 − τn,k)

∑
i∈{tn,k+1,...,tn,k+1}\{t�n,k+1,...,t�n,k+1}

(
Ew�

i − δ�
k

)+ OP

(
n−1/2),

and then∣∣δn,k − δ�
k

∣∣ ≤ 1

n(τn,k+1 − τn,k)
�{tn,k + 1, . . . , tn,k+1} \ {t�n,k + 1, . . . , t�n,k+1

}
max

l=0,...,m

∣∣δ�
l − δ�

k

∣∣
+ OP

(
n−1/2).

We conclude by using Lemma A.6 to get �{tn,k + 1, . . . , tn,k+1} \ {t�n,k + 1, . . . , t�n,k+1} =
OP (1) and Lemma A.3 to get (τn,k+1 − τn,k)

−1 = OP (1). �

A.4. Proof of Proposition 3.2

The connection between models (1) and (9) is made by the following lemmas.

Lemma A.7. Let (y0, . . . , yn) be defined by (1) and let

v�
i = yi − ρ�yi−1, (53)

�
i =

{−ρ�
(
μ�

k − μ�
k−1

)
, if i = t�n,k + 1,

0, otherwise,
(54)

where the μ�
k’s are defined in (1), then the process

w�
i = v�

i + �
i (55)
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has the same distribution as zi − ρ�zi−1 where (z0, . . . , zn) is defined by (9). Such a process
(z0, . . . , zn) can be constructed recursively as{

z0 = y0,

zi = w�
i + ρ�zi−1, for i > 0.

(56)

Lemma A.8. Let (y0, . . . , yn) be defined by (1) and let z be defined by (53–56). Then

wi = vi + i, (57)

where

vi = yi − ρnyi−1, (58)

wi = zi − ρnzi−1, (59)

i = �
i + (ρ� − ρn

)
(zi−1 − yi−1). (60)

Lemma A.9. Let  = (i)0≤i≤n as defined in (60). Then ‖‖ = OP (1).

Proof of Lemma A.7. Let z being defined by (56). Using (55), we get, for all 0 ≤ k ≤ m, t�n,k <

i ≤ t�n,k+1,(
zi − μ�

k

)− ρ�
(
zi−1 − μ�

k

) = (yi − μ�
k

)− ρ�
(
yi−1 − μ�

k

)+ �
i

=
{(

yi − μ�
k

)− ρ�
(
yi−1 − μ�

k−1

)
, if i = t�n,k + 1,(

yi − μ�
k

)− ρ�
(
yi−1 − μ�

k

)
, otherwise.

This expression equals (yi − E(yi)) − ρ�(yi−1 − E(yi−1)) = ηi − ρ�ηi−1 = εi by (1) and (2).
Then z satisfies (9). �

Proof of Lemma A.8. The proof of Lemma A.8 is straightforward. �

Proof of Lemma A.9. (60) can be written as

 = � + (ρ� − ρn

)
(By − Bz),

where � = (�
i )1≤i≤n, By = (yi−1)1≤i≤n and Bz is defined in (29). By the triangle inequality,

‖‖ ≤ ∥∥�
∥∥+ ∣∣ρ� − ρn

∣∣(‖By‖ + ‖Bz‖). (61)

Since ‖�‖ is constant it is bounded. The conclusion follows from (61), (13) and Lemma A.1.
�

Proof of Proposition 3.2. Let y, z, v, w and  be defined in Lemma A.8.
Using (32) and Lemma A.8, we get

Jn(v, t) = Jn(w, t) + Jn(, t) − 2

n

(〈
πEt�n

(w),πEt�n
()
〉− 〈πEt(w),πEt()

〉)
.
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By the Cauchy–Schwarz inequality and the 1-Lipschitz property of projections, we have

∣∣Jn(, t)
∣∣ ≤ 2

n
‖‖2,∣∣〈πEt�n

(w),πEt�n
()
〉− 〈πEt(w),πEt()

〉∣∣ ≤ 2‖‖‖w‖.

Note that w = z − ρnBz thus by the triangle inequality

‖w‖ ≤ ‖z‖ + |ρn|‖Bz‖.

Since |ρn| = OP (1), we deduce from Lemma A.1 that ‖w‖ = OP (n1/2). Since, by Lemma A.9,
‖‖ = OP (1), we obtain that

sup
t

∣∣∣∣Jn(, t) − 2

n

(〈
πEt�n

(w),πEt�n
()
〉− 〈πEt(w),πEt()

〉)∣∣∣∣= OP

(
n−1/2). (62)

For 0 < ν < τ � , using (33) and (49), we get:

P
(∥∥tn − t�

∥∥∞ ≥ ν
) ≤ P

(
min

t∈Cn,m,ν

Jn(v, t) ≤ 0
)

≤ P

(
min

t∈Cn,m,ν

{
Jn(w, t) + Jn(, t)

− 2

n

(〈
πEt�n

(w),πEt�n
()
〉− 〈πEt(w),πEt()

〉)}≤ 0

)
≤ P

(
min

t∈Cn,m,ν

{
Kn(w, t) + Vn(w, t) + Wn(w, t) + Jn(, t)

− 2

n

(〈
πEt�n

(w),πEt�n
()
〉− 〈πEt(w),πEt()

〉)}≤ 0

)
≤ P

(
min

t∈Cn,m,ν

{
1

2
Kn(w, t) + Vn(w, t) + Wn(w, t)

}
≤ 0

)
+ P

(
min

t∈Cn,m,ν

{
1

2
Kn(w, t) + Jn(, t)

− 2

n

(〈
πEt�n

(w),πEt�n
()
〉− 〈πEt(w),πEt()

〉)}≤ 0

)
.

Following the proof of Lemma A.3, one can prove that

P

(
min

t∈Cn,m,ν

{
1

2
Kn(w, t) + Vn(w, t) + Wn(w, t)

}
≤ 0

)
−→
n→∞ 0. (63)
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Using (46), we get that

P

(
min

t∈Cn,m,ν

{
1

2
Kn(w, t) + Jn(, t) − 2

n

(〈
πEt�n

(w),πEt�n
()
〉− 〈πEt(w),πEt()

〉)}≤ 0

)
(64)

≤ P

(
1

2
λ2ν + min

t∈Cn,m,ν

{
Jn(, t) − 2

n

(〈
πEt�n

(w),πEt�n
()
〉− 〈πEt(w),πEt()

〉)}≤ 0

)
which goes to zero when n goes to infinity by (62).

Then Lemma A.3 still holds if y is defined by (1). To show the rate of convergence, we use the
same decomposition. As in the proof of Lemma A.6, P(mint∈C′

ν,γ,n,m(I) Jn(v, t) ≤ 0)−→n→∞ 0

for all ν > 0 and 0 < γ < 1/2 is a sufficient condition for proving that P (̂tn(y,ρn) ∈
Cν,γ,n,m)−→n→∞ 0, which allows us to conclude on the rate of convergence of the estimated
change-points. Note that

P
(

min
t∈C′

ν,γ,n,m(I)
Jn(v, t) ≤ 0

)
≤ P

(
min

t∈C′
ν,γ,n,m

{
1

2
Kn(w, t) + Vn(w, t) + Wn(w, t)

}
≤ 0

)

+ P

(
1

2
λ2ν + Jn(, t)

− 2

n

(〈
πEt�n

(w),πEt�n
()
〉− 〈πEt(w),πEt()

〉)≤ 0

)
.

In the latter equation, the second term of the right-hand side goes to zero as n goes to infinity by
(62).

The first term of right-hand side goes to zero when n goes to infinity by following the same
line of reasoning as the one of Lemma A.5. This concludes the proof of Proposition 3.2. �

A.5. Proof of Proposition 4.1

We shall used in this section the notations introduced in Sections A.3 and 4.1. The result derives
directly from Lemmas A.10 and A.11.

Lemma A.10. Under the assumptions of Proposition 4.1, P(m̂ = m)−→n→∞ 0 if m < m�.

Lemma A.11. Under the assumptions of Proposition 4.1, P(m̂ = m)−→n→∞ 0 if m > m�.

Proof of Lemma A.10. If m̂ = m < m�, then

1

n
SSm(z,ρn) + βnm ≤ 1

n
SSm�(z, ρn) + βnm

�,

where SSm is defined in (15). In particular, there exists t ∈ An,m such that

1

n
min

δ
SSm(z,ρn, δ, t) + βnm ≤ 1

n
min

δ
SSm

(
z,ρn, δ, t�n

)+ βnm
�.
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From (32), we get

Jn(w, t) ≤ βn

(
m� − m

)
.

Since (βn) converges to zero, for any ε > 0, βn(m
� − m) ≤ ε for a large enough n, and so

Jn(w, t) ≤ ε.

One can check that there exist 0 < ν < τ � such that, for a large enough n, there exists t′ ∈
Cn,m�,ν such that Et ⊂ Et′ (that is the change-points of t are change-points of t′) for all t ∈An,m,
where Cn,m�,ν is defined in (49). From (32) and Et ⊂ Et′ , we get Jn(w, t′) ≤ Jn(w, t). Then, the
following inequality holds for all ε > 0 and any large enough n:

P(m̂ = m) ≤ P
(∃t′ ∈ Cn,m�,ν, Jn

(
w, t′

)≤ ε
)
. (65)

We then follow the steps of (50), −νλ2 being replaced by ε − νλ2. The convergence of P(∃t′ ∈
Cn,m�,ν, Jn(w, t′) ≤ ε) to zero holds with ε < νλ2. We can conclude with (65). �

Proof of Lemma A.11. Following the proof of Lemma A.10, if m̂ = m > m�, there exists t ∈
An,m such that Jn(w, t) ≤ βn(m

� − m) and then Jn(w, t) + βn ≤ 0 since m > m�. Then

P(m̂ = m) ≤ P
(∃t ∈An,m, Jn(w, t) + βn ≤ 0

)
. (66)

Adding the change-points of t�n to those of such a t, one can get t ′ ∈ An,m′ with m� < m ≤
m′ ≤ m + m� such that Et ∪ Et�n ⊂ Et′ , provided that (m + m�)�n� ≤ n, where �·� is the
ceiling function, this condition being fulfilled for any sufficiently large n under the assumptions
of Proposition 4.1 since n−1n converges to zero. Since Et ⊂ Et′ , we derive Jn(w, t′) + βn ≤
Jn(w, t) + βn from (32). Then, from (66), we get

∀m′ > m�, P
(∃t′ ∈ An,m′ ,Et�n ⊂ Et′, Jn

(
w, t′

)+ βn ≤ 0
) −→

n→∞ 0 (67)

is a sufficient condition to prove the lemma. Let us prove (67). Let m′ > m� and such a t′. We
compare Jn(w, t′) to Jn(w

�, t′). Since Ew� ∈ Et�n ⊂ Et′ , Kn(w
�, t′) = 0 by (34). By (36) and

Ew� ∈ Et�n ⊂ Et′ ,

Wn

(
w�, t′

) = 2

n

(〈
πEt�n

(
w� −Ew�

)
,πEt�n

(
Ew�

)〉− 〈πEt′
(
w� −Ew�

)
,πEt′

(
Ew�

)〉)
= 2

n

〈
πEt�n

(
w� −Ew�

)− πEt′
(
w� −Ew�

)
,πEt�n

(
Ew�

)〉
= −2

n

〈
πE⊥

t�n
πEt′

(
w� −Ew�

)
,πEt�n

(
Ew�

)〉
= 0,

where E⊥ is the (Euclidean) orthogonal complement of the vector subspace E. Then Jn(w
�, t′) =

Vn(w
�, t′) and

Jn

(
w, t′

)= Vn

(
w�, t′

)+ (Jn

(
w, t′

)− Jn

(
w�, t′

))
. (68)
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Using (47), Vn(w
�, t) ≥ − 2(m′+1)

nn
Mn, where

Mn = Mn,1 + Mn,2,

Mn,1 = max
1≤s≤n

(
s∑

i=1

εi

)2

,

Mn,2 = max
1≤s≤n

(
n∑

i=n−s

εi

)2

.

We define Dn = supt′∈An,m′ |Jn(w, t′) − Jn(w
�, t′)|. Then, using (68),

Jn

(
w, t′

)≥ −2(m + 1)

nn

Mn − Dn,

which implies

P
(∃t′ ∈An,m′ ,Et�n ⊂ Et′, Jn

(
w, t′

)+ βn ≤ 0
) ≤ P

(
−2(m′ + 1)

nn

Mn − Dn + βn ≤ 0

)
≤ P

(
2(m′ + 1)

nn

Mn ≥ βn

2

)
+ P

(
Dn ≥ βn

2

)
.

By Lemma A.2, Dn = OP (n−1/2) and then P(Dn ≥ βn

2 ) tends to zero as n tends to infinity

since n1/2βn −→n→∞ +∞. Let us now prove that P(
2(m+1)

nn
Mn ≥ βn

2 ) tends to zero as n tends
to infinity, which concludes the proof. Note that

P

(
2(m′ + 1)

nn

Mn ≥ βn

2

)
≤ P

(
Mn,1 ≥ nnβn

8(m′ + 1)

)
+ P

(
Mn,2 ≥ nnβn

8(m′ + 1)

)
.

We prove the convergence for each term in the right-hand side of the above equation. We shall
prove it for the first term in the right-hand side since the arguments for the other term are the
same. From Kolmogorov’s maximal inequality [13], Theorem 2.5.2, since (εi)i≥0 is a sequence
of independent r.v.’s with zero-mean and finite variance σ�2,

∀δ > 0, P
(
Mn,1 ≥ δ2)≤ nσ�2

δ2
. (69)

Letting δ2 = nnβn

8(m′+1)
in (69), we get

P

(
Mn,1 ≥ nnβn

8(m′ + 1)

)
≤ 8(m′ + 1)σ �2

nβn

,

which goes to 0 as n tends to infinity because nβn −→n→∞ +∞. The proof of the convergence
of P(Mn,2 ≥ nnβn

8(m′+1)
) follows the same lines. �
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A.6. Proof of Proposition 4.2

The proof directly derives from the following lemmas.

Lemma A.12. Under the assumptions of Proposition 4.2, P(m̂ = m)−→n→∞ 0 if m < m�.

Lemma A.13. Under the assumptions of Proposition 4.2, P(m̂ = m)−→n→∞ 0 if m > m�.

Proof of Lemma A.12. Following the proof of Lemma A.10 and replacing w by v, we get, for
any ε > 0,

P(m̂ = m) ≤ P
(∃t′ ∈ Cn,m�,ν, Jn

(
v, t′
)≤ ε

)
(70)

≤ P

(
∃t′ ∈ Cn,m�,ν,

1

2
Kn

(
w, t′

)+ Vn

(
w, t′

)+ Wn

(
w, t′

)≤ ε

2

)
(71)

+ P

(
∃t′ ∈ Cn,m�,ν,

1

2
Kn

(
w, t′

)+ Jn

(
v, t′
)− Jn

(
w, t′

)≤ ε

2

)
,

since

Jn

(
v, t′
)= 1

2Kn

(
w, t′

)+ Vn

(
w, t′

)+ Wn

(
w, t′

)+ 1
2Kn

(
w, t′

)+ Jn

(
v, t′
)− Jn

(
w, t′

)
.

From (63) and (71), it suffices to prove that

P

(
∃t′ ∈ Cn,m�,ν,

1

2
Kn

(
w, t′

)+ Jn

(
v, t′
)− Jn

(
w, t′

)≤ ε

2

)
−→
n→∞ 0

to conclude the proof. It follows from (62) and (64), 1
2λ2ν being replaced by 1

2 (λ2ν − ε), which
is positive if ε < λ2ν. �

Proof of Lemma A.13. As in the proof of Lemma A.11, it suffices to show that

P
(∃t ∈ An,m, Jn(v, t) + βn ≤ 0

) −→
n→∞ 0.

Since

Jn(v, t) ≥ Jn(w, t) − sup
t

∣∣Jn(v, t) − Jn(w, t)
∣∣,

the result follows from

P

(
∃t ∈ An,m, Jn(w, t) + 1

2
βn ≤ 0

)
−→
n→∞ 0, (72)

P

(
sup

t

∣∣Jn(v, t) − Jn(w, t)
∣∣≥ 1

2
βn

)
−→
n→∞ 0. (73)
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Equation (72) follows from the Proof of Lemma A.11, replacing βn by 1
2βn. Equation (73) fol-

lows from (62) and from n1/2βn −→n→∞ +∞. �

A.7. Proof of Proposition 4.3

We first give some lemmas which are useful for the proof of Proposition 4.3.

Lemma A.14. Under the assumptions of Proposition 4.3 with SSm given by (15), we have, for
any positive m,

SSm(z,ρn) = SSm

(
z,ρ�

)+ OP (1), as n → ∞.

Lemma A.15. Under the assumptions of Proposition 4.3 with SSm given by (15), we have, for
any positive m,

SSm

(
z,ρ�

)−1 = OP

(
n−1), as n → ∞.

Proof of Lemma A.14. The proof of this lemma follows exactly this of Lemma A.16. The
difference is that, in (9), the term � appearing in the decomposition (77) vanishes. �

Proof of Lemma A.15. We first define

SSm(z,ρ, t) = arg min
δ

SSm(z,ρ, δ, t).

We have, for any positive M ,

P

(
n

SSm(z,ρ�)
> M

)
≤ P

({
SSm(z,ρ�)

SSm(z,ρ�, t�)
> 1

}
∩
{

n

SSm(z,ρ�)
> M

})
+ P

({
SSm(z,ρ�)

SSm(z,ρ�, t�)
< 1

}
∩
{

n

SSm(z,ρ�)
> M

})
≤ P

(
n

SSm(z,ρ�, t�)
> M

)
+ P

(
SSm(z,ρ�)

SSm(z,ρ�, t�)
< 1

)
.

Under the assumptions of Proposition 3.1, a by product of the proof of Theorem 3 in [21] is that

P

(
SSm(z,ρ�)

SSm(z,ρ�, t�)
< 1

)
= P

(
SSm

(
z,ρ�

)− SSm

(
z,ρ�, t�

)
< 0
)≤ κn−α,

where κ is a positive constant depending on δ� and t�, and α is a positive constant. Furthermore,
as σ�−2SSm(z,ρ�, t�) has a χ2

n−m−1 distribution, n−1SSm(z,ρ�, t�) = σ�2 + oP (1) and thus
n−1SSm(z,ρ�, t�) = OP (1), which concludes the proof. �
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Proof of Proposition 4.3. We have to prove that, for a given positive m, Cm(z,ρ�) −
Cm(z,ρn) = OP (1). Observe that, since τ̂k(z, ρ) = t̂k(z, ρ)/n,

m∑
k=0

lognk

(̂
t(z, ρn)

)− m∑
k=0

lognk

(̂
t
(
z,ρ�

))
(74)

=
m∑

k=0

log
(̂
τk+1(z, ρn) − τ̂k(z, ρn)

)− m∑
k=0

log
(̂
τk+1

(
z,ρ�

)− τ̂k

(
z,ρ�

))
.

By Proposition 3.1, both quantities of the previous equation converge in probability to

m∑
k=0

log
(
τ �
k+1 − τ �

k

)
thus

m∑
k=0

lognk

(̂
t(z, ρn)

)− m∑
k=0

lognk

(̂
t
(
z,ρ�

))= OP (1). (75)

Further note that

logSSm(z,ρn) − logSSm

(
z,ρ�

)= log

(
SSm(z,ρn)

SSm(z,ρ�)

)
= R

(
SSm(z,ρn) − SSm(z,ρ�)

SSm(z,ρ�)

)
,

where R(x) = log(1 + x). Lemma A.14 states that SSm(z,ρn) − SSm(z,ρ�) = OP (1) and
Lemma A.15 that [SSm(z,ρ�)]−1 = OP (n−1) so, by [34], Lemma 2.12, we get that

logSSm(z,ρn) − logSSm

(
z,ρ�

)= OP

(
n−1).

Hence
n − m + 1

2
logSSm(z,ρn) − n − m + 1

2
logSSm

(
z,ρ�

)= OP (1),

which with (75) concludes the proof of Proposition 4.3. �

A.8. Proof of Proposition 4.4

We first give some lemmas which are useful for the proof of Proposition 4.4.

Lemma A.16. Under the assumptions of Proposition 4.3 with SSm given by (15), we have, for
any positive m,

SSm(y,ρn) = SSm

(
y,ρ�

)+ OP (1), as n → ∞.

Lemma A.17. If (y0, . . . , yn) is defined by (1) and (z0, . . . , zn) is defined as in Lemma A.7, then

SSm

(
y,ρ�

)= SSm

(
z,ρ�

)+ OP (1), as n → ∞.
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Lemma A.18. Let (Xn) and (Yn) be two sequences of r.v.’s such that Xn − Yn = OP (1). If
Y−1

n = OP (n−1) then X−1
n = OP (n−1).

Proof of Lemma A.16. Using the matrix notations from the proof of Lemma A.9, we have

SSm

(
y,ρ�

)= min
T ,δ

∥∥y − ρ�By − T δ
∥∥2

, SSm(y,ρn) = min
T ,δ

‖y − ρnBy − T δ‖2,

where all minimizations are achieved over all segmentations with m change points belonging to
An,m. Let us define (T̂ �, δ̂�) and (T , δ) by(

T̂ �, δ̂�
)= arg min

T ,δ

∥∥y − ρ�By − T δ
∥∥, (T , δ) = arg min

T ,δ

‖y − ρnBy − T δ‖.

Note that T̂ � and T refer to t̂ (y, ρ�) and t̂ (y, ρn), respectively. We have∣∣SSm(y,ρn) − SSm

(
y,ρ�

)∣∣ = ∣∣∣min
T ,δ

∥∥y − ρnBy − T δ
∥∥2−min

T ,δ

∥∥y − ρ�By − T δ
∥∥2
∣∣∣

≤ max
(∣∣∥∥y − ρnBy − T̂ �δ̂�

∥∥2 − ∥∥y − ρ�By − T̂ �δ̂�
∥∥2∣∣, (76)∣∣‖y − ρnBy − T δ‖2 − ∥∥y − ρ�By − T δ

∥∥2∣∣).
We now have to prove that this upper bound is OP (1). We first prove it for the second term of
in the right-hand side of (76). To do so, observe that ‖y − ρnBy − T δ‖2 = ‖y − ρ�By − T δ +
(ρ� − ρn)By‖2. Thus,

‖y −ρnBy −T δ‖2 −∥∥y −ρ�By −T δ
∥∥2 = (ρn −ρ�

)2‖By‖2 +2
(
ρ� −ρn

)〈
By,y −ρ�By −T δ

〉
.

Since, by (28) and Lemma A.7, y − ρ�By − T δ = ε − � + (T �δ� − T δ) = ε − � + T �(δ� −
δ) + (T � − T )δ, where � is the n-dimensional vector with entries �

i , we get

‖y − ρnBy − T δ‖2 − ∥∥y − ρ�By − T δ
∥∥2

= (ρn − ρ�
)2‖By‖2 + 2

(
ρ� − ρn

)(〈By, ε〉 + 〈By,T �
(
δ� − δ

)〉
(77)

+ 〈By,
(
T � − T

)
δ
〉− 〈By,�

〉)
.

Let us now prove that each term in the right-hand side of (77) is OP (1).

(i) Let us study the first term of (77). Using Lemma A.1 and (13), we get that(
ρn − ρ�

)2‖By‖2 = OP (1). (78)

(ii) Let us now study the second term of (77). Observe that 〈By, ε〉 = ∑n
i=1 yi−1εi =∑n

i=1(yi−1 − E(yi−1))εi +∑n
i=1 E(yi−1)εi . By using the central limit theorem for i.i.d. r.v.’s

and since there is a finite number of change-points, the second term is OP (
√

n). As for the first
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term, since (yi−1 −E(yi−1)) is a causal AR(1) process, then by using the beginning of the proof
of Proposition 8.10.1 of [10], we get that

∑n
i=1(yi−1 −E(yi−1))εi = OP (

√
n). Thus,

〈By, ε〉 = OP (
√

n). (79)

Furthermore, we have ‖T �(δ� − δ)‖2 =∑m
k=0(t

�
k+1 − t�k )(δ�

k − δk)
2 where each term of the sum

is OP (1), thanks to Proposition 3.2, and so is the sum. Now using Lemma A.1 and the Cauchy–
Schwarz inequality, we get 〈

By,T �
(
δ� − δ

)〉= OP (
√

n). (80)

The convergence rate of t̂ (y, ρn) given in Proposition 3.2 ensures that, for any ε > 0 there exists
a positive M such that each column of (T � − T ) has at most M non-zero coefficients with
probability greater than 1 − ε. By using Proposition 3.2, we obtain that with probability greater
than 1 − ε ∥∥(T � − T

)
δ
∥∥2 ≤ M

∑
k

δ
2
k = 2M

∑
k

(
δk − δ�

k

)2 + 2M
∑

k

δ�
k

2 ≤ MM ′, (81)

where M ′ is a positive constant. By the Cauchy–Schwarz inequality, (81) and Lemma A.1, we
get 〈

By,
(
T � − T

)
δ
〉= OP (

√
n). (82)

As � has only m non-zero entries, 〈By,�〉 is the sum of m Gaussian r.v.’s and is therefore
OP (1).

Thus, combining (79), (80) and (82) with (13), we get(
ρ� − ρn

)(〈By, ε〉 + 〈By,T �
(
δ� − δ

)〉+ 〈By,
(
T � − T

)
δ
〉− 〈By,�

〉)= OP (1).

To complete the proof, we need to consider the first term of (76). As ρ� satisfies the same
assumptions as ρn, using the same line of reasoning as for the second term holds so we get∥∥y − ρnBy − T̂ �δ̂�

∥∥2 − ∥∥y − ρ�By − T̂ �δ̂�
∥∥2 = OP (1). �

Proof of Lemma A.17. The proof follows the same line of reasoning as the proof of
Lemma A.16.

Let us define (T̂ y, δ̂y) and (T̂ z, δ̂z) by(
T̂ y, δ̂y

)= arg min
T ,δ

∥∥y − ρ�By − T δ
∥∥2

,
(
T̂ z, δ̂z

)= arg min
T ,δ

∥∥z − ρ�Bz − T δ
∥∥2

.

We have∣∣SSm

(
y,ρ�

)− SSm

(
z,ρ�

)∥∥ ≤ max
(∣∣∥∥y − ρ�By − T̂ y δ̂y

∥∥2 − ∥∥z − ρ�Bz − T̂ y δ̂y
∥∥2∣∣,∣∣∥∥y − ρ�By − T̂ zδ̂z

∥∥2 − ∥∥z − ρ�Bz − T̂ zδ̂z
∥∥2∣∣).
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According to Lemma A.7, we have y − ρ�By = z − ρ�Bz − � where � = (�
i ). As for the

first term ∥∥y − ρ�By − T̂ y δ̂y
∥∥2 − ∥∥z − ρ�Bz − T̂ y δ̂y

∥∥2

= ∥∥�
∥∥2 − 2

(〈
�, ε

〉+ 〈�,T �
(
δ� − δ̂y

)〉+ 〈�,
(
T � − T̂ y

)̂
δy
〉)
,

the first term of which is a constant and all other terms being OP (1), which can be proved
following the same line as the proof of Lemma A.16. The control of ‖y −ρ�By − T̂ zδ̂z‖2 −‖z−
ρ�Bz − T̂ zδ̂z‖2 follows the same lines. �

Proof of Lemma A.18. Observe that

X−1
n = (Yn + (Xn − Yn)

)−1 = Y−1
n

(
1 + Y−1

n (Xn − Yn)
)−1

.

Since, by assumption, Y−1
n (Xn − Yn) = OP (n−1), the terms inside the parentheses converges

in probability to one. Thus, (1 + Y−1
n (Xn − Yn))

−1 is in particular OP (1) which concludes the
proof. �

Proof of Proposition 4.4. As for the proof of Proposition 4.3, denoting τ̂k(y, ρ) = t̂k(y, ρ)/n,
the decomposition (74) still holds, replacing z with y. Then, by Proposition 3.2, we have

m∑
k=0

lognk

(̂
t(y, ρn)

)− m∑
k=0

lognk

(̂
t
(
y,ρ�

))= OP (1).

For a process y under model (1), we construct a process z under model (9) using Lemma A.7.
The proof relies on the fact that y inherits some properties of z. Again, we note that

logSSm(y,ρn) − logSSm

(
y,ρ�

)= R

(
SSm(y,ρn) − SSm(y,ρ�)

SSm(y,ρ�)

)
.

Lemma A.16 states that SSm(y,ρn) − SSm(y,ρ�) = OP (1). To conclude the proof we
need to further show that [SSm(y,ρ�)]−1 = OP (n−1). We first show that [SSm(y,ρ�) −
SSm(z,ρ�)] = OP (1) in Lemma A.17 and, because [SSm(z,ρ�)]−1 = OP (n−1), we conclude
using Lemma A.18. �
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