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In this paper, we extend earlier work on groups acting on Gaussian graphical models to Gaussian Bayesian
networks and more general Gaussian models defined by chain graphs with no induced subgraphs of the
form i — j — k. We fully characterise the maximal group of linear transformations which stabilises a given
model and we provide basic statistical applications of this result. This includes equivariant estimation,
maximal invariants for hypothesis testing and robustness. In our proof, we derive simple necessary and
sufficient conditions on vanishing subminors of the concentration matrix in the model. The computation of
the group requires finding the essential graph. However, by applying Stideny’s theory of imsets, we show
that computations for DAGs can be performed efficiently without building the essential graph.
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1. Introduction

Having an explicit group action on a parametric statistical model gives a better understanding of
equivariant estimation or invariant testing for the model under consideration [4,10,18,27]. In [6],
we have identified the largest group that acts on an undirected Gaussian graphical model and
we have shown how this group can be used to study equivariant estimators of the covariance
matrix in this model class. In the present paper, we extend our discussion to Gaussian Bayesian
networks by embedding this class in a special family of chain graph models.

A chain graph H is a graph with both directed edges and undirected edges that contains no
semi-directed cycles, that is, no sequences of nodes iy, ..., ik, ix+1 = i1 such that for every
Jj=1,...,keither i; —ijy ori; — i;jy1 and where the latter happens at least once. Chain
graph models were introduced as a natural generalization of models on directed acyclic graphs
(DAGs) (see [17]), and they become increasingly popular in applications; see, for example, [5,
11,30]. One of the original motivations for introducing chain graph models was that inclusion of
undirected edges allowed the modelling of “associative relations” as distinct from causal rela-
tions represented by directed edges; see [16].

In this paper, we focus on chain graphs without flags (NF-CGs), that is, with no induced sub-
graphs of the form i — j — k. For more details on these graph-theoretic notions, see Section 2.1.
Note that both undirected graphs and directed acyclic graphs are chain graphs without flags, and
hence this constrained family of graphs generalizes both classes. Chain graphs with no flags first
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appeared in [2] in the context of an alternative definition of chain graph models. They became
important theoretical concepts in the study of DAG models; see, for example, [20,21,25].

Gaussian models on chain graphs constitute a flexible family of graphical models, which
contains both undirected Gaussian graphical models and Gaussian Bayesian networks defined by
directed acyclic graphs. Let H be a chain graph. Let R denote the space of all m x m matrices
A =[X;j] such that A;; =0 if i = j in H; let Sm+ denote the space of all m x m symmetric
positive definite matrices and let S;{ be the subspace of S,J,[ consisting of matrices Q2 = [w;;]
such that w;; =0if i # j andi — /j in H.

Definition 1.1. The Gaussian chain graph model M (H) on a chain graph H consists of all
Gaussian distributions on R™ with mean zero and concentration matrices K of the form

K=(I-MNQ(I-A")  suchthat A eR¥ QeSj,. (1.1)

The set of all matrices of this form will be denoted by IC(H).

Two non-equivalent definitions of chain graph models can be found in the literature, referred to
as LWF or AMP chain graph models in [2]. This refers to Lauritzen—Wermuth—Frydenberg [12,
17] and Andersson—-Madigan—Perlman [2] (Alternative Markov Properties), respectively. These
two definitions differ in how exactly a graph encodes the defining set of conditional independence
statements. Our definition above follows the AMP formulation. However, since we work only
with chain graphs with no flags, both formulations are equivalent by the following result; see [2],
Theorems 1 and 4.

Theorem 1.2. If H is a chain graph with no flags, then both the LWF and the AMP definition of
chain graph models coincide.

Let X = (X1,...,X,;) be a Gaussian vector with the covariance matrix ¥ € M (H). By
GL,, (R) denote the general linear group of R™, or equivalently, the set of all invertible real
m x m matrices. A linear transformation g € GL,,(R) yields another Gaussian vector ¥ = gX.
A basic question of equivariant inference is for which g the covariance matrix gXg” of Y still
lies in M (). More formally, the general linear group GL,,(R) acts on S, by g- = := g=g’.
Fix a chain graph ‘H with no flags. We study the problem of finding

G:={geGL,(R)|g- M(H) S M(H)}. (1.2)

In other words, find the stabilizer of M (#H) in GL,, (R).
The fact that G forms a group follows from the following technical remark.

Remark 1.1. The set G is a closed algebraic subgroup of GL,,(R), and in particular has the
structure of a Lie group: First, it is clear from the definition that G is closed under matrix mul-
tiplication. To see that it is closed under inversion and closed in the Zariski topology, we argue
as follows. Let M (#H) denote the Zariski closure of M (#H) in R™>*™ that is, the set of matrices
in R™>*™ whose entries satisfy all polynomial equations that hold identically on M (H). Suppose
that g € GL,,(R) maps M (H) into itself. Then, since acting with g preserves positive definite
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matrices and since M (#) consists of all positive definite matrices in M () (see [8], Proposi-
tion 3.3.13) for the case of DAGs; the general chain graph case is similar), g also preserves
M (H). Thus, G may be characterised as the stabilizer of the real algebraic variety M (). This
shows that G is Zariski closed. To see that it is also closed under inversion, note that g - M () is
a real algebraic variety of the same dimension as M (H) and contained in M (), hence equal to
M (). But then also g~! - M (H) equals M ().

The problem in (1.2) can be alternatively phrased in terms of concentration matrices, which
will be more useful in our case. Let GL,,(R) act on S} by g - K := g TKg™!. Now find all
g € GL,,;(R) such that g - C(H) C K(H).

2 3 . . o .
Example 1.3. The DAG e e e defines a model given by a single conditional independence

. . 1 2 3 .
statement Xl X3|X>, and hence is equal to the model on the undirected graph ¢ — e — e. Since
the directed part of this graph is empty, by (1.1) the model consists of all covariance matrices
such that the corresponding concentration matrices are of the form

¥ % 0
K:Q:[* * *:|
0 % =x

By [6], Theorem 1.1, G in this case consists of invertible matrices of the form
£ % 0 0 = =
|: 0 x O i| or |: 0 x O i| .
0 *x = * % 0

Example 1.3 showed that two different chain graphs may define the same chain graph model.
We discuss this phenomenon in more detail in Section 2.2. For any NF-CG 7, denote by H* the
unique graph without flags with the largest number of undirected edges which induces the same
Gaussian model as H. The fact that such a unique graph exists follows from Proposition 2.10
given later. For example, for the DAG in Example 1.3, such a graph is given by the undirected

1.1. The group G

graph o —o— 2 By ¢*(i) we denote the children of i in H*, so ¢*(i) ={j:i — jin H*}.
Similarly, by n*(i) we denote the set of neighbours of i in *, that is, nodes j connected to i by
an undirected edge, which we denote by i — j. Write

N*(i) = {i} Un* (i) U c*(i).

Our main results can be summarized as follows. For a fixed chain graph without flags H with
set of nodes given by [m] := {1, ..., m}, consider the set G° of invertible matrices given by

G":={g =gl € GL,(R) : gij =0if N*(i)  N*(j)}. (1.3)

In particular, all invertible diagonal matrices are in G°.
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An automorphism of a chain graph is any permutation of its nodes that maps directed edges to
directed edges and undirected edges to undirected edges.

Theorem 1.4. Let H be a chain graph without flags. The group G in (1.2) is generated by
its connected normal subgroup G° and the group Aut(H*) of automorphisms of the essential
graph H*.

The fact that G° forms a connected subset of R™*™ follows directly from the definition
in (1.3). The fact that G° forms a normal subgroup of G is part of the theorem.

In the undirected case, this theorem reduces to [6], Theorem 1.1. However, the proof in our
current, more general setting is much more involved, first because the set C(7{) is not a linear
space, and second because the characterization is in terms of the essential graph rather than the
graph itself.

For some graphs, there may be two nodes i, j such that N*(i) = N*(j). We show in Section 4
that in this case the permutation switching i with j is a valid graph automorphism of H*. By
(1.3), the transposition of i and j also lies in G°, which shows that the groups G° and Aut(#*)
may have a non-trivial intersection. In Section 4, we prove a more refined version of Theorem 1.4
that gets rid of this redundancy.

Given a set of edges defining a chain graph without flags 7, we would like to find G° by
listing all pairs (i, j) for i, j € [m] such that g;; =0 for all g € GY. Since our theorem depends
on computing the essential graph H*, a natural question arises on complexity of this computation.
In Section 5, we show how G° can be efficiently computed in the case of DAGs. We propose an
algorithm that does not require computing the essential graph 7* and runs in O (m?) steps.

1.2. Existence and robustness of equivariant estimators

There are many situations in statistical inference, when the maximum likelihood estimator is
not available or hard to compute. Whenever a group G acting on the model and it state space
is available, a minimal property that we may want to require is equivariance; see, for example,
[10], Section 3.3. This is a common requirement in constructions of robust alternatives for the
maximum likelihood estimators. Let X = (X M X (”)) denote a random sample of length n
from the model M (H), where X©) denotes the ith independent copy of a Gaussian vector X. An
estimator of the covariance matrix of X given the sample X is any map 7, : (R™)" — M(H).
We say that T}, is an equivariant estimator (or G-equivariant if we want to make G explicit), if
it satisfies

T.(g-X)=g -T,(X) forevery ge G, Xe (R")", (1.4)

where, in our case, the action of G on (R™)" is

g.('xlv"~7-xl’l):(g'x17~~-’g'xn)'

An important example of an equivariant estimator is the maximum likelihood estimator (MLE).
In situations when n << m, establishing existence of the MLE may be a hard task. For de-
composable undirected graphs, the MLE exists with probability one if and only if n is at least
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the size of the maximal clique of the given graph. However, in general, whether the MLE exists,
with probability one, for a given sample size and a given graph is a subtle matter; see [14,28]
and references therein. By contrast, the question whether for a given sample size an equivariant
estimator exists, turns out to have a remarkably elegant answer for any chain graph with no flags.
This, in particular, gives us lower bounds on the sample size that guarantees that the MLE for
Gaussian DAG models exists with probability one. To state our criterion, for a vertex i of H we
define

Vi={j:N*() S N*(D}.

Example 1.5. Consider the graph l—>%<—2 This graph is essential with N*(1) = {1, 2},
N*(2)={2}, N*(3) ={2,3} and so|1 ={1},|3={3}and|2 = {1, 2, 3}.

Theorem 1.6. Let H be a chain graph without flags with set of nodes [m]. There exists a G-
equivariant estimator T, : R™)" — M (H) of the covariance matrix in the model M (H) if and

only if

n > max |}i].
ie[m]

Note that the threshold in Theorem 1.6 can also be read off from G°: by Theorem 1.4 it is the
maximal cardinality of the support of a row of a matrix in GY.

Example 1.7. To get a better understanding of the condition in Theorem 1.6, consider a graph
H with m nodes and edges i —m fori =1,...,m — 1. We have H = H* and N*(m) = [m],
N*(@)={i,m}fori=1,...,m — 1. Hence,

max [Ji| =[{1]=2
i€[m]

so the threshold for this graph is low. We note that, if n > 2, then also the MLE exists with
probability 1, which follows from standard results for decomposable graphical models. Suppose
now that H is a DAG with edges i — m for i = 1,...,m — 1. This graph is an essential DAG,
that is, H = H*. We have N*(m) = {m} and N*(i) ={i,m} fori =1, ..., m — 1. Therefore,

max ||i| = |[{m|=m
i€lm]
and an equivariant estimator exists if and only if n > m. In that case, the sample covariance

matrix is positive definite with probability one, and hence also the MLE exists with probability
one. If we add a vertex m + 1 and an arrow m — m + 1, then for the new graph we have

max_|i|=lm+1)|=2,
i€e[m+1]

and so the threshold drops dramatically.
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Our next result concerns G-invariants. In general, when a group acts on a set, an invariant is
an (arbitrarily-valued) function on that set which is constant on orbits of the group. In our setting,
we consider functions on (open, dense subsets) of the space (R™)" = R™*" of n-tuples of sam-
ples, where we identify two functions when they coincide on an open, dense subset. Then there
turns out to be a unique maximal G°-invariant, through which every other invariant factorises.
In other words, every invariant is a function of this so-called maximal invariant. For more on
this maximal invariant, see [18], Section 6.2, [6], Section 1.3. An important application of the
maximal invariant is in the construction of invariant tests; see [10,18]. Suppose, for instance, that
we want to test the hypothesis that the distribution of the multivariate Gaussian random vector
X lies in M (H) against the alternative that it does not, and suppose that for the sample of size
n, X =X, the test would accept the hypothesis. Then, since M () is stable under the action of
any g € G, it is natural to require that our test also accepts the hypothesis on observing gx. Thus,
the test itself would have to be G-invariant, which means that it needs to be a function of the
maximal invariant.

Our result uses the equivalence relation ~ on [m] defined by

i~j ifandonlyif N*@i)=N*(j). (1.5)

We write i for the equivalence class of i € [m] and [m]/ ~ for the set of all equivalence classes.
Apart from the next result, this relation will also feature in Section 4.

Theorem 1.8. Let H be a chain graph without flags. Suppose that n > max; || i|. Then the map
T R er[m]/~ R*™*" ajven by

X (X[ii]T (X[U]x[ii]T)_lx[ii]);e[m]/u

where x[|i] € RVMIX s the submatrix of X given by all rows indexed by |i, is the maximal G°-
invariant.

Example 1.9. Consider again Example 1.5. The corresponding maximal invariant statistic has
the following three components

7 (:OI7) 7 x1, kT (), X317 (x31x0317) k31,

where x € R3*” is a matrix whose columns are data points, and x[i] denotes the ith row of this
matrix. Here, %x[i 1x[]7 is just the sample variance of X; and %XXT is the sample covariance
matrix.

In [6], we used the structure of the group to provide non-trivial bounds on the finite sample
breakdown point for all equivariant estimators of the covariance matrix for undirected Gaussian
graphical models. These results extend to chain graphs without flags; see [6], Section 3.2, for the
motivation and more details.

Proposition 1.10. Assume that n > max; || i|. Then for any G-equivariant estimator T :
R™*" s S* the finite sample breakdown point at a generic sample X is at most [(n —

max; |i| + 1)/21/n.
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Here, by a generic sample, we mean a point in R™*" that lies outside of a lower-dimensional
algebraic subspace.

Unlike the proof of Theorem 1.4, the proofs of Theorem 1.6, Theorem 1.8 and Proposition 1.10
are similar to the undirected case because they depend on G only through the induced poset
defined by the ordering relation N*(i) € N*(j), which drives the zero pattern of the group G°.
The proofs of these three results will be therefore omitted; see [6] for details.

Organization of the paper

In Section 2.1, we provide some basic graph-theoretical definitions. The theory of Markov equiv-
alence of chain graphs will be discussed in Section 2.2. In Section 3, we provide new results
that give necessary and sufficient vanishing conditions for subdeterminants of the concentration
matrix K € KC(H). In Section 4, we analyze the structure of the group G in order to prove Theo-
rem 1.4. In Section 5, we show that in the case of DAG models, structural imsets give us all the
required information to identify G without constructing the essential graphs. Section 6 contains
some simple examples illustrating Theorem 1.4.

2. Preliminaries

In this section, we discuss basic notions of the theory of chain graphs and chain graph models.

2.1. Basics of chain graphs

Let H be a hybrid graph, that is, a graph with both directed and undirected edges, but neither
loops nor multiple edges. This excludes also a situation when two nodes are connected by both
an undirected edge and a directed edge. We assume that the set of nodes of H is labelled with
[m] ={1,...,m}. A directed edge (arrow) from i to j is denoted by i — j and an undirected
edge between i and j is denoted by i — j. We write i --- j, and say that i and j are linked,
whenever we mean that either i — j ori <— j,ori — j.

An undirected path between i and j in a hybrid graph H is any sequence k1, ..., k, of nodes
such that k] =i, k, = j and k; — k;j1 in H for every i = 1,...,n — 1. A semi-directed path
between i and j is any sequence ki, ..., k, of nodes such that ky =i, k, = j and either k; — k; 4+
or ki —> kjt1 in H foreveryi =1,...,n — 1 and k; — k;4 for at least one i. A directed path
between i and j in a hybrid graph #H is any sequence ki, ..., k, of nodes such that k; =i,
kn,=jand k; - ki1 in H forevery i = 1,...,n — 1. A semi-directed cycle in a hybrid graph
‘H is a sequence ki, ..., k,+1 = k1, n > 3 of nodes in H such that ki, ..., k, are distinct, and
this sequence forms a semi-directed path. In a similar way, we define a undirected cycle and
directed cycle.

Definition 2.1. A chain graph (or CG) is a hybrid graph without semi-directed cycles.
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A set of nodes T is connected in H, if for every i, j € T there exists an undirected path
between i and j. Maximal connected subsets in 7 with respect to set inclusion are called com-
ponents in H. The class of components of H is denoted by 7 (#). The elements of 7 (H) form
a partition of the set of nodes of 7{. For any subset A C [m] of the set of vertices, we define the
induced graph on A, denoted by H 4, as the graph with set of nodes A and for any two i, j € A
wehavei — j, j—>iori— jifandonlyifi — j, j — i ori — j in H, respectively.

Define the set of parents of A C [m], denoted by p3;(A), as the set of i € [m] such thati — a
in H for some a € A. The set of children c3;(A) is the set of i € [m] such that @ — i in H for
some a € A; and the set of neighbours n9;(A) is the set of all i € [m] such that i — a in H for
some a € A. In addition, we define

Ny () :={i} Unyp (i) Uy ().

If C is a connected set in a chain graph H, then there are no arrows between elements in C,
for otherwise there would exist a semi-directed cycle. In particular, the induced graph H¢ on C
is an undirected graph and p;(C) is disjoint from C for any C € 7 (). In addition, for every
A C [m] the induced subgraph H 4 of a chain graph H is a chain graph itself. A clique in an
undirected graph is a subset of nodes such that any two nodes are linked. We say that a clique is
maximal if it is maximal with respect to inclusion.

Definition 2.2. For any CG H, an immorality is any induced subgraph of H of the form i —
Jj < k. A flag is any induced subgraph of the form i — j — k. A chain graph without flags is
abbreviated by NF-CG.

Undirected graphs and DAGs are chain graphs without flags. In a general NF-CG, whenever
we see the structure i — j — k, there is automatically an arrow i — k. This gives rise to the
following basic fact.

Lemma 2.3. If H is a NF-CG, then p3(A) = py(T) for every T € T (H) and non-empty
A C T. In particular, for any two i, j € [m] such that i — j in H we have py (i) = pu(j).

Definition 2.4. Let H be a chain graph. For any two distinct components T, T' € T (H), consider
the set of all arrows between T and T'. If this set is non-empty, then we call it a meta-arrow and
denote by T = T'. That i,
T=T:={i—>j:iel, jeT i— jinH}
The notion of meta-arrow is important in the considerations of equivalence classes of chain
graphs, which we discuss in the next section.

2.2. Equivalence classes of chain graphs

A chain graph model is given by all concentration matrices of the form (1.1). In Example 1.3,
we saw that two different chain graphs may give the same Gaussian models, or equivalently,
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1 2 3 1 2 3 1 2 3
——>o—>o o+—o—o o+—o<+—o

Figure 1. Three equivalent DAGs.

the same set of conditional independence statements. If two NF-CGs G and H define the same
chain graph model, we say that they are equivalent. For example, the three DAGs in Figure 1 are
equivalent.

The equivalence class of H in the set of NF-CGs is denoted by (H):

(H) ={G : G is a NF-CG equivalent to H}.

Equivalence of CGs and DAGs was discussed in many papers, for example, [1,12,21,29]. We
briefly list the most relevant results.

Definition 2.5. The skeleton of a chain graph H is the undirected graph such that i — j whenever
i---jinH.

Theorem 2.6. Two NF-CGs with the same set of nodes are equivalent if and only if they have the
same skeleton and the same immoralities.

The original statement of this result, given by Frydenberg in [12], is more general and applies
to any chain graph in the LWF definition of chain graph models; see also Theorem 1.2.

As was remarked in [21] considering meta-arrows helps to understand equivalence classes
of chain graphs. Suppose that we want to obtain one chain graph from another with the same
skeleton by changing some of the arrows i — j to i — j or i <— j. Changing only a subset
of arrows in a meta-arrow T = T is not permitted as it would introduce semi-directed cycles.
Hence, the only permitted operations on arrows of H, if we work in the class of CGs, is either
changing the directions of all the elements of T = T’ or changing all arrows of T = T’ into
undirected edges. The following basic operation on a chain graph was defined in [21,22].

Definition 2.7. Let H be a NF-CG and let T = T’ be a meta-arrow in H where T, T' € T (H).
Merging of T and T’ is an operation of changing all elements of the meta-arrow T = T' into
undirected edges. Merging is called legal if:

(@) py(THNT isaclique of T,

) pu(TH\T = py/(T).

Lemma 2.8. Let H be a NF-CG and let H' be a graph obtained from H by legal merging of two
connected components. Then H' € (H).

Proof. See, for example, the proof of Lemma 22 in [24]. O
For two distinct CGs G, ‘H with the same skeleton, we write G C H if, whenever i — j in G,

then either i — j ori — j in 4, and whenever i — j in G, then i — j in H. We write G C H if
GCHand G#H.
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Theorem 2.9 (Roverato, Studeny [21,22]). Let G and H be two equivalent NF-CGs such that
G C H. Then there exists a finite sequence G = Go C -+ C G, = H, with r > 1, of equivalent
NF-CGs such that, foralli =1, ...,r, G; can be obtained from G;_ by a legal merging of two
connected components of G;_1.

The following proposition shows a beautiful property of models of chain graphs with no flags,
namely, there is always a unique NF-CG representing (#) with the largest number of undirected
edges.

Proposition 2.10 (Roverato, Studeny [21,22]). There exists a unique element H* in (H) that
is maximal in the sense that H' C H* for every H' € (H).

Definition 2.11. Let H be a NF-CG. The graph H* of Proposition 2.10 is called the essential
graph. The directed arrows in H* are called essential. For notational convenience, we write
p*(A), n*(A) and c*(A) for py+(A), ny=(A) and cy+ (A), respectively.

By definition, H* has the same skeleton as H, and an edge is essential if and only if it occurs

as an arrow with the same orientation in every H' € (); all other edges are undirected. For

example, the essential graph for any of the graphs in Figure 1 is the undirected graph i - % — 2

whereas the essential graph of ‘H —eecae is H itself. By Theorem 2.6, every arrow that

participates in an immorality in A is essential, but 4 may contain other essential arrows. For

example, in the DAG in Figure 2 all arrows are essential but not all of them form immoralities.
The following result has been independently observed in [21,22].

Theorem 2.12. If (H) contains a DAG G, then the essential graph H* is equal to the essential
graph of a DAG as defined in [1].

Remark 2.1. Our terminology is consistent with [21]. However, in [3] the essential graph for a

chain graph is defined in a different way and it corresponds to the essential graph H* only if (H)
contains a DAG.

3. Subdeterminants of concentration matrices

In this section, we offer a detour into the combinatorial commutative algebra of sub-determinants
that vanish identically on concentration matrices of chain graph models. Our main result in this

2 4
'

[\

1 3

Figure 2. A NF-CG whose arrows are all essential but not all part of immoralities.
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section, Proposition 3.5, is the concentration-matrix counterpart to the results in [7,26] for covari-
ance matrices. It provides simple necessary and sufficient conditions for a concentration matrix
to lie in JC(H), where H is a general chain graph on [m]. These conditions will be used in
Appendix 7 to prove Theorem 4.4, but are also of interest in their own right. We will use the
following combinatorial notions.

Definition 3.1. A cup in H is a quadruple (i, j, k, 1) of vertices in H where:

1. eitheri = j ori — j;and
2. either j =k or j — k; and
3. eitherk =1 ork <.

We say that the cup starts in i and ends in [.

Note that we do not require i — j — k <[ to be an induced subgraph of H and so j # k is
possible in a chain graph with no flags.

Definition 3.2. Let A and B be sets of vertices of H of the same cardinality d. A cup system from
Ato Bisaset U of d cups in H whose starting points exhaust A and whose end points exhaust B.
The cup system U from A to B gives rise to a bijection A — B that sends a € A to the end point
of the cup in U that starts with a. After fixing labellings A ={ay, ...,aq} and B ={by, ..., bg},
this bijection gives rise to a permutation of [d]; define sgn(U) to be the sign of this permutation.
The cup system U from A to B is said to be self-avoiding if, for each k = 1, 2, 3, 4, the elements
ur € [m] ofu = (u1,uz,us,uq) € U are all distinct.

For the graph l—) % <« : , there is no self-avoiding cup system from {1, 2} to {2, 3} but there
is such a system between {1} and {3}.

Definition 3.3. Let X;j be the parameters corresponding to arrows i — j in ‘H and let w;; be
the parameters corresponding to undirected edges i — j and to the diagonal (w;;). The weight
of a cup (i, j, k,l) in H is the product of the (i, j) entry of (I — A), the (j, k)-entry of Q and
the (k,1)-entry of (I — A)T, which is the (I, k)-entry of (I — A). The weight of a cup system U
from A to B, denoted w(U), is the product of the weights of the cups in U. This is a monomial
of degree k in the w;; times a monomial of degree at most k in the variables — ;.

Let K[A, B] denote the A x B-submatrix of K = (I — A)Q(I — A)T. By expanding the
entries, we find that

detK[A, B]= sgn(U)w(U), 3.1)
U

where the sum is over all cup systems U from A to B. In this expression cancellation can occur
because of the signs sgn(U) (not because of the signs in the —A;;, which we might as well have
taken as new variables). The following proposition captures exactly which terms cancel. For
more details on the arguments, we refer to [7,26].
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Proposition 3.4. Relative to the fixed labellings of A and B, the A x B-subdeterminant of K
equals

detK[A, B] = Z sgn(U)w(U).
U self-avoiding

Moreover, for any two self-avoiding cup systems U and U’ with w(U) = w(U’), we have
sgn(U) = sgn(U’).

Proof. To see that the sum in (3.1) can be restricted to self-avoiding cup systems U, we proceed
as in the Lindstrom—Gessel-Viennot lemma ([13], Theorem 1) and give a sign-reversing invo-
lution o on the set of non-self-avoiding cup systems, as follows. Order any cup system U from
Ato B as {uj,...,ug} where u; starts in a;. If U is not self-avoiding, let a € {2, 3} be minimal
such that the entries u;,, i € [d] are not all distinct, and let (i, i") be a lexicographically minimal
pair such that u;, = u;7,. Then o (U) is the cup system obtained from U by replacing u; and
u;» by their swaps at position a. For instance, if a = 2, then u; = (uj1, Ujp = ujrp, U3, uj4) and
u = (ujry, uiy = uj2, u;3, ui4); and similarly for @ = 3. Now sgn(U’) = —sgn(U) and o is in-
deed an involution. This proves the expression in the proposition. The second statement is more
subtle, but it follows by applying [7], Theorem 3.3, to the DAG obtained from # by reversing
all arrows and replacing all undirected edges i — j by a pair i <— k — j of arrows, where k is a
new vertex. Indeed, self-avoiding cup systems in H correspond to special types of trek systems
without sided intersection in that new graph. (I

Proposition 3.5. The subdeterminant det K[A, B] is identically zero on the model correspond-
ing to ‘H if and only if there does not exist a self-avoiding cup system from A to B in H. These
vanishing conditions completely specify the model M (H).

Proof. The first statement follows directly from Proposition 3.4. To show that the vanishing
subdeterminants of K describe M (H) we argue as follows. Because M () is a conditional in-
dependence model, mapping covariance matrices to concentration matrices via £ > X! gives
another conditional independence model. This follows from [9], Lemma 2.1; see also [19]. More-
over, every conditional independence model is defined by vanishing subdeterminants; see, for
example, [8], Proposition 3.1.13. O

4. The group G
As we noted in the Introduction, the group G has a structure of a Lie group. The connected

component of G that contains the identity matrix is called the identity component. In this section,
we describe G by first describing its identity component and then the remaining part of the group.

4.1. The identity component

Denote by E;; the matrix in R"*" with all entries zero apart from the (i, j)th element which is
1. By G denote the normal subgroup of G which forms the connected component of the identity
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matrix. In the following, we show that G is precisely the set of matrices defined in (1.3). The
subgroup 7™ of all invertible diagonal matrices is contained in the group G because scaling
of vector X does not affect conditional independencies. By [6], Lemma 2.1, to compute GO, it
suffices to check for which (i, j) € [m] x [m] the one-parameter groups (I +tE;;), t € R, lie
in G; or equivalently E;; € g, where g is the Lie algebra of G. We provide this result for reader’s
convenience.

Lemma 4.1 (Lemma 2.1, [6]). Let H C GL,,,(R) be a real algebraic matrix group containing
the group T™. Then the Lie algebra of H has a basis consisting of matrices E;; with (i, j)
running through some subset 1 of [m] x [m]. Moreover, the set I defines a pre-order on [m] in
the sense that (i, 1) lies in I foralli € [m] and that (i, j), (j, k) € I = (i, k) € I. Conversely, the
E;j with (i, j) running through any set I C [m] x [m] defining a pre-order on [m] span the Lie
algebra of a unique closed connected subgroup of GL,,(R) containing T™, namely, the group of
all g € GL,,(R) with g;j =0 unless (i, j) € 1.

Before we provide the main result of this section, we also recall ([6], Proposition 2.2).

Proposition 4.2 (Proposition 2.2, [6]). Let H be an undirected graph. For i, j € [m] the matrix
E;j lies in g if and only if N3.(i) € Ny(j).

If H is a NF-CG such that H* is an undirected graph, then Proposition 4.2 can be used to
characterise G° for H by passing to the essential graph. However, it is not immediately clear
how this result extends to all chain graphs without flags. We first note that one direction of the
above result holds in general.

Lemma 4.3. Let H be an NF-CG. If Ny;(i) € Ny(j), then E;j € g.

Proof. If i = j, then the statement is clear so suppose that i # j. We have Ny (i) € N3;(j) only
if either j — i ori — j in H. Suppose first that j — i. We have

(I —tE;j)(I —NQU - NI —tEj) = - MNQU — AT,
where A =—A—Z‘Eji+l‘EjiA;;.uU = Auv ifu;éj;ijv Z)‘-jv_t)LiU ifv;éi;andij,- iji+t.
The fact that A lies in R* follows from ¢3(i) € c3(j) and hence for every v, if A, =0, then
Liv =0.
Ifi —jinH, then i Uny (i) C jUny(j) and py (i) = p3(j) by Lemma 2.3. By Proposi-
tion 4.2 applied to the undirected part of H, we can write Q = (I +tE;;)Q2(I +tE;;) for some
Qe S;_r[. Therefore,

I —tE;pd—MQU — A)T(I —tE;j)
= —tE;))(I — NI +tE;)QU +tEij )T — N (I —tE;),
where we now show that there exists A € R such that

(I —tEj)(I — NI +1tEj;) = —A).
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Indeed,
A=A +Z‘AEjl' —lEj[A—}—l‘zEjiAEji,

where the last term must vanish because A;; = 0. Hence, A is obtained from A by adding a
multiple of the jth column to the ith column and by adding a multiple of the ith row to the jth
row. The fact that A lies in R follows from the fact that ¢ (i) C c3(j) and py (i) = py(j),
that is, the ith column has the same support as the jth column and the support of the ith row is
contained in the support of the jth row. (I

The converse of the lemma does not hold for a general NF-CG H. Consider for instance

l—) %—) 2 By Example 1.3, the element I + 7 E> lies in GO but {1,2} ,CZ {2, 3}. Nevertheless,

the converse of the lemma above does hold when H is essential, that is, when H = H™*; this is
the main result of this section.

Theorem 4.4. Let H be an essential NF-CG. Then E;; € g if and only if N3.(i) € Ny (j).

As it is somewhat technical, we postpone the proof to the Appendix. As we noted in the
beginning of this section, the set of all E;; € g gives already the complete information on the
group G°. Hence, Theorem 4.4 gives the description of G° in (1.3).

. 2 3. . .
Example 4.5. Consider a DAG H —ee<a discussed in Example 1.5. Since Ny(2) €
N7(1) and Ny (2) € N3 (3), both E3; and E»3 lie in g but no other off-diagonal elements of
matrices in G can be non-zero.

4.2. The rest of G

Note that G® given in Theorem 4.4 in general is not the whole group G. For example, both for

the model c>as<a and for any of the equivalent DAGs in Figure 1 the permutation matrix

0 0 1
|:0 1 0]
1 00

lies in G but not in G° because the (1, 3)-entry of matrices in G is zero by the example above.
The following result shows that permutation matrices form the basis for understanding the re-
maining part of the group G. For the proof, see [6], Proposition 2.5.

Proposition 4.6. Every element g € G can be written as g = 0 gy, where go € G° and o is a
permutation matrix contained in G.

An automorphism of a hybrid graph is any bijection ¢ : [m] — [m] of its nodes such that for
every i, j € [m] we have o (i) — o (j) ifand only if i — j and 0 (i) — o (j) if and only if i — j.



1116 F. Draisma and P. Zwiernik

Lemma 4.7. Let H be a NF-CG and H* its essential graph. Let 6 € GL,,(R) be a permutation
matrix. Then o € G if and only if o is an automorphism of H*.

Proof. The model M (#) is uniquely defined by the set of conditional independence statements
(see for example [15]). Given a set of such statements that come from a chain graph H the
equivalence class (H) is determined uniquely. The essential graph H* is the unique representative
of (H) with the largest number of undirected edges. Since any permutation o applied to H* gives
a NF-CG with the same number of undirected and directed edges (it simply relabels the nodes),
o lies in the model if and only if o is an automorphism of #*. |

By Lemma 4.7, G is generated by G° and the automorphism group of H*, which proves
Theorem 1.4.

Recall the equivalence relation ~ on [m] defined by (1.5). As explained in the Introduction,
the expression G = Aut(#*)G? is not minimal in the sense that Aut(#*) and G° may intersect.
To get rid of that intersection, we define H* to be the graph with vertex set [m]/ ~ and i — j
(i—j)in H* if and only ifi — j (i — j) in H. We first show that H* is well-defined.

Lemma 4.8. Let H be a NF-CG and H* its essential graph. Two elements i, j € [m] are equiv-
alent if and only if {i} Un™*(i) = {j} Un*(j), p* (i) = p*(j) and c*(i) = c*(j). In particular, the
graph H* is well-defined.

Proof. If N*(i) = N*(j), then i and j are necessarily linked. Since i € N*(j) and j € N*(j),
we conclude that in fact i — j in H*. By Lemma 2.3, since i — j, we also have p*(i) = p*(j).
Hence, i ~ j if and only if {i} Un*(@) = {j} Un*(j), c*(i) = c*(j) and p*(i) = p*(j), which
shows that the definition of the arrows and edges in ‘H is independent of the representative i
and j. O

Define ¢ : [m]/ ~— N, i — |i| and view ¢ as a coloring of the vertices of H* by natural
numbers. Let Aut(?—l’k ¢) denote the group of automorphisms of H preserving the coloring.
There is a lifting ¢ : Aut(H* c) — Aut(H*) defined as follows: the element T € Aut(’H* c)
is mapped to the unique bijection £(t) : [m] — [m] that maps each equivalence class i to the
equivalence class 7(i) by sending the kth smallest element of i (in the natural linear order on
[m]) to the kth smallest element of 7(7), fork =1, ..., |i|.

Example 4.9. Consider a DAG H and its essential graph H* in Figure 3. Since 3 and 4 are

. . . s 1 2 34 ..
equivalent, the induced essential graph H* is equal to @ — e — "o . There are no non-trivial auto-
morphisms of this graph preserving cardinality of equivalence classes and Aut(H*, ¢) = {I}. In
particular, £ is a trivial mapping.

Theorem 4.10. The group G equals E(Aut(?—[* c))G0 and the intersection E(Aut(’H* ) NGO
is trivial, so G is the semidirect product E(Aut('H* ) x GO.

Proof. Itis a standard result from the Lie group theory that the connected component of the iden-
tity G° is a normal subgroup of G. Hence, to show that G = G® x Aut(H*, ¢) we need to show
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Figure 3. On the left a DAG on four nodes. On the right its essential graph.

that G = G© - Aut(ﬁ*, ¢) and G°N Aut(’}i*, ¢) = {I}. The first part follows by Proposition 4.6
and Lemma 4.7. To show that G N Aut(H*, c¢) = {I} note that transpositions of i E}lld j lie in
GY precisely when i and j are equivalent, and hence, when they do not lie in £(Aut(H*, ¢)). O

Remark 4.1. To the coloured graph (’i—?*, ¢) we can associate a Gaussian graphical model
M (H, ¢) with multivariate nodes, where node i is associated to a Gaussian vector of dimension
¢;. This model coincides with M (). This also shows, conversely, that our framework extends
to general Gaussian graphical models of chain graphs with no flags with multivariate nodes.

Computing the essential graph H* is not always a simple task. In Section 5 we show how to
identify the group G without finding H* in the case when # is a DAG. In Section 6, we illustrate
Theorem 4.10 with some basic examples.

5. Efficient computations for DAG models

In this section, we present some efficient techniques for computing the group G° in the case
when H is a DAG. The following characterization of essential graphs of DAGs will be useful.

Theorem 5.1 (Roverato, Studeny [21,22]). If H is a DAG, then each connected component of
H* is decomposable. Moreover, H* coincides with the essential graph of H as defined in [1] (see
also Remark 2.1).

For any DAG H on the set of nodes [m], the standard imset for H is an integer-valued function
uy 2m] 5 7 where 2™ is the set of all subsets of [m], defined by

U =08pm) — 8z + Z Bpa (i) = Spa (HULiD)s 5.1

ie[m]

where 84 : 21" — {0, 1} satisfies §4(B) = 1 if A = B and is zero otherwise. For example, it is
easy to verify that all DAGs in Figure 1 give rise to the imset represented by Figure 4.

Lemma 5.2 (Corollary 7.1, [23]). Let G, H be two DAGs. Then H € (G) if and only if ug = uy.
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Figure 4. The imset u4;, where H is any of the three equivalent DAGs in Figure 1.

The support of uy; for a DAG H has been described in [25] directly in terms of the essential
graph. To provide this result we introduce some useful notions related to chain graphs.

Definition 5.3. A set B C [m] of nodes in a chain graph H is idle if i --- j for all i, j € B; and
foreveryi € [m]\ B and every j € B,i — jinH.

By [24], Lemma 18, every chain graph has a unique maximal idle set of nodes (which may be
empty), which we denote by idle(#). The complement of the largest idle set is called the core
of H and denoted core(#). Directly from the definition, it follows that idle(#) is a union of
connected components of #H. Therefore, the core is also a union of connected components. The
class of core-components, that is, components in { contained in core(#) is denoted by T¢ore ().

Lemma 5.4. If (H) is a NF-CG, then idle(H*) forms a clique, that is, all its nodes are connected
by an undirected edge.

Proof. Because there is a directed arrow from any node outside idle(H*) to any node in
idle(H*), every component of H* lies either inside or outside of idle(#*). Since all nodes in
idle(H*) are linked, there is a meta-arrow between any two distinct components of idle(#*) and
each component is a clique. Without loss of generality, pick T such that 7’ is the only child-
component of T'. First, note that p*(T’) N T = T forms a clique. Second, the parent-components
of T" are T U p*(T). Indeed, if a component S, such that § = T’, lies outside of idle(H*),
then § C p*(T) by definition. If § C idle(H*), then S C p*(T) because S and T are necessarily
linked and T has no other children than 7’. Thus, by Definition 2.7, T and T’ can be legally
merged, which contradicts the fact that 7{* is essential. O
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Note that idle(#*) is precisely the set of vertices i such thati = [m], where|i = {j : N*(i) C
N*(j)}.

From now on, H will always denote a DAG. By Theorem 5.1, each component T € Teore (H*)
induces a decomposable graph H7.. We recall that a decomposable graph is an undirected graph
with no induced cycles of size > 4. An alternative definition, that will be useful in this section,
is that its maximal cliques can be ordered into a sequence Ci, ..., C, satisfying the running
intersection property (see [15], Proposition 2.17), that is

Vi>23k <i, sl:cim<ch)gck. (5.2)

j<i

By [23], Lemma 7.2, the collection of sets S; for 2 <i < m does not depend on the choice of
ordering that satisfies (5.2). We call these sets separators of the graph. The multiplicity v(S) of
a separator S is then defined as the number of indices i such that S; = S. This number also does
not depend on the choice of an ordering that satisfies (5.2).

By C(T), denote the collection of maximal cliques of ., by 4(T) the collection of its sep-
arators and by v7(S) the multiplicity of S € 8(T) in H}.. A set P C [m] is called a parent set
in H* if it is non-empty and there exists a component T € T¢ore (H*) with P = pyy«(T). The
multiplicity 7(P) of P is the number of T € T¢ore (H*) with P = pgy«(T'). The collection of all
parent sets in H* is denoted by Peore (H*). Finally, by i (H*) we denote the number of initial
components of H*, that is, the components T € Tcore (H*) such that py«(T) = .

We refer for the following result to [25], Lemma 5.1.

Lemma 5.5. Let H* be the essential graph of a DAG H. If core(H*) = &, then uy = 0. If
core(H*) # @, then the standard imset for H has the form

UH = Score(H*) — Z Z SCUpy(T) + Z Z V1 (8)8sUpy (1) +

T €Tcore(H*) CeC(T) T €Tcore (H*) S€8(T)
+ Y w(P)p+ (i(HY) - 1)sg.
PEPCOTC(’H*)

By Lemma 5.2 in [25], unless H* is a complete graph, the terms in the above formula never
cancel each other. In particular, the support of u7; is the collection of all sets of the form:

(i) the core of H*,

(i) CUp*(T) for T € Teore(H*) and C € C(T),
(i) SU p*(T) for T € Toore(H*) and S € 8(T),
(iv) P for P € Peore (H*).

The empty set may or may not appear in the support set of uy but this does not play any role in
the following arguments.

Proposition 5.6. Let H be a DAG. Then N*(i) € N*(j) if and only if i € A implies j € A for
every A in the support of uyy.
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Proof. Lemma 5.5 gives the support of u4 in terms of H*, see also items (i)—(iv) above. For
the forward direction, first note that if i € C, then j € C U p*(T'), which follows immediately
from i € N*(j). This implies that, if i lies in the core, then j also lies in the core. Suppose now
that i € C U p*(T) for some T € Teore(H*) and C € C(T). If i € C, then we have just shown
that j € CU p*(T).If i € p*(T), then j € p*(T) because ¢*(i) C c*(j). The arguments for the
subsets of type (iii) and (iv) above are the same.

For the opposite direction, first note that if i € A implies j € A for all A in the support of 17y,
then taking A = C U p*(T') where T is the connected component of i and C € C(T') we find that
either i — j or j — i, and hence i € N*(j). Let k € n*(i) U ¢*(i). Suppose first that i — j. If
k € n*(i), then k € n*(j). To see that take any C U p*(T') such that i, k € C, which implies that
J € C. Similarly, if k € ¢*(i), then k € c*(j), which follows by considering P a parent set of the
component containing k. Consequently, N*(i) € N*(j). The case j — i is similar. (|

Proposition 5.6 gives an efficient procedure of checking when N*(i) € N*(j) without con-
structing the essential graph #*, which gives the description of G°. We present this procedure in
the pseudo code below (Algorithm 1).

In addition, note that the size of the support set of uy+ is < 2m. The fact that it is < 2m + 2 is
obvious from (5.1). But also any initial vertex i in H will have p3;(i) = &, and hence —d and
8 p4, (i) Will cancel each other. It follows that the number of operations to build or construct GV is
quadratic in m. In fact, all loops are linear in m + | E| apart from the penultimate one.

The imset u4; gives, in fact, the complete description of the group G.

Data: a DAG H = ([m], E)
Result: the set of pairs (i, j) such that N*(i) € N*(j)
initialization for i — j in H do
| add i to py(j)
end
uy(2):=—-1,uy(m]):=1,S=fori =1 tom do
|+ +un(py(),— —un(pp () Ui) add {py ()} and {py () Ui} to S
end
forall the elements S of S do
| if ug(S) =0, then remove S from S
end
fori =1tomdo
| & :={SeS:ies}
end
fori---jeEdo
| N*(i) S N*(j)ifand onlyif & C &;
end
Algorithm 1: The computation of G° for a DAG H
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Figure 5. The sprinkle graph on the left and its essential graph on the right.

Lemma 5.7. Let o be a permutation. Then o € G if and only if uy; = o (uyy), where
a u3)(S) = up (07" (S)).

Consequently, by Theorem 1.4 we obtain the complete structure of G.

Proof. This follows from the fact that u7; is in a one-to-one correspondence with a DAG model
of H. O

Lemma 5.7 does not provide an efficient algorithm to find the automorphism group of H*,
which in general is a hard problem.

6. Special graphs and small examples

Some DAG models are equivalent to undirected graphical models, in which case we refer to [6],
Section 7, for examples. To obtain a new set of examples, we first consider two simple DAGs:
the sprinkle graph in Figure 5 and the Verma graph in Figure 6.

The essential graph of the sprinkle graph is also given in Figure 5. There are no non-trivial
equivalence classes and, therefore, H* = H*. The only non-trivial relation between neighbour-
ing sets is N*(5) C N*(4), so the matrices in G° have only one non-zero off-diagonal element
on position (5, 4). The group of automorphisms of H* has only one non-trivial element which

Figure 6. The Verma graph.
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permutes 2 and 3. Hence, matrices in G are in either of the two following forms:

* 00 0 O * 00 0 O
0 = 0 0 O 00 « 0 O
0 0 = 0 O and 0O x 0 0 0
0 0 0 x O 00 0 % O
0 0 0 % = 0 0 0 % =%

The essential graph of the Verma graph H is equal to the Verma graph itself. All equivalence
classes are singletons. Moreover, we have N(3) C N(2), N(5) S N(4) and N(5) € N(1), and
hence GV consists of all invertible matrices of the form

¥ 0 0 0 O
0 x 0 0 O
0 %« = 0 O
0 0 0 % O
¥ 0 0 % x

Since the Verma graph does not admit any non-trivial automorphisms, we have G = G°.

For another important class of examples, consider the DAGs defining factor models as given
in Figure 7. This graph is essential and we have N*(b;) C N*(a;) for every i, j and there are no
other containment relations. The only non-zero off-diagonal elements of matrices in G are in
position (b;, a;) for all i, j. For example, if p =2 and g = 3, then they are of the form

* 0 0 0 O
0 = 0 0 O
* ok *x 0 0
* | 0 x O
* | 0 0 =x
.bl
ai
.bz
aj
.b3
ap
® by,

Figure 7. The graph of the factor model.
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Any automorphisms of H is a product of any permutation permuting {ay, ..., a,} and any per-
mutation permuting {b1, ..., b,;}. Consequently, all matrices in G look like the matrices in G°
where the two diagonal blocks are replaced by arbitrary monomial matrices.

7. Conclusions

In this paper, we fully characterised the maximal group of linear transformations which stabilises
a given Gaussian chain graph model for a chain graph with no flags. Following our earlier work
on undirected models (see [6]), we provided basic statistical applications of this result. This
includes equivariant estimation, maximal invariants for hypothesis testing and robustness. An
example of how it can be used in practice was given in [27] in the case of undirected star tree
models. In this particular example, the corresponding group G acts transitively on the model,
meaning that each covariance in the model is of the form gg” for some g € G. This makes the
whole analysis relatively simple. Our work is the first, necessary step toward such an analysis for
non-transitive cases.

In Section 3, we derive simple necessary and sufficient conditions on vanishing sub-minors of
the concentration matrix in the model. This provides an alternative description of Gaussian chain
graph models in terms of cup systems that are a bit easier to study than the trek systems.

Our technique for computing the group G requires finding the essential graph of the given
chain graph. However, by applying Stiideny’s theory of imsets (see [23]), we show that computa-
tions for the special case of DAGs can be performed efficiently without first building the essential
graph. This raises a natural question about how this technique extends to other Gaussian condi-
tional independence models. We leave this for our future study.

Appendix: Proof of Theorem 4.4

To prove this theorem, we will use the following two lemmas, in which K is the concentration
matrix of the model.

Lemma A.1. Let A, B be subsets of [m] of the same cardinality satisfying j € A and i ¢ A and
either j ¢ B orelse both i, j € B. If det K[A, B] is identically zero on the model but det K[A —
Jj+1i,Blisnot, then E;j ¢ g.

Proof. Recall that the one-parameter group / + ¢ E;; acts on K via
K= (I—-tEjj)K( —tE;j).

In other words, this matrix is obtained from K by adding a multiple of the ith row to the jth
row and adding a multiple of the ith column to the jth column. Now consider the effect of this
operation on K[A, B]. Since either j ¢ B or else both 7, j € B, adding the ith column to the jth
has either no effect on K[A, B] or else is just an elementary column operation on K[A, B]. This
means that it does not affect the rank of K[A, B]. On the other hand, since det K[A — j + i, B]
is non-zero, the rows of K[A — j, B] are linearly independent, and since det K[A, B] is zero,
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the jth row K[j, B] lies in the span of the rows of K[A — j, B]. This is not true for the ith row
K[i, B], hence the A x B-submatrix of K +tE;; K + tK E;; has full rank for generic K. This
means that I + ¢ E;; does not preserve the model, hence it does not lie in the group G. O

Lemma A.2. Let A, B be subsets of [m] of the same cardinality satisfying j € AN B and i ¢
AU B. IfdetK[A, B] is identically zero but det K[A — j + i, B] + detK[A, B — j +i] is not,
then Eij ¢g.

Proof. Since K[A, B] =0, E;; € g only if the determinant of the (A, B)-submatrix of K, :=
(I —tEjj)K( — tE;;) is zero. To show that it is not zero, it suffices to show that the linear
term of ¢ does not vanish. To study this linear term, we alternatively study the linear term of
(I —sEj;)K(I —tE;;) further specializing to s = ¢. Because E;; has rank 1, the determinant of
the (A, B)-submatrix of (/ —sE;;)K(I —tE;;) is a polynomial of order two in s, ¢. To find its
coefficient of the linear term s, we can set t = 0. Matrix (I — sE};)K is obtained by adding a
multiple of the ith row to the jth row. Suppose that the elements of A are a; <az < --- < ay and
the elements of B are by < by < --- < by. Let 1 <k <d be such that j = a;. The determinant
if its (A, B)-submatrix can be computed by expanding along the kth row (which corresponds to
the jth row of K):

d
det((I —sE;;)K)[A, Bl = Z(—nk”(Kﬂ,l —sKip)detK[A — j, B —b]
=1
=detK[A, B] —sdetK[A — j +1i, B].

Similar computations for the coefficient of ¢ give
det(K (I —tE;;))[A, Bl=detK[A, B] —rdetK[A, B — j +i].

Hence, the coefficient of ¢ in the determinant of K;[A, B] is —detK[A — j + i, B] —
det K[A, B — j +1i]. If this sum does not identically vanish on the model, then E;; ¢ g. U

Lemma 4.3 gives one direction of the proof of Theorem 4.4; we need only prove that if i £ j
and Ny (i) € Ny(j), then E;j ¢ g. First of all, if there is no cup from j to i, then K[j,i] is
identically zero, while K[, 7] is not. Hence, E;; ¢ g (this is the special case of Lemma A.1 with
A = {j} and B = {i}). Thus, in what follows, we may assume that there do exist cups from j
to i. We treat the various types of cups from j to i separately; in each case, we assume that cups
of the previous types do not exist. Before we get going, we remark that, since there are no flags,
for any cup (f, h,k,I) with f — h also (f,k, k,l) is a cup. The following lemma will be also
useful.

Lemma A.3. Let u be a vertex in a NF-CG H. Let D be the set of children of u together with all
their descendants. Then for every vertex v ¢ D U {u} such that there is no link between u and v
we have det K[D U {u}, D U {v}] =0.
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Proof. By Proposition 3.5, it is enough to show that there is no self-avoiding cup system from
D U{u} to D U {v}. It is clear that the second element of every cup starting in d € D needs to lie
in D just because it is either equal to d or it is equal to d’ such that d — d’ in H. Also every cup
from u needs to have its second entry in D. Indeed, let (u, I3, I3, 1) be such a cup. The node I, is
either equal to u or it is a child of u, in which case it lies in D. So suppose that [, = u and show
that this leads to a contradiction. If /> = u, then /3 is either u or a neighbour of u. If I3 = u, then I4
must be a parent of u#, which cannot be a vertex of D (because otherwise there is a semi-directed
cycle in H) and it cannot be v because there is no arrow v — u (by assumption). If I3 € ny (1),
then /4 must be a parent of /3 and by the no flag assumption also a parent of u. This situation is
also impossible because /4 cannot lie in D U {v}. Hence, by the pigeon-hole principle, in any cup
system from D U {u} to D U {v}, two of the elements after one step coincide, and this proves the
claim. (]

In what follows, we assume that # is essential.

I. Vertex i liesin ny (j) U cy (j)

In that case, there must exist

L€ (np (i) Uep )\ (ny () Uen())).

Let D denote the set of all children of / together with their descendants. We have i, j ¢ D and
thus A := D + j and B := D + [ have the same cardinalities. By Lemma A.3 withu =1, v = j,
we have det K[A, B] = 0. On the other hand, there does exist a self-avoiding cup system from
A — j+i to B that links i directly to [ without crossing D and each d € D — j to itself via
(d,d,d,d),and hence det K[A — j +1i, B] # 0 by Proposition 3.5. Now E;; ¢ g by Lemma A.1.

II. There is no arrow i — j

In that case, let D be the set of all children of i together with their descendants. Set A :=
D+ jand B:=D +i. By Lemma A.3, det K[A, B] = 0. But clearly, det K[A — j + i, B]
detK[B, B] #0.

Mid-proof break

We pause a moment to point out that we have used that 7 has no flags, but not yet that it is
essential. This will be exploited in the following arguments. Indeed, in the remaining cases,
there must be an arrow i — j. This arrow must be essential, hence either the parents of j in the
undirected component 7 of i do not form a clique, or else one of {i, j} has a parent outside T
that is not a parent of the other. We deal with these cases as follows.
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IIL. There is an arrow k — j with k in the component of i at distance at
least 2

In that case, let D be the set of all children of i together with their descendants. Set A := D + k
and B := D+i.ByLemma A.3,det K[A, B] =0. But, as in the first case, det K[A — j +i, B] #
0 because there is a self-avoiding cup system from A — j + i to B given by (d,d,d, d) for
deD— j+iand(j,],j, k). Again, we conclude that E;; ¢ g.

IV. There is an induced subgraph like in Figure A.1(a)

Let D be the set of all children of k together with their descendants. Set A= D+kand B = D +1
and note that both A and B contain j. We again have det K[A, B] = 0 by Lemma A.3. However,
both det K[A — j +i, B] and det K[A, B — j +i] are non-zero. Even more: the sum of these two
determinants is also non-zero because det K[A — j +i, B] has a monomial that does not appear in
det K[A, B — j +i]: consider the cup system from A — j +i to B given by (i,1,1,1), (k, j, j, j)
and (d,d,d,d) for all d € D — j. By Proposition 3.4, this system corresponds to a monomial
in det K[A — j + i, B]. On the other hand, this monomial cannot appear in det K[A, B — j +i]
because it contains only one element of A, namely A;, and only one off-diagonal element of €2,
namely w;;. This means that it must correspond to a cup system between A and B — j + i that
contains only one undirected edge i — [ and one arrow k — j. However, any cup from i to A
must contain either an arrow i — p for some p € D or an undirected edge i — k. By Lemma A.2,
we conclude that E;; ¢ g.

V. There is an arrow k — j with k ¢ T and no arrow between k and i

So we have the induced subgraph i — j <— k. Let D be the set of all children of i together with
their descendants. Set A := D + k and B := D +i. By Lemma A.3, det K[A, B] = 0. On the
other hand, det K[A — j 4+ i, B] # 0, because of the self-avoiding cup system from A — j +i to

J
p ]
k !
\ i o——>eo | i " >0 |
i —V.j N
1/ 7 K
(@) (b) (c)

Figure A.1. Some special induced subgraphs considered in the proof.
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B consisting of (k, j, j, j) and (i,i,i,i) and (d,d,d,d) for alld € D — j. Again, we may apply
Lemma A.1, this time with 7, j both in B, to conclude that E;; ¢ g.

VI. There is an arrow ! — i with no arrow from [ to j

Pictorially, we have [ — i — j. Let D be the set of children of j together with all their de-
scendants. Set A= D + j and B = D +[. By Lemma A.3, we have K[A, B] = 0. However,
K[A —j+1i,B]#0, and hence E;; ¢ g by Lemma A.1.

VIL. There is an arrowi — [ and [ — j

Without loss of generality, we can assume that / is minimal in the sense thatif i — I’ and I’ — j,
then there is no arrow from [ to I’. Since H is essential, [ — j is an essential arrow. This implies
one of the following possibilities:

(i) There exists k in the component of / with distance at least two to / and with k — j.
(i1) There is an induced subgraph like in Figure A.1(b).
(iii) There are arrows [ — k, k — j.
(iv) There is an arrow k — [ and no arrow from k to j.

VIIG)

In this case, we have an induced subgraph k — j < [. Let D be the set of children of / and all
their descendants. Set A = D +1[ and B = D + k. The argument that det K[A, B] = 0 is the same
as in the previous cases. By Lemma A 2, E;; ¢ g because det K[A — j+i, B]+detK[A, B—j+
i] # 0. To verify this last statement, note that by Proposition 3.4 det K[A — j + i, B] contains a
monomial corresponding to the cup system (d,d,d,d) ford e D — j, (i, k,k, k) and (I, j, j, j).
This monomial contains Ag;, A;; and no off-diagonal w’s. There is no cup system from A to B —
j +i thatuses only k — j and / — j, and hence this monomial does not appear in det K[A, B —
j+il.

VII(ii)

Let D be the set of children of p and all their descendants. Set A= D + p and B=D +r.
Again det K[A, B] =0 but detK[A — j + i, B] + detK[A, B — j + i] # 0. For this, we note
that det K[A — j + i, B] contains a monomial corresponding to the cup system (d, d, d, d) for
deD—j,(G,rrr)and (p,j,J, j), which does not appearin det K[A, B— j+i]. Now E;; ¢ g
by Lemma A.2.

VII(iii)

Note that in this case no link between i and k is possible (by maximality of / and no semi-directed
cycle assumption). But then E;; ¢ g by Case V.
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VII(iv)

Note that in this case by case VI. the arrow k — i is impossible, and thus we have either i — k,
i — k are there is no link between them. The induced subgraph is given in Figure A.1(c), where
the dashed edge indicate the three possibilities for the link between i and k. Let D be the set of
children of j together with all descendants. Set A =D + j, B = D + k. Again by Lemma A.3,
we have that det K[A, B] = 0. Moreover, det K[A — j +i, B] # 0. Now E;; ¢ g by Lemma A.1.
This exhausts all possible cases and hence completes the proof.
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