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This paper considers the problem of testing the equality of two unspecified distributions. The classical
omnibus tests such as the Kolmogorov–Smirnov and Cramér–von Mises are known to suffer from low
power against essentially all but location-scale alternatives. We propose a new two-sample test that modifies
the Neyman’s smooth test and extend it to the multivariate case based on the idea of projection pursue. The
asymptotic null property of the test and its power against local alternatives are studied. The multiplier
bootstrap method is employed to compute the critical value of the multivariate test. We establish validity
of the bootstrap approximation in the case where the dimension is allowed to grow with the sample size.
Numerical studies show that the new testing procedures perform well even for small sample sizes and are
powerful in detecting local features or high-frequency components.

Keywords: goodness-of-fit; high-frequency alternations; multiplier bootstrap; Neyman’s smooth test;
two-sample problem

1. Introduction

Let X and Y be two R
p-valued random variables with continuous distribution functions F and G,

respectively, where p ≥ 1 is a positive integer. Given data from each of the two unspecified dis-
tributions F and G, we are interested in testing the null hypothesis of the equality of distributions

H0 : F = G versus H1 : F �= G. (1.1)

This is the two-sample version of the conventional goodness-of-fit problem, which is one of the
most fundamental hypothesis testing problems in statistics [34].

1.1. Univariate case: p = 1

Suppose we have two independent univariate random samples Xn = {X1, . . . ,Xn} and Ym =
{Y1, . . . , Ym} from F and G, respectively. The empirical distribution functions (EDF) are given
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by

Fn(x) = 1

n

n∑
i=1

I (Xi ≤ x) and Gm(y) = 1

m

m∑
j=1

I (Yj ≤ y). (1.2)

For testing the equality of two univariate distributions, conventional approaches in the literature
use a measure of discrepancy between Fn and Gm as a test statistic. Prototypical examples in-
clude the Kolmogorov–Smirnov (KS) test �̂KS = √

nm/(n + m) supt∈R |Fn(t) − Gm(t)| and the
Cramér–von Mises (CVM) family of statistics

�̂CVM = nm

n + m

∫ ∞

−∞
{
Fn(t) − Gm(t)

}2
w

(
Hn+m(t)

)
dHn,m(t),

where Hn,m(t) := {nFn(t)+mGm(t)}/(n+m) denotes the pooled EDF and w is a non-negative
weight function. Taking w ≡ 1 yields the Cramér–von Mises statistic, and w(t) = {t (1 − t)}−1

yields the Anderson–Darling statistic [14].
The traditional omnibus tests, which have been widely used for testing the two-sample

goodness-of-fit hypothesis (1.1) due to their simplicity with which they can be performed, suffer
from low power in detecting densities containing high-frequency components or local features
such as bumps, and thus may have poor finite sample power properties [21]. It is known from
empirical studies that the CVM test has poor power against essentially all but location-scale
alternatives [20]. The same issue arises in the KS test as well. To enhance power under local
alternatives, Neyman’s smooth method [38] was introduced earlier than the traditional omnibus
tests, to test only the first d-dimensional sub-problem if there is prior that most of the discrepan-
cies fall within the first d orthogonal directions. Essentially, Neyman’s smooth tests represent a
compromise between omnibus and directional tests. As evidenced by numerous empirical studies
over the years, smooth tests have been shown to be more powerful than traditional omnibus tests
over a broad range of realistic alternatives. See, for example, [4,20,21,31] and [19].

A two-sample analogue of the Neyman’s smooth test was recently proposed by [5] for testing
the equality of F and G based on two independent samples. The test statistic is asymptotically
chi-square distributed and as a special case of Rao’s score test, it enjoys certain optimality proper-
ties. Specifically, [5] motivated the two-sample Neyman’s smooth test by considering the random
variable V = F(Y ) with distribution and density functions given by

H(z) := G
(
F−1(z)

)
and ρ(z) := g

(
F−1(z)

)
/f

(
F−1(z)

)
(1.3)

for 0 < z < 1, respectively, where F−1 is the quantile function of X, i.e. F−1(z) = inf{x ∈ R :
F(x) ≥ z}, and f and g denote the density functions of X and Y . Assume that F and G are
strictly increasing, then H is also increasing, ρ(z) ≥ 0 for 0 < z < 1 and

∫ 1
0 ρ(z) dz = 1. Under

the null hypothesis H0, ρ ≡ 1 so that V =d U(0,1). In other words, the null hypothesis H0
in (1.1) is equivalent to

H̃0 : ρ(z) = 1 for all 0 < z < 1, (1.4)

where ρ is as in (1.3). Throughout, the function ρ is referred as the ratio density function. Based
on Neyman’s smooth test principle, we restrict attention to the following smooth alternatives to
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the null of uniformity

ρθ (z) = Cd(θ) exp

{
d∑

k=1

θkψk(z)

}
for θ := (θ1, . . . , θd)ᵀ ∈ R

d and 0 < z < 1, (1.5)

which include a broad family of parametric alternatives, where d = dim(θ) is some positive
integer and {Cd(θ)}−1 = ∫ 1

0 exp{∑d
k=1 θkψk(z)}dz. Setting ψ0 ≡ 1, the functions ψ1, . . . ,ψd

are chosen in such a way that {ψ0,ψ1, . . . ,ψd} forms a set of orthonormal functions, that is,∫ 1

0
ψk(z)ψ�(z) dz = δk� =

{
1, if k = �,

0, if k �= �.
(1.6)

The null hypothesis asserts Hd
0 : θ = 0. Assuming that m ≤ n and the truncation parameter

d is fixed, the two-sample smooth test proposed by [5] is defined as �̂BGX = mψ̂
ᵀ
ψ̂ , where

ψ̂ = m−1 ∑m
j=1 ψ(V̂j ), ψ = (ψ1, . . . ,ψd)ᵀ and V̂j = Fn(Yj ). Under certain moment conditions

and if the sample sizes (n,m) satisfy m log logn = o(n) as n,m → ∞, the test statistic �̂BGX
converges in distribution to the χ2 distribution with d degrees of freedom. Accounting for the er-
ror of estimating F , Bera, Ghosh and Xiao [5] further considered a generalized version of the
smooth test that is asymptotically χ2(d) distributed and can be applied when n and m are of the
same magnitude.

However, Bera, Ghosh and Xiao [5] only focused on the fix d scenario (i.e. d = 4) so that their
two-sample smooth test is consistent in power against alternative where V = F(Y ) does not have
the same first k moments as that of the uniform distribution [34]. If there is a priori evidence that
most of the energy is concentrated at low frequencies, that is, large θk are located at small k, it is
reasonable to use Neyman’s smooth test. Otherwise, Neyman’s test is less powerful when testing
contiguous alternatives with local characters [21]. As [31] pointed out, achieving reasonable
power over more than a few orthogonal directions is hopeless. Indeed, the larger the value of d ,
the greater the number of orthogonal directions used to construct the test statistic. Therefore, it is
possible to obtain consistency against all distributions if the truncation parameter d is allowed to
increase with the sample size. Motivated by [10], we regard Hd

0 : θ = 0 as a global mean testing
problem with dimension increasing with the sample size. When d is large, Neyman’s smooth test
which is based on the �2-norm of θ may also suffer from low powers under sparse alternatives. In
part, this is because that the quadratic statistic accumulates high-dimensional estimation errors
under Hd

0 , resulting in large critical values that can dominate the signals under sparse alternatives.
To overcome the foregoing drawbacks, we first note that the traditional omnibus tests aim to

capture the differences of two entire distributions as opposed to only assessing a particular aspect
of the distributions, by contrast, Neyman’s smooth principle reduces the original nonparametric
problem to a d-dimensional parametric one. Lying in the middle, we are interested in enhancing
the power in detecting two adjacent densities where one has local features or contains high-
frequency components, while maintaining the same capability in detecting smooth alternative
densities as the traditional tests. We expect to arrive at a compromise between desired signifi-
cance level and statistical power by allowing the truncation parameter d to increase with sample
sizes. In Section 2, we introduce a new test statistic by taking maximum over d univariate statis-
tics. The limiting null distribution is derived under mild conditions, while d is allowed to grow
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with n and m. To conduct inference, a novel intermediate approximation to the null distribution
is proposed to compute the critical value. In fact, when n and m are comparable, d can be of
order n1/4 (resp. n1/9) (up to logarithmic in n factors) if the trigonometric series (resp. Legendre
polynomial series) is used to construct the test statistic.

1.2. Multivariate case: p ≥ 2

As a canonical problem in multivariate analysis, testing the equality of two multivariate distri-
butions based on the two samples has been extensively studied in the literature that can be dated
back to [47], under the conventional fix p setting. Friedman and Rafsky [22] constructed a two-
sample test based on the minimal spanning tree formed from the interpoint distances and their
test statistic was shown to be asymptotically distribution free under the null; Schilling [42] and
Henze [27] proposed nearest neighbor tests which are based on the number of times that the near-
est neighbors come from the same group; Rosenbaum [40] proposed an exact distribution-free
test based on a matching of the observations into disjoint pairs to minimize the total distance
within pairs. Work in the context of nonparametric tests include that of [1,2,25] and [6], among
others.

Most aforementioned existing methods are tailored for the case where the dimension p is fixed.
Driven by a broad range of contemporary statistical applications, analysis of high-dimensional
data is of significant current interest. In the high-dimensional setting, the classical testing pro-
cedures may have poor power performance, as evidenced by the numerical investigations in [6].
Several tests for the equality of two distributions in high dimensions have been proposed. See,
for example, [25] and [6]. However, limiting null distributions of the test statistics introduced in
[25] and [6] were derived when the dimension p is fixed.

In the present paper, we propose a new test statistic that extends Neyman’s smooth test prin-
ciple to higher dimensions based on the idea of projection pursue. To conduct inference for the
test, we employ the multiplier (wild) bootstrap method which is similar in spirit to that used in
[26] and [3]. We refer to Section 3 for details on methodologies. It can be shown that (Proposi-
tions 7.2 and 7.3), under mild conditions, the error in size of our multivariate smooth test decays
polynomially in sample sizes (n,m). It is noteworthy that we allow the dimension p to grow as
a function of (n,m), a type of framework the existing methods do not rigorously address. More
importantly, we do not limit the dependency structure among the coordinates in X and Y and no
shape constraints of the distribution curves are known as a priori which inhibits a pure parametric
approach to the problem.

1.3. Organization of the paper

The rest of the paper is organized as follows. In Section 2, we describe the two-sample smooth
testing procedure in the univariate case. An extension to the multivariate setting based on projec-
tion pursue is introduced in Section 3. Section 4 establishes theoretical properties of the proposed
smooth tests in both univariate and multivariate settings. Finite sample performance of the pro-
posed tests is investigated in Section 5 through Monte Carlo experiments. The proofs of the main
results are given in Section 7 and some additional technical arguments are contained in Section 8.
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Notation

For a positive integer p, we write [p] = {1,2, . . . , p} and denote by | · |2 and | · |∞ the �2- and
�∞-norm in R

p , respectively, that is, |x|2 = (x2
1 + · · · + x2

p)1/2 and |x|∞ = maxk∈[p] |xk| for

x = (x1, . . . , xp)ᵀ ∈ R
p . The unit sphere in R

p is denoted by Sp−1 = {x ∈ R
p : |x|2 = 1}. For

two R
p-valued random variables X and Y , we write X =d Y if they have the same probability

distribution and denote by PX the probability measure on R
p induced by X. For two real numbers

a and b, we use the notation a ∨ b = max(a, b) and a ∧ b = min(a, b). For two sequences of
positive numbers an and bn, we write an � bn if there exist constants c1, c2 > 0 such that for all
sufficiently large n, c1 ≤ an/bn ≤ c2, we write an = O(bn) if there is a constant C > 0 such that
for all n large enough, an ≤ Cbn, and we write an ∼ bn or an � bn and an = o(bn), respectively,
if limn→∞ an/bn = 1 and limn→∞ an/bn = 0. For any two functions f,g : R �→ R, we denote
with f ◦ g the composite function f ◦ g(x) = f {g(x)} for x ∈R.

For any probability measure Q on a measurable space (S,S), let ‖ · ‖Q,2 be L2(Q)-seminorm
defined by ‖f ‖Q,2 = (Q|f |2)1/2 = (

∫ |f |2 dQ)1/2 for f ∈ L2(Q). For a class of measurable
functions F equipped with an envelope F(s) = supf ∈F |f (s)|, s ∈ S, let N(F,L2(Q), ε‖F‖Q,2)

denote the ε-covering number of the class of functions F with respect to the L2(Q)-distance for
0 < ε ≤ 1. We say that the class F is Euclidean or VC-type [39,46] if there are constants A,v > 0
such that supQ N(F,L2(Q), ε‖F‖Q,2) ≤ (A/ε)v for all 0 < ε ≤ 1, where the supremum ranges
over all finitely discrete probability measures on (S,S). When S = R

p for p ≥ 1, we use S to
denote the Borel σ -algebra unless otherwise stated.

2. Testing equality of two univariate distributions

2.1. Oracle procedure

Without loss of generality, we assume n ≥ m and recall that the null hypothesis H0 : F = G

is equivalent to H̃0 : V =d U(0,1) for V = F(Y ) as in (1.4). Following [5], we consider the
smooth alternatives lying in the family of densities (1.5) which is a d-parameter exponential
family, where d = dn,m is allowed to increase with n and m in order to obtain power against
a large array of alternatives. In particular, this family is quadratic mean differentiable at θ = 0
and therefore the score vector at θ = 0 is given by m−1/2( ∂

∂θ1
logLm(θ), . . . , ∂

∂θd
logLm(θ))|θ=0

[34], where Lm(θ) = {Cd(θ)}m exp{∑m
j=1

∑d
k=1 θkψk(Vj )} is the likelihood function and Vj =

F(Yj ), such that ∂
∂θk

logLm(θ) = ∑m
j=1[ψk(Vj )−Eθ {ψk(Vj )}]. As {ψ0 ≡ 1,ψ1, . . . ,ψd} forms

a set of orthonormal functions, it is easy to see that if θ = 0, Eθ {ψk(V )} = 0 and Eθ {ψk(V )2} = 1
for every k ∈ [d].

To provide a more omnibus test against a broader range of alternatives, we allow a large trun-
cation parameter d and for the reduced null hypothesis Hd

0 : θ = 0, it is instructive to consider
the following oracle statistic

�(d) = max
1≤k≤d

∣∣∣∣∣ 1√
m

m∑
j=1

ψk(Vj )

∣∣∣∣∣, (2.1)



956 W.-X. Zhou, C. Zheng and Z. Zhang

which can be regarded as a smoothed version of the KS statistic. Throughout, the number of
orthogonal directions d = dim(θ) is chosen such that d ≤ n ∧ m. Intuitively, this extreme value
statistic is appealing when most of the energy (non-zero θk) is concentrated on a few dimensions
but with unknown locations, meaning that both low- and high-frequency alternations are pos-
sible. Now it is a common belief [8] that maximum-type statistics are powerful against sparse
alternatives, which in the current context is the case where the two densities only differ in a
small number of orthogonal directions (not necessarily in the first few). To see this, consider
a contiguous alternative where there exists some �∗ such that θ�∗ �= 0 with |θ�∗ | sufficiently
small and θ� = 0 for all other �, then informally we have C−1

d (θ) = ∫ 1
0 exp{θ�∗ψ�∗(z)}dz �∫ 1

0 {1 + θ�∗ψ�∗(z)}dz = 1 and

Eθ

{
ψk(V )

} = Cd(θ)

∫ 1

0
ψk(z) exp

{
θ�∗ψ�∗(z)

}
dz �

∫ 1

0
ψk(z)

{
1 + θ�∗ψ�∗(z)

}
dz = θ�∗δk�∗ .

Under a sparse alternative where only a few components of θ = (θ1, . . . , θd)ᵀ are non-zero, the
power typically depends on the magnitudes of the signals (non-zero coordinates of θ ) and the
number of the signals.

2.2. Data-driven procedure

For the oracle statistic �(d) in (2.1), the random variables Vj = F(Yj ) are not directly observed
as the distribution function F is unspecified. Indeed, this is the major difference of the two-
sample problem from the classical (one-sample) goodness-of-fit problem. We therefore consider
the following data-driven procedure. In the first stage, an estimate V̂j of Vj is obtained by using
the empirical distribution function Fn:

V̂j = Fn(Yj ) = 1

n

n∑
i=1

I (Xi ≤ Yj ). (2.2)

Then the data-driven version of �(d) in (2.1) is defined by

�̂ = �̂(d) =
√

nm

n + m
max

1≤k≤d
|ψ̂k|, (2.3)

where ψ̂k = m−1 ∑m
j=1 ψk(V̂j ). In the case m > n, we may use Gm instead of Fn, leading to an

alternative test statistic �̃(d) = √
nm/(n + m)max1≤k≤d |n−1 ∑n

i=1 ψk(Gm(Xi))|.
Typically, large values of �̂ lead to a rejection of the null Hd

0 : θ = 0 and hence of H0 : F = G,
or equivalently, H̃0 in (1.4). For conducting inference, we need to compute the critical value so
that the corresponding test has approximately size α. A natural approach is to derive the limiting
distribution of the test statistic �̂(d) under the null. Under certain smoothness conditions on ψk ,
it can be shown that for every k ∈ [d],

ψ̂k = 1

m

m∑
j=1

ψk(V̂j ) � 1

m

m∑
j=1

ψk(Vj ) − 1

n

n∑
i=1

ψk(Ui),
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where Ui = G(Xi). See, for example, (7.7) and (7.10) in the proof of Proposition 7.1. Under H0

and when d ≥ 1 is fixed, a direct application of the multivariate central limit theorem is that as
n,m → ∞, √

nm

n + m
(ψ̂1, . . . , ψ̂d)ᵀ d→ G =d N(0, Id), (2.4)

where Id is the d-dimensional identity matrix. This implies by the continuous mapping theorem

that �̂(d)
d→ |G|∞ when d is fixed.

For every 0 < α < 1, denote by zα the (1 − α)-quantile of the standard normal distribu-
tion, i.e. zα = 
−1(1 − α). Then, the (1 − α)-quantile of |G|∞ can be expressed as cα(d) =
z1/2−(1−α)1/d /2 = 
−1(1/2 + (1 − α)1/d/2). The corresponding asymptotic α-level Smooth test
is thus defined as


S
α(d) = I

{
�̂(d) ≥ cα(d)

}
. (2.5)

The null hypothesis H0 is rejected if and only if 
S
α(d) = 1.

To construct test that has better power for alternative densities with large energy at high fre-
quencies, we allow the truncation parameter d = dim(θ) to increase with sample sizes n and m.
This setup was previously considered by [21] in the context of the Gaussian white noise model,
where it was argued that if there is a priori evidence that large θk’s are located at small k, then
it is reasonable to select a relatively small d ; otherwise the resulting test may suffer from low
power in detecting densities containing high-frequency components. However, by letting d to
increase with sample sizes we allow for different asymptotics than Neyman’s fix d large sample
scenario. This type of asymptotics aims to illustrate how the truncation parameter d may affect
the quality of the test statistic, and to depict a more accurate picture of the behavior for fixed
samples. In the present two-sample context, it will be shown (Proposition 7.1) that the distribu-
tion of �̂(d) can still be consistently estimated by that of |G|∞ with the truncation parameter
d increasing polynomially in n and m, where G is a d-dimensional centered Gaussian random
vector with covariance matrix Id . Consequently, the asymptotic size of the smooth test 
S

α(d)

in (2.5) coincides with the nominal size α (Theorem 4.1).

2.3. Choice of the function basis

In this paper, we shall focus the following two sets of orthonormal functions with respect to the
Lebesgue measure on [0,1], which are the most commonly used basis for constructing smooth-
type goodness-of-fit tests.

(i) (Legendre Polynomial (LP) series). Neyman’s original proposal [38] was to use orthonor-
mal polynomials, now known as the normalized Legendre polynomials. Specifically, ψk is
chosen to be a polynomial of degree k which is orthogonal to all the ones before it and is
normalized to size 1 as in (1.6). Setting ψ0 ≡ 1, the next four ψk’s are explicitly given by:
ψ1(z) = √

3(2z − 1), ψ2(z) = √
5(6z2 − 6z + 1), ψ3(z) = √

7(20z3 − 30z2 + 12z − 1) and
ψ4(z) = 3(70z4 − 140z3 + 90z2 − 20z + 1). In general, the normalized Legendre polynomial of
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order k can be written as

ψk(z) =
√

2k + 1

k!
dk

dzk

(
z2 − z

)k
, 0 ≤ z ≤ 1, k = 1,2, . . . . (2.6)

See, for example, Lemma 1 in [5].
(ii) (Trigonometric series). Another widely used basis of orthonormal functions is a trigono-

metric series given by

ψk(z) = √
2 cos(πkz), 0 ≤ z ≤ 1, k = 1,2, . . . . (2.7)

This particular choice arises in the construction of the weighted quadratic type test statistics, in-
cluding the Cramér–von Mises and the Anderson–Darling test statistics as prototypical examples
[20,34]. Alternatively, one could use the Fourier series which is also a popular trigonometric
series given by {cos(2πkz), sin(2πkz) : k = 1, . . . , d/2} for d even.

Other commonly used compactly supported orthonormal series include spline series [15],
Cohen-Deubechies-Vial wavelet series [35] and local polynomial partition series [9], among oth-
ers. As the two-sample test statistics constructed in this paper use orthonormal functions that are
at least twice continuously differentiable on [0,1], we restrict attention to the Legendre poly-
nomial series (2.6) and the trigonometric series (2.7) only. Indeed, the idea developed here can
be directly applied to construct (one-sample) goodness-of-fit tests in one and higher dimensions
without imposing smoothness conditions on the series.

3. Testing equality of two multivariate distributions

Evidenced by both theoretical (Section 4.1) and numerical (Section 5) studies, we see that Ney-
man’s smooth test principle leads to convenient and powerful tests for univariate data. However,
the presence of multivariate joint distributions makes it difficult, or even unrealistic, to con-
sider a direct multivariate extension of the smooth alternatives given in (1.5). In the case of
complete independence where all the components of X and Y are independent, the problem for
testing equality of two multivariate distributions is equivalent to that for testing equality of many
marginal distributions. Neyman’s smooth principle can therefore be employed to each of the p

marginals.
In this section, we do not impose assumption that limits the dependence among the co-

ordinates in X and Y and note here that the null hypothesis H0 : F = G is equivalent to
H0 : uᵀX =d uᵀY,∀u ∈ Sp−1. This observation and the idea of projection pursue now allow
to apply Neyman’s smooth test principle, yielding a family of univariate smooth tests indexed by
u ∈ Sp−1 based on which we shall construct our test that incorporates the correlations among all
the one-dimensional projections.

3.1. Test statistics

Assume that two independent random samples, X1, . . . ,Xn from the distribution F and
Y1, . . . , Ym from the distribution G are observed, where the two samples sizes are compara-
ble and m ≤ n. Along every direction u ∈ Sp−1, let Fu and Gu be the distribution functions of
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one-dimensional projections uᵀX and uᵀY , respectively, and define the corresponding empirical
distribution functions by

Fu
n (x) = 1

n

n∑
i=1

I
(
uᵀXi ≤ x

)
and Gu

m(y) = 1

m

m∑
j=1

I
(
uᵀYj ≤ y

)
. (3.1)

As a natural multivariate extension of the KS test, we consider the following test statistic

�̂MKS =
√

nm

n + m
sup

(u,t)∈Sp−1×R

∣∣Fu
n (t) − Gu

m(t)
∣∣,

which coincides with the KS test when p = 1. Baringhaus and Franz [1] proposed a multivariate
extension of the Cramér–von Mises test which is of the form

�̂BF = nm

n + m

∫
Sp−1

∫ +∞

−∞
{
Fu

n (t) − Gu
m(t)

}2
dtϑ(du),

where ϑ denotes the Lebesgue measure on Sp−1. Despite their popularities in practice, the clas-
sical omnibus distribution-based testing procedures suffer from low power in detecting fine fea-
tures such as sharp and short aberrants as well as global features such as high-frequency al-
ternations [21]. Now it is well known that the foregoing drawbacks can be well repaired via
smoothing-based test statistics. This motivates the following multivariate smooth test statistic.

As in Section 2, let {ψ0 ≡ 1,ψ1, . . . ,ψd} (d ≥ 1) be a set of orthonormal functions and put
ψ = (ψ1, . . . ,ψd)ᵀ : R �→ R

d . Using the union-intersection principle, the two-sample problem
of testing H0 : F = G versus H1 : F �= G can be expressed a collection of univariate testing prob-
lems, by noting that H0 and H1 are equivalent to

⋂
u∈Sp−1 Hu,0 and

⋃
u∈Sp−1 Hu,1, respectively,

where

Hu,0 : uᵀX =d uᵀY, Hu,1 : uᵀX �=d uᵀY.

For every marginal null hypothesis Hu,0, we consider a smooth-type test statistic in the same
spirit as in Section 2.1 that

�u(d) =
∣∣∣∣∣ 1

m

m∑
j=1

ψ
(
V u

j

)∣∣∣∣∣∞ with V u
j = Fu

(
uᵀYj

)
. (3.2)

For diagnostic purposes, it is interesting to find the best separating direction, that is, umax :=
arg maxu∈Sp−1 �u(d), along which the two distributions differ most. For the purpose of conduct-
ing inference which is the main objective in this paper, we just plug umax into (3.2) to get the
oracle test statistic �max(d) := �umax(d), though it is practically infeasible as the distribution
function F is unspecified. The most natural and convenient approach is to replace V u

j in (3.2)

with V̂ u
j = Fu

n (uᵀYj ), leading to the following extreme value statistic for testing H0 : F = G,

�̂max = �̂max(d) =
√

nm

n + m
sup

u∈Sp−1
�̂u(d), (3.3)
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where �̂u(d) = |m−1 ∑m
j=1 ψ(V̂ u

j )|∞ = max1≤k≤d |ψ̂u,k| with ψ̂u,k = m−1 ∑m
j=1 ψk(V̂

u
j ). Re-

jection of the null is thus for large values of �̂max, say �̂max > cα(d), where cα(d) is a critical
value to be determined so that the resulting test has the prespecified significance level α ∈ (0,1)

asymptotically.

3.2. Critical values

Due to the highly complex dependence structure among {ψ̂u,k}(u,k)∈Sp−1×[d], the limiting (null)

distribution of �̂max(d) may not exist. In fact, �̂max(d) can be regarded as the supremum of an
empirical process indexed by the class

F̂n,m :=
{

x �→ ψk

(
1

n

n∑
i=1

I
{
uᵀ(x − Xi) ≥ 0

}) : (u, k) ∈ Sp−1 × [d]
}

of functions R
p �→ R; that is, �̂max(d) = √

nm/(n + m) sup
f ∈F̂n,m

|m−1 ∑m
j=1 f (Yj )|. As we

allow the dimension p to grow with sample sizes, the “complexity” of F̂n,m increases with n,m

and is thus non-Donsker. Therefore, the extreme value statistic �̂max(d), even after proper nor-
malization, may not be weakly convergent as n,m → ∞. Tailored for such non-Donsker classes
of functions that change with the sample size, Chernozhukov, Chetverikov and Kato [11] de-
veloped Gaussian approximations for certain maximum-type statistics under weak regularity
conditions. This motivates us to take a different route by using the multiplier (wild) bootstrap
method to compute the critical value cα(d) for the statistic �̂max(d) so that the resulting test has
approximately size α ∈ (0,1).

Let {Z1, . . . ,ZN } = {Y1, . . . , Ym,X1, . . . ,Xn} denote the pooled sample with a total sample
size N = n + m. For every (u, k) ∈ Sp−1 × [d], we shall prove in Section 7.4.2 that

√
nm

n + m
ψ̂u,k � 1√

N

N∑
j=1

wjψk ◦ Fu
(
uᵀZi

)
,

where wj = √
n/m for j ∈ [m] and wj = −√

m/n for j ∈ m + [n]. This implies that, under
certain regularity conditions, �̂max(d) � supf ∈Fp

d
|N−1/2 ∑N

j=1 wjf (Zj )|, where Fp
d = {x �→

ψk ◦ Fu(uᵀx) : (u, k) ∈ Sp−1 × [d]}. Furthermore, we shall prove in Proposition 7.2 that, under
the null hypothesis H0 : F = G,

�̂max(d) �d ‖G‖Fp
d

:= sup
f ∈Fp

d

|Gf |, (3.4)

where G is a centered Gaussian process indexed by Fp
d with covariance function

E
{
(Gfu,k)(Gfv,�)

}
(3.5)

= PX(fu,kfv,�) = E
{
fu,k(X)fv,�(X)

} =
∫
Rp

ψk

(
Fu

(
uᵀx

))
ψ�

(
Fv

(
vᵀx

))
dF(x),
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where Uu = Fu(uᵀX) =d Unif(0,1) for u ∈ Sp−1. In particular, E{(Gfu,k)(Gfu,�)} = δk�. The
distribution of ‖G‖Fp

d
, however, is unspecified because its covariance function is unknown.

Therefore, in practice we need to replace it with a suitable estimator, and then simulate the
Gaussian process G to compute the critical value cα(d) numerically, as described below.

Multiplier bootstrap

(i) Independent of the observed data {Xi}ni=1 and {Yj }mj=1, generate i.i.d. standard normal random
variables e1, . . . , en. Then construct the Multiplier Bootstrap statistic

�̂MB
max = �̂MB

max(d) = sup
(u,k)∈Sp−1×[d]

∣∣∣∣∣ 1√
n

n∑
i=1

eiψk

(
Ûu

i

)∣∣∣∣∣, (3.6)

where Ûu
i = Fu

n (uᵀXi) for Fu
n (·) as in (3.1).

(ii) Calculate the data-driven critical value ĉMB
α (d) which is defined as the conditional (1−α)-

quantile of �̂MB
max given {Xi}ni=1; that is,

ĉMB
α (d) = inf

{
t ∈R : Pe

(
�̂MB

max > t
) ≤ α

}
, (3.7)

where Pe denotes the probability measure induced by the normal random variables {ei}ni=1 con-
ditional on {Xi}ni=1.

For every t ≥ 0, Pe(�̂
MB
max ≤ t) is a random variable depending on {Xi}ni=1 and so is ĉMB

α (d),
which can be computed with arbitrary accuracy via Monte Carlo simulations. Consequently, we
propose the following Multivariate Smooth test


MS
α (d) = I

{
�̂max(d) ≥ ĉMB

α (d)
}
. (3.8)

The null hypothesis H0 : F = G is rejected if and only if 
MS
α (d) = 1.

4. Theoretical properties

Assume that we are given independent samples from the two (univariate and multivariate) distri-
butions. As different sample sizes are allowed, for technical reasons we need to impose assump-
tions about the way in which samples sizes grow. The following gives the basic assumptions on
the sampling process.

Assumption 4.1. (i) {X1, . . . ,Xn} and {Y1, . . . , Ym} are two independent random samples from
X and Y , with absolute continuous distribution functions F and G, respectively;

(ii) The sample sizes, n and m, are comparable in the sense that c0n ≤ m ≤ n for some constant
0 < c0 ≤ 1.

Let {ψ0 ≡ 1,ψ1, . . . ,ψd} be a sequence of twice differentiable orthonormal functions [0,1] �→
R, where d ≥ 1 is the truncation parameter. Moreover, for � = 0,1,2, define

B�d = max
1≤k≤d

∥∥ψ
(�)
k

∥∥∞ = max
1≤k≤d

max
z∈[0,1]

∣∣ψ(�)
k (z)

∣∣. (4.1)
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These quantities will play a key role in our analysis. For the particular choice of the function
basis as in (2.6) and (2.7), we specify below the order of B�d , as a function of d , for � = 0,1,2.

(i) (Legendre polynomial series). For the normalized Legendre polynomials ψk , it is known
that B0d = max1≤k≤d maxz∈[0,1] |ψk(z)| = √

2d + 1. See, for example, [41]. Moreover, by the

Markov inequality [43], ‖ψ ′
k‖∞ ≤ k2‖ψk‖∞ and ‖ψ ′′

k ‖∞ ≤ k2(k2−1)
3 ‖ψk‖∞. Together with (4.1),

this implies

B0d = √
2d + 1, B1d ≤ √

3d5/2 and B2d ≤ 3−1/2d9/2. (4.2)

(ii) (Trigonometric series). For the trigonometric series ψk(z) = √
2 cos(πkz), it is straight-

forward to see that ψ ′
k(z) = −√

2πk sin(πkz) and ψ ′′
k (z) = −√

2π2k2 cos(πkz). Consequently,
we have

B0d = √
2, B1d ≤ √

2πd and B2d ≤ √
2π2d2. (4.3)

4.1. Asymptotic properties of �S
α(d)

Assumption 4.2. The truncation parameter d is such that d ≤ m and as n → ∞,

(logn)7/6B0d = o
(
n1/6), (logn)3/2B1d = o

(
n1/2), (logn)1/2B2d = o

(
n1/2).

The next theorem establishes the validity of the univariate smooth test 
S
α(d) in (2.5).

Theorem 4.1. Suppose that Assumptions 4.1 and 4.2 hold. Then as n,m → ∞,

sup
0<α<1

∣∣PH0

{

S

α(d) = 1
} − α

∣∣ → 0. (4.4)

Remark 4.1. In view of (4.2) and (4.3), it follows from Theorem 4.1 that the error in size of the
smooth test 
S

α(d) using the trigonometric series (2.7) (resp. Legendre polynomials series (2.6))
tends to zero provided that d = o{(n/ logn)1/4} (resp. d = o{(n/ logn)1/9}) as n → ∞.

Next, we consider the asymptotic power of 
S
α(d) against local alternatives when d = dn,m →

∞ as n,m → ∞. For the following results, let n̄ = 2(n−1 +m−1)−1 denote the harmonic mean of
the two sample sizes. Our oracle statistic �S given in (2.1) mimics

√
n̄/2 max1≤k≤d |Eθ {ψk(V )}|,

where θ = (θ1, . . . , θd)ᵀ ∈ R
d . Consider testing H̃0 : ρ ≡ 0 in (1.4) against the following local

alternatives

Hd
1 : ρ = ρθ , for θ ∈ � :=

{
b = (b1, . . . , bd)ᵀ ∈ R

d : max
1≤k≤d

|bk| = λ

√
logd

n̄

}
, (4.5)

where ρθ is as in (1.5) and λ > 0 is a separation parameter. It is clear that the difficulty of
testing between H̃0 and Hd

1 depends on the value of λ; that is, the smaller λ is, the harder it is
to distinguish between the two hypotheses. The power of the test 
S

α(d) in (2.5) against Hd
1 is

provided by the following theorem.
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Theorem 4.2. Suppose that Assumption 4.1 holds. The truncation parameter d = dn,m is such
that d = o(n1/4) if the trigonometric series (2.7) is used to construct the test statistic �̂(d)

in (2.3) and d = o(n1/9) if the Legendre polynomials series (2.6) is used. Then, under Hd
1 with

λ ≥ 2 + ε for some ε > 0,

lim
n,d→∞PHd

1

{

S

α(d) = 1
} = 1. (4.6)

4.2. Asymptotic properties of �MS
α (d)

In this section, we consider the multivariate case where the dimension p = pn,m is allowed to
grow with sample sizes, and hence our results hold naturally for the fix dimension scenario.
Specifically, we impose the following assumption on the quadruplet (n,m,p,d).

Assumption 4.3. There exist constants C0,C1 > 0 and c1 ∈ (0,1) such that

d ≤ min
{
n,m, exp(C0p)

}
, max

(
p7B2

1d ,pB2
2d

) ≤ C1n
1−c1 . (4.7)

The next theorem establishes the validity of the multivariate smooth test 
MS
α (d).

Theorem 4.3. Suppose that Assumptions 4.1 and 4.3 hold. Then as n,m → ∞,

sup
0<α<1

∣∣PH0

{

MS

α (d) = 1
} − α

∣∣ → 0. (4.8)

5. Numerical studies

In this section, we illustrate the finite sample performance of the proposed smooth tests described
in Sections 2 and 3 via Monte Carlo simulations. The univariate and the multivariate cases will
be studied separately.

5.1. Univariate case

Proposition 7.1 in Section 7 shows that the distribution of the test statistic �̂(d) in (2.3) can be
consistently estimated by that of the absolute Gaussian maximum |G|∞, where G =d N(0, Id).
To see how close this approximation is, we compare in Figure 1 the cumulative distribution func-
tion of |G|∞ and the empirical distributions of �̂(d) using the trigonometric series (2.7) and
the Legendre polynomial (LP) series (2.6), when the data are generated from Student’s t (7)-
distribution, with n = 180,m = 150 and d = 12. We only present the upper half of the curve
since the (1 − α) quantile of |G|∞ with α ∈ (0,1/2) is of particular interest. It can be seen
from Figure 1 that the cumulative distribution curves of |G|∞ and the trigonometric series based
statistic, denoted by T-�̂(d), almost coincide, while there is a slightly noticeable difference be-
tween |G|∞ and the LP polynomial series based statistic LP-�̂(d). Indeed, this phenomenon
can be expected from the theoretical discoveries. See, for example, the rate of convergence in
(7.1) and (7.2), where dependence of {B�d}�=0,1,2 on d can be found in (4.2) and (4.3).
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Figure 1. Comparison of the empirical cumulative distributions of LP-�̂(12), T-�̂(12) and the limiting
cumulative distribution with n = 180 and m = 150. The plot is based on 5000 simulations.

Next, we carry out 5000 simulations with nominal significance level α = 0.05 to calculate the
empirical sizes of the proposed smooth test 
S

α(d). We denote with T-
S
α(d) and LP-
S

α(d),
respectively, the tests based on the trigonometric series (2.7) and the LP polynomial series (2.6).
The sample sizes (n,m) are taken to be (80,60), (120,90), (180,150), and d takes values
4,8,12. We compare the proposed smooth test with the testing procedure proposed by [5], the
two-sample Kolmogorov–Smirnov test and the two-sample Cramér–von Mises test in five exam-
ples when the data are generated from Gamma, Logistic, Gaussian, Pareto and Stable distribu-
tions. The results are summarized in Table 1, from which we see that among all the five examples
considered, the empirical sizes of T-
S

α(d) with d ∈ {4,8,12} are close to 0.05. This highlights
the robustness of the testing procedure T-
S

α(d) with respect to the choice of the truncation pa-
rameter d . Further, we note that the empirical sizes of LP-
S

α(4) are comparable to those of

BGX, while as d increases, the test LP-
S

α(d) suffers from size distortion gradually. In fact,
as pointed out by [38] and [4], when the Legendre polynomials series is used to construct the
test statistic, the effectiveness of the corresponding test in each direction could be diluted if d

is too large. Nevertheless, the test based on the trigonometric series remains to be efficient as d

increases and can be very powerful as we shall see later.
The power performance is evaluated through the following five examples. In each example, the

result reported is based on 1000 simulations where samples sizes (n,m) are taken to be (120,90)

and (180,150). Because of the distortion of empirical sizes of LP-
S
α(d), we only compare the

power of the trigonometric series based smooth test T-
S
α(d) with that of the KS, CVM and

BGX tests. The plots of power functions against different families of alternative distributions
from Examples 1–5 are given in Figure 2.

Example 1.

X : F = uniform(−1,1) versus

Y : G = Gμ with density gμ(x) = 1

2
+ 2x

μ − |x|
μ2

I (|x| < μ) (0 ≤ μ ≤ 1).
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Table 1. Comparison of empirical sizes with nominal significance level α = 0.05

T-
S
α(d) LP-
S

α(d)

Model (n,m) d = 4 d = 8 d = 12 d = 4 d = 8 d = 12 BGX KS CVM

Gamma(2,2) (80,60) 0.0504 0.0500 0.0490 0.0584 0.0724 0.1078 0.0634 0.0494 0.0524
(120,90) 0.0504 0.0510 0.0484 0.0542 0.0654 0.0830 0.0590 0.0438 0.0434
(180,150) 0.0496 0.0486 0.0484 0.0500 0.0554 0.0706 0.0530 0.0440 0.0444

Logistic(0,1) (80,60) 0.0498 0.0496 0.0482 0.0576 0.0748 0.1038 0.0618 0.0456 0.0494
(120,90) 0.0504 0.0500 0.0496 0.0528 0.0666 0.0860 0.0552 0.0504 0.0466
(180,150) 0.0502 0.0498 0.0500 0.0508 0.0570 0.0696 0.0574 0.0438 0.0424

N(0,1) (80,60) 0.0504 0.0488 0.0470 0.0570 0.0764 0.1060 0.0648 0.0494 0.0504
(120,90) 0.0502 0.0494 0.0482 0.0548 0.0694 0.0850 0.0566 0.053 0.0504
(180,150) 0.0502 0.0514 0.0516 0.0504 0.0544 0.0616 0.0542 0.0446 0.0500

Pareto(0.5,1,1) (80,60) 0.0502 0.0484 0.0468 0.0582 0.0766 0.1064 0.0640 0.0460 0.0494
(120,90) 0.0500 0.0494 0.0494 0.0540 0.0640 0.0824 0.0592 0.0468 0.0480
(180,150) 0.0498 0.0496 0.0500 0.0530 0.0586 0.0724 0.0542 0.0436 0.0456

Stable(1.5,0,1,1) (80,60) 0.0480 0.0470 0.0456 0.0544 0.0758 0.1088 0.0606 0.0474 0.0488
(120,90) 0.0496 0.0498 0.0494 0.0578 0.0692 0.0790 0.0614 0.0492 0.0514
(180,150) 0.0510 0.0514 0.0506 0.0508 0.0570 0.0690 0.0608 0.0490 0.0484

Example 2.

X : F = uniform(−1,1) versus

Y : G = Gσ with density gσ (x) = 1
2

{
1 + sin(2πσx)

}
(0.5 ≤ σ ≤ 5).

Example 3.

X : F = lognormal(0,1) with density f (x) = (2π)−1/2x−1 exp
{−(logx)2/2

}
versus

Y : G = Ga with density ga(x) = f (x)
{
1 + a sin(2π logx)

}
(−1 ≤ a ≤ 1).

Example 4.

X : F = uniform(0,1) versus

Y : G = Gc with density gc(x) = exp
{
c sin(5πx)

}
(0 ≤ c ≤ 2).

Example 5.

X : F = uniform(0,1) versus

Y : G = Gc with density gc(x) = 1 + c cos(5πx) (0 ≤ c ≤ 2).
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Figure 2. Empirical powers for Examples 1–5 based on 1000 replications with α = 0.05.

The first two examples are, respectively, Examples 5 and 6 in [21] which were designed to
demonstrate the performance of the adaptive Neyman’s test proposed there. In Example 1, when
μ = 0, Gμ coincides with F . For this family of alternatives index by μ, the strength of the local
feature depends on μ in the sense that the larger the μ, the stronger the local feature. As expected,
the powers of all the tests considered grow with μ and when sample sizes are large enough, the
smooth tests T-
S

α(d) uniformly outperform the others. Example 2, on the other hand, is designed
to test the global features with various frequencies. It can be seen from the second row in Figure 2
that the test T-
S

α(16) has the highest power that approaches to 1 rapidly as σ decreases to 0. The
third example is from [28], where ga is a density and has the same moments as f0 of any order.
In this example, all the KS, CVM and BGX tests suffer from very poor power, while surprisingly,
the smooth tests based on the trigonometric series remain powerful. The last two examples aim
to cover the high-frequency alternations. Again, the proposed tests have the highest powers. In
fact, the BGX test was originally constructed to identify deviations in the directions of mean,
variance, skewness and kurtosis, and hence it can be relatively less powerful in detecting local
features or high-frequency components.
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Figure 2. (Continued).
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Table 2. Empirical size with significance level α = 0.05

Multivariate normal Multivariate t

N(0, Ip) N(0,�) t4(0, Ip) t8(0, Ip) t4(0,�) t8(0,�)

p = 3 T-
MS
α (d) 0.0446 0.0456 0.0514 0.0442 0.0494 0.0458
BF 0.0480 0.0494 0.0504 0.0488 0.0448 0.0484

p = 5 T-
MS
α (d) 0.0496 0.0472 0.0494 0.0560 0.0450 0.0514
BF 0.0466 0.0472 0.0502 0.0458 0.0488 0.0484

p = 10 T-
MS
α (d) 0.0582 0.0594 0.0512 0.0516 0.0570 0.0602
BF 0.0422 0.0454 0.0364 0.0422 0.0482 0.0438

5.2. Multivariate case

The computation of the proposed multivariate smooth test and the critical value requires to find
optimal directions ûmax and ûMB

max on the unit sphere Sp−1 that maximize non-smooth objective
functions (3.3) and (3.6), respectively. To solve these optimization problems, we convert the data
into spherical coordinates and employ the Nelder-Mead algorithm. As a trade-off between the
power and the computational feasibility of the test, we keep the value of d fixed at 4.

Similar to the univariate case, we first carry out 5000 simulations with nominal significance
level α = 0.05 to calculate the empirical sizes of the proposed test T-
MS

α (d) with trigonometric
series. For each p ∈ {3,5,10}, the data are generated from multivariate normal and t -distributions
with different degrees of freedom (4 and 8) and covariance structures (Ip and �). Sample sizes
(n,m) are taken to be (180,160). We summarize the results in Table 2, comparing with the
method proposed by [1], which will be referred as the BF test. From Table 2 we see that when
p = 3,5, both methods have an empirical size fairly close to 0.05; when p = 10, the empirical
size of the proposed smooth test increases since the optimization over the unit sphere becomes
more challenging, while the empirical size of the BF test is typically smaller than the nominal
level.

The power performance of the multivariate smooth test is evaluated through Examples 6–9.
The first two are multivariate versions of Examples 1 and 4, which demonstrate, respectively,
the alternations with local feature and high frequency. The last two examples are designed to
examine a rotation effect in the alternations. In each one, the power reported is based on 1000
simulations where samples sizes (n,m) are taken to be (180,160). Again, we compare the power
of the trigonometric series based smooth test T-
S

α(d) with that of the BF test. The power curve
are depicted in Figure 3.

Example 6.

X = (X1,X2,X3)
ᵀ, X1,X2

i.i.d.∼ uniform(−1,1), X3 = 0.3X1 + 0.7X2 versus

Y = (Y1, Y2, Y3)
ᵀ, Y1, Y2

i.i.d.∼ gμ(x) = 1

2
+ 2x

μ − |x|
μ2

I (|x| < μ) (0 ≤ μ ≤ 1)

Y3 = 0.3Y1 + 0.7Y2.
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Figure 3. Empirical powers for Examples 6–9 based on 1000 replications with α = 0.05.

Example 7.

X = (X1,X2,X3)
ᵀ, X1,X2

i.i.d.∼ uniform(0,1), X3 = 0.3X1 + 0.7X2 versus

Y = (Y1, Y2, Y3)
ᵀ, Y1, Y2

i.i.d.∼ gc(x) = exp
{
c sin(5πx)

}
(0 ≤ c ≤ 2),

Y3 = 0.3Y1 + 0.7Y2.

Example 8.

X ∼N (0, I5) versus Y = AZ, Z ∼N (0, I5),

where

A =
(

A0 0
0 I3

)
, A0 =

(√
1 − δ

√
δ√

δ
√

1 − δ

)
(0 ≤ δ ≤ 0.5).
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Example 9.

X ∼ t4(0, I5) versus Y = AZ, Z ∼ t4(0, I5),

where

A =
(

A0 0
0 I3

)
, A0 =

(√
1 − δ

√
δ√

δ
√

1 − δ

)
(0 ≤ δ ≤ 0.5).

Figure 3 shows that the proposed smooth test uniformly outperforms the BF test in all the ex-
amples in terms of power. Since we are using trigonometric series, the test is powerful especially
if the data contains high frequency components (Example 7), which is difficult to be detected by
the BF test.

6. Discussion

We introduced in this paper a smooth test for the equality of two unknown distributions, which
is shown to maintain the pre-specified significance level asymptotically. Moreover, it was shown
theoretically and numerically that the test is especially powerful in detecting local features or
high-frequency components.

The proposed procedure depends on a user-specific parameter d , which is the number of or-
thogonal directions used to construct the test statistic. Theoretically, the size of d is allowed to
grow with n and can be as large as o(nc) for some 0 < c < 1. Since the optimal value of d

depends on how far the two unknown distributions deviate from each other, it is not possible
to practically define an optimal choice of d . As suggested by our numerical studies, d = 10
is a reasonable choice when the sample sizes are in the order of 102, which leads a good
compromise between the computational cost and the performance of the test. Alternatively,
a data-driven approach based on a modification of Schwarz’s rule was proposed by [30], that
is, d̂ = arg max1≤d≤D(n,m){T (d) − d log(n + m)} for some D(n,m) → ∞ as min(n,m) → ∞,
where T (d) is the test statistic using the first d orthonormal functions. This principal can be
applied to the proposed testing procedure by setting D(n,m) to be some large value, say 20.
Nevertheless, the optimal choice of D(n,m) remains unclear.

The computation of the multivariate test statistic �̂max(d) requires solving the optimization
problem with an �2-norm constraint. To solve this problem when the dimension p is relatively
small, we first convert the data into spherical coordinates and then use the Nelder-Mead algo-
rithm. An interesting extension is to combine our method with the smoothing technique as in [29].
Let K : R �→ R be a symmetric, bounded density function. For a predetermined small number
h = hn > 0, ψ̂u,k is approximated by a continuous function ψ̂u,k,h = m−1 ∑m

j=1 ψk(V̂
u
j,h), where

V̂ u
j,h = 1

n

n∑
i=1

K
{

uᵀ(Yj − Xi)

h

}
with K(t) =

∫ t

−∞
K(z)dz.

As h → 0, V̂ u
j,h converges to V̂ u

j almost surely, and hence for each k ∈ [d], supu∈Sp−1 |ψ̂k,u,h|
is a smoothed version of supu∈Sp−1 |ψ̂u,k|. The smoothing technique can be similarly applied
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to the multiplier bootstrap statistic. Consequently, we can employ the gradient descent algo-
rithm to solve the optimization for smooth functions. We leave a thorough comparison of various
algorithms for different values of p as an interesting problem for future research.

7. Proof of the main results

In this section, we prove Theorems 4.1–4.3. Proofs of the lemmas and some additional technical
arguments are given in Section 8. Throughout this section, we write N = n + m and use C and
c to denote absolute positive constants, which may take different values at each occurrence. We
write a � b if a is smaller than or equal to b up to an absolute positive constant, and a � b if
b � a.

7.1. Proof of Theorem 4.1

Recall that G = (G1, . . . ,Gd)ᵀ is a d-dimensional standard Gaussian random vector, the dis-
tribution of |G|∞ is absolute continuous so that P {|G|∞ ≥ cα(d)} = α. Therefore, under the
assumption that d ≤ n∧m, the conclusion (4.8) follows from the following proposition immedi-
ately.

Proposition 7.1. Assume that the conditions of Theorem 4.1 hold and let

γ0n = (logn)7/8

n1/8
B0d , γ1n = (logd)3/2

√
n

B1d , γ2n =
√

logd

n
B2d . (7.1)

Then under H0 : F = G,

sup
t≥0

∣∣P {
�̂(d) ≤ t

} − P
(|G|∞ ≤ t

)∣∣ � γ0n + √
γ1n + √

γ2n. (7.2)

The proof of Proposition 7.1 is provided in Section 7.4.1.

7.2. Proof of Theorem 4.2

For the d-dimensional Gaussian random vector G, applying the Borell–TIS (Borell–Tsirelson–
Ibragimov–Sudakov) inequality [46] yields that for every t > 0, P {|G|∞ > E(|G|∞) + t} ≤
exp(−t2/2). By taking t = √

2 log(1/α), we get

cα(d) ≤ E
(|G|∞

) + √
2 log(1/α), (7.3)

where cα(d) denotes the (1 −α)-quantile of |G|∞. A standard result on Gaussian maxima yields
E(|G|∞) ≤ {1 + (2 logd)−1}√2 logd .
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Let k∗ = arg maxk∈[d] |θk| under Hd
1 and assume without loss of generality that θk∗ > 0. By

(7.7) and (7.10) in the proof of Proposition 7.1, we have

PHd
1

{
�̂ > cα(d)

} ≥ PHd
1

{√
nm

N
ψ̂k∗ > cα(d)

}
(7.4)

= PHd
1

{
1√
N

N∑
j=1

ξjk∗ +
√

nm

N
(R1k∗ + R2k∗) > cα(d)

}
,

where ξjk = √
n/m{ψk(Vj ) − ϑk}I {j ∈ [m]} + √

m/nh1k(Xj−m)I {j ∈ m + [n]} for (j, k) ∈
[N ] × [d] with Vj = F(Yj ), ϑk = EHd

1
{ψk(V )} and h1k(x) = EHd

1
(ψ ′

k(V )[I {V ≥ F(x)} − V ]).
Note that E{h1k(X)} = 0 and thus E(ξjk) = 0. Let E(t1, t2) be as in (7.12) for t1, t2 > 0 to be
specified. Put δ = t1B2d + t2B1d +√

nm/N(θk∗ −ϑk∗)+√
2 log(1/α), then it follows from (7.3)

and (7.4) that

PHd
1

{
�̂ > cα(d)

}

≥ PHd
1

{
1√
N

N∑
j=1

ξjk∗ >

(
1 + 1

2 logd

)√
2 logd + δ −

√
nm

N
θk∗

}
− P

{
E(t1, t2)

c}

≥ PHd
1

{
1√
N

N∑
j=1

ξjk∗ >

(
1

2 logd
− ε

2

)√
2 logd + δ

}
− P

{
E(t1, t2)

c}.
In particular, taking t1 = t1n(d) � n−1/2√logd and t2 = t2n(d) � n−1/2 logd implies by (7.16)
that P {E(t1, t2)

c} → 0 as d → ∞. Further, by (8.8) and the conditions of the theorem, we have
δ = o(

√
logd). Consequently, as d → ∞,

PHd
1

{
�̂ > cα(d)

} ≥ 1 − PHd
1

(
1√
N

N∑
j=1

ξjk∗ ≤ −ε

2

√
logd

)
− P

{
E(t1, t2)

c} → 1.

This completes the proof of Theorem 4.2.

7.3. Proof of Theorem 4.3

We first introduce two propositions describing the limiting null properties of the multivariate
smooth and multiplier bootstrap statistics used to construct the test. The conclusion of Theo-
rem 4.3 follows immediately.

The first proposition characterizes the non-asymptotic behavior of the multivariate smooth
statistic �̂max(d) which involves the supremum of a centered Gaussian process. Let F = Fp

d be
as in (3.4) and for simplicity, the dependence of F on (p, d) will be assumed without displaying.
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Proposition 7.2. Suppose that Assumptions 4.1 and 4.3 hold. Then there exists a centered, tight
Gaussian process G indexed by F such that under the null hypothesis H0 : F = G,

sup
t≥0

∣∣P {
�̂max(d) ≤ t

} − P
(‖G‖F ≤ t

)∣∣ ≤ Cn−c, (7.5)

where C and c are positive constants depending only on c0, c1,C0 and C1.

Proposition 7.2 implies that the “limiting” distribution of �̂max depends on unknown the co-
variance structure given in (3.5). To compute a critical value, we suggest to use multiplier boot-
strapping as described in Section 3.2. The following result, which can be regarded as a multiplier
central limit theorem, provides the theoretical justification of its validity. In fact, the construc-
tion of the multiplier bootstrap statistic �̂MB

max(d) involves the use of artificial random numbers
to simulate a process, the supremum of which is (asymptotically) equally distributed as ‖G‖F
according to Proposition 7.3 below.

Proposition 7.3. Suppose that Assumptions 4.1 and 4.3 hold. Then with probability at least
1 − 3n−1,

sup
t≥0

∣∣Pe

{
�̂MB

max(d) ≤ t
} − P

(‖G‖F ≤ t
)∣∣ ≤ Cn−c (7.6)

for G as defined in Proposition 7.2, where C and c are positive constants depending only on
c0, c1,C0 and C1.

Proofs of the above two propositions are given in Section 7.4.

7.4. Proof of Propositions 7.1–7.3

7.4.1. Proof of Proposition 7.1

For every k ∈ [d], it follows from (2.2) and Taylor expansion that

1

m

m∑
j=1

ψk(V̂j ) = 1

m

m∑
j=1

ψk(Vj ) + 1

m

m∑
j=1

ψ ′
k(Vj )(V̂j − Vj ) + 1

2m

m∑
j=1

ψ ′′
k (ξj )(V̂j − Vj )

2

(7.7)

= 1

m

m∑
j=1

ψk(Vj ) + 1

nm

n∑
i=1

m∑
j=1

ψ ′
k(Vj )

{
I (Xi ≤ Yj ) − F(Yj )

} + R1k,

where R1k := (2m)−1 ∑m
j=1 ψ ′′

k (ζj )(V̂j − Vj )
2 and ζj is a random variable lying between

V̂j and Vj . It is straightforward to see that R1k ≤ 1
2‖ψ ′′

k ‖∞ max1≤j≤m(V̂j − Vj )
2. A di-

rect consequence of the Dvoretzky–Kiefer–Wolfwitz inequality [36], that is, for every t > 0,
P {√n supx |Fn(x) − F(x)| > t} ≤ 2 exp(−2t2), is that

P
(
n max

1≤k≤d
|R1k|/

∥∥ψ ′′
k

∥∥∞ > t
)

≤ 2 exp(−4t). (7.8)
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Let hk(x, y) = ψ ′
k(F (y)){I (x ≤ y) − F(y)} for x, y ∈ R be a kernel function R × R �→

R. Then the second addend on the right-hand side of (7.7) can be written as Un,m(k) =
(nm)−1 ∑n

i=1
∑m

j=1 hk(Xi,Yj ) with E{hk(X,Y )} = 0. Observer that Un,m(k) is a two-sample
U -statistic with a bounded kernel hk satisfying bk := ‖hk‖∞ ≤ ‖ψ ′

k‖∞ and

σ 2
k := E

{
hk(X,Y )2} = E

{(
V − V 2)ψ ′

k(V )2} ≤ ∥∥ψ ′
k

∥∥2
∞/4. (7.9)

Let h1k(x) = EHd
0
{hk(X,Y )|X = x} and h2k(y) = EHd

0
{hk(X,Y )|Y = y} be the first order pro-

jections of the kernel hk under Hd
0 . Since X and Y are independent and under H0, V = F(Y ) =d

Unif(0,1) under H0, we have h2k ≡ 0 and

h1k(x) = E
(
ψ ′

k(V )
[
I
{
V ≥ F(x)

} − V
]) =

∫ 1

F(x)

ψ ′
k(v) dv −

∫ 1

0
vψ ′

k(v) dv = −ψk

(
F(x)

)
.

Define random variables Ui = F(Xi) =d Unif(0,1) that are independent of Vj = F(Yj ). Then,
using the Hoeffding’s decomposition gives

Un,m(k) = −1

n

n∑
i=1

ψk(Ui) + 1

nm

n∑
i=1

m∑
j=1

h0k(Xi, Yj ) := −1

n

n∑
i=1

ψk(Ui) + R2k, (7.10)

where h0k(x, y) = hk(x, y) − h1k(x) − h2k(y).
In view of (7.7) and (7.10), we introduce a new sequence of independent random vectors

{ξ j = (ξj1, . . . , ξjK)ᵀ}Nj=1 for N = n + m, defined by

ξjk =
{√

n/mψk(Vj ), 1 ≤ j ≤ m,

−√
m/nψk(Uj−m) m + 1 ≤ j ≤ N .

(7.11)

Put ψ = (ψ1, . . . ,ψd)ᵀ, R1 = (R11, . . . ,R1d)ᵀ and R2 = (R21, . . . ,R2d)ᵀ, such that

√
n

mN

m∑
j=1

ψ(V̂j ) = 1√
N

N∑
j=1

ξ j +
√

nm

N
(R1 + R2).

Recall that {ψ0 ≡ 1,ψ1, . . . ,ψd} is a set of orthonormal functions and V =d Unif(0,1) under H0.
By (7.11), the covariance matrix of N−1/2 ∑N

j=1 ξ j is equal to Id .
For any t1, t2 > 0, define the event

E(t1, t2) =
d⋂

k=1

{√
m|R1k| ≤

∥∥ψ ′′
k

∥∥∞t1
} ∩ {√

m|R2k| ≤
∥∥ψ ′

k

∥∥∞t2
}
. (7.12)

Under H0, we have for every t > 0,

PH0

{
�̂(d) ≤ t

}
= P

{
max

1≤k≤d

∣∣∣∣∣
√

n

mN

m∑
j=1

ψk(V̂j )

∣∣∣∣∣ ≤ t

}
(7.13)
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= P

{
max

1≤k≤d

∣∣∣∣∣ 1√
N

N∑
j=1

ξjk +
√

nm

N
(R1k + R2k)

∣∣∣∣∣ ≤ t

}

≤ P

{
max

1≤k≤d

∣∣∣∣∣ 1√
N

N∑
j=1

ξjk

∣∣∣∣∣ ≤ t +
√

n

N
(t1B2d + t2B1d)

}
+ P

{
E(t1, t2)

c},
where B�d (� = 1,2) are as in (4.1). To get rid of the absolute value in (7.13), a similar argument
as in the proof of Theorem 1 in [10] gives

P

(
max

1≤k≤d

∣∣∣∣∣ 1√
N

N∑
j=1

ξjk

∣∣∣∣∣ ≤ t

)
= P

(
max

1≤k≤2d

1√
N

N∑
j=1

ξ ext
jk ≤ t

)
, (7.14)

where {ξ ext
j }Nj=1 is a sequence of dilated random vectors taking values in R2d defined

by ξ ext
j = (ξ ext

j1 , . . . , ξ ext
j,2d)ᵀ = (ξ

ᵀ
j ,−ξ

ᵀ
j )ᵀ. In view of (7.14), we only need to focus on

max1≤k≤d N−1/2 ∑N
j=1 ξjk without losing generality.

Note that ξjk are bounded random variables satisfying E(ξjk) = 0 and |ξjk| ≤
√

n
m

‖ψk‖∞.

Applying Lemmas 2.3 and 2.1 in [11], respectively, yields

sup
t∈R

∣∣∣∣∣P
(

max
1≤k≤d

1√
N

N∑
j=1

ξjk ≤ t

)
− P

(
max

1≤k≤d
Gk ≤ t

)∣∣∣∣∣ � {log(dn)}7/8

n1/8
Bd,

where Bd := [E{max1≤k≤d |ψk(V )|3}]1/4 ≤ B
3/4
0d , G = (G1, . . . ,Gd)ᵀ =d N(0, Id) and for ev-

ery ε > 0,

sup
t∈R

P
(∣∣∣ max

1≤k≤d
Gk − t

∣∣∣ ≤ ε
)

≤ 4ε(1 + √
2 logd).

The last two displays jointly imply

P

{
max

1≤k≤d

1√
N

N∑
j=1

ξjk ≤ t +
√

n

N
(t1B2d + t2B1d)

}

(7.15)

≤ P
(

max
1≤k≤d

Gk ≤ t
)

+ C

{ {log(dn)}7/8

n1/8
B

3/4
0d + (logd)1/2(t1B2d + t2B1d)

}
.

For P {E(t1, t2)
c} in (7.13), it follows from (7.8) and (8.3) in Lemma 8.2 that

P
{
E(t1, t2)

c} ≤ 2 exp(−4t1n/
√

m) +
d∑

k=1

P
(√

m|R2k| >
∥∥ψ ′

k

∥∥∞t2/2
)

(7.16)
� exp(−4t1

√
n) + d exp(−ct2

√
n).
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Taking t1 � (γ2nn)−1/2, t2 � (γ1nn)−1/2 logd in (7.13) implies by (7.15) and (7.16) that

PH0(�̂ ≤ t) ≤ P
(|G|∞ ≤ t

) + C

[ {log(dn)}7/8

n1/8
B

3/4
0d + √

γ1n + √
γ2n

]
,

where γ�n (� = 1,2) are as in (7.1). Here, the last inequality relies on the fact that supt≥0(te
−t ) ≤

e−1. A similar argument leads to the reverse inequality and thus completes the proof.

7.4.2. Proof of Proposition 7.2

In view of (4.7), we assume without loss of generality that B1d ≤ √
n. Let T = T p

d be the product

space Sp−1 ×[d]. For every u ∈ Sp−1, let V̂ u
j = Fu

n (uᵀYj ), V u
j = Fu(uᵀYj ), j ∈ [m] and Uu

i =
Fu(uᵀXi), i ∈ [n]. By Taylor expansion and arguments similar to those employed in the proof
of Proposition 7.1, we obtain that for every (u, k) ∈ T ,

√
nm

N
ψ̂u,k =

√
n

mN

m∑
j=1

ψk

(
V̂ u

j

)
(7.17)

=
√

n

mN

m∑
j=1

{
ψk

(
V u

j

) − ψ ′
k

(
V u

j

)
V u

j

} +
√

1

nmN
Un,m(u, k) +

√
nm

N
Ru,k,

where Un,m(u, k) := ∑n
i=1

∑m
j=1 ψ ′

k(V
u
j )I {uᵀ(Xi − Yj ) ≤ 0} is a two-sample U -statistic with

E{Un,m(u, k)} = ψk(1) under H0 and |Ru,k| ≤ 1
2‖ψ ′′

k ‖∞ maxj∈[m](V̂ u
j − V u

j )2. Let

H =Hp
d = {

hu,k(·, ·) : Rp ×R
p �→R|(u, k) ∈ T

}
(7.18)

be a class of measurable functions, where hu,k(x, y) = ψ ′
k(F

u(uᵀy))I {uᵀ(x − y) ≤ 0} for
x, y ∈ R

p . For ease of exposition, the dependence of T and H on (p, d) will be assumed with-
out displaying. In the above notation, each h = hu,k ∈ H determines a two-sample U -statistic
Un,m(h) := ∑n

i=1
∑m

j=1 h(Xi,Xj ) = Un,m(u, k), such that {Un,m(h)}h∈H forms a two-sample
U -process indexed by the class H of kernels. Moreover, define the degenerate version of H as

H0 = {
h0(x, y) = h(x, y) − (PY h)(x) − (PXh)(y) + (PX × PY )(h)|h ∈ H

}
, (7.19)

where for h(·, ·) : Rp ×R
p �→R,

(PXh)(·) =
∫
Rp

h(x, ·) dF (x), (PY h)(·) =
∫
Rp

h(·, y) dG(y)

and (PX × PY )(h) = ∫ ∫
h(x, y) dF (x)dG(y). Under H0, it is easy to verify that for every

(u, k) ∈ T , (PX × PY )(hu,k) = ψk(1),

(PY hu,k)(x) = ψk(1) − ψk

(
Fu

(
uᵀx

))
and (PXhu,k)(y) = ψ ′

k

(
Fu

(
uᵀy

))
Fu

(
uᵀy

)
.
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In addition to H and H0, we define the following class of measurable functions on R
p:

F =Fp
d = {

x �→ fu,k(x) = ψk ◦ fu(x) : k ∈ [d], fu ∈ Fp
}
, (7.20)

where

Fp =
{
y �→ fu(y) =

∫
Iu(x, y) dF (x) : Iu ∈ Ip

}
(7.21)

with Ip = {(x, y) �→ I {uᵀ(x − y) ≤ 0} : u ∈ Sp−1}.
Together, (7.17) and (7.19)–(7.21) lead to

|�̂max − �0| ≤ 1√
N

{
1√
nm

‖Un,m‖H0 + √
nm sup

(u,k)∈T
|Ru,k|

}
, (7.22)

where ‖Un,m‖H0 = suph0∈H0
|Un,m(h0)|,

�0 = sup
f ∈F

∣∣∣∣∣ 1√
N

N∑
j=1

wj

{
f (Zj ) − PXf

}∣∣∣∣∣ (7.23)

with {Z1, . . . ,ZN } = {Y1, . . . , Ym,X1, . . . ,Xn} and wj = √
n/mI {j ∈ [m]}−√

m/nI {j ∈ [n]+
m} for j = 1, . . . ,N .

With the above preparations, the rest of the proof involves three steps: First, approximation of
the test statistic �̂max by �0 requires the uniform negligibility of the right side of (7.22). Second,
we prove the Gaussian approximation of �0 by the supremum of a centered, tight Gaussian
process G indexed by F with covariance function

E
{
(Gfu,k)(Gfv,�)

} =
∫
Rp

ψk

(
Fu

(
uᵀx

))
ψ�

(
Fv

(
vᵀx

))
dF(x) (7.24)

for (u, k), (v, �) ∈ T . Finally, we apply an anti-concentration argument due to [13] to construct
the Berry–Esseen type bound.

Step 1. The following two results show the uniform negligibility of the right-hand side
of (7.22).

Lemma 7.1. Assume that the conditions of Proposition 7.2 hold. Then under H0 : F = G,

E
(‖Un,m‖H0

)
� B2d

√
(p + logd)nm. (7.25)

Lemma 7.2. With probability at least 1 − 2n−1, we have

sup
(u,t)∈Sp−1×R

∣∣Fu
n (t) − Fu(t)

∣∣ �
√

p + logn

n
. (7.26)
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By (7.25) and (7.26), it follows from the Markov inequality that for t > 0,

P
{
(nm)−1/2‖Un,m‖H0 > t

}
� t−1B2d

√
p + logd (7.27)

and with probability at least 1 − 2n−1,
√

nm sup(u,k)∈T |Ru,k| � B2d

√
p + logn. Taking t =

γ −1B2d

√
p + logd for some γ ∈ (0,1) in (7.27) implies by (7.22) that

P

(
|�̂max − �0| � B2d

√
p + logd + logn

γ
√

n

)
� γ + n−1. (7.28)

Step 2. The following result establishes the Gaussian approximation for �0.

Lemma 7.3. Assume that the conditions of Proposition 7.2 hold. Then under H0, there exists a
centered, tight Gaussian process G indexed by F = Fp

d given in (7.20) with covariance func-
tion (7.24) and a random variable �∗ =d ‖G‖F = supf ∈F |Gf | such that for every γ ∈ (0,1),

P

{∣∣�0 − �∗∣∣ � B1d

K
p
d logn√

γ n
+ B

1/2
1d

(K
p
d logn)3/4

γ 1/2n1/4
+ B

1/3
1d

(K
p
d logn)2/3

γ 1/3n1/6

}
(7.29)

≤ γ + n−1 logn,

where K
p
d = p + logd .

By (7.28) and (7.29) with K
p
d = p + logd ,

P
{∣∣�̂max − �∗∣∣ � �1n(γ )

}
� �2n(γ ), (7.30)

where

�1n(γ ) = B2d

(K
p
d + logn)1/2

γ
√

n
+ B1d

K
p
d logn

γ 1/2
√

n
+ B

1/2
1d

(K
p
d logn)3/4

γ 1/2n1/4
+ B

1/3
1d

(K
p
d logn)2/3

γ 1/3n1/6

and �2n(γ ) = γ + n−1 logn.

Step 3. Now we restrict attention to the Gaussian supremum �∗. By Corollary 2.2.8 in [46]
and (8.17), we get

E�∗ �
∫ 2

0

√
sup
Q

logN
(
F,L2(Q), ε

)
dε �

√
p + logd.

Combined with Corollary 2.1 in [13], this implies for every ε ≥ 0 that

sup
t≥0

P
(∣∣�∗ − t

∣∣ ≥ ε
)
� ε

√
p + logd. (7.31)
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Together, (7.30) and (7.31) yield, for every t ≥ 0,

P(�̂max ≤ t) ≤ P
{
�∗ ≤ t + C�1n(γ )

} + C�2n(γ )

≤ P
(
�∗ ≤ t

) + C
{
�1n(γ )

√
p + logd + �2n(γ )

}
.

A similar argument leads to the reverse inequality. Finally, in view of (4.7), taking

γ = γn(p, d)

= max

{
B

1/2
2d

(p + logn)1/4

n1/4
,B

1/4
1d (logn)1/2 p7/8

n1/8
,B

1/3
1d (logn)1/2 p5/6

n1/6
,B

2/3
1d (logn)2/3 p

n1/3

}

completes the proof under the assumption d ≤ min{n,m, exp(C0p)}.

7.4.3. Proof of Proposition 7.3

Throughout the proof, {ei}ni=1 is a sequence of i.i.d. standard normal random variables and Pe

denotes the probability measure induced by {ei}ni=1 holding {Xi}ni=1 fixed. For every (u, k) ∈
T = Sp−1 × [d], by Taylor expansion we have

1√
n

n∑
i=1

eiψk

(
Ûu

i

) = 1√
n

n∑
i=1

eiψk

(
Uu

i

) + 1

n3/2

n∑
i=1

n∑
j=1

h̄u,k(X̄i , X̄j ) + R̂u,k, (7.32)

where X̄i = (ei,X
ᵀ
i )ᵀ ∈ R

p+1,

h̄u,k(x̄1, x̄2) = e1ψ
′
k ◦Fu

(
uᵀx1

)[
I
{
uᵀ(x2 − x1) ≤ 0

}−Fu
(
uᵀx1

)]
, x̄� = (

e�, x
ᵀ
�

)ᵀ ∈ R
p+1

for � = 1,2 and the remainder R̂u,k is such that

|R̂u,k| ≤ 1

2
B2d

√
nmax

i∈[n] |ei | × sup
(u,i)∈Sp−1×[n]

(
Ûu

i − Uu
i

)2
. (7.33)

Because ei and Xi are independent, we have E{h̄u,k(X̄1, X̄2)|X̄1} = E{h̄u,k(X̄1, X̄2)|X̄2} = 0
so that {∑n

i=1
∑n

j=1 h̄u,k(X̄i , X̄j )}(u,k)∈T forms a degenerate U -process. With slight abuse of

notation, we rewrite the function h̄u,k as h̄u,k(x̄1, x̄2) = e1 · wu,k(x1, x2), where

wu,k(x1, x2) = ψ ′
k

(
Fu

(
uᵀx1

))[
I
{
uᵀ(x2 − x1) ≤ 0

} − Fu
(
uᵀx1

)]
.

In this notation, we have H̄p
d := {h̄u,k : (u, k) ∈ T } ⊆ {e �→ e} · Wp

d with Wp
d = {wu,k : (u, k) ∈

T }. Arguments similar to those employed in the proof of Lemma 8.4 can be used to prove that
the collection Wp

d is VC-type, and so is H̄p
d with envelop H̄ given by H̄ (x̄) = H̄ (e, x) = B2d |e|,

such that

sup
Q

N
(
H̄p

d ,L2(Q), ε‖H̄‖Q,2
) ≤ d · (A/ε)vp (7.34)
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for some constants A > 2e and v ≥ 2. This uniform entropy bound, together with Theorem 6
in [39] yields

E

{
sup

(u,k)∈T

∣∣∣∣∣
n∑

i=1

n∑
j=1

h̄u,k(X̄i , X̄j )

∣∣∣∣∣
}

(7.35)

� B2dn

{
1

4
+

∫ 1/4

0
sup
Q

√
logN

(
H̄p

d ,L2(Q), ε‖H̄‖Q,2
)
dε

}
� B2dn

√
p + logd

by following the same lines as in the proof of Proposition 7.1.
For R̂u,k , applying the Borell-TIS inequality gives

P
{

max
i∈[n] |ei | ≤ E

(
max
i∈[n] |ei |

)
+ t

}
≤ exp

(−t2/2
)

for every t > 0. A standard result on Gaussian maxima is that E(maxi∈[n] |ei |) ≤ 2
√

logn. Con-
sequently, combining Proposition 7.2 and (7.33) implies that

sup
(u,k)∈T

|R̂u,k| � B2d(logn)1/2

√
p + log(dn)

n
(7.36)

holds with probability at least 1 − 3n−1,
By (7.32), (7.35) and (7.36), a similar argument to that leading to (7.28) gives, on this occasion

that for any γ ∈ (0,1),

P

{∣∣�̂MB
max − �

†
0

∣∣ � B2d

(√
logn ∨ γ −1)√p + log(dn)

n

}
� γ + n−1, (7.37)

where

�
†
0 = sup

(u,k)∈Sp−1×[d]

∣∣∣∣∣ 1√
n

n∑
i=1

eiψk

(
Uu

i

)∣∣∣∣∣ = sup
f ∈F

∣∣∣∣∣ 1√
n

n∑
i=1

eif (Xi)

∣∣∣∣∣ (7.38)

for F =Fp
d as in (7.20).

Notice that �
†
0 is the supremum of a (conditional) Gaussian process G

† indexed by F with
covariance function Ee{(G†fu,k)(G

†fv,�} = n−1 ∑n
i=1 ψk(F

u(uᵀXi))ψ�(F
u(uᵀXi)). Next we

use an approximation due to [13]. Let Xn = {X1, . . . ,Xn} be a realization of the data. Theo-
rem A.2 there shows that for every δ > 0, there exists a subset �n such that P(Xn ∈ �n) ≥
1 − 3n−1 and for every Xn ∈ �n, one can construct on an enriched probability space a random
variable �† such that �† =d ‖G‖F for G as in Lemma 7.3 and that

P

{∣∣�†
0 − �†

∣∣ � δ +
√

K
p
d logn

n
+ B

1/2
1d

(K
p
d logn)3/4

n1/4

∣∣∣Xn

}
(7.39)

� B
1/2
1d

(K
p
d logn)3/4

δn1/4
+ n−1,

where K
p
d = p + logd .
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Finally, combining (7.31) with inequalities (7.37) and (7.39), and setting

γ = B
1/2
2d

{
(p + logn)/n

}1/4 and δ = B
1/4
1d (logn)3/8(p/n)1/8

complete the proof of (7.6) in view of (4.7) and (7.31).

8. Proof of technical lemmas

We provide proofs here for all the technical lemmas. Throughout, we use C and c to denote
universal positive constants, which may take different values at each occurrence.

Lemma 8.1. Let {ξi, i ≥ 1} be a sequence of independent random variables with zero means and
finite variances. Put Sn = ∑n

i=1 ξi , v2
n = ∑n

i=1 ξ2
i and b2

n = ∑n
i=1 E(ξ2

i ), then for any x > 0,

P
{|Sn| ≥ x(vn + 4bn)

} ≤ 4 exp
(−x2/2

)
and (8.1)

E
[
S2

nI
{|Sn| ≥ x(vn + 4bn)

}] ≤ 23b2
n exp

(−x2/4
)
. (8.2)

Proof. The proof is based on Theorem 2.16 in [16] and Lemma 3.2 in [33]. �

Lemma 8.2. Assume that the conditions of Proposition 7.1 hold, then for every k ≥ 1 and t > 0,

P
(√

nm|R2k| ≥ C1
∥∥ψ ′

k

∥∥∞t
) ≤ C2 exp(−t/4), (8.3)

where C1,C2 > 0 are absolute constants.

Proof. Without loss of generality, we only prove the result for t ≥ 4, otherwise we can simply
adjust the constant C2 so that C2 exp(−t/4) ≥ 1 for 0 ≤ t ≤ 4. For given k ≥ 1, define Qi =∑m

j=1 qij with qij = qij,k = h0k(Xi, Yj ) for h0k as in (7.10). Put FY = σ {Y1, . . . , Ym}, such that
given FY , {Qi}ni=1 forms a sequence of independent random variables with zero (conditional)
means. Noting that

∑n
i=1

∑m
j=1 qij = ∑n

i=1 Qi , it follows from a conditional version of (8.1)
that for any t ≥ 4,

P

(∣∣∣∣∣
n∑

i=1

m∑
j=1

qij

∣∣∣∣∣ ≥ t

[(
n∑

i=1

Q2
i

)1/2

+ 4

{
n∑

i=1

E
(
Q2

i |FY

)}1/2]∣∣∣FY

)
≤ 4 exp

(−t2/2
)
. (8.4)

We study the tail behaviors of
∑n

i=1 Q2
i and

∑n
i=1 E(Q2

i |FY ) separately, starting with∑n
i=1 Q2

i . Observe that given Xi , Qi is a sum of independent random variables with zero means.
Put V 2

i = ∑m
j=1 q2

ij and B2
i = ∑m

j=1 E(q2
ij |Xi). A direct consequence of (8.2) is that for every

t > 0, E[Q2
i I {|Qi | ≥ t (Vi + 4Bi)}|Xi] ≤ 23B2

i exp(−t2/4). This implies by taking expectations
on both sides that

E
[
Q2

i I
{|Qi | ≥ t (Vi + 4Bi)

}] ≤ 23E
(
B2

i

)
exp

(−t2/4
)
, (8.5)
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where E(B2
i ) = ∑m

j=1 E(q2
ij ) ≤ mE{hk(X,Y )2} = mσ 2

k for σ 2
k as in (7.9). Together, (8.5) and

Lemma 7.2 in [44] imply, for t ≥ 4,

P

[
n∑

i=1

Q2
i ≥ t2

{
nmσ 2

k +
n∑

i=1

(Vi + 4Bi)
2

}]
≤ 92t−4 exp

(−t2/4
) ≤ (1/2) exp

(−t2/4
)
. (8.6)

We consider next
∑n

i=1 E(Q2
i |FY ), which can be decomposed as

E
(
Q2

i |FY

)
= E

[
Q2

i I
{|Qi | ≤ t (Vi + 4Bi)

}|FY

] + E
[
Q2

i I
{|Qi | > t(Vi + 4Bi)

}|FY

]
≤ t2E

[
(Vi + 4Bi)

2|FY

] + E
[
Q2

i I
{|Qi | > t(Vi + 4Bi)

}|FY

]
≤ 17t2mσ 2

k + 17t2
m∑

j=1

E
(
q2
ij |Yj

) + E
[
Q2

i I
{|Qi | > t(Vi + 4Bi)

}|FY

]
.

Hence, it follows from Markov’s inequality and (8.5) that

P

[
n∑

i=1

E
(
Q2

i |FY

) ≥ 18t2

{
nmσ 2

k +
n∑

i=1

m∑
j=1

E
(
q2
ij |Yj

)}]

≤ P

(
n∑

i=1

E
[
Q2

i I
{|Qi | > t(Vi + 4Bi)

}|FY

] ≥ t2nmσ 2
k

)
(8.7)

≤ t−2(nmσ 2
k

)−1
n∑

i=1

E
[
Q2

i I
{
Q2

i > t2(Vi + 4Bi)
2}]

≤ (3/2) exp
(−t2/4

)
.

By (7.9), we have ‖h0k‖∞ ≤ 2bk . Then combining (8.4), (8.6) and (8.7) gives, for t ≥ 4,

P

{∣∣∣∣∣ 1√
nm

n∑
i=1

m∑
j=1

qij

∣∣∣∣∣ ≥ C1(σk + bk)t

}
≤ 6 exp(−t/4).

This completes the proof of Lemma 8.2. �

Lemma 8.3. Assume that the conditions of Theorem 4.2 are fulfilled, then for all sufficiently
large n,

max
k∈[d] |ϑk − θk| � B2

0dd2τ logd

n
, (8.8)

where ϑk := EHd
1
{ψk(V )} with V = F(Y ).
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Proof. Under the alternative Hd
1 , the density of V = F(Y ) is of the form ρθ (z) = Cd(θ) ×

exp{θᵀψ(z)}, where {Cd(θ)}−1 = ∫ 1
0 exp{θᵀψ(z)}dz and ψ = (ψ1, . . . ,ψd)ᵀ. In this notation,

we have ϑk = Cd(θ)
∫ 1

0 ψk(z) exp{θᵀψ(z)}dz. Note that

∣∣θᵀψ(z)
∣∣ =

∣∣∣∣∣
d∑

k=1

θkψk(z)

∣∣∣∣∣ ≤ B0ddτ max
k∈[d] |θk| = λB0ddτ

√
logd

n̄
.

Consequently, using the inequality |et − 1 − t | ≤ 1
2 t2 exp(t ∨ 0) which holds for every t ∈ R to

t = |θᵀψ(z)| yields

∫ 1

0
ψk(z) exp

{
θᵀψ(z)

}
dz =

∫ 1

0
ψk(z)

{
1 + θᵀψ(z)

}
dz + O(1)

∫ 1

0

∣∣ψk(z)
∣∣{θᵀψ(z)

}2
dz

=
d∑

�=1

θ�

∫ 1

0
ψk(z)ψ�(z) dz + O(1)B2

0dd2τ logd

n

= θk + O(1)B2
0dd2τ logd

n

uniformly over k ∈ [d]. Similarly, it can be proved that∣∣∣∣
∫ 1

0
exp

{
θᵀψ(z)

}
dz − 1

∣∣∣∣ � B2
0dd2τ logd

n
,

which implies Cd(θ) = 1 + o(1) as d,n → ∞. Combining the above calculations proves (8.8).
�

Lemma 8.4. Under the null hypothesis H0 : F = G, the class H0 of degenerate kernels R
p ×

R
p �→ R, to which an envelop ≡ 2B2d is attached, is VC-type; that is, there are constants A > 2e

and v ≥ 2 such that

sup
Q discrete

N
(
H0,L2(Q),2εB2d

) ≤ d · (A/ε)vp, (8.9)

where the supremum ranges over all finitely discrete Borel probability measures on R
p ×R

p .

Proof. First, we prove that the class H of kernels is VC-type. Note that H has envelop ≡ B2d and
admits the partition H = ⋃d

k=1 Hk , where for each k ∈ [d], the class Hk = {hu,k ∈ H : u ∈ Sp−1}
has an envelop ≤ B2d . This implies

sup
Q discrete

N
(
H,L2(Q), εB2d

) ≤
d∑

k=1

sup
Q discrete

N
(
Hk,L2(Q), εB2d

)
, (8.10)

where the supremum ranges over all finitely discrete Borel probability measures on S2 := R
p ×

R
p . Therefore, it suffices to restrict attention to the class Hk with a fixed k ∈ [d]. For every
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u ∈ Sp−1, observe that hu,k(x, y) = ψ ′
k ◦fu(y) · Iu(x, y). Regarding each element of ψ ′

k(Fp) :=
{y �→ ψ ′

k ◦ fu(y) : fu ∈ Fp} as a measurable function on S2, i.e. (x, y) �→ ψ ′
k ◦ fu(y), we have

Hk ⊂ ψ ′
k(Fp) ·Ip for Fp and Ip given in (7.21). Since both the classes Fp and Ip have envelop

≡ 1 and the function ψ ′
k is Lipschitz continuous, it follows from Lemma A.6 and Corollary A.1

in [12] that, for any 0 < ε ≤ 1,

sup
Q discrete

N
(
ψ ′

k

(
Fp

)
,L2(Q), εB2d

) ≤ sup
Q discrete

N
(
Fp,L2(Q), ε

)
(8.11)

and

sup
Q discrete

N
(
Hk,L2(Q),2εB2d

)
(8.12)

≤ sup
Q discrete

N
(
ψ ′

k

(
Fp

)
,L2(Q), εB2d

)
sup

Q discrete
N

(
Ip,L2(Q), ε

)
,

where the suprema appeared above are taken over all finitely discrete Borel probability measures
on S2.

In view of (8.11) and (8.12), it remains to focus on the classes Fp and Ip . Arguments similar
to those in [45] can be used to control the entropies of Ip . To see this, define V = {v(·, ·, ·;u) :
u ∈Rp} and W = {w(·, ·, ·;γ ) : γ ∈R}, where v(x, y, t;u) = uᵀx −uᵀy and w(x,y, t;γ ) = γ t

for x, y ∈ R
p and t ∈ R. Note that V (resp. W) is a p-dimensional (resp. 1-dimensional) vector

space of real-valued functions on S2 × R. By Theorem 4.6 in [18], the class of sets of the form
{z : v(z) > s} or {z : v(z) ≥ s} with v ∈ V for some s ∈ R fixed is a VC class with index p + 1.
For every u ∈ Sp−1,

graph(Iu) = {
(x, y, t) ∈ S2 ×R : 0 < t < Iu(x, y)

}
= {

uᵀx − uᵀy ≤ 0
} ∩ {t > 0} ∩ {t ≥ 1}c

= {v1 > 0}c ∩ {w1 > 0} ∩ {w2 ≥ 1}c,

where v1 ∈ V and w1,w2 ∈ W . Together with Lemma 9.7 in [32], this implies that {graph(Iu) :
Iu ∈ I} forms a VC class with index ≤ p + 3. Consequently, by Theorem 9.3 in [32], there exist
constants a > 2e and c ≥ 2 such that

sup
Q

N
(
Ip,L2(Q), ε

) ≤ (a/ε)cp (8.13)

for any 0 < ε ≤ 1, where the supremum is taken over all Borel probability measures on S2.
For Fp , applying Lemma A.2 in [23] combined with (8.13) gives

sup
Q

N
(
Fp,L2(Q),2ε

) ≤ sup
Q

N
(
Ip,L2(PX × Q),ε2) ≤ (

√
a/ε)2cp, (8.14)

where the supremum ranges over all Borel probability measures on R
p .

Together, (8.10)–(8.14) imply the VC-type property of the class H.
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We consider next the class H0 of degenerate kernels under H0, which admits a partition similar
to (8.10), i.e. H0 = ⋃d

k=1 H0k . Observe that for each (u, k) ∈ T ,

hu,k,0(x, y) = hu,k(x, y) + ψk ◦ f u(x) + φk ◦ f u(y), x, y ∈R
p.

where hu,k ∈ Hk ⊂ H, f u ∈ F and φk(s) := −sψ ′
k(s) for 0 ≤ s ≤ 1. For any u,v ∈ Sp−1 and

k ∈ [d], we have |φk ◦fu(y)−φk ◦fv(y)| ≤ 2B2d |fu(x)−fv(y)|. This, together with Lemma A.6
in [12] yields

sup
Q discrete

N
(
φk

(
Fp

)
,L2(Q),2εB2d

) ≤ sup
Q discrete

N
(
Fp,L2(Q), ε

)
. (8.15)

On combing (8.11), (8.12) and (8.15), and recalling the permanence of the uniform entropy
bound under summation that is implied by Lemma A.6 in [12], we obtain

sup
Q discrete

N
(
H0k,L2(Q),3εB2d

)
≤ sup

Q discrete
N

(
Hk,L2(Q), εB2d

)
× sup

Q discrete
N

(
ψk

(
Fp

)
,L2(Q), εB2d

)
sup

Q discrete
N

(
φk

(
Fp

)
,L2(Q), εB2d

)

≤ sup
Q discrete

N
(
Ip,L2(Q), ε/2

){
sup

Q discrete
N

(
Fp,L2(Q), ε/2

)}3
.

This completes the proof of (8.9) in view of (8.13) and (8.14). �

8.1. Proof of Lemma 7.1

Observe that {Um,n(h0)}h0∈H0 forms a degenerate two-sample U -process indexed by H0 and by
Lemma 8.4, H0 is VC-type with envelop ≡ 2B2d . The entropy bound given in (8.9) now allows
us to apply Lemma 2.4 in [37], yielding

E
(‖Un,m‖H0

)
� B2d

√
nm

{
1

4
+

∫ 1/4

0
sup

Q discrete

√
logN

(
H0,L2(Q),2εB2d

)
dε

}

� B2d

√
nm

{
1

4
+

∫ 1/4

0

√
logd + vp log(A/ε) dε

}
(8.16)

� B2d

√
nm

{
1

4
(1 + √

logd) + √
vp

∫ ∞

4A

t−2
√

log t dt

}
.

For any a > e, it follows from integration by parts that∫ ∞

a

t−2
√

log t dt

= a−1
√

loga + 1

2

∫ ∞

a

t−2(log t)−1/2 dt
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≤ a−1
√

loga + 1

2 loga

∫ ∞

a

t−2
√

log t dt

≤ a−1
√

loga + 1

2

∫ ∞

a

t−2
√

log t dt.

Substituting this into (8.16) proves (7.25).

8.2. Proof of Lemma 7.2

Define the class G = {x �→ gu,t (x) = I (uᵀx ≤ t) : (u, t) ∈ Sp−1 × R} of indicator functions on
closed half-spaces in R

d , such that

Dn(G) := sup
(u,t)∈Sp−1×R

∣∣Fu
n (t) − Fu(t)

∣∣ = sup
g∈G

∣∣∣∣∣1

n

n∑
i=1

{
g(Xi) − PXg

}∣∣∣∣∣,
where PXg := E{g(X)}. Note that, for every (u, t) ∈ T , var{gu,t (X)} = Fu(t){1−Fu(t)} ≤ 1/4.
A direct consequence of Theorem 7.3 in [7] is that, for every t ≥ 0,

P

(
Dn(G) ≥ E

{
Dn(G)

} +
[

1

2
+ 4E

{
Dn(G)

}]1/2√
t

n
+ t

3n

)
≤ 2e−t .

To control the expectation E{Dn(G)}, first it follows from Theorem B in [17] that the class G
is a VC-subgraph class with index p + 2, such that for any probability measure Q on Rp and any
0 < ε < 1, N(G,L2(Q), ε) ≤ (Cε−1)2(p+1). This, together with Proposition 3 in [24] gives

E
{
Dn(G)

}
�

√
p

n
+ p

n
.

Since Dn(G) ≤ 1, the last three displays together complete the proof of (7.26).

8.3. Proof of Lemma 7.3

To prove (7.29), a new coupling inequality for the suprema of empirical processes in [12] plays
an important role in our analysis. Recall in the proof of Lemma 8.4 that the collection Fp is
VC-type, from which we obtain

sup
Q discrete

N
(
F,L2(Q), εB1d

) ≤
d∑

k=1

sup
Q discrete

N
(
ψk

(
Fp

)
,L2(Q), εB1d

) ≤ d · (A/ε)vp (8.17)

for some constants A > 2e and v ≥ 2, where F = Fp
d . This implies by Lemma 2.1 in [12] that

the collection F is a VC-type pre-Gaussian class with a constant envelop ≡ B1d . Therefore,
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there exists a centered, tight Gaussian process G defined on F with covariance function (7.24).
Moreover, for any integer k ≥ 2,

sup
f ∈F

PX|f |k ≤ Bk−2
0d sup

(u,k)∈Sp−1×[d]
E

{
ψk

(
Uu

)2} = Bk−2
0d , (8.18)

where we used the fact that Uu = Fu(uᵀX) =d Unif(0,1) and hence E{ψk(U
u)2} = 1 for all

(u, k) ∈ Sp−1 × [d].
The entropy bound (8.17) and the moment inequality (8.18) now allow to apply Corollary 2.2

in [12], yielding (7.29).
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