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We establish results for the rate of convergence in total variation of a particular Gibbs sampler to its equi-
librium distribution. This sampler is for a Bayesian inference model for a gamma random variable, whose
only complexity lies in its multiple levels of hierarchy. Our results apply to a wide range of parameter val-
ues when the hierarchical depth is 3 or 4. Our method involves showing a relationship between the total
variation of two ordered copies of our chain and the maximum of the ratios of their respective coordinates.
We construct auxiliary stochastic processes to show that this ratio converges to 1 at a geometric rate.
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stochastic monotonicity

1. Introduction

A basic purpose of Markov chain Monte Carlo (MCMC) is to generate samples from a given
“target” probability distribution by inventing a Markov chain that has the target as its equilibrium,
and then sampling from long runs of this chain. A widely used class of MCMC methods known
as Gibbs samplers (see below) is especially well suited for Bayesian statistical models. There
is a significant amount of theory showing that a Markov chain satisfying some fairly general
conditions (see, for example, [14]) will converge to an equilibrium in distribution, as well as in
the stronger measure of total variation. Mere knowledge of convergence is often not enough, and
it is of both theoretical and practical interest to consider the rate at which convergence proceeds.
Bounds on this rate provide a rigorous degree of certainty as to how far the Markov chain is from
its equilibrium distribution, and they aid in assessing the efficiency of this sampling procedure.

Unfortunately, the theoretical methods available for proving such bounds cannot handle many
realistic statistical models of even moderate complexity. In particular, general methods for assess-
ing convergence rates in hierarchical Gibbs samplers are scarce, and it was this state of affairs
that motivated the present work. Our specific goal was to explore the extent that multiple levels
of hierarchy would affect the convergence rate analysis. Accordingly, we focused on a Bayesian
model that had several hierarchical levels, but was otherwise as simple as possible (indeed, too
simple to be of much use in real applications). We hope that our analysis of this toy model
will serve to guide future analyses of Gibbs samplers for more complex multi-level hierarchical
models.
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Our Bayesian model corresponds to the following scenario. We are given a real number x > 0
with the information that it was drawn from a �(a1, u1) distribution, that is, the Gamma distri-
bution with probability density function

f (z) = u
a1
1

�(a1)
za1−1e−zu1 (z > 0).

Here the shape parameter a1 > 0 is fixed, but the inverse scale parameter u1 is itself the product
of random sampling from an independent �(a2, u2) distribution. Once again, we assume that
a2 > 0 is a given constant, while u2 is sampled in an analogous manner. This process continues
until we reach un ∼ �(an+1, b), where now both an+1 > 0 and b > 0 are given. The joint density
p of (x,u1, . . . , un) is known up to proportionality:

p(x,u1, . . . , un) ∝ xa1−1

(
n∏

i=1

u
ai+ai+1−1
i

)
exp

(
n+1∑
i=1

−uiui−1

)
, (1.1)

where for convenience we set u0 := x and un+1 := b. Therefore, the resulting posterior distribu-
tion of u = (u1, . . . , un) (i.e., given x as well as all other parameters) has the density function

π̄ (u1, . . . , un) ∝
(

n∏
i=1

u
ai+ai+1−1
i

)
exp

(
n+1∑
i=1

−uiui−1

)
. (1.2)

This is the function underlying Bayesian inference for the ui ’s given the data x. We also see
from (1.1) that for 1 ≤ i ≤ n, the conditional distribution of ui given everything else is

ui |x,uj �=i ∼ �(ai + ai+1, ui−1 + ui+1).

This property will be key to implementing our Gibbs sampler.
Bayesian hierarchical models have been a popular statistical representation used to handle a

variety of problems (see, for instance, [4,15,17] or [3,6,8,9]). The Gibbs sampler [7] has been
a very popular MCMC algorithm for obtaining a sample from a probability distribution that is
difficult to sample from directly. In its fundamental form, this algorithm works on a vector u

by selecting (systematically, randomly, or otherwise) one of the vector’s components ui and
updating this component only, by drawing from the probability distribution of ui given (uj �=i ).
General convergence results have been derived for some Gibbs samplers (e.g., [18]), however
due to their limitations it is often not possible to infer quantitative bounds directly from these
results.

In this paper, we will focus on our model with n = 4, with a short section dedicated to results
for the case n = 3. The case n = 3 actually reduces to a one-dimensional Markov chain, which
is relatively tractable. The case n = 4 (as well as n = 5) reduces to a two-dimensional Markov
chain, and hence requires new approaches. For cases n > 4, we refer the reader to [10], where
we derive similar results under more restrictive constraints on the parameters.

The type of result that we shall prove is the following. Fix n = 4. Let {Gt : t ≥ 0} be the Gibbs
sampler for (1.1) that updates the odd coordinates and then the even coordinates at each iteration
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(this Markov chain is defined explicitly in (1.4) below). Fix the initial point G0. Assume ai > 1/2
for every i (or more generally, assume condition (1.7) below). Then

dTV
(
Gt, π̄

)≤ A1r
(t−4)/4d(a2 + a3 + a4 + a5) + A2β

t/2 for every t > 0, (1.3)

where dTV is the total variation metric (described in Section 1.1 below), and r , d , β , A1 and A2

depend only on a1, . . . , a5, b, and x (and G0 for A1 and A2), with r < 1 and β < 1. The constants
r , d , and β have explicit formulas (listed in Appendix), while each Ai involves an integral with
respect to π̄ that we know how to estimate.

1.1. Formulation and reduction of the problem

Our aim is to construct a Gibbs sampler on R
4+ and show that it converges rapidly to the target

distribution with density function given by (1.2) with n = 4. For n > 4, we use a similar approach
in [10].

To describe distance from equilibrium, we use the total variation metric dTV, which is de-
fined as follows. For two probability measures μ1 and μ2 on the same state space �, define
dTV(μ1,μ2) := infP(X1 �= X2), where the infimum is over all joint distributions P of (X1,X2)

such that X1 ∼ μ1 and X2 ∼ μ2. If Yi denotes a random variable with distribution μi , then
we shall also write dTV(Y1, Y2) and dTV(Y1,μ2) for dTV(μ1,μ2). It is known (e.g., Chapter I
of [11]) that the infimum is achieved by some P, and that we can also express dTV(μ1,μ2) as the
supremum of |μ1(A) − μ2(A)| over all measurable A ⊂ �.

Notation. We shall write �u = (u1, u2, u3, u4) for points in R
4. We shall often refer to points

of R
2 consisting of the second and fourth entries of �u. We shall then omit the � and write

u = (u2, u4).
We first consider the Markov chain which sequentially updates its coordinates as follows. For

i ∈ {1,2,3,4}, let

Pi(�v, d �w) :=
(∏

j �=i

δvj
(wj )

)
hi(wi |�v)dwi,

where hi(·|�v) is the �(ai + ai+1, vi−1 + vi+1) density function given �v, and where for conve-
nience we have defined v0 := x and v5 := b. In other words, Pi is the probability kernel that
updates (only) the ith coordinate according to the conditional density hi . Now define

P := P1P3P2P4, (1.4)

the Gibbs sampler Markov chain that updates the odd coordinates and then the even coordinates.
We will show that P converges to equilibrium at a geometric rate, and we will give a bound on
the rate of convergence.

It will be useful to represent our Markov chain using iterated random functions [5,12] as fol-
lows. Let {γ t

i : i = 1,2,3,4; t = 1,2, . . .} be a collection of independent random variables with
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each γ t
i having the �(ai + ai+1,1) distribution. Then define the sequence of random functions

F̄ t : R4+ →R
4+ (t = 1,2, . . .) by

F̄ t (�u) = (F̄ t
1(�u), F̄ t

2(�u), F̄ t
3(�u), F̄ t

4(�u)
)

(1.5)

=
(

γ t
1

x + u2
,

γ t
2

γ t
1/(x + u2) + γ t

3/(u2 + u4)
,

γ t
3

u2 + u4
,

γ t
4

b + γ t
3/(u2 + u4)

)
.

Then for any initial �u0 ∈ R
4+, the random sequence �u0, �u1, . . . defined recursively by �ut+1 =

F̄ t+1(�ut ) is a Markov chain with transition kernel P .
Observe that F̄ t (�u) does not depend on u1 or u3. It follows that if {ut } is a version of the

Markov chain (1.4), then the sequence {(ut
2, u

t
4)} is itself a Markov chain in R

2+. Accordingly,
we define the random functions F t : R2+ → R

2+ (t = 1,2, . . .) by

F t(u2, u4) = (F t
2(u2, u4),F

t
4(u2, u4)

)= ( γ t
2

γ t
1/(x + u2) + γ t

3/(u2 + u4)
,

γ t
4

b + γ t
3/(u2 + u4)

)
.

Thus F̄ t
i (�u) = F t

i (u2, u4) for i = 2,4 and all �u ∈ R
4+ and all t . Moreover, the Markov chain

{(ut
2, u

t
4)} is given by the random recursion

(
ut+1

2 , ut+1
4

)= F t+1(ut
2, u

t
4

)
. (1.6)

Let π̄ be the probability measure on R
4+ with density function (1.2). Then it is well known (see,

e.g., Section 2.3 of [1]) that π̄ is the equilibrium distribution of the Markov chain defined by (1.4).
It follows that the marginal distribution of the even coordinates of π̄ , which we denote by π , is
the equilibrium distribution of (1.6). Furthermore, the following simple argument illustrates that
it suffices to bound the distance to equilibrium of (1.6).

Lemma 1.1. Let �ϒt be a copy of the Markov chain (1.4) on R
4+ and let 	t be a copy of (1.6)

on R
2+. Assume (ϒ0

2 ,ϒ0
4 ) = 	0, that is, the initial conditions agree. Then dTV( �ϒt+1, π̄) ≤

dTV(	t ,π).

Proof. Fix t . There exists a jointly distributed pair of random vectors (
,�) with 
 =
(
2,
4) ∼ 	t and � = (�2,�4) ∼ π such that dTV(	t ,π) = P[
 �= �]. Then �ϒt+1 ∼
F̄ t+1(1,
2,1,
4) and F̄ t+1(1,�2,1,�4) ∼ π̄ . Hence,

dTV
( �ϒt+1, π̄

) ≤ P
[
F̄ t+1(1,
2,1,
4) �= F̄ t+1(1,�2,1,�4)

]
≤ P[
 �= �]
= dTV

(
	t,π

)
. �

We can now state our main results. Let U t and W t be two copies of the Markov chain (1.6)
starting at points U0 and W0 respectively. We define the condition

a1 + a4 > 1, a2 + a5 > 1, a2 + a3 > 1, a3 + a4 > 1, a4 + a5 > 1. (1.7)
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Let M = max{U0
2 ,U0

4 ,W0
2 ,W0

4 } and m = min{U0
2 ,U0

4 ,W0
2 ,W0

4 }, and define R0 = M
m

and J0 =
2m+ 1/(2m). The constants η, d , β and r appearing in the statement of Theorem 1.1 are defined
in Appendix (as well as in Section 4), and depend only on the parameters x, b, a1, . . . , a5.

Theorem 1.1. Assume that (1.7) holds, and fix U0 and W0. If J0 < η, then for t > 0,

dTV
(
U t+3,W t+3)≤ 3rt/2d(a2 + a3 + a4 + a5)(R0 − 1).

For general values of J0, we have

dTV
(
U t+3,W t+3)≤ 3rt/4d(a2 + a3 + a4 + a5)(R0 − 1) + max{J0, η}

η
β�t/2�+3.

We explain our need for condition (1.7) in Section 4. Taking W0 ∼ π leads to the following.

Corollary 1.1. Assume that (1.7) holds, and fix U0. For t > 0,

dTV
(
U t+3,π

)≤ 3rt/4d(a2 + a3 + a4 + a5)Eπ [R0 − 1] +
(
Eπ [J0]

η
+ 1

)
β�t/2�+3.

The quantities Eπ [R0] and Eπ [J0] depend only on π and U0, and can be estimated with a bit of
effort. This is done in Appendix B of [10] for the case U0 = (1,1) (see also the end of Section 5
in the present paper). Observe that equation (1.3) follows from Corollary 1.1 and Lemma 1.1.

While the above bounds are of theoretical interest for their explicit nature, their practical value
lies more in their qualitative assurance of exponentially rapid convergence rather than in the
numerical values of the bounds (as computed in Sections 5 and 6).

1.2. Outline of the paper

The proof of Theorem 1.1 relies on two kinds of coupling constructions. In Section 2, we consider
a partial order “” on R

2+ that is preserved by a natural coupling using the recursion (1.6). We
use this construction, in which the two chains U t and W t of Theorem 1.1 stay between two other
chains ut and wt that are also copies of (1.6), up until a “one-shot coupling” time at which ut

and wt try to coalesce (succeeding with high probability, desirably). In Section 3, we define the

stochastic process Rt which is an upper bound for the ratio maxi{wt
i

ut
i

}, and we show that the rate

of convergence of Rt → 1 can be related to the rate at which (1.6) converges to equilibrium.
But the rate at which Rt approaches 1 does depend on the size of the values ut

2 and ut
4, and we

show that if often enough these two values are neither too large nor too small, then Rt → 1 at a
geometric rate. To fulfill this condition, we introduce a number of auxiliary processes in Section 4
that provide upper bounds for the terms {ut

2, u
t
4,

1
ut

2
, 1

ut
4
}, and we show that they are frequently

less than a fixed constant. Section 4 culminates in the proof of Theorem 1.1. In Section 5, we
prove Corollary 1.1 and discuss the evaluation of the terms Eπ [R0] and Eπ [J0] that appear in the
corollary. Section 6 addresses the case n = 3.
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2. Monotone coupling and one-shot coupling

For p = (p2,p4) ∈ R
2+ and q = (q2, q4) ∈ R

2+, define the partial order p  q to mean p2 ≤ q2

and p4 ≤ q4. Given several initial points p0, q0, . . . (possibly random) in R
2+, we can produce

several versions of the Markov chain (1.6) using pt+1 = F t+1(pt ), qt+1 = F t+1(qt ), and so
on (crucially, we use the same random variables {γ t

i } in each version). We refer to this as the
“uniform coupling.” This coupling is clearly monotone, in the sense that if p0  q0 then pt  qt

for all times t .
Our primary objective is to obtain upper bounds on dTV(U t ,W t ), where {U t } and {W t } are

two copies of the Markov chain (1.6) with initial points U0 and W0 in R
2+. The initial points

could be random, but we will often treat them as fixed either by conditioning on events at t = 0 or
by explicit assumption. Given the initial points U0 and W0, define m := min{U0

2 ,U0
4 ,W0

2 ,W0
4 },

M := max{U0
2 ,U0

4 ,W0
2 ,W0

4 }, and

w0 := (M,M) ∈R
2+ and u0 := (m,m) ∈ R

2+. (2.1)

We shall use the uniform coupling of all four chains {U t }, {W t }, {ut }, and {wt }. Observing that
u0  {U0,W0}  w0, we see that the uniform coupling keeps U t and W t perpetually “squeezed”
between ut and wt (i.e., ut  {U t ,W t }  wt for all t ). Corollary 2.1 below justifies why it
suffices to consider the coupled pair (ut ,wt ) in order to bound dTV(U t ,W t ). But first we need a
lemma.

Lemma 2.1. Suppose that 0 < β1 < β2 < β3 < β4 and α > 0. Let fi be the density function of
Zi ∼ �(α,βi). Then

min
{
f1(y), f4(y)

}≤ min
{
f2(y), f3(y)

}
for all y ≥ 0.

Remark 2.1. Since a property of total variation (see Proposition 3 of [14]) is that

dTV(Zi,Zj ) = 1 −
∫

min
{
fi(y), fj (y)

}
dy,

we also conclude from Lemma 2.1 that dTV(Z2,Z3) ≤ dTV(Z1,Z4).

Proof of Lemma 2.1. Note first that for i, j ∈ {1,2,3,4} with i < j ,

fi(y) ≥ fj (y) ⇐⇒ βα
i exp(−βiy) ≥ βα

j exp(−βjy) ⇐⇒ y ≥ g(βi, βj ), (2.2)

where

g(βi, βj ) := α(ln(βi) − ln(βj ))

βi − βj

.

Observe that g(βi, βj ) is the slope of the secant line joining the points (βi, zi) and (βj , zj ) on
the curve z = α lnβ . Since this curve is concave, the slope is decreasing in βi and βj for βi < βj

(Lemma 5.16 of [16]), which implies

g(β4, β3) ≤ g(β4, β2) ≤ g(β4, β1) = g(β1, β4) ≤ g(β1, β3) ≤ g(β1, β2). (2.3)
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Then from (2.2) and (2.3) it follows that

f1(y) ≤ min
{
f2(y), f3(y)

}
on
[
0, g(β1, β3)

]
and

f4(y) ≤ min
{
f2(y), f3(y)

}
on
[
g(β4, β2),∞

);
hence min{f1(y), f4(y)} ≤ min{f2(y), f3(y)} on [0, g(β1, β3)] ∪ [g(β4, β2),∞) = [0,∞). �

We now describe “one-shot coupling” of the Markov chains u, w, U , and W at time t+1
(described in [13] in greater generality). Assume that the uniform coupling of these chains holds
up to and including time t . We shall also use the same two random variables γ t+1

1 and γ t+1
3 for

all four chains. The following algorithm for generating ut+1, wt+1, U t+1, and W t+1 implicitly
constructs different (dependent) values of γ t+1

2 and γ t+1
4 for each chain.

For i ∈ {2,4}, let fui
be the probability density function of the conditional distribution of

ut+1
i given ut and (γ t+1

1 , γ t+1
3 ), with analogous definitions for fwi

, fUi
, and fWi

. For each

coordinate i ∈ {2,4}, we take u
[t+1]C
i to be the x-coordinate of a uniformly chosen point from

the area under the graph of the density function fui
. (The superscript [t + 1]C denotes that the

coupling occurs at time t + 1.) If this point also lies below the graph of the density function fwi
,

then set w
[t+1]C
i = W [t+1]C

i = U [t+1]C
i = u

[t+1]C
i . Otherwise, let w

[t+1]C
i be the x-coordinate of

a uniformly and independently chosen point from the area above the graph of min{fui
, fwi

} and
below the graph of fwi

(in this case, w[t+1]C �= u[t+1]C because fui
(u[t+1]C) > fwi

(u[t+1]C)), let
W [t+1]C

i be the x-coordinate of a uniformly and independently chosen point from the area above

the graph of min{fui
, fwi

} and below the graph of fWi
, and let U [t+1]C

i be the x-coordinate
of a uniformly and independently chosen point from the area above the graph of min{fui

, fwi
}

and below the graph of fUi
. By Lemma 2.1, we know min{fui

, fwi
} ≤ min{fWi

, fUi
}, hence it

is easy to verify that (U [t+1]C,W [t+1]C,u[t+1]C,w[t+1]C) is indeed a coupling of U t+1, W t+1,
ut+1, and wt+1. (Observe that the relations u[t+1]C  {U [t+1]C,W [t+1]C}  w[t+1]C may not
hold.)

Corollary 2.1. For one-shot coupling at time t + 1, we have

dTV
(
U t+1,W t+1)≤ P

[
u[t+1]C �= w[t+1]C].

Proof. By the coupling construction, {U [t+1]C
i �= W [t+1]C

i } ⊆ {u[t+1]C
i �= w

[t+1]C
i } for i = 2,4.

Therefore

dTV
(
U t+1,W t+1)≤ P

[
U [t+1]C �=W [t+1]C]≤ P

[
u[t+1]C �= w[t+1]C]. �

Remark 2.2. It was shown at the beginning of this section that it suffices to couple initial points
which satisfy the partial order “”, and that the uniform coupling preserves this order. It is
however also easy to verify that under this coupling alone, P[ut �= wt ] = 1 whenever u0 �= w0.
For this reason, we introduced the one-shot coupling, for which P[u[t+1]C �= w[t+1]C] can be
small.
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3. The ratio Rt

In this section, we continue to assume that U0,W0 ∈R
2+ are two arbitrary starting points of two

chains U and W , that u0 and w0 are defined as in (2.1), and that all four chains U , W , u and w

are constructed by the uniform coupling. Then ut  {U t ,W t }  wt and wt
i /u

t
i ≥ 1 for all t ≥ 0

and i ∈ {2,4}. In this section and the next, we shall mostly forget about the original chains U t

and W t , and focus the chains ut and wt with the goal of applying Corollary 2.1.
Define the filtration Ft := σ(u0,w0, γ 1

1 , . . . , γ 1
4 , . . . , γ t

1 , . . . , γ t
4). The following coupling con-

struction will be used to define the non-increasing Ft -measurable process Rt , with the property

Rt ≥ maxi{wt
i

ut
i

}. Note then that ut = wt if Rt = 1.

Given our two initial points u0 and w0 (which satisfy u0  w0 by definition), we shall define

two auxiliary processes ṽ and v. Let v0 := w0, so that by (2.1),
u0

2
u0

4
= v0

2
v0

4
. Let R0 := v0

2
u0

2
(= v0

4
u0

4
).

For each t ≥ 0, we already have (recall (1.6))

ut+1 = (ut+1
2 , ut+1

4

) := F t+1(ut
2, u

t
4

)
=
(

γ t+1
2

γ t+1
1 /(x + ut

2) + γ t+1
3 /(ut

2 + ut
4)

,
γ t+1

4

γ t+1
3 /(ut

2 + ut
4) + b

)
.

For each t ≥ 0, we recursively define

ṽt+1 = (ṽt+1
2 , ṽt+1

4

) := F t+1(vt
2, v

t
4

)
=
(

γ t+1
2

γ t+1
1 /(x + vt

2) + γ t+1
3 /(vt

2 + vt
4)

,
γ t+1

4

γ t+1
3 /(vt

2 + vt
4) + b

)
,

(3.1)

Rt+1 := max

{
ṽt+1

2

ut+1
2

,
ṽt+1

4

ut+1
4

}
, and

vt+1 = (vt+1
2 , vt+1

4

) := (Rt+1u
t+1
2 ,Rt+1u

t+1
4

)
.

Note that unlike ut , the process vt is not a Markov chain. Observe also that equality of ratios

is preserved:
ut+1

2

ut+1
4

= vt+1
2

vt+1
4

, and
vt+1

2

ut+1
2

= vt+1
4

ut+1
4

= Rt+1. As mentioned in Section 1.2, the process Rt

serves as a statistic on the ratio-wise proximity of ut to vt . It will follow that wt  vt for all t ,
thus Rt is also an upper bound on the ratio-wise proximity of ut to wt (and hence also of the two
chains U t and W t ). It will also follow from Lemma 3.2 that Rt is non-increasing, which is not
the case if we try to replace ṽt+1 by wt+1 in its definition. This issue is behind our motivation
for the definition of Rt .

Recall that w0 = v0 and wt+1 = F t+1(wt ) for t ≥ 0. Then by induction, the monotonicity of
F guarantees that ut  wt  ṽt  vt for every t . That is, the process vt dominates a copy of the
Markov chain started at w0 and coupled uniformly with ut .

Before deriving properties of Rt , we state the following elementary calculus lemma.
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Lemma 3.1. Suppose that 0 < a < b. Then g(x, y) := ( x
b

+ y)/( x
a

+ y) is decreasing in x and
increasing in y, for all x, y > 0.

We shall now show that {Rt } is non-increasing. Let

Qt := max

{
γ t+1

3 + but
4

γ t+1
3 + bvt

4

,
γ t+1

3 + γ t+1
1 /(1 + x/ut

2)

γ t+1
3 + γ t+1

1 /(1 + x/vt
2)

}
.

Lemma 3.2. We have Rt+1 ≤ QtRt and Qt ≤ 1 for all t ≥ 0.

Proof. Since ut  vt , it is immediate that Qt ≤ 1. And by Lemma 3.1, we have

Rt+1 = max

{
γ t+1

3 /(ut
2 + ut

4) + b

γ t+1
3 /(vt

2 + vt
4) + b

,
γ t+1

3 /(ut
2 + ut

4) + γ t+1
1 /(ut

2 + x)

γ t+1
3 /(vt

2 + vt
4) + γ t+1

1 /(vt
2 + x)

}

= vt
2

ut
2

· max

{(
γ t+1

3 /(ut
2/u

t
4 + 1) + but

4

γ t+1
3 /(ut

2/u
t
4 + 1) + bvt

4

)
,

(3.2)(
γ t+1

3 /(ut
4/u

t
2 + 1) + γ t+1

1 /(1 + x/ut
2)

γ t+1
3 /(ut

4/u
t
2 + 1) + γ t+1

1 /(1 + x/vt
2)

)}

≤ RtQt . �

Lemma 3.2 shows that the sequence {Rt } is non-increasing and that

E[Rt+1] ≤ R0E

[
t∏

j=0

Qj

]
.

The next lemma shows that P[u[t+1]C �= w[t+1]C |Ft ] is small if Rt is close to 1.

Lemma 3.3. For one-shot coupling at time t + 1, we have

P
[
u[t+1]C �= w[t+1]C |Ft

]≤ 1 − R
−(a2+a3+a4+a5)
t .

Proof. For i ∈ {2,4} and Gt := σ(Ft , γ
t+1
1 , γ t+1

3 ), let fui
(y) and fwi

(y) be the conditional den-
sity functions of ut+1

i and wt+1
i given Gt , as in our description of one-shot coupling in Section 2.

By (1.6), these are gamma densities with shape parameters ai + ai+1, and inverse scale param-

eters �t+1
u,2 := γ t+1

1
x+ut

2
+ γ t+1

3
ut

2+ut
4

and �t+1
u,4 := b + γ t+1

3
ut

2+ut
4
, with �t+1

w,2 and �t+1
w,4 defined similarly.

Observe that �t+1
u,i ≥ �t+1

w,i . Then for all y > 0,

fwi
(y) ≥

(
�t+1

w,i

�t+1
u,i

)ai+ai+1

fui
(y)
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and therefore

min
{
fui

(y), fwi
(y)
}≥
(

�t+1
w,i

�t+1
u,i

)ai+ai+1

fui
(y).

Recall that vt
4/v

t
2 = ut

4/u
t
2, and observe that

�t+1
u,2

�t+1
w,2

≤ γ t+1
1 /(x + ut

2) + γ t+1
3 /(ut

2 + ut
4)

γ t+1
1 /(x + vt

2) + γ t+1
3 /(vt

2 + vt
4)

= vt
2

ut
2

× γ t+1
1 /(x/ut

2 + 1) + γ t+1
3 /(1 + ut

4/u
t
2)

γ t+1
1 /(x/vt

2 + 1) + γ t+1
3 /(1 + vt

4/v
t
2)

≤ vt
2

ut
2

= Rt

with a similar inequality following for �t+1
u,4 /�t+1

w,4 . By our construction of the one-shot coupling,

P
[
u

[t+1]C
i �= w

[t+1]C
i |Gt

] = 1 −
∫

min
{
fui

(y), fwi
(y)
}
dy

≤ 1 −
∫

fui
(y)

(
�t+1

w,i

�t+1
u,i

)ai+ai+1

dy

≤ 1 − R
−ai−ai+1
t

∫
fui

(y) dy

= 1 − R
−ai−ai+1
t .

Since the final bound is independent of (γ t+1
1 , γ t+1

3 ), we also get P[u[t+1]C
i �= w

[t+1]C
i |Ft ] ≤

1 − R
−ai−ai+1
t . Therefore,

P
[
u[t+1]C �= w[t+1]C |Ft

] = P

[⋃
i

{
u

[t+1]C
i �= w

[t+1]C
i

}|Ft

]

= 1 −
∏

i=2,4

P
[{

u
[t+1]C
i = w

[t+1]C
i

}|Ft

]

≤ 1 − R
−a2−a3
t R

−a4−a5
t . �

As we have seen, our ratio Rt satisfies Rt ≥ max{wt
i

ut
i

}, which is the condition stated at the

beginning of Section 3. Our aim now is to show that Rt converges to 1 at a geometric rate, or
more explicitly to obtain an expression of the form

E[Rt+1] ≤ 1 + CR0

t+1∏
j=1

rj ,
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where rj < 1 and rj is “frequently” bounded from above by some r < 1 (the exact meaning of
this will become apparent following the definition of S̄t in (4.4)). Note that in order to achieve
this, it suffices to have for all t ≥ 0

E[QtRt ] ≤ rt+1
(
E[Rt ] − 1

)+ 1. (3.3)

Recall that Ft := σ(u0,w0, γ 1
1 , . . . , γ 1

4 , . . . , γ t
1 , . . . , γ t

4). The left-hand side of (3.3) can be writ-
ten as

E[QtRt ] = E
[
RtE[Qt |Ft ]

]
, (3.4)

and we approximate E[Qt |Ft ] in the following lemma.

Lemma 3.4. Let μ1 = E[γ3] = a3 + a4 and μ2 = E[γ1 − 1
3 ] = a1 + a2 − 1

3 , and let r̂t = 1 −
1/max{( 4μ1

μ2
+ 4)(

ut
2
x

+ x
vt

2
+ 2),4 + 4μ1

bvt
4
}. If S is a Ft -measurable stopping time, then

E[QS |FS] ≤ r̂S + 1 − r̂S

RS

.

Thus we have

E[QSRS] ≤ E
[
r̂S(RS − 1)

]+ 1.

Proof. By [2], we have P[γ3 ≤ μ1] ≥ 1
2 and P[γ1 ≥ μ2] ≥ 1

2 . Hence by Lemma 3.1, for any t , the

probability is at least 1
4 that Qt ≤ max{(μ1+μ2/(1+x/ut

2)

μ1+μ2/(1+x/vt
2)

), (
μ1+but

4
μ1+bvt

4
)}. Then, using RS = vS

2 /uS
2 =

vS
4 /uS

4 ≥ 1, we have

E[QS |FS] ≤ 1

4
· max

{(
μ1 + μ2/(1 + x/uS

2 )

μ1 + μ2/(1 + x/vS
2 )

)
,

(
μ1 + buS

4

μ1 + bvS
4

)}
+ 1 · 3

4

= 1

4
· max

{(
1 − 1/(1 + x/vS

2 ) − 1/(1 + x/uS
2 )

μ1/μ2 + 1/(1 + x/vS
2 )

)
,

(
1 − bvS

4 − buS
4

μ1 + bvS
4

)}
+ 3

4

= 1 − (1 − 1/RS)

4 max{(μ1/μ2 + 1/(1 + x/vS
2 ))(uS

2/x + 1)(x/vS
2 + 1),1 + μ1/(bvS

4 )} (3.5)

≤ 1 − (1 − 1/RS)

4 max{(μ1/μ2 + 1)(uS
2/x + x/vS

2 + 2),1 + μ1/(bvS
4 )}

= r̂S + 1 − r̂S

RS

. �

Our task in the next section will be to show that we frequently have r̂t ≤ r for some r < 1,
which by Lemma 3.4 will result in an expression of the form given by (3.3).
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4. Auxiliary processes with drift conditions

We continue to work with the processes described at the beginning of Section 3. We first define
random processes K1,t and K2,t (t ≥ 0) and constants ζi and Ci as follows.

K1,t := ut
2 + ut

4, K2,t :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut
3 + ut

1 + b

γ t
2 + γ t

4
, if t ≥ 1,

1

u0
2 + u0

4

, if t = 0,

ζ1 := a2 + a3

a1 + a2 + a3 + a4 − 1
, ζ2 := a3 + a4

a2 + a3 + a4 + a5 − 1
,

C1 := ζ1x + a4 + a5

b
, C2 := a1 + a2 + xb

x(a2 + a3 + a4 + a5 − 1)
.

Both K1,t and K2,t are adapted to Ft and are in fact functions of �ut (since γ t
2 + γ t

4 = ut
2(u

t
1 +

ut
3) + ut

4(u
t
3 + b) for t ≥ 1). The following inequalities (“drift conditions”) are important for us.

The proofs of all lemmas in this section are given in Section 4.1.

Lemma 4.1. For i = 1,2 and t ≥ 0, we have

E[Ki,t+1|Ft ] ≤ ζiKi,t + Ci. (4.1)

Note that condition (1.7) guarantees that ζ1 < 1 and ζ2 < 1. We shall assume that condi-
tion (1.7) holds for the rest of this section.

Next, we define some more processes for t ≥ 1, all adapted to Ft :

ρt := max

{(
4μ1

μ2
+ 4

)(
ut

2

x
+ x

vt
2

+ 2

)
,4 + 4μ1

bvt
4

}
,

Dt := 1

x

(
4μ1

μ2
+ 4

)(
ut

2 + ut
4

)+((4μ1

μ2
+ 4

)
x + 4μ1

b

)(
1

ut
2

+ 1

ut
4

)
,

ω1,t := 1

x

(
4μ1

μ2
+ 4

)
γ t

2

γ t
1 + γ t

3
, ω̃2,t = 2 + γ t

2

γ t
4

+ γ t
4

γ t
2
,

ω2,t :=
((

4μ1

μ2
+ 4

)
x + 4μ1

b

)
ω̃2,t

γ t
3

γ t
2 + γ t

4
,

ω3,t := 1

x

(
4μ1

μ2
+ 4

)(
γ t

2

γ t
1 + γ t

3
x + γ t

4

b

)
+
((

4μ1

μ2
+ 4

)
x + 4μ1

b

)
ω̃2,t

γ t
1/x + b

γ t
2 + γ t

4
.

Observe that r̂t = 1 − 1/ρt . Clearly, (ω1,t ,ω2,t ,ω3,t ) is a nonnegative random vector that is
i.i.d. over time t ≥ 1, measurable with respect to Ft and independent of Ft−1.
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Our interest in these processes comes from the following. As explained at the end of the
previous section, we want to show that the random process r̂t is frequently less than some fixed
r < 1. Writing r̂t = 1 − 1/ρt , this is equivalent to showing that ρt is frequently less than some
fixed bound. The inequalities in the following lemma provide us with alternative quantities to
bound in order to achieve our goal.

Lemma 4.2. For all t ≥ 1, we have

ρt ≤ Dt and Dt+1 ≤ ω1,t+1K1,t + ω2,t+1K2,t + ω3,t+1. (4.2)

To help bound the rightmost expression in equation (4.2), we define the process

Jt := K1,t + K2,t for t ≥ 0

and the constants

A := max{ζ1, ζ2}, C := C1 + C2, η := 2C

1 − A
, β := 1

2
(1 + A).

By condition (1.7), we have that A < 1 and β < 1. It is easy to see that

E[Jt+1|Ft ] ≤ AJt + C for all t ≥ 0,

from which one can directly calculate (observe Aη + C = βη) that

E[Jt+1|Ft ] ≤
{

βJt , if Jt ≥ η

βη, if Jt ≤ η

}
= β max{Jt , η}. (4.3)

The following lemma will be used to show that J is frequently below η. This will be used with
Lemma 4.2 to help bound D, and hence ρ.

Lemma 4.3. For s ≥ 1, let Ls = {i ∈ [1, s]|Ji ≥ η}. Then for every s ≥ 1,

(a) P[Ls = L|F0] ≤ β |L| max{J0, η}/η for every L ⊆ [1, s], and
(b) For every L ⊆ [1, s] with s ∈ L, we have E[Js1{Ls=L}|F0] ≤ β |L| max{J0, η}.

The term β |L| in Lemma 4.3 indicates that Ls is unlikely to be large.
The next lemma uses the relation r̂t ≤ 1 − 1/Dt . The idea is that if Jt is bounded, then Dt is

probably not too large, and r̂t is not too close to 1.

Lemma 4.4. Let S ≥ 1 be an a.s. finite stopping time adapted to Ft such that JS < η, and let
0 ≤ Y ∈ FS . Define θi := E[ωi,t+1] for i = 1,2,3, and let

r = 1 − 1

(θ1 + θ2)η + θ3
.

Then E[Y(RS+2 − 1)] ≤ rE[Y(RS − 1)]. In particular, E[RS+2 − 1] ≤ rE[RS − 1].
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For the following important result, we write

S̄t := [1, t] \ Lt = {i ∈ [1, t]|Ji < η
}

for t ≥ 1. (4.4)

By applying Lemma 4.4 to those times that are in S̄t , we obtain the following.

Lemma 4.5. In the event {J0 < η}, we have

E
[
(Rt+2 − 1)1|S̄t |>k|F0

]≤ r�(k+1)/2�(R0 − 1).

The above lemma leads us to the following theorem, which is an explicit decay rate for the
ratio Rt . Its proof is in Section 4.1. The idea is that by Lemma 4.3, |S̄t | is unlikely to be small.
Indeed, we show that it is unlikely to be smaller than roughly t/d . Hence the approximate fraction
of time that Js < η (and hence r̂s < r) is at least 1/d .

Theorem 4.1. Let d = max{3,2 ln(β| lnβ|√r/2)/ lnβ}. Then in {J0 < η}, we have E[Rt+2|
F0] ≤ 1 + 3rt/2d(R0 − 1) for all t > 0.

Theorem 4.1 is the last main ingredient that we need to prove Theorem 1.1.

Proof of Theorem 1.1. It will be convenient here to perform the “one-shot coupling” at time
t + 3 rather than at time t + 1. By Corollary 2.1, P[u[t+3]C �= w[t+3]C] is an upper bound for
dTV(U t+3,W t+3). First, we restrict to the event {J0 < η}. Theorem 4.1 tells us that

E[Rt+2 − 1|F 0] ≤ 3rt/2d(R0 − 1).

Therefore by Lemma 3.3, Jensen’s inequality, and the bound 1 − (1 + y)−p ≤ py for p,y ≥ 0
(easily shown by calculus),

P
[
u[t+3]C �= w[t+3]C |F 0

] = E
[
P
[
u[t+3]C �= wt+3|Ft+2

]|F0
]

≤ E
[
1 − (Rt+2)

−(a2+a3+a4+a5)
]≤ 1 − (E[Rt+2]

)−(a2+a3+a4+a5)

≤ 1 − (1 + 3rt/2d(R0 − 1)
)−(a2+a3+a4+a5)

≤ 3rt/2d(a2 + a3 + a4 + a5)(R0 − 1).

This proves the first statement of the theorem. If we no longer restrict to the event {J0 < η}, then
let T = min{t ≥ 0 : Jt < η}. Recalling Lemma 4.3, we see that on the event {J0 ≥ η} we have
T > t0 if and only if Lt0 = [1, t0]. Therefore, on {J0 ≥ η} we have

P
[
u[t+3]C �= w[t+3]C |F0

]
≤ P

[
u[t+3]C �= w[t+3]C |F0, T ≤

⌊
t

2

⌋
+ 3

]
+ P

[
T >

⌊
t

2

⌋
+ 3
∣∣∣F0

]
(4.5)

≤ 3rt/4d(a2 + a3 + a4 + a5)(R0 − 1) + max{J0, η}β�t/2�+3

η
.

Since this is greater than what we have on {J0 < η}, it is also a bound for general values of J0. �
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4.1. Remaining proofs

Proof of Lemma 4.1. Observe that for t ≥ 0

ut+1
2 + ut+1

4 = γ t+1
2

γ t+1
1 /(x + ut

2) + γ t+1
3 /(ut

2 + ut
4)

+ γ t+1
4

γ t+1
3 /(ut

2 + ut
4) + b

(4.6)

≤ γ t+1
2

γ t+1
1 + γ t+1

3

(
ut

2 + ut
4 + x

)+ γ t+1
4

b
.

Therefore, E[K1,t+1|Ft ] ≤ ζ1K1,t + C1. Observe that since

ut+1
3 = γ t+1

3

ut
2 + ut

4
= γ t+1

3

γ t
2/(ut

1 + ut
3) + γ t

4/(ut
3 + b)

≤ γ t+1
3

γ t
2 + γ t

4

(
ut

1 + ut
3 + b

)= γ t+1
3 K2,t

for t ≥ 1, it follows that

K2,t+1 ≤ γ t+1
3

γ t+1
2 + γ t+1

4

K2,t + ut+1
1 + b

γ t+1
2 + γ t+1

4

(4.7)

and hence

E[K2,t+1|Ft ] ≤ ζ2K2,t +E

[
γ t+1

1 /x + b

γ t+1
2 + γ t+1

4

∣∣∣Ft

]
≤ ζ2K2,t + C2 (4.8)

for t ≥ 0 (the t = 0 case is immediate from the definition of K2,0). �

Proof of Lemma 4.2. The inequality ρt ≤ Dt follows from the facts that ut  vt and 2 ≤ u
x

+ x
u

.
Note next that

1

ut+1
2

+ 1

ut+1
4

≤
(

1

γ t+1
2

+ 1

γ t+1
4

)(
ut+1

1 + ut+1
3 + b

)= ω̃2,t+1K2,t+1 (4.9)

and ω̃2,t+1 is independent of Ft . By (4.6), (4.7) and (4.9) we conclude that for t ≥ 1,

Dt+1 ≤ 1

x

(
4μ1

μ2
+ 4

)(
γ t+1

2

γ t+1
1 + γ t+1

3

(K1,t + x) + γ t+1
4

b

)

+
((

4μ1

μ2
+ 4

)
x + 4μ1

b

)
ω̃2,t+1

(
γ t+1

3

γ t+1
2 + γ t+1

4

K2,t + γ t+1
1 /x + b

γ t+1
2 + γ t+1

4

)

≤ ω1,t+1K1,t + ω2,t+1K2,t + ω3,t+1. �

Proof of Lemma 4.3. The proof will be by induction. For s = 1,2, . . . , let Sa(s) and Sb(s) be
the statements of parts (a) and (b) respectively, namely:
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Sa(s): “P[Ls = L|F0] ≤ β |L| max{J0, η}/η for every L ⊆ [1, s]”;
Sb(s): “For every L ⊆ [1, s] with s ∈ L, we have E[Js1{Ls=L}|F0] ≤ β |L| max{J0, η}.”

We first verify the case s = 1. In Sa(1), the inequality is trivial if L = ∅, while for L = {1},
Markov’s inequality and equation (4.3) show that

P
[
L1 = {1}|F0

]= P[J1 ≥ η|F0] ≤ E[J1|F0]
η

≤ β max{J0, η}
η

.

This verifies Sa(1). For Sb(1), we only need to consider L = {1}, for which

E[J11{L1={1}}|F0] ≤ E[J1|F0] ≤ β max{J0, η}
by equation (4.3). This verifies Sb(1).

Now assume that Sa(t ) and Sb(t ) hold, and we shall deduce Sa(t + 1) and Sb(t + 1). Let
L ⊂ [1, t + 1], and let L′ = L \ {t + 1}. We consider cases, according as to whether or not L
contains t + 1 and t .

Case I: t + 1 /∈ L. In this case, L = L′, so by Sa(t ) we have

P[Lt+1 = L|F0] ≤ P
[
Lt = L′|F0

]≤ β |L′| max{J0, η}
η

= β |L| max{J0, η}
η

.

This verifies the inequality in (a). There is nothing to check for (b).
Case II: t + 1 ∈ L. First, we have

E[Jt+11{Lt+1=L}|F0] ≤ E
(
E[Jt+1|Ft ]1{Lt=L′}|F0

)
. (4.10)

We now consider subcases II(i) and II(ii), based on t .
Case II(i): t + 1 ∈ L and t /∈ L. Since {Lt = L′} ⊂ {Jt < η}, we obtain from equation (4.3)

that E[Jt+1|Ft ]1{Lt=L′} ≤ βη1{Lt=L′}. Hence by equation (4.10) and Sa(t ), we obtain

E[Jt+11{Lt+1=L}|F0] ≤ βηE[1{Lt=L′}|F0] ≤ βη
β |L′| max{J0, η}

η

= β |L| max{J0, η}.
This proves the inequality in Sb(t + 1). This in turn implies

P[Lt+1 = L|F0] ≤ E[Jt+11{Lt+1=L}|F0]
η

≤ β |L| max{J0, η}
η

.

Thus the inquality in Sa(t + 1) also holds for L.
Case II(ii): t + 1 ∈ L and t ∈ L. Since {Lt = L′} ⊂ {Jt ≥ η}, we obtain from equation (4.3)

that E[Jt+1|Ft ]1{Lt=L′} ≤ βJt1{Lt=L′}. Hence by equation (4.10) and Sb(t ) [note that t ∈ L′],
we obtain

E[Jt+11{Lt+1=L}|F0] ≤ βE[Jt1{Lt=L′}|F0] ≤ ββ |L′| max{J0, η}
= β |L| max{J0, η}.
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This proves the inequality in Sb(t + 1). The inequality for Sa(t+1) now follows as in
Case II(i). �

Proof of Lemma 4.4. We start by observing that DS+1 ≤ η(ω1,S+1 + ω2,S+1) + ω3,S+1. There-
fore, applying Lemma 3.4 we get

E
[
Y(RS+2)

] ≤ E[YQS+1RS+1]
≤ E
[
Y r̂S+1(RS+1 − 1)

]+E[Y ] (4.11)

≤ E

[
Y

(
1 − 1

DS+1

)
(RS − 1)

]
+E[Y ] (using Rt+1 ≤ Rt )

≤ E

[
Y

(
1 − 1

η(ω1,S+1 + ω2,S+1) + ω3,S+1

)
(RS − 1)

]
+E[Y ]

= E

[(
1 − 1

η(ω1,S+1 + ω2,S+1) + ω3,S+1

)]
E
[
Y(RS − 1)

]+E[Y ]

≤ rE
[
Y(RS − 1)

]+E[Y ] (by Jensen’s inequality). (4.12)

�

Proof of Lemma 4.5. Let τ0 = 0 and {τi} ⊆ {1,2, . . .} be those times for which Jτi
< η. Then

by Lemma 4.4 with Y = 1τk+1≤t and S = τk+1,

E[Rt+21|S̄t |>k|F0] = E[Rt+21τk+1≤t |F0]
≤ E[Rτk+1+21τk+1≤t |F0]
≤ rE

[
1τk+1≤t (Rτk+1 − 1)|F0

]+ P
[|S̄t | > k|F0

]
≤ rE

[
1τk−1≤t (Rτk−1+2 − 1)|F0

]+ P
[|S̄t | > k|F0

]
.

The last inequality uses the fact that 1τk+1≤t ≤ 1τk−1≤t and Rτk+1 ≤ Rτk−1+2. This then leads to
the first step in an inductive argument:

E[Rτk+1+21τk+1≤t |F0] − P
[|S̄t | > k|F0

]
(4.13)

≤ r
(
E[Rτk−1+21τk−1≤t |F0] − P

[|S̄t | > k − 2|F0
])

.

Proceeding in this manner, we claim that we get

E[Rτk+1+21τk+1≤t |F0] − P
[|S̄t | > k|F0

]≤ r�(k+1)/2�(R0 − 1).

The ceiling function in the exponent �(k + 1)/2� is immediate whenever k + 1 is even. If on the
other hand k + 1 is odd, then by (4.13) and Lemma 4.4, we have

E[Rτk+1+21τk+1≤t |F0] − P
[|S̄t | > k|F0

] ≤ r�(k+1)/2�
E
[
1τ1≤t (Rτ1+2 − 1)|F0

]
≤ r�(k+1)/2�rE

[
1τ1≤t (Rτ1 − 1)|F0

]
≤ r�(k+1)/2�+1(R0 − 1). �
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Proof of Theorem 4.1. For any k < t , we deduce from Lemmas 4.5 and 4.3(a) that

E[Rt+2|F0] = E[Rt+21|S̄t |>k|F0] +E[Rt+21|S̄t |≤k|F0]
≤ r�(k+1)/2�(R0 − 1) + P

[|S̄t | > k|F0
]+E[R01|S̄t |≤k|F0]

≤ r�(k+1)/2�(R0 − 1) + P
[|S̄t | > k|F0

]
(4.14)

+(R0 − 1)P
[|S̄t | ≤ k|F0

]+ P
[|S̄t | ≤ k|F0

]
≤ 1 + (R0 − 1)

(
r�(k+1)/2� +

k∑
j=0

(
t

j

)
βt−j

)
.

Henceforth, let k = � t
d
�. Since k ≤ t/3, we have

(
t
j

) ≤ 1
2

(
t

j+1

)
for j < k and hence∑k

j=0

(
t
j

)
βt−j ≤ 2

(
t
k

)
βt−k . Next, note that

(
t
k

)
qk(1 − q)t−k ≤ 1 whenever 0 < q < 1. Taking

q = 1/d , we get

(
t

k

)
≤ dk

(
1 − 1

d

)−(t−k)

= dt

(d − 1)t−k
≤ dt

(d − 1)t−t/d

(4.15)

=
[
d

(
1 + 1

d − 1

)d−1]t/d

< (de)t/d .

By calculus, we have yβy ≤ 2βy/2/(e| lnβ|) for all y > 0. Combining this with results of the
preceding paragraph, we obtain

r�(k+1)/2� +
k∑

j=0

(
t

j

)
βt−j ≤ r(k+1)/2 + 2

(
t

k

)
βt−k

≤ rt/2d + 2
(
edβd−1)t/d

≤ rt/2d + 2

(
2

β| lnβ|β
d/2
)t/d

≤ 3rt/2d .

Together with (4.14), this proves the desired bound. �

5. Sampling from equilibrium

It is not hard to apply our previous results to obtain a bound on the rate of convergence to the
equilibrium distribution π of the chain (1.6).



Convergence rates for a hierarchical Gibbs sampler 621

Proof of Corollary 1.1. Fix U0 and let W0 be a random vector with density π . Define ut and
wt accordingly. By (4.5), we have

P
[
u[t+3]C �= w[t+3]C |W0

]≤ 3rt/4d(a2 + a3 + a4 + a5)(R0 − 1) + max{J0, η}β�t/2�+3

η
.

The corollary now follows from Corollary 2.1. �

Now let Cg := ∫ (
∏4

i=1 z
ai+ai+1−1
i ) exp(

∑5
i=1 −zizi−1) dz. Then we can bound the terms

Eπ [R0] and Eπ [J0] in Corollary 1.1 in the following way:

dTV
(
U t+3,π

) ≤ 3rt/4d(a2 + a3 + a4 + a5)
1

Cg

×
∫ (

max{1, v2, v4}
min{1, v2, v4}

)( 4∏
i=1

v
ai+ai+1−1
i

)
exp

(
5∑

i=1

−vivi−1

)
dv

+ β�t/2�+3

η

(
η + 1

Cg

∫
J0

(
4∏

i=1

v
ai+ai+1−1
i

)
exp

(
5∑

i=1

−vivi−1

)
dv

)

≤ 3C̃π rt/4d(a2 + a3 + a4 + a5) +
(

C̃J

η
+ 1

)
β�t/2�+3,

where C̃π := ∫
(

max{1,v2,v4}
min{1,v2,v4} )(

∏4
i=1 v

ai+ai+1−1
i ) exp(

∑5
i=1 −vivi−1) dv/Cg and C̃J :=∫

J0(
∏4

i=1 v
ai+ai+1−1
i ) exp(

∑5
i=1 −vivi−1) dv/Cg . We derive bounds for these terms in Ap-

pendix B in [10].
For the purpose of illustrating this result in a concrete example, let us set x = 2, b = 3 and

ai = i. From Appendix B in [10] we get C̃π ≤ 31 065 C̃J ≤ 59, β ≤ 7/9, r ≤ 1 − 3
4356 , 10 ≤ η ≤

11 and 18 ≤ d ≤ 20. Hence

dTV
(
U t+3,π

)≤ 31 065 ∗ 43

(
1 − 3

4356

)t/80

+
(

1 + 59

20

)(
7

9

)�t/2�+3

which implies that dTV(U t+3,π) ≤ 10−5 for t ≥ 2 100 000.

6. A brief look at the case n = 3

The case n = 3 can be treated in a very similar manner as was used for n = 4. The problem
reduces to dealing with a Markov chain of a single variable, namely the second coordinate of the
three, given by

ut+1 = γ t+1
2

γ t+1
1 /(ut + x) + γ t+1

3 /(ut + b)
. (6.1)
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The uniform coupling of two chains ut and wt with the property u0 ≤ w0 results in ut ≤ vt for
all t . If u0 < w0, then it is not hard to see that the ratio Rt = wt

ut is strictly decreasing, hence
we no longer need to define a process like (3.1) and we can simply work with this ratio directly.
Indeed, Rt+1 = RtQt where

Qt := 1 − (1 − 1/Rt )(xγ t+1
1 /((ut + x)(1 + x/wt)) + bγ t+1

3 /((ut + b)(1 + b/wt)))

(γ t+1
1 /(1 + x/wt) + γ t+1

3 /(1 + b/wt))

≤ 1 − (1 − 1/Rt )(xγ t+1
1 + bγ t+1

3 )

(γ t+1
1 /(1 + x/wt ) + γ t+1

3 /(1 + b/wt))(ut + max{x, b})(1 + max{x, b}/ut )

≤ r̂t + 1 − r̂t

Rt

,

where r̂t := 1 − min{x, b}/((ut + max{x, b})(1 + max{x,b}
ut )). Note that if we define K1,t+1 :=

ut+1 and K2,t+1 := 1
ut+1 then K1,t+1 ≤ γ t+1

2

γ t+1
1 +γ t+1

3
(ut + x + b) and K2,t+1 ≤ (

γ t+1
1

γ t+1
2

1
x

+ γ t+1
3

γ t+1
2

1
b
),

and hence we do not need a process analogous to Dt from Section 4, since

r̂t+1 ≤ 1 − min{x, b}/((K1,t+1 + max{x, b})(1 + max{x, b}K2,t+1
))

.

As before, we will require that a1 + a4 > 1 in order that E[γ2/(γ1 + γ3)] < 1, and a2 + a3 > 1

in order that E[ γ t+1
1

γ t+1
2

] < ∞. If Jt := K1,t + K2,t and S is a measurable stopping time such that

JS ≤ η, with

η := 2

(
(x + b)(a2 + a3)

a1 + a2 + a3 + a4 − 1
+ (a1 + a2)/x + (a3 + a4)/b

a2 + a3 − 1

)/(
1 − a2 + a3

a1 + a2 + a3 + a4 − 1

)

then we can repeat the steps of the proof of Lemma 4.4 as follows:

E[RS+1] = E[QSRS]
≤ E
[
r̂S(RS − 1)

]+ 1

= E

[(
1 − min{x, b}

(uS + max{x, b})(1 + max{x, b}/uS)

)
(RS − 1)

]
+ 1

(6.2)

≤ E

[(
1 − min{x, b}

(uS + 2 max{x, b} + max{x, b}2/uS)

)
(RS − 1)

]

≤ E

[(
1 − min{x, b}

(2 max{x, b} + η(1 + max{x, b}2))

)
(RS − 1)

]
+ 1

= rE[RS − 1] + 1,

where r = 1 − min{x, b}/(2 max{x, b} + η(1 + max{x, b}2)). Note that we no longer need to
look at time S + 2 in the left-hand side of (6.2) in order to obtain this inequality. This means that
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from the proof of Lemma 4.5 and Corollary 4.1 we get

E[Rt+1|J0 ≤ η] ≤ 1 + 3rt/d(R0 − 1),

where d = max{3,2 ln(β| lnβ|r/2)/ lnβ}. From the proof of Theorem 1.1 we conclude

Theorem 6.1 [n = 3]. Suppose that a1 + a4 > 1 and a2 + a3 > 1. If ut and wt are two instances
of the Markov chain (6.1), then

dTV
(
ut+2,wt+2)≤ rt/(2d)

(
1 + 3(a2 + a3)(R0 − 1)

)+ max{J0, η}β�t/2�+3

η
.

We can make an analogous argument to obtain a result similar to Corollary 1.1. In particular, if
we let U0 = (1,1,1), W0 ∼ π and x = 1, b = 2 and ai = i, then by calculations similar to those
done in Section 5 we get

dTV
(
U t+2,π

)≤ 600

(
78

79

)t/40

+ 6

(
7

9

)�t/2�+3

which in particular implies that dTV(U t+2,π) ≤ 10−5 for t ≥ 50 000.

Appendix

C1 = a2+a3
a1+a2+a3+a4−1x + a4+a5

b
, C2 = a1+a2+xb

x(a2+a3+a4+a5−1)

� = 4(a3+a4)
(a1+a2−1/3)

η = C1+C2
1−max{(a2+a3)/(a1+a2+a3+a4−1),(a3+a4)/(a2+a3+a4+a5−1)}

θ1 = 1
x (� + 4)

a2+a3
a1+a2+a3+a4−1

θ2 = E[(2 + γ2
γ4

+ γ4
γ2

)(
γ3

γ2+γ4
)]((� + 4)x + 4(a3+a4)

b
)

θ3 = 1
x (� + 4)(

a2+a3
a1+a2+a3+a4−1x + a4+a5

b
) + ((� + 4)x + a4+a5

b
)E[(2 + γ2

γ4
+ γ4

γ2
)(

γ1/x+b
γ2+γ4

)]
r = 1 − (η(θ1 + θ2) + θ3)−1

β = 1+max{(a2+a3)/(a1+a2+a3+a4−1),(a3+a4)/(a2+a3+a4+a5−1)}
2

d = max{3,2 ln(β| lnβ|√r/2)/ lnβ}
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We can calculate θ2 and θ3 with the help of partial fractions, as follows. Writing Ai = ai +
ai+1, we obtain

E

((
γ2

γ4
+ γ4

γ2

)
1

γ2 + γ4

)
= E

(
1

γ2
+ 1

γ4
− 2

γ2 + γ4

)
= A2

2 + A2
4 − A2 − A4

(A2 − 1)(A4 − 1)(A2 + A4 − 1)
.
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