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We study exact confidence intervals and two-sided hypothesis tests for univariate parameters of stochasti-
cally increasing discrete distributions, such as the binomial and Poisson distributions. It is shown that several
popular methods for constructing short intervals lack strict nestedness, meaning that accepting a lower con-
fidence level not always will lead to a shorter confidence interval. These intervals correspond to a class of
tests that are shown to assign differing p-values to indistinguishable models. Finally, we show that among
strictly nested intervals, fiducial intervals, including the Clopper–Pearson interval for a binomial proportion
and the Garwood interval for a Poisson mean, are optimal.
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1. Introduction

Hypothesis testing and interval estimation of parameters in discrete distributions are two of the
classic statistical problems, particularly for the binomial and Poisson distributions, which remain
two of the most important statistical models. The fact that these distributions are discrete makes
it impossible to construct non-randomized confidence intervals that have coverage equal to 1 −α

for all values of the unknown parameter θ , and, equivalently, impossible to construct two-sided
tests with size equal to α for all pairs (α, θ0), where θ0 denotes the value of θ under the null
hypothesis. It is however possible to construct confidence intervals that have coverage at least
equal to 1 − α for all values of the unknown parameter, and tests that have size at most equal to
α. Such intervals and tests are called exact, and are the topic of this paper.

Given an observation x, the classic method of constructing exact confidence intervals for pa-
rameters of some common discrete distributions is to use the fiducial interval of Fisher [17,36]:
(θL, θU ) where θL and θU are such that∑

k≤x

PθL
(X = k) = α/2 and

∑
k≥x

PθU
(X = k) = α/2. (1)

For the binomial parameter, the fiducial interval is known as the Clopper–Pearson interval [11]
and for the mean of a Poisson distribution it is known as the Garwood interval [18].

The hypothesis H0 : θ = θ0 can be tested against the alternative H1 : θ �= θ0 by checking
whether θ0 is contained in the fiducial interval. The p-value λf (θ0, x) of this test is two times
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the smaller p-value of two one-sided tests:

λf (θ0, x) = min

(
2 ·

∑
k≤x

Pθ0(X = k),2 ·
∑
k≥x

Pθ0(X = k),1

)
. (2)

In their seminal paper on binomial confidence intervals, Brown et al. [7] write: “The Clopper–
Pearson interval is wastefully conservative and is not a good choice for practical use, unless strict
adherence to the prescription C(p,n) > 1 − α is demanded,” where C(p,n) denotes the cover-
age probability. Instead they recommend using approximate intervals, which obtain the nominal
confidence level 1 − α in some average sense, but have lower coverage for some values of θ .
Such intervals are typically shorter than exact intervals, and their corresponding tests typically
have higher power. These advantages comes at the cost that the actual confidence levels may be
much lower than stated and that the size of tests may be inflated. For popular approximate inter-
vals, the deviations in coverage from 1 − α may be non-negligible even for large sample sizes
[31]. For this reason, some statistician prefer to use exact methods like those discussed in this
paper, in order to guarantee that confidence levels are not exaggerated and type I error rates are
not understated.

When other criteria than merely coverage levels and expected lengths are considered, exact
confidence intervals can moreover compare favourably to approximate intervals [24,32]. Finally,
even if one prefers to use average coverage as a criterion for comparing confidence intervals, it
is of interest to study exact intervals due to the facts that these intervals can be adjusted to have
coverage 1 − α on average, and that such adjusted intervals tend to have shorter expected length
than other approximate intervals [25,30]. For comparisons of exact and approximate intervals in
the binomial setting, and further arguments for using exact methods for discrete distributions,
see [31].

Regarding the fiducial Clopper–Pearson interval, Brown et al. [7] also write “better exact
methods are available; see, for instance, [5] and [9].” Fiducial intervals are equal-tailed, meaning
that the lower bound is a 1 − α/2 lower confidence bound and that the upper bound is a 1 − α/2
upper confidence bound. Several authors, including those mentioned by Brown et al. [7] in the
above quote, have proposed shorter exact intervals that improve upon fiducial intervals by letting
the tail-coverages vary for different x, so that their bounds no longer are 1 − α/2 confidence
bounds [4,5,9,10,13,14,19,21,26,28,35]. Such intervals, known as strictly two-sided intervals,
tend to have less conservative coverage and are typically shorter than fiducial intervals. Their use
has been advocated by [1,2,15,16,20,25,27] and [22], among others.

Unlike the equal-tailed fiducial intervals, the p-values of tests corresponding to strictly two-
sided confidence intervals can not be written as two times the smaller p-value of two one-sided
tests. Instead, for some test statistic T (θ0,X) satisfying mild regularity conditions detailed in
Section 2, the p-value of a strictly two-sided test is defined as

λ(θ0, x) = Pθ0

(
T (θ0,X) ≥ T (θ0, x)

)
.

If the null distribution of T (θ0,X) is asymmetric, the level α rejection region of such a test is not
the intersection of the rejection regions of two one-sided level α/2 tests.

The main goal of this paper is to show that strictly two-sided confidence intervals and hypoth-
esis tests suffer from several problems. These are illustrated in Figure 1, in which the p-values



Exact intervals and tests for discrete distributions 481

Figure 1. p-values and interval bounds for the mean of a Poisson distribution, when x = 9 has been ob-
served. The strictly two-sided Sterne [28] method is shown in black, and the fiducial Garwood [18] method
is shown in grey.

and interval bounds for the mean of a Poisson distribution are shown for two tests and their cor-
responding confidence intervals. The first of these is the strictly two-sided Sterne [28] interval,
the other being the fiducial Garwood [18] interval.

In the spirit of Birnbaum [3], the p-values are plotted as a function of the value θ0 of the param-
eter under the null hypothesis. In the Poisson model, it is reasonable to expect that a small change
in the null value of θ should lead to a small change in the p-value, since Pθ (X = x) is continu-
ous in θ , so that there is no concernable difference between the Poisson(θ) and Poisson(θ + ε)

models when ε is infinitesimal. This is not the case for the strictly two-sided test: its p-value is
discontinuous when viewed as a function of θ0. The evidence against two models, which for all
practical purposes are indistinguishable, can therefore differ greatly. Several examples of this are
seen in Figure 1; the p-value for θ0 = 4.954163, for instance, is 0.0722, so that the null hypoth-
esis is rejected at the 10% level, while the highly similar hypothesis θ0 = 4.954164 cannot be
rejected as its p-value is 0.1071.

Moreover, we would expect that the p-value increases as θ0 goes from 0 to the observed x, and
that it thereafter decreases, since this would mean that the p-value becomes smaller when the null
hypothesis agrees less with the data. This is not the case for the strictly two-sided test. Instead,
the p-value sometimes increases when the null θ is changed to agree less with the observed x.
As an example, consider the p-values shown in Figure 1. When x = 9 has been observed from a
Poisson distribution, the p-value when θ0 = 15.6 is 0.0993, so that the null hypothesis is rejected
at the 10% level. However, even though x = 9 disagrees even more with the null hypothesis
θ0 = 15.95, the p-value for this θ0 is 0.1011, and the hypothesis can not be rejected. The test
corresponding to the fiducial interval does not suffer from either of these problems.

The strictly two-sided confidence interval is no better than its corresponding test. When the
interval bounds are plotted as functions of the confidence level 1 − α, we see two phenomenons.
The first is that the interval bounds are discontinuous in 1 − α, meaning that a small change
in α can cause one of the interval bounds to leap. The second is that the bounds sometimes
are constant, meaning that a change in α not necessarily will lead to a change in the bounds.
For some α, both bounds remain unchanged in an interval (α − ε,α + ε). There is therefore no
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guarantee that accepting a larger α will lead to a shorter interval; we say that the interval is not
strictly nested. The fiducial interval does not suffer from either of these problems.

These properties can also cause strictly two-sided test and intervals to behave strangely as
more data is collected. As an example, consider the Blaker [4] test for the negative binomial
proportion θ . When k = 19 successes are observed after x = 38 trials, the maximum likelihood
estimator is θ̂ = 0.5 and Blaker p-value for the test of the hypothesis θ = 0.625 is 0.0.0929,
causing us to reject the null hypothesis at the 10% level. If we then decide to collect more data
by requiring that k = 20 successes should be observed, and observe one failure and one success
so that x = 40, θ̂ is still 0.5. We would now expect the p-value to decrease as this outcome
appears to be even less in line with θ = 0.625. Instead, the Blaker p-value for k = 20 and x = 40
is 0.106, and we can no longer reject the null hypothesis at the 10% level. Analogous problems
arise for confidence intervals. The 90% Blaker confidence interval for θ given k = 19 and x = 38
is (0.35992,0.62279), while for k = 20 and x = 40 it is (0.36202,0.62689). The latter interval
is not, as we normally would expect, a subset of the former. Moreover, the interval based on
more data is wider than the interval based on less data: the interval widths are 0.263 and 0.265,
respectively.

As we will see, intervals lacking strict nestedness is equivalent to their corresponding p-values
being discontinuous in θ . Consequently, intervals which are not strictly nested correspond to tests
that attach widely differing evidence to indistinguishable hypotheses. We believe that this is an
unacceptable property of a hypothesis test, and argue that such intervals and tests should be
avoided.

In this paper, we show that these problems are universal for strictly two-sided intervals and
tests, when the data is generated by a class of discrete distributions that includes the binomial,
Poisson and negative binomial distributions. They also carry over to exact analysis of contin-
gency tables and discrete models with nuisance parameters, when such analyses are based on
conditioning that reduces the problem to a one-parameter framework.

In Section 2, we give a formal description of the setting for our results. We then show that the
p-values of strictly two-sided tests are discontinuous, and that their corresponding intervals have
bounds that are not strictly monotone. Finally, we show that strictly two-sided intervals never
are strictly nested, meaning that both interval bounds simultaneously may remain unchanged
when α is changed. Section 3 is devoted to showing that strictly two-sided intervals typically
have bounds that moreover are discontinuous in α, and that the corresponding p-values lack
desirable monotonicity properties. In Section 4, it is then demonstrated that fiducial intervals not
only are strictly nested but also are the shortest equal-tailed intervals. The paper concludes with a
discussion in Section 5. Most proofs and some technical details are contained in two appendices.

2. The lack of strict nestedness and its implications

2.1. Setting

This section is concerned with nestedness. We start by defining this concept.
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Definition 1. A confidence interval is nested if the 1−α interval is a subset of the 1−α0 interval
when 1 > α > α0 > 0, and strictly nested if the 1 − α interval always is a proper subset of the
1 − α0 interval.

If an interval is not strictly nested, accepting a lower confidence level does not always yield a
shorter interval, so that sometimes nothing is gained by increasing α. Despite the importance of
nestedness, this property has not been discussed much in the literature, likely because it is taken
for granted. Notable exceptions are Blaker [4], who proved that the binomial Blyth–Still–Casella
interval is not strictly nested and Vos and Hudson [33], who showed by example that the Blaker
interval for a binomial proportion lacks strict nestedness.

Next, we give some definitions and state the assumptions under which strictly two-sided in-
tervals are not strictly nested. We will limit our study to parameters of discrete distributions Pθ

belonging to a class P(�,X ).

Definition 2. Let θ ∈ � denote an unknown parameter, with � being a connected open subset
of R, and let X ⊆ Z be a sample space consisting of consecutive integers. A family of distributions
Pθ on X parameterized by θ ∈ � belongs to P(�,X ) if

A1. ∀(θ, x) ∈ � ×X , Pθ (X = x) > 0,
A2. Pθ is stochastically increasing, i.e. Pθ (X ≤ x) is strictly decreasing in θ for any fixed

x ∈X \ supX ,
A3. For any fixed x ∈ X , Pθ (X = x) is differentiable in θ .

Conditions A1–A3 are satisfied by for instance the binomial, Poisson and negative binomial
distributions as long as � is the natural parameter space, that is, as long as it has not been
restricted. This follows directly from the proposition below, the proof of which is given in Ap-
pendix B. The conditions are typically also satisfied for other common parameterizations.

Proposition 1. If Pθ constitutes a regular discrete one-parameter exponential family with an
increasing likelihood ratio, where θ is the natural parameter, then Pθ ∈P(�,X ).

To fully understand the implications of the lack of nestedness, we will study the hypothesis
tests to which non-nested intervals correspond, so-called strictly two-sided tests:

Definition 3. Consider a two-sided test of H0 : θ = θ0 versus H1 : θ �= θ0, with a test statis-
tic T (θ0, x). The test is called strictly two-sided if the p-value of the test is λ(θ0, x) =
Pθ0(T (θ0,X) ≥ T (θ0, x)) and it satisfies conditions B1–B2 below. Moreover, in case λ(θ, x),
viewed as a function of θ , has a jump at θ0 we define λ(θ0, x) = lim infθ→θ0 λ(θ, x).

B1. For any x ∈X , there exists a θx ∈ � such that T (θx, x) < T (θx, y) for all y ∈X \ {x}.
B2. There exists a θ0 ∈ � such that there does not exist a μ ∈ � for which Pθ0(T (θ0,X) =

μ − k) = Pθ0(T (θ0,X) = μ + k) for all k : μ ± k ∈ X .

Condition B1 is included to ensure that the test does not yield the same result for all x and θ .
The name strictly two-sided comes from condition B2, which ensures that the p-value must be
computed by comparing the test statistic to both tails of the null distribution simultaneously.
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The p-value of a strictly two-sided test can be written as

λ(θ, x) =
∑

k∈Aθ,x

Pθ (X = k) where Aθ,x = {
k ∈X : T (θ, k) ≥ T (θ, x)

}
. (3)

For simplicity, we will assume that the test statistic is such that

B3. For any θ ∈ �, there exists xθ ∈ X such that T (θ, x) is decreasing in x when x < xθ and
increasing in x when x > xθ .

Under B3, the set Aθ,x has a particularly simple form.

Proposition 2. Under B3, the functions k1(θ, x) := min{k ≥ xθ : T (θ, k) ≥ T (θ, x)} and
k2(θ, x) := max{k ≤ xθ : T (θ, k) ≥ T (θ, x)} are such that

Aθ,x = {
k ∈X : k ≥ k1(θ, x)

} ∪ {
k ∈ X : k ≤ k2(θ, x)

}
. (4)

For any x, at least one of k1(θ, x) and k2(θ, x) is non-constant in θ .

The proof of the proposition is given in Appendix B.
When x is fixed and θ is varying we will refer to λ(θ, x) as the p-value function. We define

the corresponding confidence interval using the convex hull of {θ : λ(θ, x) > α} to ensure that it
in fact is an interval; as we will see in Section 3, {θ : λ(θ, x) > α} itself is not always connected.
The interval in the following definition is guaranteed to be nested: if α > α0 the convex hull of
{θ : λ(θ, x) > α} is a subset of the convex hull of {θ : λ(θ, x) > α0}.

Definition 4. The 1 − α confidence interval Iα(x) = (Lα(x),Uα(x)) corresponding to a test is

Iα(x) = (
inf

{
θ : λ(θ, x) > α

}
, sup

{
θ : λ(θ, x) > α

})
. (5)

A confidence interval is said to be strictly two-sided if it is based on the inversion of a strictly
two-sided test.

2.2. Examples of strictly two-sided tests

We will focus on four commonly used strictly two-sided tests, which satisfy conditions B1, B2
and B3 for some common discrete distributions, including the binomial, Poisson and negative bi-
nomial distributions. These tests are briefly described below. Further details, as well as conditions
for B1–B3 to hold, are given in Appendix A.

The likelihood ratio test, for which T (θ, x) is the likelihood ratio statistic [20,27].
The score test, for which T (θ, x) is the score statistic [20,27].
The Sterne test, for which T (θ, x) = 1/Pθ (X = x) [28].
The Blaker test, which in fact is a class of tests. Given a statistic S(x), the Blaker statistic is

T (θ, x) = 1/min{Pθ (S(X) ≤ S(x)),Pθ (S(X) ≥ S(x))}, was introduced in Blaker [4]. See also
[37] for a interpretation based on confidence curves. In the binomial, negative binomial and
Poisson settings, we will use the sufficient statistic S(x) = x, as is common.
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In Section 2.5, we will discuss confidence intervals that have varying tail-coverage but are
based on minimization algorithms rather than test inversion. Because these intervals do not fall
under Definition 4 we will refer to them as being of strictly two-sided-type rather than as being
strictly two-sided.

2.3. Lack of strict nestedness and its interpretation

We will now show that strictly two-sided intervals lack strict nestedness, and that this is caused
by jumps in the p-value function λ(θ, x), viewed as a function of θ .

Proposition 3. Assume that Pθ ∈P(�,X ). Let λ(θ, x) be the p-value function of a strictly two-
sided test and let Iα(x) denote its corresponding strictly two-sided confidence interval. Then for
any x ∈X :

(a) λ(θ, x) is not continuous in θ ,
(b) the bounds of Iα(x) are not strictly monotone in α,
(c) Iα(x) is not strictly nested.

First, we show that λ(θ, x) has jumps. For any fixed x ∈ X , by Proposition 2 we have, under
B3,

λ(θ, x) =
∑

k∈Aθ,x

Pθ (X = k) =
∑

k≥k1(θ,x)

Pθ (X = k) +
∑

k≤k2(θ,x)

Pθ (X = k), (6)

where at least one of the ki(θ, x) is non-constant in θ . ki(θ, x) are integer-valued step-functions.
Thus, for ε > 0 whenever ki(θ, x) < ki(θ + ε, x), ki must have a jump between θ and θ + ε. This
induces a jump in the p-value function as well. To see this, assume without loss of generality
that k1(θ + ε, x) = k1(θ, x) and k2(θ + ε, x) = k2(θ, x) + 1. Then

λ(θ + ε, x) =
∑

k≥k1(θ,x)

Pθ+ε(X = k) +
∑

k≤k2(θ,x)

Pθ+ε(X = k) + Pθ+ε

(
X = k2(θ, x) + 1

)
,

but by A1 and A3,

lim
ε↘0

λ(θ + ε, x) = λ(θ, x) + Pθ

(
X = k2(θ, x) + 1

)
> λ(θ, x).

Thus λ(θ + ε, x) �↘ λ(θ, x) as ε ↘ 0 and the function is hence not continuous in θ . In particular,
we have shown that λ(θ, x) has the following property:

Lemma 1. Under the assumptions of Theorem 3, λ(θ, x) as a function of θ has a jump whenever
a point is added to or removed from Aθ,x .

Values of α for which Iα(x) is not strictly nested correspond to the jumps in λ(θ, x). To see
this, note that if the interval (α0, α1) ⊆ (0,1) is such that{

θ : λ(θ, x) ∈ (α0, α1)
} =∅ (7)
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then for α ∈ (α0, α1), we have λ(θ, x) > α if and only if λ(θ, x) > α1, which means that the
lower interval bound

Lα(x) = inf
{
θ : λ(θ, x) > α

} = inf
{
θ : λ(θ, x) > α1

} = Lα1(x)

so that Lα(x) is not strictly monotone in α. By definition, the interval is not strictly nested if
there exists an α such that both Lα(x) and the upper interval bound Uα(x) simultaneously are
constant in a neighbourhood of α. The proof that there always exists such an α is somewhat
technical, and is deferred to Appendix B.

In particular, Proposition 3 holds when the test and its corresponding confidence interval are
exact. The proposition is illustrated for exact tests and intervals in Figures 2–3. In Figure 2,
p-values for the strictly two-sided [4,28], likelihood ratio and score tests [20,27] are compared
to the p-values of the non-strictly two-sided test that corresponds to the fiducial interval in the
Poisson and binomial settings. It is readily verified that the strictly two-sided tests satisfy B1–
B3; see Appendix A. In Figure 3, the interval bounds of some strictly two-sided intervals are
compared to the bounds of the fiducial interval. In the Poisson case, the Sterne, Blaker, likelihood
ratio, score, Crow–Gardner [10,14] and Kabaila–Byrne [21] (the latter two being of strictly two-
sided-type) intervals are compared to the Garwood interval. In the binomial case, the Sterne,
Blaker, likelihood ratio, score, Crow [5,9,13] (which is of strictly two-sided-type) and Göb and
Lurz [19] intervals are compared to the Clopper–Pearson interval.

2.4. The largest α for which an interval is strictly nested

Proposition 3 tells us that strictly two-sided confidence intervals lack strict nestedness and that
their bounds are not strictly monotone in α. This may however not be a great problem if the lack
of strict nestedness and monotonicity occurs only for α close to 1.

Under some stronger assumptions on T (θ, x), X and Pθ we can derive expressions for the
largest α for which Iα(x) is strictly nested and the largest α for which each interval bound is
strictly monotone. As we will see, these bounds for α are usually close to 0, meaning that the
lack of strict nestedness and monotonicity occurs also for α that are used in practice.

We restrict our attention to samples spaces of the form X = {0,1,2, . . .} or X = {0,1,2, . . . ,

n}, for some known n < ∞. Moreover, we will require some additional conditions, which essen-
tially make up stronger versions of A2 and B3:

A2+. Pθ (X ≤ x) is strictly decreasing in θ for any x ∈X \ supX .
B3+. (i) For any θ ∈ �, there exists xθ ∈ X such that T (θ, x) is strictly decreasing in x

when x < xθ and strictly increasing in x when x > xθ .
(ii) For any x ∈ X , there exists a θx ∈ � such that λ(θx, x) = 1 and T (θ, x) is strictly

decreasing in θ when θ < θx and strictly increasing in θ when θ > θx .
(iii) xθ is an increasing function of θ .

Proposition 4. Assume that X = {0,1,2, . . .} or X = {0,1,2, . . . , n}. Under A2+, B3+ and the
assumptions of Proposition 3 it holds that

(a) There exists an αnest > 0 such that Iα(x) is strictly nested for all x ∈X and α ≤ αnest.
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Figure 2. Unlike the p-values for the fiducial test (shown in grey in all plots), the strictly two-sided Sterne,
Blaker, likelihood ratio (LR) and score p-values are discontinuous and not bimonotone. In (a), the p-values
are shown when x = 2 is an observation from a Poisson distribution with null mean θ . In (b), the p-values
are shown when x = 2 is an observation from a null Bin(20, θ)-distribution.
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Figure 3. Interval bounds of several strictly two-sided and strictly two-sided-type confidence intervals. The
intervals are compared to the fiducial interval, the bounds of which are plotted in grey. In (a), the intervals
are shown when x = 2 is an observation from a Poisson distribution with mean θ . In (b), the intervals are
shown when x = 2 is an observation from a Bin(20, θ)-distribution.
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Figure 4. (a) The largest α for which the lower and upper bounds of the Blaker interval for a binomial
proportion are strictly monotone (αL(x) and αU (x)), and the largest α for which the interval is nested
conditioned on x (αnest(x)), when n = 20. The common choices α ∈ {0.01,0.05,0.1} are shown as dashed
lines. (b) αnest, the largest α for which the Blaker interval for a binomial proportion is strictly nested, as
a function of n.

(b) Let αL = infx∈X infθ∈{θ :T (θ,0)>T (θ,x)} λ(θ, x). Then (i) αL > 0, (ii) for all x > 0, Lα(x) is
continuous and strictly increasing in α when α ≤ αL, and (iii) there exists an x > 0 and an ε > 0
such that Lα(x) is constant in (αL,αL + ε).

(c) For X = {0,1,2, . . . , n}, let αU = infx∈X supθ∈{θ :T (θ,n)>T (θ,x)} λ(θ, x). Then (i) αU > 0,
(ii) for all x < n, Uα(x) is continuous and strictly decreasing in α when α ≤ αU , and (iii) there
exists an x > 0 and an ε > 0 such that Uα(x) is constant in (αU ,αU + ε).

Proposition 4 deals with α guaranteeing strict monotonicity and nestedness for all x. We can
also study monotonicity and nestedness for fixed x. For any x ∈X , let αL(x) denote the largest α

for which Lα(x) is strictly monotone, and αU(x) denote the largest α for which Uα(x) is strictly
monotone. Finally, let αnest(x) be the largest α for which Iα(x) is strictly nested. In Figure 4(a),
these quantities are shown for the Blaker interval for a binomial proportion, with n = 20 and
x ∈ {1,2, . . . ,19}. In this example, αnest(x) < 0.1 for most x. As is seen, αnest(x) is often equal
to or very close to max(αL(x),αU (x)). Figures for other intervals, other n and other distributions
are similar.

Figure 4(b) shows αnest for the binomial Blaker interval as a function of the sample size n.
It is seen that when 7 ≤ n ≤ 100 we have αnest < 0.01 for the Blaker interval, meaning that the
interval lacks strict nestedness for virtually all values of α that actually are used in practice for
these sample sizes.

2.5. Confidence intervals not based on test-inversion

An interesting class of confidence intervals are based on minimization algorithms. This class in-
cludes [5,9,10,13,14,21] and [26] intervals. For such intervals, the shortest interval is determined
for each α. What typically occurs for these intervals is that they correspond to inversion of differ-
ent tests for different α. Often this will result in intervals that lack nestedness (and not only strict
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Figure 5. Comparison between p-values corresponding to fiducial intervals (grey) and p-values corre-
sponding to some minimization-based intervals (black). The p-values of the tests corresponding to the
Kabaila–Byrne and Crow–Gardner intervals are shown for x = 2 being an observation from a Poisson dis-
tribution with null mean θ , and the p-values of the test corresponding to the Schilling–Doi interval are
shown for x = 8 being an observation from a null Bin(20, θ)-distribution.

nestedness), as it leads to some values of θ having multiple p-values attached to them. This can
be seen in Figure 3: neither the Crow interval for the binomial parameter nor the Crow–Gardner
and Kabaila–Byrne intervals for the Poisson parameter are nested.

If a two-sided 1 − α interval is (θ�, θu), then the p-values for the corresponding two-sided
tests of the hypotheses θ0 = θ� and θ0 = θu are α. Using this relationship, we can plot the p-
value functions of tests corresponding to intervals that are not defined in terms of test inversion,
such as minimization-based intervals. The lack of nestedness means that the p-value function
λ(θ, x) of the corresponding test is not a proper function for x ∈X fixed, since some values of θ

are mapped to more than one p-value. For some intervals, this problem becomes extreme. Two
examples of this are the Kabaila–Byrne and Crow–Gardner intervals for a Poisson mean, shown
in Figure 5. For other intervals, the lack of nestedness results in less extreme p-value functions.
An example of this is the Schilling–Doi interval for a binomial proportion; in Figure 5 the jumps
in its p-value function are shown as vertical lines, in order to make the consequences of the
non-nestedness easier to spot.

3. Continuity and bimonotonicity

For � ⊆R, we say that a function f : � → R is strictly bimonotone on � if there exist θ0, θ1 ∈ �

such that f is strictly increasing on (inf�,θ0), constant on (θ0, θ1) and strictly decreasing on
(θ1, sup�).

As have been argued for example, by Hirji [20] and Vos and Hudson [33], this type of bi-
monotonicity is a highly desirable property of p-values when viewed as a function of θ . Ideally
λ(θ, x) should increase monotonically from 0 to 1 and then decreases monotonically to 0, just
like the p-values of the tests corresponding to fiducial intervals do in Figure 2. One reason that
this property is desirable is the following result.

Proposition 5. The bounds of a confidence interval are discontinuous in α if their corresponding
p-value function is not strictly bimonotone in θ .
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Proof. Assume without loss of generality that there exist θ0 < θ1 < inf{θ : λ(θ, x) = 1} such
that λ(θ, x) is increasing in θ in the interval (inf�,θ0) and decreasing or constant in the interval
(θ0, θ1). Let α0 = λ(θ0, x). Then θ1 = inf{θ > θ0 : λ(θ, x) > α0}. Thus Lα0(x) = θ0 but for all
ε > 0, Lα+ε(x) ≥ θ1, meaning that Lα(x) has a jump of length θ1 − θ0 > 0 at α = α0. An
analogous argument holds for the upper bound. �

Hirji [20] mentions that p-value functions of strictly two-sided tests need not be bimonotone,
whereas Vos and Hudson [33] showed by example that the Blaker test for a binomial proportion
lacks bimonotonicity. Upon closer inspection of Figures 2 and 3, it can be seen that all the strictly
two-sided tests considered here suffer from this problem.

Next, we give a condition under which the p-value function of a strictly two-sided test is
strictly bimonotone for fixed x, the derivation of which is given in Appendix B. The bimonotonic-
ity condition requires the following additional assumptions, which are satisfied by the binomial,
negative binomial and Poisson distributions.

A4. For x ∈ X \ supX , limθ→inf� Pθ (X ≤ x) = 1 and limθ→sup� Pθ (X ≤ x) = 0.
A5. For k1, k2 ∈X such that k1 ≥ k2 + 2,

∑
k≥k1

Pθ (X = k)+∑
k≤k2

Pθ (X = k) has a unique
minimum in the interior of �.

Proposition 6. Under the assumptions and notation of Proposition 3, assume that Pθ satisfies
conditions A4 and A5. Let θr(θ0, x) be the solution to

k1(θ0,x)−1∑
k=k2(θ0,x)+1

d

dθ
Pθ (X = k) = 0 (8)

in the interior of �. Then

(a) λ(θ, x) is strictly bimonotone in θ for any fixed x ∈ X \ supX .
(b) The bounds of Iα(x) are continuous in α,

if and only if there does not exist (θ0, x) such that either

θ0 < inf
{
θ : λ(θ, x) = 1

}
and θ0 < θr(θ0, x), or

(9)
θ0 > sup

{
θ : λ(θ, x) = 1

}
and θ0 > θr(θ0, x).

For any given Pθ , we can evaluate numerically whether the bimonotonicity condition (9) is
violated for a pair (θ0, x). We have not been able to find a strictly two-sided test that passes (9)
for any x. Proposition 6 is illustrated in the Poisson and binomial settings in Figures 2–3. When
x = 2 from a Poisson random variable has been observed, the p-value functions of the Sterne
and Blaker tests are non-bimonotone for the first time when θ = 3. For the likelihood ratio test,
the first occurrence is at θ = 1 and for the score test the first occurrence is at θ = √

12.
A consequence of λ(θ, x) lacking bimonotonicity is that the confidence “interval” {θ :

λ(θ, x) > α} may contain holes, and therefore not be an interval at all. The common remedy
for this is to redefine the intervals as the convex hull of {θ : λ(θ, x) > α}, as we did in Def-
inition 4. This does not change the infimum or supremum of the set, and does therefore not
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affect nestedness or continuity of the bounds. Similarly, Fay [15] proposed handling the prob-
lem of non-bimonotone p-value functions by redefining the p-values using the convex hull
of {θ : λ(θ, x) > α}. The redefined p-values are constant where they previously were non-
monotone. By Proposition 5, the bounds of the corresponding intervals are however still dis-
continuous in α.

For the binomial and negative binomial distributions, the left-hand side of (8) is a polynomial
of order k1(θ0, x) − k2(θ0, x) − 1. For the Poisson distribution, it is straightforward to find a
general solution to (8), which yields the following proposition, the proof of which is omitted.

Proposition 7. For X ∼ Poisson(θ), the p-value function λ(θ, x) belonging to a strictly two-
sided test is bimonotone in θ if and only if there does not exist (θ, x) such that either

• θ < inf{θ : λ(θ, x) = 1} and θ < (
(k1(θ,x)−1)!

k2(θ,x)! )1/(k1(θ,x)−k2(θ,x)−1), or

• θ > sup{θ : λ(θ, x) = 1} and θ > (
(k1(θ,x)−1)!

k2(θ,x)! )1/(k1(θ,x)−k2(θ,x)−1).

Note that if we let n = k1(θ, x) − k2(θ, x) − 1 then

(
(k1(θ, x) − 1)!

k2(θ, x)!
)1/(k1(θ,x)−k2(θ,x)−1)

=
(

k1(θ,x)−1∏
k=k2(θ,x)+1

k

)1/n

,

the geometric mean of Ac
θ,x .

4. Some results for fiducial intervals

4.1. Fiducial intervals are strictly nested and have continuous bounds

The test corresponding to the fiducial intervals is not strictly two-sided. Its p-values are defined
by (2). The following proposition, the proof of which can be found in Appendix B, states that
fiducial intervals do not suffer from the problems associated with strictly two-sided intervals.

Proposition 8. Under A1–A3 and A4, fiducial intervals are strictly nested. Moreover, for any
x ∈X the bounds of the interval are continuous in α and λf (θ, x) is continuous in θ .

4.2. Optimality results

For a binomial proportion, Wang [34] presented results claiming that under certain conditions on
α and n the fiducial Clopper–Pearson interval is the shortest interval in the class of exact confi-
dence intervals with monotone bounds. A counterexample to the optimality result of [34] is the
strictly two-sided Blaker interval [4], which always is contained in the Clopper–Pearson interval.
Among equal-tailed intervals however, fiducial intervals posses length optimality properties. We
expect that this is known, but have not been able to find such results in the literature, for which
reason we briefly cover length optimality below.
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Our main tool for showing length optimality is a theorem due to [6]. Under assumptions A1,
A2 and A3, consider the class ML,α of one-sided 1 − α confidence bounds (Lα(x),∞) ∩ � for
θ ∈ � based on an observation x of X ∼ Pθ satisfying the following three criteria:

C1. Lα(x) ≤ Lα(x + 1),
C2. infθ∈� Pθ (Lα(x) ≤ θ) ≥ 1 − α,
C3. Lα(x) only depends on x, α and Pθ .

Criterion C3 rules out randomized bounds, which can be shorter while maintaining exact cov-
erage, but rely on conditioning on information not contained in the sufficient statistic; see, for ex-
ample, [29]. C3 is implicit in Bolshev’s paper; we have added it here for clarity. ML,α is the class
of monotone exact lower confidence bounds. We call an interval (or a bound) Iα(x) in a class
of intervals K the smallest interval in K if, for any other interval I ∗

α (x) ∈ K, Iα(x) \ I ∗
α (x) = ∅.

For the ML,α class, Bolshev [6] proved that the one-sided lower fiducial bound is the smallest
bound in ML,α . Under analogous conditions, the upper fiducial bound is similarly the smallest
bound in the set MU,α of exact monotone upper confidence bounds.

The extension of Bolshev’s theorem to two-sided confidence intervals is straightforward and
does not require the additional conditions that Wang [34] used in the binomial setting. Consider
the class Mα of exact equal-tailed confidence intervals (Lα/2(x),Uα/2(x)) for θ based on an
observation x of X ∼ Pθ satisfying

D1. Lα/2(x) ≤ Lα/2(x + 1) and Uα/2(x) ≤ Uα/2(x + 1),
D2. infθ∈� Pθ (Lα/2(x) ≤ θ) ≥ 1 − α/2 and infθ∈� Pθ (Uα/2(x) ≥ θ) ≥ 1 − α/2,
D3. (Lα/2(x),Uα/2(x)) only depends on x, α and Pθ .

Note that if an interval belongs to Mα then it is the intersection of a bound in ML,α/2 and a
bound in MU,α/2.

Proposition 9. The fiducial interval is the smallest interval in Mα .

Proof. Let Iα(x) = (Lα/2(x),Uα/2(x)) denote the fiducial interval and assume that there is an in-
terval I ∗

α (x) = (L∗
α/2(x),U∗

α/2(x)) in Mα such that Iα(x) \ I ∗
α (x) �=∅. Then L∗

α/2(x) > Lα/2(x)

or U∗
α/2(x) < Uα/2(x). Consequently, at least one of the one-sided bounds (L∗

α/2(x),∞) ∩ � or
(−∞,U∗

α/2(x))∩� is smaller than the corresponding fiducial bound. By Bolshev’s theorem, this
means that I ∗

α (x) is not in Mα , which is a contradiction. �

Similar results can be obtained for intervals with fixed but unequal tails, in a completely ana-
logue manner.

Finally, the fact that the fiducial interval is the smallest interval in Mα leads to the following
proposition, in which the smallness is expressed in the more familiar terms of the interval length
Uα/2(x) − Lα/2(x).

Proposition 10. Among the intervals in Mα , the fiducial interval minimizes the expected length
for all θ ∈ � as well as the length for all x ∈ X .
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Proof. For an interval (L∗
α/2(x),U∗

α/2(x)) ∈Mα to have shorter length than the fiducial interval
(Lα/2(x),Uα/2(x)) it must hold that L∗

α/2(x) > Lα/2(x) or U∗
α/2(x) < Uα/2(x). By Proposition 9

neither condition can be fulfilled. Since the fiducial interval therefore minimizes the length for
each x, it also minimizes the expected length

∑
k Pθ (X = k)(Uα/2(k) − Lα/2(k)). �

A consequence of Proposition 10 is that, in the class of equal-tailed two-sided tests of θ =
θ0, the test that corresponds to the fiducial interval is admissible in the sense of Cohen and
Strawderman [12].

5. Conclusion

There exist a large number of methods for obtaining exact confidence intervals that are shorter
than the equal-tailed fiducial intervals. The use of such an interval comes at the cost of losing
control over the balance between the coverage levels of the corresponding lower and upper confi-
dence bounds. In many situations it is preferable to use an equal-tailed interval, in order to guard
equally against overestimation and underestimation and not to bias the inference in some direc-
tion. The case for equal-tailed intervals is further strengthened by the fact that strictly two-sided
confidence intervals lack strict nestedness. This causes difficulties with the interpretation of the
intervals: what does it mean that, for a particular x, the 92% interval equals the 95% interval?
Which confidence level should be reported for such an interval? More seriously, we have also
seen that such intervals may yield highly disparate conclusions for two indistinguishable models
Pθ and Pθ+ε . From a hypothesis testing perspective, this occurs when the null hypothesis θ0 is
changed slightly. From a confidence interval perspective, it can occur for small changes in α,
since the bounds of strictly two-sided intervals typically are discontinuous in α. These problems
have been pointed out for specific intervals in the past [4,33]. We have shown that they in fact
are inherent to strictly two-sided confidence intervals.

The problems discussed in this paper arise also for strictly two-sided methods for discrete
distributions not covered by Definition 2. Examples include the hypergeometric distribution and
the joint distribution of two binomial proportions. We have restricted our attention to the class of
distributions given by Definition 2 in order to keep the proofs reasonably short.

Strictly two-sided and equal-tailed confidence intervals are the most commonly used types of
two-sided confidence intervals. We have seen that strictly-two sided intervals lack strict nested-
ness and that an extension of Bolshev’s theorem shows that the standard fiducial intervals are the
shortest equal-tailed exact intervals. While fiducial intervals have been criticized for being overly
conservative and too wide [1,7,8], the conclusion of this paper is that they for practical purposes
in fact are the optimal strictly nested intervals.

Appendix A: Strictly two-sided tests

A.1. The likelihood ratio and Sterne tests

Let L(θ, x) = Pθ (X = x) be the likelihood function of Pθ . The likelihood ratio statistic is

TLR(θ0, x) = supθ∈� L(θ, x)

L(θ0, x)
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and the Sterne statistic is

TSt(θ0, x) = 1/L(θ0, x).

Both these statistics are minimized when θ0 is the maximum likelihood estimator of θ given x.
Thus for B1 to be satisfied it suffices that the maximum likelihood estimator of θ is well-defined
and strictly monotone in x. B2 is satisfied when there exists a θ such that L(θ, x) is an asymmet-
ric function of x. By definition, B3 is satisfied if there exists an x0 such that L(θ, x) is increasing
when x < x0 and decreasing when x > x0. This is guaranteed if Pθ has a monotone likelihood
ratio.

The binomial, negative binomial and Poisson distributions all have well-defined and strictly
monotone maximum likelihood estimators and monotone likelihood ratios. Moreover, their prob-
ability functions are in general asymmetric in x. The likelihood ratio and Sterne tests therefore
satisfy conditions B1–B3 for these models.

A.2. The score test

Let U(θ, x) = ∂
∂θ

lnL(θ, x) and let I (θ) be the Fisher information of Pθ . The score test statistic
is

TSc(θ0, x) = (U(θ0, x))2

I (θ0)
.

If the maximum likelihood estimator of θ exists and is unique, then B1 is satisfied, with θx be-
ing the maximum likelihood estimator of θ given x. B2 is satisfied if the distribution of U(θ, x)2

is asymmetric for some θ . B3 is satisfied if there exists an x0 such that U(θ, x)2 is decreasing
when x < x0 and increasing when x > x0.

If Pθ is a regular exponential family with natural parameter θ , then U(θ, x) = x − Eθ (X)

and I (θ) = Varθ (X). B2 is satisfied if the distribution of X2 is asymmetric for some θ and
B3 is satisfied since (x − Eθ (X))2 is convex in x. B1–B3 are therefore satisfied for the binomial,
negative binomial and Poisson distributions, using the natural parametrizations. These conditions
are also satisfied for the most commonly used alternative parametrizations.

A.3. The Blaker test

The Blaker statistic is

TB(θ0, x) ∝ (
λT (θ0, x)

)−1
,

where λT (θ0, x) is the p-value of a test with a rejection region that is the union of the rejection
regions of two one-sided level α/2 tests. The properties of T (θ0, x) therefore depend on the
choice of λT (θ0, x). A typical choice is the fiducial p-value (2).

Under A3 and A4, for any x ∈ X there exist θx such that
∑

k≤x−1 Pθx (X = k) < 1/2 and∑
k≥x+1 Pθx (X = k) < 1/2. Then we have

∑
k≤x Pθx (X = k) ≥ 1/2 and

∑
k≥x Pθx (X = k) ≥

1/2, so that λf (θ, x) = 1. Let �1(x) denote the set of such θx .
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Now, let y = x − 1. Then
∑

k≤y−1 Pθx (X = k) < 1/2 but
∑

k≥y+1 Pθx (X = k) =∑
k≥x Pθx (X = k) ≥ 1/2, so if θx ∈ �1(x) then θx /∈ �1(y). Similarly, if we let y = x + 1,∑
k≤y−1 Pθx (X = k) = ∑

k≤x Pθx (X = k) ≥ 1/2, so if θx ∈ �1(x) then θx /∈ �1(y). Thus, A3
and A4 are sufficient for B1 to hold for the Blaker statistic based on the fiducial p-value.

B2 holds if the distribution of λT (θ, x) is asymmetric in x for some θ . For λf (θ, x) this holds
if Pθ (X = x) is asymmetric as a function of x for some θ .

Finally, B3 is satisfied since the monotonicity of Pθ (X ≤ x) in x implies that λT (θ, x) is a
bimonotone function of x. B1–B3 are therefore satisfied for the binomial, negative binomial and
Poisson distributions.

Appendix B: Proofs

B.1. Proof of Proposition 1

If Pθ is a discrete one-parameter exponential family in natural form, for (θ, x) ∈ � × X its
probability function can be written as

pθ(x) = Pθ (X = x) = exp
{
θT (x) − K(θ)

}
h(x), (B.1)

where T : X �→ R is a function that does not depend on θ and K : � �→ R is infinitely often
differentiable in � since Pθ is regular [23], Theorem 1.17. θ , T (x) and K(θ) are all finite for
(θ, x) ∈ � ×X , and thus (B.1) is strictly positive when (θ, x) ∈ � ×X , yielding A1. Moreover,
A3 follows from the fact that when x is fixed (B.1) is differentiable in θ since θT (x) and K(θ)

are infinitely differentiable.
To see that an increasing likelihood ratio implies A2, let �(x) = pθ2(x)/pθ1(x) for θ1 < θ2

in �. The likelihood ratio �(x) is increasing in x. Let

Fθ(x) = Pθ (X ≤ x) =
∑
k≤x

Pθ (X = k)

and

Gθ(x) = Pθ (X > x) =
∑
k>x

Pθ (X = k).

We consider the cases when �(x) ≤ 1 and �(x) ≥ 1 separately.
If �(t) ≤ 1 then for s < t , Fθ2(s) ≤ Fθ1(s) since pθ2(x) ≤ pθ1(x) for all x < t .
If �(t) ≥ 1 then pθ2(x) ≥ pθ1(x) when x > t and for s > t , Gθ2(s) ≥ Gθ1(s). Since Fθ(x) =

1 − Gθ(x), it follows that Fθ2(s) ≤ Fθ1(s).

B.2. Proof of Proposition 2

First, assume that k ≥ xθ . Then by B3 T (θ, ·) is increasing at k. There are two possible scenar-
ios:
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(i) k ≥ k1(θ, x): By definition, T (θ, k1(θ, x)) ≥ T (θ, x). Since T (θ, ·) is increasing for x ≥
xθ it follows that T (θ, k) ≥ T (θ, k1(θ, x)) ≥ T (θ, x), meaning that k ∈Aθ,x .

(ii) k < k1(θ, x): it follows from the definition of k1(θ, x) that T (θ, k) < T (θ, x), so k /∈Aθ,x .

In summary, if k ≥ xθ then k ∈ Aθ,x if and only if k ≥ k1(θ, x). An analogous argument shows
that if k ≤ xθ then k ∈ Aθ,x if and only if k ≤ k2(θ, x), and the first part of the proposition
follows.

To see that at least one of k1(θ, x) and k2(θ, x) is non-constant in θ , note that by B1, for any
pair (x, y) ∈ X 2 there exist (θx, θy) ∈ �2 such that x /∈ Aθx,y but x ∈ Aθy,y . The set Aθ,x is
therefore not constant in θ , and thus at least one of k1(θ, x) and k2(θ, x) must be non-constant
in θ .

B.3. Proof of Proposition 3

(a) and (b) were proved in Section 2.3. We will now prove (c). Let Lα(x) and Uα(x) denote
the lower and upper bounds of the interval. We will show that for any x ∈ X there exists an
α0 ∈ (0,1) such that Lα(x) and Uα(x) simultaneously are constant in a neighbourhood of α0, so
that the confidence interval is not strictly nested.

We introduce the mutually disjoint sets

�1(x) := {
θ : λ(θ, x) = 1

}
,

��(x) := {
θ : θ ≤ inf�1(x)

}
and (B.2)

�u(x) := {
θ : θ ≥ sup�1(x)

}
,

which are such that ��(x) ∪ �1(x) ∪ �u(x) = �. We also define

�α(x) := {
θ : λ(θ, x) > α

}
.

By condition B1, given x ∈ X there exists θx ∈ � such that

λ(θx, x) = Pθx

(
T (θx,X) ≥ T (θx, x)

) = 1 − Pθx

(
T (θx,X) < T (θx, x)

) = 1,

so �1(x) is non-empty.
First, we investigate the behaviour of the bounds when either ��(x) or �u(x) is empty. Let

�̄α(x) be the closure of �α(x). Since �1(x) ⊆ �̄α(x) for all α ∈ (0,1),

sup�1(x) ∈ �̄α(x) and inf�1(x) ∈ �̄α(x).

If inf�1(x) = inf�, then ��(x) = {θ : θ < inf�} =∅. Then

Lα(x) = inf�α(x) ≤ inf�1(x) = inf� ≤ inf�α(x),

so Lα(x) = inf� for all α ∈ (0,1). Similarly, if sup�1(x) = sup� then �u(x) = {θ : θ >

sup�} =∅, and

Uα(x) = sup�α(x) ≥ sup�1(x) = sup� ≥ sup�α(x),
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so Uα(x) = sup� for all α ∈ (0,1). Thus, when ��(x) is empty Lα(x) is constant and when
�u(x) is empty Uα(x) is constant. In this case, whether or not the interval is strictly nested
therefore depends on whether there exists an α ∈ (0,1) such that the other bound is constant in a
neighbourhood of α. We will therefore without loss of generality assume that neither ��(x) nor
�u(x) are empty.

Let

α� = lim inf
θ→inf�1(x)

λ(θ, x) and αu = lim inf
θ→sup�1(x)

λ(θ, x).

Since Aθ,x �=X for θ < inf�1(x), by A1 α� < 1, and similarly αu < 1. Thus, a point is added to
or removed from Aθ,x at θ = inf�1(x) and θ = sup�1(x), and by Lemma 1 the p-value function
λ(θ, x) must have jumps at θ = inf�1(x) and at θ = sup�1(x). Then for α0 = max(α�,αu),
there is an α1 ∈ (α0,1) for which there exists δ > 0 such that{

θ ∈ � : λ(θ, x) ∈ (α1 − δ,α1 + δ)
} =∅.

Thus both the upper and the lower bound of Iα(x) are constant in a neighbourhood of α = α1,
and the interval is not strictly nested.

B.4. An auxiliary lemma

The following auxiliary lemma will be used in the proof of Proposition 4.

Lemma 2. With X as in Proposition 4, for any y, x ∈X such that 0 ≤ y < x, let

θy,x = inf
{
θ : T (θ, x) ≤ T (θ, y)

}
(B.3)

and define θx,x := inf�1(x). Under A2+ and B3+,

θ0,x ≤ θ1,x ≤ · · · ≤ θx−1,x ≤ θx,x . (B.4)

Moreover,

Aθ,x = {k ∈ X : k ≥ x} if and only if θ ∈ (inf�,θ0,x), (B.5)

and

Aθ,x = {k ∈ X : k ≤ y} ∪ {k ∈X : k ≥ x} if and only if θ ∈ [θy,x, θy+1,x). (B.6)

Proof. First, we establish some facts about θy,x and the behaviour of T (θ, ·) for such θ . If θ ∈
�1(x), then it follows from (3) that T (θ, x) ≤ T (θ, y). Thus, by (B.3) we have θy,x ≤ inf�1(x),
so by (B.2), θy,x ∈ ��(x).

With xθ as defined in B3+(i), T (θ, ·) is increasing at x if x > xθ . If θ ∈ �1(x) then xθ = x.
By B3+(iii), xθ is an increasing function of θ . Thus, if θ ≤ inf�1(x), i.e. θ ∈ ��(x), we have
x > xθ . Since θy,x ∈ ��(x), T (θy,x, ·) is increasing at x.
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It now follows that for any y < x, T (θ, x) < T (θ, y) can happen only if T (θ, ·) is decreasing
at y. Whenever T (θ, x) < T (θ, y) and T (θ, ·) is decreasing at y, we have T (θ, x) < T (θ, y) <

T (θ, y − 1), and (B.4) follows since {θ : T (θ, x) ≤ T (θ, y)} ⊂ {θ : T (θ, x) ≤ T (θ, y − 1)}.
Let x ≥ 1 be fixed. If θ ≤ θ0,x then T (θ, x) < T (θ,0) and (B.4) ensures that T (θ, x) < T (θ, y)

for all other y < x as well. (B.5) now follows from (3).
Next, for some y < x, let θ ∈ ��(x) be such that θ > θy,x . Under B3+(ii) we have θ < θx ∈

�1(x), so T (·, x) is decreasing in ��(x). However, if T (θ, x) < T (θ, y) then y < xθ , so θ ≥
sup�1(y). Thus θx,y > θy , implying that T (·, y) is increasing at θy,x . Thus T (θ, x) < T (θ, y)

for all θ > θy,x . Equations (B.5) and (B.6) now follow from (3). �

B.5. Proof of Proposition 4

We start by showing (b) and finish by proving (a). The proof of (c) is analogous to the proof
of (b), and is therefore omitted.

(b) We wish to find the largest αL such that, for all x ∈ X , Lα(x) is strictly monotone in α

when α < αL. For a given x, let αL(x) be the largest α such that Lα(x) is strictly monotone in
α when α < αL(x). Then αL ≤ αL(x) for all x, with equality for some x. We therefore show the
statement by showing that αL(x) = infθ∈{θ :T (θ,0)>T (θ,x)} λ(θ, x) > 0.

As in the proof of Lemma 2, it suffices to study θ ∈ ��(x), where ��(x) is defined as in (B.2).

(i) Let x ≥ 1 be fixed. If θ ≤ θ0,x , defined as in (B.3), then by (B.5), Aθ,x = {k : k ≥ x}. Thus,
by (3), λ(θ, x) = Pθ (X ≥ x). The p-value function λ(·, x) is therefore non-negative (by A1),
yielding (i).

(ii) λ(·, x) is strictly increasing (by A2+) and continuous (by A3). We extend the p-value
function by defining λ(inf�,x) := limθ↘inf� λ(θ, x). Then λ(θ, x) is a continuous strictly
monotone bijection from the compact set [inf�,θ0,x] to the compact set [λ(inf�,x),αL(x)].
It is therefore a homeomorphism, and it follows that its inverse Lα(x) is continuous and strictly
monotone in α, which yields (ii).

(iii) From Lemmas 2 and 1, it follows that the first discontinuity in λ(θ, x) occurs at θ0,x . From
Definition 4, it follows that there exists an ε > 0 such that Lα(x) is constant in (αL(x),αL(x)+ε)

if and only if λ(θ, x) > αL(x) for all θ ∈ [θ0,x , inf�1(x)].
By (B.6) for any θ ∈ [θ0,x , inf�1(x)], there exists a y < x such that θ ∈ [θy,x, θy+1,x), so that

λ(θ, x) = Pθ (X ≤ y) + Pθ (X ≥ x) > ε + Pθ (X ≥ x)
(B.7)

> ε + Pθ0,x
(X ≥ x) = ε + αL(x) > αL(x),

where the first inequality follows from A1 and the second inequality follows from A2+. (iii) now
follows.

(a) For any x ∈X , let AL(x) denote the set of α for which Lα(x) is locally constant in α and
AU(x) denote the set of α for which Uα(x) is locally constant in α. By definition, the largest α

for which Iα(X) is strictly nested is

αnest = inf

{
α : ∃ε > 0 for which (α,α + ε) ⊆

⋃
x∈X

(
AL(x) ∩ AU(x)

)}
.
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Using Proposition 3(c), AL(x) ∩ AU(x) has a connected uncountable subset for all x, so αnest

always exists. By part (b) of Proposition 4, αnest ≥ αL > 0.

B.6. Proof of Proposition 6

By Proposition 3(a) and A3, λ(θ, x) is a piecewise continuous function. By Lemma 1, it is not
continuous at the boundaries of the set �1(x). Hence λ(θ, x) can only be bimonotone if it is
monotone whenever it is continuous. Each of its continuous parts can be represented by equation
(6) with fixed k1 and k2. Such a part can be written as

1 −
∑

k≤k1−1

Pθ (X = k) +
∑
k≤k2

Pθ (X = k). (B.8)

By A2, 1−∑
k≤k1−1 Pθ (X = k) is strictly increasing and

∑
k≤k2

Pθ (X = k) is strictly decreasing.
By condition A4 (B.8) equals 1 at the boundaries of �. If it is not constant, it must therefore by
condition A5 have a unique minimum in the interior of �. Rewriting the expression again, we
have

(B.8) = 1 −
∑

k2+1≤k≤k1−1

Pθ (X = k),

so that the minimum is given by the root θr of the equation

d

dθ

k1−1∑
k=k2+1

Pθ (X = k) =
k1−1∑

k=k2+1

d

dθ
Pθ (X = k) = 0 (B.9)

that is in the interior of �. Next, we let k1 and k2 vary as functions of (θ, x) and use θr(θ, x) to
denote the solution of (B.9) with k1 = k1(θ, x) and k2 = k2(θ, x).

By Proposition 3(a), λ(θ, x) has jumps corresponding to changes in k1(θ, x) or k2(θ, x).
λ(θ, x) fails to be bimonotone if

(
k1(θ, x), k2(θ, x)

) = (
k1

(
θr(θ, x) + ε, x

)
, k2

(
θr(θ, x) + ε, x

))
for some ε > 0,

i.e. if it does not jump before the root θr(θ, x) that corresponds to (k1(θ, x), k2(θ, x)), since for
λ′(θ, x) = d

dθ
λ(θ, x),

sign
(
λ′(θr(θ, x) − ε

)) �= sign
(
λ′(θr(θ, x) + ε

))
.

Assume that θ ∈ �u(x). Then λ(θ, x) should be decreasing in θ . If θ > θr(θ, x) then (B.8)
with k1 = k1(θ, x) and k2 = k2(θ, x) is increasing, so that λ(θ, x) is not bimonotone. If instead
we assume that θ ∈ ��(x) so that λ(θ, x) is in its increasing part, we similarly get that λ(θ, x) is
not bimonotone if θ < θr(θ, x). This establishes (a). Part (b) then follows from Proposition 5.
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B.7. Proof of Proposition 8

Let R be the extended real line and � ⊆ R be the closure of �. Let F(θ, x) = Pθ (X ≤ x).
By A1–A4, F(·, x) is a continuous monotone bijection from � to [0,1] for all x ∈ X \ supX .
Since � and [0,1] both are compact, it follows that F(·, x) is a homeomorphism, which ensures
that the bounds given by (1) are continuous in α. The monotonicity of Fθ(·, x) ensures that both
F−1

θ (·, x) and the bounds are monotone, so that the interval is strictly nested.
Finally, by condition A3, the p-value function (2) is continuous in θ when x ∈X is fixed.
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