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We investigate the properties of multifractal products of geometric Gaussian processes with possible long-
range dependence and geometric Ornstein–Uhlenbeck processes driven by Lévy motion and their finite and
infinite superpositions. We present the general conditions for the Lq convergence of cumulative processes to
the limiting processes and investigate their qth order moments and Rényi functions, which are non-linear,
hence displaying the multifractality of the processes as constructed. We also establish the corresponding
scenarios for the limiting processes, such as log-normal, log-gamma, log-tempered stable or log-normal
tempered stable scenarios.
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1. Introduction

Multifractal models have been used in many applications in hydrodynamic turbulence, fi-
nance, genomics, computer network traffic, etc. (see, e.g., Kolmogorov [28,29], Kahane [25,
26], Novikov [38], Frisch [21], Mandelbrot [33], Falconer [20], Schertzer et al. [40], Harte [22],
Riedi [39]). There are many ways to construct random multifractal models ranging from sim-
ple binomial cascades to measures generated by branching processes and the compound Poisson
process (Kahane [25,26], Falconer [20], Schmitt [41], Harte [22], Barral and Mandelbrot [14],
Barral et al. [13], Bacry and Muzy [8], Riedi [39], Mörters and Shieh [36], Shieh and Taylor [42],
Schmitt [41], Schertzer et al. [40], Barral et al. [15], Ludeña [32], Jaffard et al. [24]). Jaffard [23]
showed that Lévy processes (except Brownian motion and Poisson processes) are multifractal;
but since the increments of a Lévy process are independent, this class excludes the effects of
dependence structures. Moreover, Lévy processes have a linear singularity spectrum while real
data often exhibit a strictly concave spectrum.

Anh et al. [2–6] considered multifractal products of stochastic processes as defined in Kahane
[25,26] and Mannersalo et al. [34]. Especially Anh et al. [2] constructed multifractal processes
based on products of geometric Ornstein–Uhlenbeck (OU) processes driven by Lévy motion with
inverse Gaussian or normal inverse Gaussian distribution. They also described the behaviour of
the qth order moments and Rényi functions, which are non-linear, hence displaying the multi-
fractality of the processes as constructed. In these papers, a number of scenarios were obtained
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for q ∈ Q ∩ [1,2], where Q is a set of parameters of marginal distribution of an OU processes
driven by Lévy motion. The simulations show that for q outside this range, the scenarios still
hold (see Anh et al. [7]). In this paper, we present a rigorous proof of these results and also con-
struct new scenarios which generalize those corresponding to the inverse Gaussian and normal
inverse Gaussian distributions obtained in Anh and Leonenko [1], Anh et al. [2]. We use the the-
ory of OU processes with tempered stable law and normal tempered stable law for their marginal
distributions. Note that in their pioneering paper Calvet and Fisher [17] proposed the simplified
version of the construction of Mannersalo et al. [34].

The next section recaptures some basic results on multifractal products of stochastic processes
as developed in Kahane [25,26] and Mannersalo et al. [34]. Section 3 contains the general Lq

bounds for cumulative process of multifractal products of stationary processes. Section 4 es-
tablishes the general results on the scaling moments of multifractal products of geometric OU
processes in terms of the marginal distributions of OU processes and their Lévy measures.

Our exposition extends results of Mannersalo et al. [34] on the basic properties of multifractal
products of stochastic processes. We should also note some related results by Barndorff-Nielsen
and Schmiegel [11] who introduced some Lévy-based spatiotemporal models for parametric
modelling of turbulence. Log-infinitely divisible scenarios related to independently scattered ran-
dom measures were investigated in Schmitt [41], Bacry and Muzy [8]; see also their references.

2. Multifractal products of stochastic processes

This section recaptures some basic results on multifractal products of stochastic processes as de-
veloped in Kahane [25,26] and Mannersalo et al. [34]. We provide an interpretation of their con-
ditions based on the moment generating functions, which is useful for our exposition. Throughout
the text, the notation C,c is used for the generic constants which do not necessarily coincide.

We introduce the following conditions:

A′. Let �(t), t ∈ R+ = [0,∞), be a measurable, separable, strictly stationary, positive
stochastic process with E�(t) = 1.

We call this process the mother process and consider the following setting:
A′′. Let �(t) = �(i), i = 0,1, . . . be independent copies of the mother process �, and �

(i)
b

be the rescaled version of �(i):

�
(i)
b (t)

d= �(i)
(
tbi

)
, t ∈ R+, i = 0,1,2, . . . ,

where the scaling parameter b > 1, and
d= denotes equality in finite-dimensional distributions.

Moreover, in the examples, the stationary mother process satisfies the following conditions:
A′′′. Let �(t) = exp{X(t)}, t ∈ R+, where X(t) is a strictly stationary process, such that there

exist a marginal probability density function π(x) and a bivariate probability density function
p(x1, x2; t1 − t2). Moreover, we assume that the moment generating function

M(ζ) = E exp
{
ζX(t)

}
(2.1)
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and the bivariate moment generating function

M(ζ1, ζ2; t1 − t2) = E exp
{
ζ1X(t1) + ζ2X(t2)

}
(2.2)

exist.

The conditions A′–A′′′ yield

E�
(i)
b (t) = M(1) = 1; Var�(i)

b (t) = M(2) − 1 = σ 2
� < ∞;

Cov
(
�

(i)
b (t1),�

(i)
b (t2)

) = M
(
1,1; (t1 − t2)b

i
) − 1, b > 1.

We define the finite product processes

�n(t) =
n∏

i=0

�
(i)
b (t) = exp

{
n∑

i=0

X(i)
(
tbi

)}
, t ∈ [0,1], (2.3)

and the cumulative processes

An(t) =
∫ t

0
�n(s)ds, n = 0,1,2, . . . , t ∈ [0,1], (2.4)

where X(i)(t), i = 0, . . . , n, . . . , are independent copies of a stationary process X(t), t ≥ 0.
We also consider the corresponding positive random measures defined on Borel sets B of R+:

μn(B) =
∫

B

�n(s)ds, n = 0,1,2, . . . . (2.5)

Kahane [26] proved that the sequence of random measures μn converges weakly almost surely
to a random measure μ. Moreover, given a finite or countable family of Borel sets Bj on R+, it
holds that limn→∞ μn(Bj ) = μ(Bj ) for all j with probability one. The almost sure convergence
of An(t) in countably many points of R+ can be extended to all points in R+ if the limit process
A(t) is almost surely continuous. In this case, limn→∞ An(t) = A(t) with probability one for
all t ∈ R+. As noted in Kahane [26], there are two extreme cases: (i) An(t) → A(t) in L1 for
each given t , in which case A(t) is not almost surely zero and is said to be fully active (non-
degenerate) on R+; (ii) An(1) converges to 0 almost surely, in which case A(t) is said to be
degenerate on R+. Sufficient conditions for non-degeneracy and degeneracy in a general situation
and relevant examples are provided in Kahane [26] (equations (18) and (19), resp.). The condition
for complete degeneracy is detailed in Theorem 3 of Kahane [26]. In our work, we present general
conditions for non-degeneracy in Theorem 3.

The Rényi function of a random measure μ, also known as the deterministic partition function,
is defined for t ∈ [0,1] as

T (q) = lim infn→∞
log E

∑2n−1
k=0 μq(I

(n)
k )

log |I (n)
k |

= lim infn→∞
(

−1

n

)
log2 E

2n−1∑
k=0

μq
(
I

(n)
k

)
,
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where I
(n)
k = [k2−n, (k + 1)2−n], k = 0,1, . . . ,2n − 1, |I (n)

k | is its length, and logb is log to the
base b.

In the present paper, we establish convergence

An(t)
Lq→ A(t), n → ∞. (2.6)

For the limiting process, we show that for some constants C and C,

Ctq−logb E�q(t) ≤ EAq(t) ≤ Ctq−logb E�q(t), (2.7)

which will be written as

EAq(t) ∼ tq−logb E�q(t).

This allows us to find the scaling function

ς(q) = q − logb E�q(t) = q − logb M(q). (2.8)

As is shown in Leonenko and Shieh [31] for the exponentially decreasing correlations and q ∈
[1,2], there is a connection between Rényi function and the scaling function given by

T (q) = ς(q) − 1. (2.9)

The exact conditions are stated in Theorems 2 and 3.
An important contribution of our paper is that we proved (2.6) for general q > 0. In compari-

son, in Mannersalo et al. [34] convergence (2.6) was shown for q ∈ [1,2] under an additional as-
sumption A(t) ∈ Lq . Additionally, we simplified significantly the conditions under which equa-
tions (2.6) and (2.7) hold. Finally, we provide a number of scenarios where scaling function can
be written explicitly.

3. Lq convergence: General bound

This section contains a generalisation of the basic results on multifractal products of stochastic
processes developed in Kahane [25,26] and Mannersalo et al. [34].

Consider the cumulative process An(t) defined in (2.4). For fixed t , the sequence {An(t),

Fn}∞n=0 is a martingale. It is well known that for q > 1, Lq convergence is equivalent to the
finiteness of

sup
n

EA
q
n(t) < ∞.

3.1. L2 convergence

First, we consider a simpler case q = 2, which was studied in Mannersalo et al. [34]. The proof
in the general case uses the same idea but is more complicated.
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We have

EA2
n(t) = E

∫ t

0

∫ t

0
�n(s1)�n(s2)ds1 ds2 =

∫ t

0

∫ t

0

n∏
i=0

E�(i)(s1)�
(i)(s2)ds1 ds2.

The process �(i) is stationary. Therefore,

EA2
n(t) = 2

∫ t

0

∫ t

s1

n∏
i=0

E�(i)(0)�(i)(s2 − s1)ds1 ds2

= 2
∫ t

0

∫ t−s1

0

n∏
i=0

ρ
(
bi(s2 − s1)

)
ds1 ds2 ≤ 2t

∫ t

0

n∏
i=0

ρ
(
biu

)
du,

where

ρ(u) = E�(0)�(u). (3.1)

Hence, to show L2 convergence it is sufficient to show that

sup
n

∫ t

0

n∏
i=0

ρ
(
blu

)
du < ∞.

Theorem 1. Assume that ρ(u) as defined in (3.1) is monotone decreasing in u,

b > E�(0)2 (3.2)

and
∞∑
i=0

(
ρ
(
bi

) − 1
)
< ∞. (3.3)

Then An(t) converges in L2 (and hence in Lq for q ∈ [0,2]) for every fixed t ∈ [0,1].
Proof. First note that L2 convergence implies Lq convergence for all q ∈ [0,2]. This follows
from the inequality E|An(t) − A(t)|s ≤ (E|An(t) − A(t)|2)s/2 valid for any s ≤ 2. In turn the
latter inequality follows from the Jensen inequality.

Without loss of generality, let t = 1. Let n(u) = [− logb u] be the integer part of − logb u.
Then, using monotonicity of ρ we obtain

n∏
i=0

ρ
(
biu

) ≤ ρ(0)n(u)

n∏
i=n(u)

ρ
(
biu

)
.

Using monotonicity of ρ again,

n∏
i=n(u)

ρ
(
biu

) ≤
n−n(u)∏

i=0

ρ
(
bi+n(u)u

) ≤ � :=
∞∏
i=0

ρ
(
bi

)
.
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Constant � is finite due to condition (3.3). For sufficiently small δ ∈ (0,1), by the condition (3.2),
b1−δ > ρ(0) = E�(0)2. Therefore,

sup
n

∫ 1

0

n∏
i=0

ρ
(
biu

)
du ≤ �

∫ 1

0
ρ(0)n(u) du ≤ �

∫ 1

0
b(1−δ)n(u) du ≤ �

∫ 1

0

1

u1−δ
du < ∞.

The proof of Theorem 1 is complete. �

3.2. Lq convergence for q > 2

Now we are going to consider q > 2. Now we assume additionally that An(t) is a cadlag process.
Also, we strengthen condition (3.3). For that, let

ρ(u1, . . . , uq−1) = E�(0)�(u1) · · ·�(u1 + · · · + uq−1). (3.4)

We require that the function ρ(u1, . . . , uq−1) satisfies certain mixing conditions. Namely, let
m < q − 1 and C = {i1, . . . , im} be a subset of indices ordered in the increasing order 1 ≤ i1 <

· · · < im ≤ q − 1. Consider the vector (u1, . . . , uq−1) such that uj = A if j ∈ C and uj = 0
otherwise. Then we assume that for any set C the following mixing condition holds

lim
A→∞ρ(u1, . . . , uq−1) = E�(0)i1 E�(0)i2−i1 · · · · · E�(0)q−im . (3.5)

The starting point is the equality

EA
q
n(t) = E

∫ t

0

∫ t

0
· · ·

∫ t

0
�n(s1)�n(s2) · · ·�n(sq)ds1 ds2 · · ·dsq

(3.6)

= q!
∫

0<s1<···<sq<t

E�n(s1)�n(s2) · · ·�n(sp)ds1 ds2 · · ·dsq .

First, we make change of variables

u0 = s1, u1 = s2 − s1, . . . , uq−1 = sq − sq−1,

which transforms equality (3.6) into

EA
q
n(t) = q!

∫ u0+···+uq−1≤t

0<u0,...,uq−1

E�n(u0)�n(u0 + u1) · · ·�n(u0 + · · · + uq−1)du0 · · ·duq−1

≤ q!
∫

0<u0,...,uq−1<t

E�n(u0)�n(u0 + u1) · · ·�n(u0 + · · · + uq−1)du0 du1 · · ·duq−1

= q!
∫

0<u1,...,uq−1<t

E�n(0)�n(u1) · · ·�n(u1 + · · · + uq−1)du1 · · ·duq−1,
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where we used stationarity of the process �(t) to obtain the latter inequality. Thus, it is sufficient
to prove that

sup
n

∫
0<u1,...,uq−1<t

n∏
l=0

ρ
(
blu1, . . . , b

luq−1
)

du1 · · ·duq−1 < ∞. (3.7)

We are ready now to state the main result of this section.

Theorem 2. Suppose that conditions A′–A′′ hold. Assume that ρ(u1, . . . , uq−1) defined in (3.4)
is monotone decreasing in all variables. Let

bq−1 > E�(0)q (3.8)

for some integer q ≥ 2, and

∞∑
n=1

(
ρ
(
bn, . . . , bn

) − 1
)
< ∞. (3.9)

Finally, assume that the mixing condition (3.5) holds. Then

EA(t)q < ∞, (3.10)

and An(t) converges to A(t) in Lq (and hence in Lq̃ for q̃ ∈ [0, q]).

Proof. As above Lq convergence implies Lq̃ convergence for all q̃ ∈ [0, q]. This follows from
the inequality E|An(t) − A(t)|̃q ≤ (E|An(t) − A(t)|q)q̃/q valid for any q̃ ≤ q .

It is sufficient to prove that equation (3.7) holds. To simplify notation, we put t = 1. First
represent the integral in (3.7) as the sum of the integrals over different regions∫

0≤u1,...,uq−1≤1

n∏
l=0

ρ
(
blu1, . . . , b

luq−1
)

du1 · · ·duq−1

(3.11)

=
∑

i1,...,iq−1

∫
0≤ui1 ≤ui2 ≤···≤uiq−1≤1

n∏
l=0

ρ
(
blu1, . . . , b

luq−1
)

du1 · · ·duq−1,

where the sum is taken over all possible permutations of numbers (1,2, . . . , q − 1). Next, we are
going to bound the integrals on these separate regions. Put

u(1) = ui1, u(2) = ui2, . . . , u(q−1) = uiq−1 .

Fix a large number A ≥ 1 which we define later and define an auxiliary function n(u) =
−[logb u/A]. Note that this function is non-negative for u ≤ 1. Now let

l1 = n(u(1)), l2 = n(u(2)), . . . , lq−1 = n(u(q−1)).
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These numbers are decreasing

l1 ≥ l2 ≥ · · · ≥ lq−1. (3.12)

Then we can split the product as

n∏
l=0

ρ
(
blu1, . . . , b

luq−1
) =

lq−1−1∏
l=0

lq−2−1∏
l=lq−1

· · ·
l1−1∏
l=l2

n∏
l=l1

ρ
(
blu1, . . . , b

luq−1
)
. (3.13)

Further, using monotonicity of the function ρ we can estimate for l < lq−1,

ρ
(
blu1, . . . , b

luq−1
) ≤ ρ(0, . . . ,0) = E�(0)q .

For l ∈ [lq−1, lq−2), we have

ρ
(
blu1, . . . , b

luq−1
) ≤ ρ(0, . . . ,0,A,0, . . . ,0),

where iq−1th argument of the function ρ is equal to A and all other arguments are equal to 0.
Indeed this holds due to the fact that for l > lq−1

blu(q−1) ≥ blq−1u(q−1) ≥ A

u(q−1)

u(q−1) = A

and the monotonicity of the function ρ. Here, recall that u(q−1) corresponds to uiq−1 . Fix a small
number δ which we define later. Now we can note that mixing condition (3.5) implies that

lim
A→∞ρ(0, . . . ,0,A,0, . . . ,0) = E�(0)iq−1E�(0)q−iq−1 .

Hence, we can pick A = A(δ) sufficiently large to ensure that

ρ(0, . . . ,0,A,0, . . . ,0) ≤ (1 + δ)E�(0)iq−1 E�(0)q−iq−1 .

Function g(x) = ln E�(0)x is convex. Hence, we can apply Karamata majorisation inequality
(Karamata [27]) to obtain that

g(iq−1) + g(q − iq−1) ≤ g(q − 1) + g(1).

Therefore,

E�(0)iq−1 E�(0)q−iq−1 ≤ E�(0)q−1E�(0) = E�(0)q−1

and

ρ(0, . . . ,0,A,0, . . . ,0) ≤ (1 + δ)E�(0)q−1.

Similarly, for l ∈ [lq−2, lq−3], we have

ρ
(
blu1, . . . , b

luq−1
) ≤ ρ(0, . . . ,0,A, . . . ,0,A,0, . . . ,0),
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where the arguments of the function ρ are equal to 0 except arguments iq−1 and iq−2 which are
equal to A. Applying the mixing condition and increasing A if necessary, we can ensure that for
l ∈ [lq−2, lq−3],

ρ
(
blu1, . . . , b

luq−1
) ≤ (1 + δ)E�(0)aE�(0)b−aE�(0)q−b,

where a = min(iq−2, iq−1), b = max(iq−2, iq−1). We apply now Karamata’s majorisation in-
equality twice. First application of the inequality gives

E�(0)aE�(0)b−a ≤ E�(0)b−1.

Second application of Karamata’s inequality gives

E�(0)b−1E�(0)q−b ≤ E�(0)q−2.

Hence, for l ∈ [lq−2, lq−3) and sufficiently large A,

ρ
(
blu1, . . . , b

luq−1) ≤ (1 + δ)E�(0)aE�(0)b−aE�(0)q−b ≤ (1 + δ)E�(0)q−2.

In exactly the same manner, using the mixing conditions and Karamata’s majorisation inequality
one can obtain for l ∈ [lj , lj−1) and j = q − 1, q − 2, . . . ,2

ρ
(
blu1, . . . , b

luq−1) ≤ (1 + δ)E�(0)j .

Hence,

l1−1∏
l=0

ρ
(
blu1, . . . , b

luq−1
) =

lq−1−1∏
l=0

lq−2−1∏
l=lq−1

· · ·
l1−1∏
l=l2

ρ
(
blu1, . . . , b

luq−1
)

(3.14)

≤ (1 + δ)l1
q∏

i=2

li−1−1∏
l=li

E�(0)i = (1 + δ)l1
q∏

i=2

(
E�(0)i

)li−1−li ,

where lq = 0. Rearranging the terms, we can represent this product in a slightly different form

q∏
i=2

(
E�(0)i

)li−1−li =
q−1∏
i=1

(
E�(0)i+1E�(0)i−1

(E�(0)i)2

)lq−1+···+li

. (3.15)

Now one can note that since li are decreasing (see (3.12)),

lq−1 + · · · + li ≤ q − i

q − 1
(l1 + · · · + lq−1),

for any i = 1, . . . , q − 1. Indeed, the latter inequality is equivalent to

(i − 1)(lq−1 + · · · + li ) ≤ (q − i)(li−1 + · · · + l1),
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which follows from
lq−1 + · · · + li

q − i
≤ li ≤ li−1 ≤ li−1 + · · · + l1

i − 1
.

In addition, by the Karamata’s majorisation inequality,

E�(0)i+1E�(0)i−1

(E�(0)i)2
> 1.

Therefore,(
E�(0)i+1E�(0)i−1

(E�(0)i)2

)lq−1+···+li

≤
(

E�(0)i+1E�(0)i−1

(E�(0)i)2

)((q−i)/(q−1))(l1+···+lq−1)

.

Hence, we can continue (3.15) as follows:

q∏
i=2

(
E�(0)i

)li−1−li

≤
q−1∏
i=2

(
E�(0)i+1E�(0)i−1

(E�(0)i)2

)((q−i)/(q−1))(l1+···+lq−1)

(3.16)

= (
E�(0)q

)(l1+···+lq−1)/(q−1)
q−3∏
i=2

(
E�(0)i

)(q−i+1−2(q−i)+q−i−1)/(q−1)

= (
E�(0)q

)(l1+···+lq−1)/(q−1)
.

Plugging the latter estimate in (3.14), we arrive at

l1∏
l=0

ρ
(
blu1, . . . , b

luq−1
) ≤ (1 + δ)l1

(
E�(0)q

)(l1+···+lq−1)/(q−1)
.

We can now make use of condition (3.8) and by taking δ sufficiently small we can ensure that

l1∏
l=0

ρ
(
blu1, . . . , b

luq−1
) ≤ b(1−ε)(l1+···+lq−1) = (u1u2 · · ·uq−1)

−1+εAq(1−ε) (3.17)

for some small ε > 0. We are left to estimate the product
∏n

l=l1
uniformly in n. For that, we are

going to use finiteness of the series in (3.9). First, note that for l ≥ l1, bluj ≥ Abl−l1 . Then, by
monotonicity of the function ρ, uniformly in n, for some C > 0

n∏
l=l1

ρ
(
blu1, . . . , b

luq−1
) ≤

n∏
l=l1

ρ
(
bl−l1A, . . . , bl−l1A

)
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(3.18)

≤
∞∏
l=0

ρ
(
bl, . . . , . . . , bl

)
< C,

according to the finiteness of the series. Together (3.17) and (3.18) give us∫
0≤u1,...,uq−1≤1

n∏
l=0

ρ
(
blu1, . . . , b

luq−1
)

du1 · · ·duq−1

=
∑

i1,...,iq−1

∫
0<ui1 ≤ui2 ≤uiq−1≤1

n∏
l=0

ρ
(
blu1, . . . , b

luq−1
)

du1 · · ·duq−1

(3.19)

≤ C
∑

i1,...,iq−1

∫
0<ui1 ≤ui2≤uiq−1 ≤1

(u1u2 · · ·uq−1)
−1+ε du1 · · ·duq−1

= C

∫
0≤u1,...,uq−1≤1

(u1u2 · · ·uq−1)
−1+ε du1 · · ·duq−1,

which immediately gives a finite bound for EAn(1)q uniform in n. �

Remark 1. It is not difficult to show that (3.8) is sharp. Indeed suppose that

bq−1 < E�(0)q

and that ρ(u1, . . . , uq−1) is continuous at (0, . . . ,0). Then, for ε > 0,

EA
q
n(t) = q!

∫ u0+···+uq−1≤t

0<u0,...,uq−1

E�n(0)�n(u1) · · ·�n(u1 + · · · + uq−1)du0 · · ·duq−1

= q!
∫ u0+···+uq−1≤t

0<u0,...,uq−1

n∏
l=0

ρ
(
blu1, . . . , b

luq−1
)

du0 · · ·duq−1

≥ q!
∫

0<u0<1/2,0<u1,...,uq−1≤ε/bn

n∏
l=0

ρ
(
blu1, . . . , b

luq−1
)

du0 · · ·duq−1

≥ q!
2

∫
0<u1,...,uq−1≤ε/bn

n∏
l=0

ρ(ε, . . . , ε)du1 · · ·duq−1 = q!
2

εq−1
(

ρ(ε, . . . , ε)

bq−1

)n

.

Since ρ(ε, . . . , ε) can be made arbitrarily close to ρ(0, . . . ,0) = E�(0)q , then, for sufficiently
small ε > 0, ρ(ε, . . . , ε) > bq−1, and

EAn(t) ≥ q!
2

εq−1
(

ρ(ε, . . . , ε)

bq−1

)n

→ ∞, n → ∞.
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4. Scaling of moments

The aim of this section is to establish the scaling property (2.7). For q > 1, let

ρq(s) = inf
u∈[0,1]

(
E�(0)q−1�(su)

E�(0)q
− 1

)
. (4.1)

Note that ρq(s) ≤ 0. For q ∈ (0,1), let

ρq(s) = sup
u∈[0,1]

(
E�(0)q−1�(su)

E�(0)q
− 1

)
. (4.2)

For q ≤ 1, it is easy to see that ρq(s) ≥ 0.

Theorem 3. Assume that A(t) ∈ Lq, q ∈ R+ and ρq(s) defined in (4.1) and (4.2) is such that

∞∑
n=1

∣∣ρq

(
b−n

)∣∣ < ∞. (4.3)

Then

EAq(t) ∼ tq−logb E�q(t), t ∈ [0,1] (4.4)

and process A(t) is non-degenerate, that is, P(A(t) > 0) > 0.

Proof. Our strategy in proving of (4.4) is to use martingale properties of the sequence An(t). We
concentrate mainly on q > 1, as the case q < 1 is symmetric. For the upper bound, we obtain uni-
form in n bounds from above for EAn(t)

q . Then, since An(t) converges to A(t) in Lq , the same
estimates hold for EA(t)q . For the lower bound, we use the fact that as An(t) ∈ Lq for q > 1 the
martingale An(t) is closable. Hence, it can be represented as An(t) = E(A(t)|A1(t), . . . ,An(t)).
Therefore, for q > 1, by the conditional Jensen inequality,

EAn(t)
q = E

(
E
(
A(t)|A1(t), . . . ,An(t)

))q

≤ E
(
E
(
A(t)q |A1(t), . . . ,An(t)

)) = EA(t)q .

Thus, we are going to obtain an estimate from below for EAn(t)
q for a suitable choice of n.

Clearly, by the latter inequality, this estimate will hold for EA(t)q as well.
We start with a change of variable

An(t) =
∫ t

0
�n(s)ds = t

∫ 1

0
�n(ut)du ≡ tÃn(t).

Clearly, Ãn(t) is a martingale for any fixed t .
We are going to treat the cases q ≥ 1 and q ≤ 1 separately. This is due to the fact that for

q ≥ 1, the sequences Ãn(t)
q and An(t)

q are submartingales while for q ∈ (0,1) the sequences
are supermartingales with respect to the filtration Fn = σ(�(1), . . . ,�(n)).
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We start with an upper bound for q ≥ 1. Let nt = −[logb t] be the biggest integer such that
nt ≤ − logb t . We use the Hölder inequality in the form:(∫ 1

0
|fg|

)q

=
(∫ 1

0
|f ||g|1/q |g|1/p

)q

≤
(∫ 1

0
|f |q |g|

)(∫ 1

0
|g|

)q/p

,

where 1/q + 1/p = 1. It follows from the latter inequality,(∫ 1

0

n∏
k=0

�(k)(ut)du

)q

≤
(∫ 1

0

(
nt−1∏
k=0

�(k)(ut)

)q n∏
k=nt

�(k)(ut)du

)(∫ 1

0

n∏
k=nt

�(k)(ut)du

)q/p

.

Applying expectation to both sides we obtain, using independence of �(k) of each other,

EÃn(t)
q ≤

(∫ 1

0

nt−1∏
k=0

E
(
�(k)

)q
(ut)

n∏
k=nt

E

(
�(k)(ut)

(∫ 1

0

n∏
k=nt

�(k)(vt)dv

)q/p)
du

)
.

By the stationarity of the process �(t), we have

nt−1∏
k=0

E
(
�(k)

)q
(ut) = (

E�(0)q
)nt ≤ (

E�(0)q
)− logb t = t− logb E�(0)q .

Therefore,

EÃn(t)
q ≤ t− logb E�(0)q E

∫ 1

0

n∏
k=nt

(
�(k)(ut)

(∫ 1

0

n∏
k=nt

�(k)(vt)dv

)q/p)
du

= t− logb E�(0)q E

(∫ 1

0

n∏
k=nt

�(k)(ut)du

)1+q/p

= t− logb E�(0)q E

(∫ 1

0

n∏
k=nt

�(k)
(
bkut

)
du

)q

= t− logb E�(0)q E

(∫ 1

0

n−nt∏
k=0

�(k)
(
bkub−[logb t]+logb t

)
du

)q

= t− logb E�(0)q EÃn−nt−1
(
b−[logb t]+logb t

)q
.

Now note that

EÃn−nt−1
(
b−[logb t]+logb t

)q = b[logbt]−logb tEA
(
b−[logb t]+logb t

)q ≤ b sup
s∈[0,1]

EA(s)q .
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This bound is uniform in n and, therefore,

EA(t)q ≤ btq−logb E�(0)q sup
s∈[0,1]

EA(s)q .

Now we turn to the lower bound for q ≥ 1.
Since Ãn(t) is a submartingale,

EÃ(t)q ≥ EÃnt (t)
q ,

where nt = [− logb t].
We are going to obtain a recursive estimate for EÃn(t). First,

EÃn+1(t)
q = E

(∫ 1

0
�n(ut)�(n+1)

(
bn+1ut

)
du

)q

= E

(∫ 1

0
�n(ut)

(
�(n+1)

(
bn+1ut

) − �(n+1)(0)
)

du + Ãn(t)�
(n+1)(0)

)q

.

Now we can use an elementary estimate of the form: if a + b > 0 and b > 0 then

(a + b)q ≥ qabq−1 + bq (4.5)

for q ≥ 1. This estimate is easy to prove by analyzing the function (1 + t)q − 1 − qt for t ≥ −1.
Applying (4.5), we obtain

EÃn+1(t)
q ≥ qE

[(
Ãn(t)�

(n+1)(0)
)q−1

∫ 1

0
�n(ut)

(
�(n+1)

(
bn+1ut

) − �(n+1)(0)
)

du

]
+ E

(
Ãn(t)�

(n+1)(0)
)q (4.6)

≡ E1 + E2.

The second expectation is straightforward,

E2 = E

(∫ 1

0
�n(ut)�(n+1)(0)du

)q

= E�(0)qEÃn(t)
q, (4.7)

where we use independence of �n and �(n+1). For the first expectation, rearranging the terms,
we have

E1 = qE

[∫ 1

0
Ãn(t)

q−1�n(ut)
(
�(n+1)(0)

)q−1(
�(n+1)

(
bn+1ut

) − �(n+1)(0)
)

du

]

= q

∫ 1

0
EÃn(t)

q−1�n(ut)E
(
�(n+1)(0)

)q−1(
�(n+1)

(
bn+1ut

) − �(n+1)(0)
)

du.

By the definition of ρq (see (4.1)), for all u ∈ [0,1],

E
(
�(n+1)(0)

)q−1(
�(n+1)

(
bn+1ut

) − �(n+1)(0)
) ≥ E�(0)qρq

(
bn+1t

)
.
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Therefore,

E1 ≥ q

∫ 1

0
EÃn(t)

q−1�n(ut)duE�(0)qρq

(
bn+1t

)
≥ qE

[
Ãn(t)

q−1
∫ 1

0
�n(ut)du

]
E�(0)qρq

(
bn+1t

)
= qEÃn(t)

qE�(0)qρq

(
bn+1t

)
.

Therefore,

E1 ≥ qEÃn(t)
qE�(0)qρq

(
bn−nt

)
.

The latter inequality together with (4.6) and (4.7) gives us

EÃn+1(t)
q ≥ EÃn(t)

qE�(0)q
(
1 + qρq

(
bn−nt

))
. (4.8)

Now we can iterate it. First fix N∗ such that |qρq(b−n)| < 1 for n > N∗. Then, iterating (4.8),
we obtain

EÃ
q
nt−N∗ ≥ (

E�(0)q
)nt−N∗ nt−N∗∏

n=0

(
1 + qρq

(
bn−nt

))
(4.9)

≥ (
E�(0)q

)nt−N∗ ∞∏
n=N∗

(
1 + qρq

(
b−n

))
.

It is sufficient to note that the latter product is strictly positive due to (4.3). As Ãn(t)
q is a

submartingale, we have EÃ(t)q ≥ EÃ
q
nt−N∗ and the required lower bound for q > 1 follows.

One can also see that Ã(t) is non-degenerate. Indeed, by our assumptions E�(0)q > 0 and the
infinite product in (4.9) is strictly positive.

The proof for q ∈ (0,1) is symmetric. For these values of q and a fixed t , the process Ãn(t)
q is

a supermartingale with respect to the natural filtration Fn = σ(�(1), . . . ,�(n)). The bound from
below is proved using the reverse Hölder inequality for q ∈ (0,1) and p such that 1/p+1/q = 1:(∫ 1

0
|fg|

)
≥

(∫ 1

0
|f |q

)1/q(∫ 1

0
|g|p

)1/p

.

Note that p is negative. We are going to use this inequality in the form,(∫ 1

0
|fg|

)q

=
(∫ 1

0
|f ||g|1/q |g|1/p

)q

≥
(∫ 1

0
|f |q |g|

)(∫ 1

0
|g|

)q/p

.

It follows from the latter inequality,(∫ 1

0

n∏
k=0

�k(ut)du

)q

≥
(∫ 1

0

(
nt∏

k=0

�k(ut)

)q n∏
k=nt+1

�k(ut)du

)(∫ 1

0

n∏
k=nt+1

�k(ut)du

)q/p

.
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The rest of the proof goes exactly as the proof of the upper bound for q > 1.
To prove the upper bound, we proceed similarly to the proof of the lower bound for q > 1.

First, we establish a recursive estimate. The elementary inequality (4.5) still holds (in the opposite
direction), for q ∈ (0,1), (a + b)q ≤ qabq−1 + bq , for a + b > 0, b > 0. Repeating step by step
the arguments for q > 1, we obtain an upper bound

EÃn+1(t)
q ≤ EÃn(t)

qE�(0)q
(
1 + qρq

(
bn−nt

))
.

Applying this bound recursively,

EA
q
nt−N∗ ≤ (

E�(0)q
)nt−N∗ nt−N∗∏

n=0

(
1 + qρq

(
bn−nt

)) ≤ (
E�(0)q

)nt−N∗ ∞∏
n=N∗

(
1 + qρq

(
b−n

))
.

It is sufficient to note that the latter product converge due to (4.3). As Ãn(t)
q is a supermartingale,

we have EÃ(t)q ≤ EÃ
q
nt−N∗ and the required upper bound for q < 1 follows. �

5. Log-normal scenario with possible long-range dependence

The log-normal hypothesis of Kolmogorov [29] features prominently in turbulent cascades. In
this section, we provide a related model, namely the log-normal scenario, for multifractal prod-
ucts of stochastic processes. In fact, this log-normal scenario has its origin in Kahane [25,26].
In this section, we present a general result on log-normal scenario for a model with possible
long-range dependence.

In this section, we consider a mother process of the form

�(t) = exp
{
X(t) − 1

2σ 2
X

}
, (5.1)

where X(t), t ∈ [0,1] is a zero-mean Gaussian, measurable, separable stochastic process with
covariance function

RX(τ) = σ 2
X Corr

(
X(t),X(t + τ)

)
. (5.2)

We combine Theorems 2 and 3 for this special case in order to have a precise scaling law for the
moments.

For the log-normal process, we obtain the following specifications of the moment generating
functions (2.1) and (2.2):

M(ζ) = E exp

{
ζ

(
X(t) − 1

2
σ 2

X

)}
= e(1/2)σ 2

X(ζ 2−ζ ), ζ ∈R
1,

M(ζ1, ζ2; t1 − t2) = E exp

{
ζ1

(
X(t1) − 1

2
σ 2

X

)
+ ζ2

(
X(t2) − 1

2
σ 2

X

)}
= exp

{
1

2
σ 2

X

[
ζ 2

1 − ζ1 + ζ 2
2 − ζ2

] + ζ1ζ2RX(t1 − t2)

}
, ζ1, ζ2 ∈ R

1,
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where σ 2
X ∈ (0,∞). It turns out that, in this case,

M(1) = 1; M(2) = eσ 2
X ; σ 2

� = eσ 2
X − 1;

Cov
(
�(t1),�(t2)

) = M(1,1; t1 − t2) − 1 = eRX(t1−t2) − 1

and

logb E�(t)q = (q2 − q)σ 2
X

2 logb
, q > 0.

Note that

eRX(t1−t2) − 1 ≥ RX(t1 − t2).

Using Theorems 2 and 3, we obtain

Theorem 4. Let X(t) be a zero-mean Gaussian measurable separable stochastic process with
the correlation function

Corr
(
X(t),X(t + τ)

) ≤ Cτ−α, α > 0, (5.3)

for sufficiently large τ , and for some a > 0,

1 − Corr
(
X(t),X(t + τ)

) ≤ C|τ |a, (5.4)

for sufficiently small τ . Assume that

b > exp
{
q∗σ 2

X/2
}
, (5.5)

where q∗ ≥ 2 is a fixed integer. Then the stochastic processes

An(t) =
∫ t

0

n∏
j=0

�(j)
(
sbj

)
ds, t ∈ [0,1]

converge in Lq,0 < q ≤ q∗ to the stochastic process A(t), t ∈ [0,1], as n → ∞, such that

EA(t)q ∼ tς(q), q ∈ [
0, q∗], (5.6)

and the scaling function is given by

ς(q) = −aq2 + (a + 1)q, q ∈ [
0, q∗],

where

a = σ 2
X

2 logb
.
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Moreover, if

Corr
(
X(t),X(t + τ)

) = L(τ)

|τ |α , α > 0,

where L is a slowly varying at infinity function, bounded on every bounded interval, then

VarA(t) ≥ t2−ασ 2
X

∫ 1

0

∫ 1

0

L(t |u − v|)dudw

L(t)|u − w|α , 0 < α < 1 (5.7)

and

VarA(t) ≥ 2tσ 2
X

∫ t

0

(
1 − u

t

)
L(u)

|u|α du, α ≥ 1. (5.8)

Remark 2. We interpret the inequality (5.7) as a form of long-range dependence of the limiting
process.

Remark 3. Note that the correlation function Corr(X(t),X(t + τ)) = (1 + |τ |2)−α/2, α > 0,
satisfies all assumptions of the Theorem 2 (with L(τ) = |τ |α/(1 + |τ |2)α/2), among the others.

Proof of Theorem 4. We will prove Lq∗ convergence by applying Theorem 2, where q∗ ≥ 2 is
an integer. Hence, Lq convergence will hold forn any q ≥ q∗. To simplify notation, we will write
q instead of q∗ when proving Lq∗ convergence.

The moment generating function of the multidimensional normal distribution is given by the
following expression:

M(ζ1, ζ2, . . . , ζq) = Eeζ1X(s1)+···+ζpX(sq ) = exp

{
1

2

q∑
i=1

q∑
j=1

ζiζjRX

(|si − sj |
)}

.

One can immediately see that

E
(
�(s1)�(s2) · · ·�(sq)

) = EeX(s1)−(1/2)σ 2
X · · · eX(sq)−(1/2)σ 2

X

= M(1,1, . . . ,1)e−(q/2)σ 2
X = e

(1/2)
∑q

i=1

∑q
j=1 RX(|si−sj |)

= e−(q/2)σ 2
X=e

∑
1≤i<j≤q RX(sj −si )

.

We can now substitute this into (3.4) and obtain

ρ(u1, u2, . . . , uq−1) = exp

{ ∑
1≤i<j≤q−1

RX(ui + · · · + uj )

}
.

Since the function RX(u) is monotone decreasing in u, function ρ(u1, . . . , uq−1) is monotone
decreasing in all arguments. Next, we need to check the mixing condition (3.5). Let 1 ≤ i1 < i2 <
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· · · ≤ im and ui = A if i ∈ {i1, . . . , im} and 0 otherwise. Then, as A → ∞, and i0 = 0, im+1 = q

lim
A→∞ρ(u1, . . . , uq−1) = exp

{ ∑
1≤k≤m+1

∑
ik−1<i<j<ik

RX(ui + · · · + uj )

}
(5.9)

= E�(0)i1 E�(0)i2−i1 · · · · · E�(0)q−im,

where we used that E�(0)l = e
l(l−1)

2 σ 2
X . Finally, we should check the convergence of the se-

ries (3.9). We have

exp
{
RX

(
qbn

)} ≤ ρ
(
bn, . . . , bn

) ≤ exp

{
q(q − 1)

2
RX

(
bn

)}
.

As n → ∞, RX(bn) → 0. Hence,

(
1 + o(1)

)
RX

(
qbn

) ≤ ρ
(
bn, . . . , bn

) − 1 ≤ (
1 + o(1)

)q(q − 1)

2
RX

(
bn

)
.

As both sums,

∞∑
n=1

RX

(
qbn

)
< ∞,

∞∑
n=1

RX

(
bn

)
< ∞,

the convergence of the series (3.9) follows. Condition (3.8) becomes

bq−1 > E�(0)q = exp

{
q(q − 1)

2
σ 2

X

}
,

which is equivalent to (5.5).
Next, we are going to prove scaling (5.6). For that, we apply the results of Section 4. We now

do not assume that q is an integer. We need to show that (4.3) holds for ρq , where q ∈ (0, q
)

and ρq is defined in (4.1) and (4.2). For q > 1, we have, for sufficiently small s,

∣∣ρq(s)
∣∣ = − inf

u≤1

(
E�(0)q−1�(su)

E�(0)q
− 1

)
= − inf

u≤1

(
eσ 2

X((q−1)ρX(su)+1−q) − 1
)

≤ sup
u≤1

(
1 − e(1−q)σ 2

X(su)a
) ≤ 1 − e(1−q)σ 2

X(s)a ≤ (q − 1)σ 2
Xsa.

Thus, using condition (5.4), one can immediately see that the series (4.3) converges. For q < 1,
the same arguments give the bound

ρq(s) ≤ (1 − q)σ 2
Xsa.

Using condition (5.4), one can immediately see that the series (4.3) converges. Therefore, by the
results of Section 4 scaling (5.6) holds. �
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6. Geometric Ornstein–Uhlenbeck processes

This section reviews a number of known results on Lévy processes (see Bertoin [16], Kypri-
anou [30]) and OU type processes (see Barndorff-Nielsen [9], Barndorff-Nielsen and Shephard
[10]). The geometric OU type processes have been studied also by Matsui and Shieh [35].

As standard notation, we will write

κ(z) = C{z;X} = log E exp{izX}, z ∈R

for the cumulant function of a random variable X, and

K{ζ ;X} = log E exp{ζX}, ζ ∈ D ⊆C

for the Lévy exponent or Laplace transform or cumulant generating function of the random
variable X. Its domain D includes the imaginary axis and frequently larger areas.

A random variable X is infinitely divisible if its cumulant function has the Lévy–Khintchine
form

C{z;X} = iaz − d

2
z2 +

∫
R

(
eizu − 1 − izu1[−1,1](u)

)
ν(du), (6.1)

where a ∈ R, d ≥ 0 and ν is the Lévy measure, that is, a non-negative measure on R such that

ν
({0}) = 0,

∫
R

min
(
1, u2)ν(du) < ∞. (6.2)

The triplet (a, d, ν) uniquely determines the random variable X. For a Gaussian random variable
X ∼ N(a,d), the Lévy triplet takes the form (a, d,0).

A random variable X is self-decomposable if, for all c ∈ (0,1), the characteristic function
f (z) of X can be factorized as f (z) = f (cz)fc(z) for some characteristic function fc(z), z ∈R.
A homogeneous Lévy process Z = {Z(t), t ≥ 0} is a continuous (in probability), cadlag pro-
cess with independent and stationary increments and Z(0) = 0 (recalling that a cadlag pro-
cess has right-continuous sample paths with existing left limits). For such processes, we have
C{z;Z(t)} = tC{z;Z(1)} and Z(1) has the Lévy–Khintchine representation (6.1).

If X is self-decomposable, then there exists a stationary stochastic process {X(t), t ≥ 0}, such

that X(t)
d= Xand

X(t) = e−λtX(0) +
∫

(0,t]
e−λ(t−s) dZ(λs), (6.3)

for all λ > 0 (see Barndorff-Nielsen [9]). Conversely, if {X(t), t ≥ 0} is a stationary process and
{Z(t), t ≥ 0} is a Lévy process, independent of X(0), such that X(t) and Z(t) satisfy the Itô
stochastic differential equation

dX(t) = −λX(t)dt + dZ(λt), (6.4)

for all λ > 0, then X(t) is self-decomposable. A stationary process X(t) of this kind is said to be
an OU type process. The process Z(t) is termed the background driving Lévy process (BDLP)
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corresponding to the process X(t). In fact, (6.3) is the unique (up to indistinguishability) strong
solution to equation (6.4).

Let X(t) be a square integrable OU process. Then X(t) has the correlation function

Corr
(
X(0),X(t)

) = rX(t) = exp
{−λ|t |}. (6.5)

The cumulant transforms of X = X(t) and Z(1) are related by

C{z;X} =
∫ ∞

0
C

{
e−sz;Z(1)

}
ds =

∫ z

0
C

{
ξ ;Z(1)

}dξ

ξ
,

C
{
z;Z(1)

} = z
∂C{z;X}

∂z
.

Suppose that the Lévy measure ν of X has a density function p(u),u ∈R, which is differentiable.
Then the Lévy measure ν̃ of Z(1) has a density function q(u),u ∈R, and p and q are related by

q(u) = −p(u) − up′(u) (6.6)

(see Barndorff-Nielsen [9]).
The logarithm of the characteristic function of a random vector (X(t1), . . . ,X(tm)) is of the

form

log E exp
{
i
(
z1X(t1) + · · · + zmX(tm)

)}
(6.7)

=
∫
R

κ

(
m∑

j=1

zj e
−λ(tj −s)1[0,∞)(tj − s)

)
ds,

where

κ(z) = log E exp
{
izZ(1)

} = C
{
z;Z(1)

}
,

and the function (6.7) has the form (6.1) with Lévy triplet (ã, d̃ , ν̃) of Z(1).
The logarithms of the moment generation functions (if they exist) take the forms

log E exp
{
ζX(t)

} = ζa + d

2
ζ 2 +

∫
R

(
eζu − 1 − ζu1[−1,1](u)

)
ν(du),

where (a, d, ν) is the Lévy triplet of X(0), or in terms of the Lévy triplet (ã, d̃ , ν̃) of Z(1)

log E exp
{
ζX(t)

} = ã

∫
R

(
ζe−λ(t−s)1[0,∞)(t − s)

)
ds + d̃

2
ζ 2

∫
R

(
ζe−λ(t−s)1[0,∞)(t − s)

)2 ds

+
∫
R

∫
R

[
exp

{
uζe−λ(t−s)1[0,∞)(t − s)

}
(6.8)

− 1 − u
(
ζe−λ(t−s)1[0,∞)(t − s)

)
1[−1,1](u)

]
ν̃(du)ds
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and

log E exp
{
ζ1X(t1) + ζ2X(t2)

}
= ã

∫
R

(
2∑

j=1

ζj e
−λ(tj −s)1[0,∞)(tj − s)

)
ds + d̃

2
ζ 2

∫
R

(
2∑

j=1

ζj e
−λ(tj −s)1[0,∞)(tj − s)

)2

ds

(6.9)

+
∫
R

∫
R

[
exp

{
u

2∑
j=1

ζj e
−λ(tj −s)1[0,∞)(tj − s)

}
− 1

− u

(
2∑

j=1

ζj e
−λ(tj −s)1[0,∞)(tj − s)

)
1[−1,1](u)

]
ν̃(du)ds.

Let us consider a geometric OU-type process as the mother process:

�(t) = eX(t)−cX , cX = log EeX(0), M(ζ ) = Eeζ(X(t)−cX), M0(ζ ) = EeζX(t),

where X(t), t ∈R+, is the OU-type stationary process (6.3). Note that

M0(q)

M0(1)q
= M(q)

M(1)q
.

Then the correlation function of the mother process is of the form.

Corr
(
�(t),�(t + τ)

) = M(1,1; τ) − 1

M(2) − 1
, (6.10)

where now

M(ζ1, ζ2; τ) = E exp
{
ζ1

(
X(t1) − cX

) + ζ2
(
X(t2) − cX

)}
(6.11)

= exp
{−(ζ1 + ζ2)cX

}
E exp

{
ζ1X(t1) + ζ2X(t2)

}
,

and E exp{ζ1X(t1) + ζ2X(t2)} is defined by (6.9).
To prove that a geometric OU process satisfies the covariance decay condition (4.3) in Theo-

rem 3, the expression given by (6.9) is not ready to yield the decay as t2 − t1 → ∞.
The following result plays a key role in multifractal analysis of geometric OU processes.

Theorem 5. Let X(t), t ∈ R+ be an OU-type stationary process (6.3) such that the Lévy measure
ν in (6.1) of the random variable X(0) satisfies the condition: for an integer q∗ ≥ 2,∫

|x|≥1
xeq∗xν(dx) < ∞. (6.12)

Then, for any fixed b such that

b >

{
M0(q

∗)
M0(1)q

∗

}1/(q∗−1)

, (6.13)
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the sequence of stochastic processes

An(t) =
∫ t

0

n∏
j=0

�(j)
(
sbj

)
ds, t ∈ [0,1]

converges in Lq to the stochastic process A(t) ∈ Lq , as n → ∞, for every fixed t ∈ [0,1]. The
limiting process A(t), t ∈ [0,1] satisfies

EAq(t) ∼ tq−logb E�q(t), q ∈ [
0, q∗].

The scaling function is given by

ς(q) = q − logb E�q(t) = q

(
1 + cX

logb

)
− logb M0(q), q ∈ [

0, q∗]. (6.14)

In addition,

VarA(t) ≥ 2t

∫ t

0

(
1 − s

t

)(
M(1,1; s) − 1

)
ds, (6.15)

where the bivariate moment generating function M(ζ1, ζ2; t1 − t2) is given by (6.11).

Proof. We are starting with Lq convergence. To show the convergence, we apply Theorem 2. It
is sufficient to show the convergence for q = q∗ since the convergence for q < q∗ immediately
follows from the convergence for q = q∗. First, we will derive a suitable explicit expression for
ρ(u1, . . . , uq−1). Put s1 = 0 ≤ s2 = u1 ≤ s2 = u1 + u2, . . . , sq = u1 + · · · + uq−1. Then

ρ(u1, . . . , uq−1) = E�(s1) · · ·�(sq) = E exp
{
X(s1) + · · · + X(sq) − qcX

}
.

Using representation (6.3), one can obtain

X(sq) = e−λ(sq−sq−1)X(sq−1) +
∫

(sq−1,sq ]
e−λ(sq−s) dZ(λs).

Then, using independence of X(sq−1) and the integral
∫
(sq−1,sq ] e

−λ(sq−s) dZ(λs), we obtain

E exp
{
X(s1) + · · · + X(sq)

}
= E exp

{
X(s1) + · · · + (

1 + e−λ(sq−sq−1)
)
X(sq−1)

}
Ee

∫
(sq−1,sq ] e

−λ(sq−s) dZ(λs)

= E exp
{
X(s1) + · · · + (

1 + e−λ(sq−sq−1)
)
X(sq−1)

} EeX(sq )

Eee
−λ(sq−sq−1)

X(0)

= E exp
{
X(s1) + · · · + (

1 + e−λ(sq−sq−1)
)
X(sq−1)

} M0(1)

M0(e
−λ(sq−sq−1))

.
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Proceeding further by induction, we obtain

E exp
{
X(s1) + · · · + X(sq)

}
= M0(1)M0

(
1 + e−λuq−1

)
M0

(
1 + e−λuq−2 + e−λ(uq−1+uq−2)

) · · ·
× M0

(
1 + e−λu1 + · · · + e−λ(u1+···+uq−1)

)
/
(
M0(e

−λuq−1)M0
(
e−λuq−2 + e−λ(uq−1+uq−2)

) · · ·M0
(
e−λu1 + · · · + e−λ(u1+···+uq−1)

))
.

Hence,

ρ(u1, . . . , uq−1) = M0(1 + e−λuq−1)

M0(1)M0(e
−λuq−1)

M0(1 + e−λuq−2 + e−λ(uq−1+uq−2))

M0(1)M0(e
−λuq−2 + e−λ(uq−1+uq−2))

× · · ·
(6.16)

× M0(1 + e−λu1+···+e
−λ(u1+···+uq−1)

)

M0(1)M0(e−λu1+···+e
−λ(u1+···+uq−1)

)
.

This representation allows us to show monotonicity of ρ(u1, . . . , uq−1). For that, we use the
following inequality:

M0(1 + s)

M0(s)
≤ M0(1 + t)

M0(t)
(6.17)

for s ≤ t . This inequality follows from the fact that lnM0(t) is a convex function and the Kara-
mata majorisation inequality. Hence,

M0(1 + s)

M0(1)M0(s)

is monotone increasing in s. Since e−λu is monotone decreasing in u the representation (6.16)
implies that ρ(u1, . . . , . . . , uq−1) is monotone decreasing in all variables.

Condition (3.8) becomes

bq−1 > E�(0)q = M0(q)

M0(1)q
,

which is equivalent to (6.13).
To show the finiteness of the series (3.9), we are going to use the following statement.

Lemma 1. For s ∈ [0,1], the following estimate holds:

M0(1 + s)

M0(1)M(s)
≤

(
M0(2)

M0(1)eEX(1)

)s

. (6.18)

Proof. Function lnM0(t) is convex. Therefore,

lnM0(1 + s) = lnM0
(
(1 − s) + 2s

) ≤ (1 − s) lnM0(1) + s lnM0(2).
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In addition, by the Jensen inequality,

M0(s) = EesX(1) ≥ esEX(1).

Together these inequalities imply,

M0(1 + s)

M0(1)M0(s)
≤ M0(1)1−sM0(2)s

M0(1)esEX(1)
=

(
M0(2)

M0(1)eEX(1)

)s

. �

Now, using (6.16) and monotone decrease of M0(1 + s)/M0(s)

1 ≤ ρ
(
bn, . . . , bn

) ≤
(

M0(1 + e−λbn
)

M0(1)M0(e−λbn
)

)q

(6.19)
≤ Cqe−λbn ≤ 1 + o(1) lnCqe−λbn

,

where the former inequality follows from Lemma 1 with C = M0(2)/(M0(1)eEX(1)). Then, con-
vergence of the series (6.16) follows from the finiteness of the series

∑∞
n=1 e−λbn

.
Finally, we need to check the mixing condition (3.5). Let 1 ≤ i1 < i2 < · · · ≤ im and ui = A if

i ∈ {i1, . . . , im} and 0 otherwise. In this context, it is convenient to use (6.16) in the form

ρ(u1, . . . , uq−1) =
q−1∏
j=1

M0(1 + ∑q−1
k=j e

−λ
∑k

l=j ul )

M0(1)M0(
∑q−1

k=j e
−λ

∑k
l=j ul )

.

Then, as A → ∞, and i0 = 0, im+1 = q

lim
A→∞ρ(u1, . . . , uq−1) =

m∏
α=1

iα+1−1∏
j=iα+1

M0(1 + ∑iα+1−1
k=j 1)

M0(1)M0(
∑iα+1−1

k=j 1)
(6.20)

=
m∏

α=1

M0(iα+1 − iα)

M0(1)iα+1−iα
=

m∏
α=1

E�(0)iα+1−iα .

This proves (3.5). Therefore, Theorem 2 gives Lq convergence of An(t).
To prove the scaling property, we are going to use the results of Theorem 3. First using repre-

sentation (6.3), we have for any q ,

E�(t)�(0)q−1 = E exp
{
(q − 1)X(0) + X(t) − qcX

}
= E exp

{(
q − 1 + e−λt

)
X(0) +

∫
(0,t)

e−λ(t−s) dZ(λs) − qcX

}
= E exp

{(
q − 1 + e−λt

)
X(0) − qcX

}
× E exp{e−λtX(0) + ∫

(0,t)
e−λ(t−s) dZ(λs)}

Eee−λtX(0)
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= E exp
{(

q − 1 + e−λt
)
X(0) − qcX

}E exp{X(t)}
Eee−λtX(0)

= M0(q − 1 + e−λt )

M0(1)q−1M(e−λt )
.

Then

E�(t)q−1�(0)q−1

E�(0)q
= M0(q − 1 + e−λt )M0(1)

M0(q)M0(e−λt )
.

For q > 1, the latter function is monotone decreasing in t , as follows from the Karamata motor-
ization inequality. Hence,

∣∣ρq(s)
∣∣ = sup

u∈[0,1]

(
1 − E�(su)�(0)q−1

E�(0)q

)
= 1 − M0(q − 1 + e−λs)M0(1)

M0(q)M0(e−λs)
. (6.21)

Function f (x) = lnM(x) is convex. Condition (6.12) ensures that the derivative f ′(q) exists for
q ≤ q∗. Then, for any x ≤ q ,

f (x) − f (q) ≥ (x − q)f ′(q).

In particular, for x = q − 1 + e−λs ,

f
(
q − 1 + e−λs

) − f (q) ≥ (−1 + e−λs
)
f ′(q).

In addition, by the Jensen inequality,

M0
(
e−λs

) = Eee−λsX(0) ≤ (
EeX(0)

)e−λs = M0(1)e
−λs

.

The latter two inequalities give∣∣ρq(s)
∣∣ ≤ 1 − e(−1+e−λs )(f ′(q)−f (1))

(6.22)
≤ (

1 − e−λs
)(

f ′(q) − f (1)
) ≤ λs

(
f ′(q) − f (1)

)
.

Then

0 ≤
∞∑

n=1

∣∣ρq

(
b−n

)∣∣ ≤ λ
(
f ′(q) − f (1)

) ∞∑
n=1

b−n < ∞.

Since we have already shown that A(t) ∈ Lq for q < q∗, we can apply Theorem 3. �

As an example consider a stationary OU-type process X(t), defined in (6.4), with marginal
normal inverse Gaussian distribution NIG(α,β, δ,μ), which is self-decomposable, and hence in-
finitely divisible; see Barndorff-Nielsen [9]. The moment generating function of NIG(α,β, δ,μ)

is given by the formula:

logM0(ζ ) = μζ + δ
[√

α2 − β2 −
√

α2 − (β + ζ )2
]
, |β + ζ | < α,
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and the set of parameters satisfies the following constraints:

δ > 0, 0 ≤ |β| ≤ α, μ ∈ R, γ 2 = α2 − β2.

The Lévy triplet pf the process X(t) is of the form (a,0, ν), where

a = μ + 2π−1δα

∫ 1

0
sinh(βx)K1(αx)dx, ν(du) = π−1δα|u|−1K1

(
α|u|)eβu du,

where the modified Bessel function of the third kind of index λ:

Kλ(z) =
∫ ∞

0
exp

{−z cosh(x)
}

cosh(λx)dx, Reλ > 0.

Consider a mother process of the form

�(t) = exp
{
X(t) − cX

}
, cX = μ + δ

√
α2 − β2 −

√
α2 − (β + 1)2, |β + 1| < α.

Let q∗ ≤ α − |β| be an integer and put

Q = {
q : 0 < q < q∗, |β + 1| < α,μ ∈R, δ >0

}
.

If

b > exp

{
−δ

√
α2 − β2 + δ

√
α2 − (β + q∗)2 − q∗δ

√
α2 − (β + 1)2

1 − q∗

}
,

then the statement of Theorem 5 of [2] holds for q ∈ Q with the scaling function

ς(q) =
(

1 − δ[√β2 + γ 2 − (β + 1)2 − γ ]
logb

)
q + δ

logb

√
β2 + γ 2 − (β + q)2 − δγ

logb
− 1,

that is the log-normal inverse Gaussian scenario holds. This is an extension to Theorem 5 of Anh
et al. [2].

Some other scenarios can be found in an extended version of this paper available on Arxiv
(Denisov and Leonenko [18]).

7. Connections and prospects

Both papers Muzy and Bacry [37] and Barral and Jin [12] (see also their references) introduce
multifractal random measures μ as a limit of positive martingales μj defined in a framework
of log-infinitely divisible cascades constructed as independently scattered random measures on
some cones on the plane. In particular, Barral and Jin [12] extended some classical results valid
for canonical multiplicative cascades to exact scaling of log-infinitely divisible cascades.

If ψ(z) is the characteristic Lévy exponent with Lévy triplet (a, d, ν) (see (6.2)), and using
notation of the paper, let ϕ(q) = log2 E(Wq) − (q − 1) = ψ(−iq) − (q − 1), for some infinitely
divisible random variable W , which generates cascade, then:
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(i) the necessary and sufficient condition for non-generacy of μ, is of the form: ϕ′(1−) < 0,
and (ii) the necessary and sufficient condition for E(‖μ‖q) < ∞, is of the form: ϕ(q) < 0, q > 1.
Also, if ψ(−i2) < ∞, the increments of limiting multifractal measure is stationary process with
long-range dependence; see again Barral and Jin [12].

Bacry and Muzy’s construction uses other shapes for the cone, but in the notation above
the condition of non-generacity is of the form (i), while the condition of L2 convergence and
E(‖μ‖2) < ∞, is of the form: ψ̄(2) < 1, where ψ̄(q) is the Laplace exponent of Lévy–Khintchin
representation of some infinitely divisible random variable. In this case, no long-range depen-
dence between the increments of the multifractal measure, and in order to have long-range de-
pendence they used the so-called multifractal random walk, that is superposition of fractional
Brownian motion and limiting multifractal process, assuming that they are independent.

Our construction has connection to both papers. Firstly, we present general results on Lq con-
vergence (Theorems 1 and 2) without any assumptions about log-infinitely divisibility of mother
process. These results are more general then results of the above papers. To see this, one can
apply these results (for q = 2) for the geometric stationary diffusion mother process, in which
cases several scenarios are possible, including log-beta scenario, which is not log-infinitely di-
visible; see [6] for more details. Both short-range dependence and long-range dependence po-
tentially covered by Theorems 1 and 2. Then we consider the geometric OU processes, which
have log-self-decomposable marginal distributions; this is a subclass of log-infinitely divisible
distributions, and inclusion is strict. In this case, our results are less general in terms of possible
scenarios, as well as our conditions; see Theorem 4. In particular, our condition for log-gamma
scenario required α > 2 (see log-gamma scenario in continuation of this paper in [19]), while in
the framework of the paper Muzy and Bacry [37] for log-gamma scenario one needs only α > 1.
Also, for a α-stable OU process, the results Musy and Barcy [37] and Barral and Jin [12] hold
for α ∈ (0,2), while our condition (6.12) does not hold. Next, the results of the papers Muzy and
Bacry [37] and Barral and Jin [12] can be applied for discrete infinitely divisible distributions,
that is, to get log-poisson scenario, while our results of Section 6 cannot be applied for discrete
distributions, since they are not self-decomposable. However by using results of Sections 2 and
3, one can obtain log-poisson scenarios (among the others) by using the multiplicative products
of ergodic birth-death processes; see [5] for details. As far as dependence is concerned, our ap-
proach allows to model both short- and long-range dependence. This question will be considered
in a subsequent paper.

In the same spirit, one can obtain the log Meixner or more generally log-z multifractal scenario
(see Anh et al. [2]) or log-Euler’s gamma multifractal scenario (see Anh et al. [3]). In principle,
it is possible to obtain the log-hyperbolic scenarios for which there exist exact forms of Lévy
measures of the OU process and the BDLP Lévy process; however, some analytical work is still
to be carried out. This will be done elsewhere.
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