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In decision theoretic estimation of parameters in Euclidean space R
p , the action space is chosen to be the

convex closure of the estimand space. In this paper, the concept has been extended to the estimation of
circular parameters of distributions having support as a circle, torus or cylinder. As directional distributions
are of curved nature, existing methods for distributions with parameters taking values in R

p are not immedi-
ately applicable here. A circle is the simplest one-dimensional Riemannian manifold. We employ concepts
of convexity, projection, etc., on manifolds to develop sufficient conditions for inadmissibility of estimators
for circular parameters. Further invariance under a compact group of transformations is introduced in the
estimation problem and a complete class theorem for equivariant estimators is derived. This extends the
results of Moors [J. Amer. Statist. Assoc. 76 (1981) 910–915] on R

p to circles. The findings are of special
interest to the case when a circular parameter is truncated. The results are implemented to a wide range of
directional distributions to obtain improved estimators of circular parameters.
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1. Introduction

Problems of estimation when the parameter space is restricted are encountered often in practice.
These restrictions arise due to prior information on parameters and they can be in the form of
bounds on the range or equality/inequality constraints of several parameters. For recent develop-
ments and discussions on various aspects of estimation procedures in restricted parameter space
problems, one may refer to [14,15,17,18,28] and references therein. Frequently in practical ap-
plications, we assume the random observations taking values in Euclidean spaces. However, it
sometimes may be more useful to represent them on circles/spheres/cylinders. In such cases, we
employ directional distributions. For instance, mortality data due to a specific disease may be
better represented as circular data to study the seasonal pattern of the disease. There are numer-
ous situations in biological, meteorological, astronomical applications, where directional data
(circular/axial/spherical) arises [1,8,19]. However, little attention has been paid to problems of
estimating directional parameters under constraints. Rueda, Fernández and Peddada [25] consid-
ered the estimation of the circular parameters under order restrictions. There are situations when
the parameter may lie on an arc of the circle. For example, the peak of mortality rates due to
respiratory diseases occurs during November to February.

One major consequence of placing restrictions on the natural parameter space is that esti-
mators derived using standard concepts of maximum likelihood, minimaxity, invariance, etc.,
become inadmissible. However, existing methods developed for Euclidean spaces Rp are not di-
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rectly applicable to directions which are represented to lie on unit hypersphere with the center
at origin Sp−1 = {x ∈ R

p : ‖x‖ = (xT x)1/2 = 1}. Topological properties of Sp−1 depend on the
differential geometry of embedding Sp−1 in R

p as x → x/‖x‖ with x ∈ R
p . We need to suitably

modify techniques available for Rp to improve standard estimators of directions. In this paper,
we consider the case of p = 2 and denote by S a unit circle. The elements of S can be specified by
corresponding angles with respect to an arbitrary choice of zero direction and orientation. Let us
define by T = [0,2π) the space of amplitudes of the unit vectors in S. The point on S correspond-
ing to an angle α ∈ T is (cosα, sinα)T and the angle corresponding to a point x = (x1, x2)

T ∈ S

is atan(x2/x1), where the function atan(·) is given in (2.2). Note that S and T are isomorphic.
Let random variable Z ∈ Z have an unknown probability distribution Pν,ν ∈ �. Let the family

{Pν,ν ∈ �} be dominated by a measure η. The support Z may be circle T, torus Tk or cylinder
R×T, etc.; however, the estimand h(ν) is circular, where h(·) is a measurable function from �

into T. The problem of estimating h(ν) is considered under a circular loss function:

L(ν, δ) = 1 − cos
(
h(ν) − δ

)
. (1.1)

In the case when the parameter space is a subspace of Rp and the loss function is an increasing
function of Euclidean distance, the action space is chosen as a convex closure of the range of
estimand. Unlike this well-known result, it is demonstrated in Section 3 that analogous result
does not necessarily hold for circular parameter h(ν) under the loss L.

One of the major contributions was of Moors [22] (see [21], Chapter 3, also) to the estimation
problem of truncated parameters of a unknown family of distributions on R

p dominated by a
σ -finite measure. Estimators (except the constant ones) taking value near the boundaries of action
space with the positive probability turn out to be inadmissible with respect to the squared loss
function under certain conditions on the transformation group. He considered invariance under
a finite group with measure preserving elements such that induced transformations of the action
space satisfy the linearity property and group of these transformations is commutative. Under
this scenario, he constructed a subspace of the original action space and proved that any invariant
estimator taking values outside this new action space with the positive probability is inadmissible
and dominated by its projection on the new action space. Later, Moors and van Houwelingen [23]
relaxed conditions of measure preserving and commutativity. Without dropping these conditions,
Kumar and Sharma [16] generalized the result of Moors [22] to a locally compact group such that
induced transformations on the action space are affine (stronger condition than linear property)
and loss function is an increasing function of Euclidean distance. Along with these ideas, an
analogous theory for circular parameter h(ν) is developed in Section 4.

The outline of the paper is as follows. The concepts of distance formulae, convexity, closure of
a set and projections play a prominent role here. Section 2 provides the mathematical background
of these concepts for T. In Section 3, we consider the estimation of circular parameter h(ν) when
it is restricted to lie on an arc of circle and estimation space A is chosen as the convex closure of
h(�). A complete class result for this estimation problem is obtained under certain conditions.
Then the result is illustrated for several directional distributions. In Section 4, we introduce in-
variance under a compact group G in the estimation problem such that induced transformations
on A satisfy the circular property. Sufficient condition for inadmissibility of an G-equivariant
estimator is obtained. Applications of this result are demonstrated for both unrestricted or re-
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stricted estimation problems. For restricted estimation problems, improved estimators obtained
in Section 3 are further improved using the result of Section 4.

2. Definitions and preliminary results

Before we embark on estimation problem, we introduce some preliminary results in this section.
For a subset A ⊂ T, Lebesgue measure, interior, convex hull, convex closure and boundary of A

are denoted by l(A), int(A), conv(A), cc(A) and bd(A), respectively.

2.1. Convexity

It is more convenient to deal with polar coordinates than Cartesian coordinates when observations
lie on a unit circle. We summarize the concept of convexity for the circle S and then adopt it for
the space T.

A geodesic ([27], page 15), on Riemannian manifold generalizes the line in Euclidean space.
In the context of Riemannian manifold M equipped with Riemannian metric, a subset A ⊂ M

is convex if minimal geodesic with the end points in A belongs to A. In the case of S, great
circles are geodesics. Minimal geodesic between any two points on S is unique unless points
are antipodal (diametrically opposite). Some concepts of convexity on S were introduced in [4],
Section 9.1. Here, we use convexity and strong convexity as given below.

Definition 2.1 (Convex). A set A ⊂ S is convex if for any two points in A, there exists a minor
arc of great circle lying entirely in A joining them.

By convention, this definition allows antipodal points to lie in convex sets. Every segment of
a semicircle is a convex subset of S.

Definition 2.2 (Strongly convex). A subset A of S is strongly convex if A is convex and does not
contain antipodal points.

In the case of Rp , convex hull of any subset is the collection of all possible weighted arithmetic
mean of points in that subset. Analogously for a set A ⊂ S, the convex hull of A is the smallest
convex set (not necessarily strong convex) containing A, that is, it consists of

(w1x1 + · · · + wnxn)/‖w1x1 + · · · + wnxn‖ (2.1)

for all nonnegative weights w1, . . . ,wn such that
∑n

i=1 wi = 1 and for all x1, . . . ,xn ∈ A pro-
vided the norm in the denominator is nonzero. The convex hull of two antipodal points of S does
not exist ([3], Section 2.3). Polar form of (2.1) is discussed in Section 2.2.

Extension of a fundamental theorem of Carathéodory for R
2 to S can be stated as below

(see [3]).

Lemma 2.1. Each point in the convex hull of a set A ⊂ S can be expressed as normalized
weighted arithmetic mean of at most 2 points of A.
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To extend definitions of convex and strong convex sets to the space T, we need certain subsets
of T. For α,β ∈ T, definitions for sets of type I , J , K and K1 are stated only for intervals of form
(α,β). They may be extended to intervals of other forms (α,β], [α,β) and [α,β]. For α ≤ β , let

I (α,β) = (α,β),

J (α,β) = [0, α) ∪ (β,2π),

K(α,β) =
{

I (α,β), if 0 ≤ (β − α) < π ;
I (α,β) or J (α,β), if (β − α) = π ;
J (α,β), if π < (β − α) < 2π .

Sets I [α,β] and J [α,β] contain all the angles corresponding to an arc joining two points
(cosα, sinα)T and (cosβ, sinβ)T in the positive and the negative directions, respectively. More-
over, K[α,β] contains angles corresponding to the minor arc joining them.

Remark 2.1. Although in definition of I -type set, β is not allowed to take value 2π , intervals
(α,2π) and [α,2π) can be expressed as J (0, α) and J (0, α], respectively, for all α ∈ T. For any
α ∈ T, J (α,α) = T− {α} and J (α,α] = J [α,α) = J [α,α] = T.

For defining sets of type I , J and K , we have taken α ≤ β . The following definition for
K1-type subsets of T does not have this restriction.

K1(α,β) =
{

K(α,β), if α ≤ β,
K(β,α), if α > β.

Note that set K(α,β) is isomorphic to I (0, γ ) with γ ∈ [0,π]. For 0 ≤ (β − α) ≤ π and π <

(β −α) < 2π , K(α,β) can be transformed to I (0, β −α) and I (0,2π −β +α) using rotation by
angles 2π − α and 2π − β , respectively. Extending this argument, we have the following result.

Lemma 2.2. Sets K1(α,β),K1(α,β],K1[α,β) and K1[α,β] with α,β ∈ T are isomorphic to
I (0, γ ), I (0, γ ], I [0, γ ) and I [0, γ ], respectively, with 0 ≤ γ ≤ π .

For studying topological properties, we consider the metric space (T, d) with the following
definition of metric:

d(α,β) = 1 − cos(α − β), α,β ∈ T.

Here,
√

2d simply returns lengths of chord between points (cosα, sinα)T and (cosβ, sinβ)T ,
respectively. Consider the following classes of subsets of T:

C1 = {T} ∪ {
K1(α,β),K1(α,β],K1[α,β),K1[α,β] : α,β,∈ T

}
,

C2 = {
K1(α,β),K1(α,β],K1[α,β) : α,β ∈ T

} ∪ {
K1[α1, β1] : α1, β1 ∈ T and |α1 − β1| 	= π

}
,

C3 = C1 − C2 = {T} ∪ {
K1[α,β] : α,β,∈ T and |α − β| = π

}
,

C4 = {∅,T} ∪ {
I [α,β], J [α,β] : α,β,∈ T and α ≤ β

}
,

C5 = C1 ∩ C4 = {∅,T} ∪ {
K1[α,β] : α,β ∈ T and α ≤ β

}
.
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Remark 2.2. Classes C1, C2 and C5 consist of all convex, strongly convex and closed convex
subsets of T, respectively. Elements of C3 and C4 are closed subsets of T. Moreover, sets belong-
ing to C3 (except T) and C4 are corresponding to any minor arc and any arc on the unit circle,
respectively.

2.2. Circular mean direction

Since the arithmetic mean is not a suitable measure of central tendency for the angular data,
the circular mean direction is used ([12], page 13). The weighted circular mean direction of the
observations φ1, . . . , φn belonging to T with weights w1, . . . ,wn, wi ≥ 0 (i = 1, . . . , n) such that∑n

i=1 wi = 1 is defined as

φ̄w = atan

( ∑n
i=1 wi sinφi∑n
i=1 wi cosφi

)
,

with the following definition of atan(·)

atan

(
s

c

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tan−1(s/c), if c > 0, s ≥ 0;
π + tan−1(s/c), if c < 0;
π/2, if c = 0, s > 0;
2π + tan−1(s/c), if c ≥ 0, s < 0;
not defined, if s = 0, c = 0,

(2.2)

where tan−1(·) is the standard inverse tangent function taking values in (−π/2,π/2). The defi-
nition of atan(·) function ensures the following property.

Lemma 2.3. For all φ ∈ T and a ∈ R, we have

atan

(
tanφ + a

1 − a tanφ

)
= {

φ + tan−1(a)
}

mod (2π).

Note that φ̄w is polar form of (2.1) if φi is corresponding angle to xi ∈ S for all i = 1, . . . , n.
The following proposition proves that convex combination (weighted circular mean direction) of
finite collection of the points in convex subset of T is again in that subset.

Proposition 2.1. Let A ∈ C1 (convex), φ1, . . . , φn ∈ A and w1, . . . ,wn be nonnegative weights
with

∑n
i=1 wi = 1. Then weighted circular mean direction φ̄w of these observations belongs to

A, if it is defined.

Circular mean direction of a circular random variable θ is defined as

CE(θ) = atan(E sin θ/E cos θ).

An elementary result given in [7], page 74, states that if random variable X lies in convex subset
of R

p with probability one, E(X) lies in the same subset. An analogous result for T is given
below.
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Proposition 2.2. If A ∈ C1 (convex) and θ is a random angle such that Pr(θ ∈ A) = 1, the mean
direction CE(θ) ∈ A if CE(θ) exists. Furthermore, if A ∈ C2 (strongly convex), CE(θ) always
exists. If A ∈ C3 (convex but not strongly), CE(θ) does not necessarily exist.

2.3. Projection

The concept of projection in R
p is adopted to define projections of angles in T.

Definition 2.3. The projection of an angle φ ∈ T on a nonempty set A ∈ C4 (closed) is defined
to be the unique point φ0 ∈ A such that

d(φ,φ0) = inf
ψ∈A

d(φ,ψ).

The case when A = T is trivial. For α,β ∈ T, let γ = (α + β)/2. If A is of from I [α,β], φ0 is
given by

φ0 =
{

φ, if φ ∈ I [α,β];
α, if φ ∈ K1(α,π + γ ];
β, if φ ∈ K1(β,π + γ );

or

{
φ, if φ ∈ I [α,β];
α, if φ ∈ K1(α,π + γ );
β, if φ ∈ K1(β,π + γ ].

Note that the two definitions are equivalent except when φ = π + γ . For φ = π + γ , first and
second ones yield φ0 = α and φ0 = β , respectively. This is so because d(α,π + γ ) = d(β,π +
γ ). If A is the form of J [α,β], φ0 is given by

φ0 =
{

φ, if φ ∈ J [α,β];
α, if φ ∈ I

(
α,γ ];

β, if φ ∈ I (γ,β);
or

{
φ, if φ ∈ J [α,β];
α, if φ ∈ I (α, γ );
β, if φ ∈ I [γ,β).

Once again the two definitions are equivalent except when φ = γ .
Let A be a closed convex subset of Rp and x ∈ R

p . The projection x0 of x /∈ A on A satisfies

‖x0 − y‖ < ‖x − y‖ for all y ∈ A.

An analogous statement holds only for specific closed convex subsets of T. The following result
can be easily proved using geometrical arguments.

Lemma 2.4. Let φ0 be the projection of an angle φ /∈ A on a set A ∈ C5 (closed convex). The
inequality

d(φ0,ψ) < d(φ,ψ) for all ψ ∈ A

holds iff A = I [α,β] with β < α + (2/3)π or A = J [α,β] with β > α + (4/3)π , that is, l(A) <

(2/3)π . Moreover, if l(A) = (2/3)π and bd(A) = {b1, b2}, the above inequality remains strict
for ψ ∈ int(A) and at least one of ψ = bi (i = 1,2).

For remaining sets in C5, the above result holds for the expected values under certain condi-
tions on the distribution of random variable θ (Lemma 2.5).
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If the distribution of a circular random variable θ is symmetric about ψ , the density of θ with
respect to any measure (measure is always finite as T is a compact space) would be a function
of cos(θ − ψ). Further, if this distribution is unimodal, mean direction and mode coincide. Let
us denote by f (θ |ψ) = f (cos(θ − ψ)) the density of a symmetric unimodal distribution with
mode ψ . Now consider the mixture of two unimodals f (·|ψ) and f (·|ψ + π). This mixture
would necessarily not be bimodal. Let θ have a mixture distribution with probability density
εf (θ |ψ) + (1 − ε)f (θ |ψ + π), ε ∈ [0,1]. For this mixture distribution, define

ζ(t) = f ′(t)/f ′(−t), t ∈ [−1,1] (2.3)

with t = cos(θ − ψ). Maxima and minima of ζ(t) are denoted by ζmax and ζmin, respectively.
Distribution of θ would be unimodal with modes ψ and ψ + π for ε ∈ [{1 + ζmin}−1,1] and
ε ∈ [0, {1 + ζmax}−1], respectively. For remaining values of ε, it would be bimodal.

Lemma 2.5. Suppose that θ is a continuous circular random variable whose distribution is
symmetric about one of its mode ψ , where ψ belongs to A ∈ C5 (closed convex) with l(A) ∈
(2π/3,π] such that Pr(θ /∈ A) > 0. Let θ0 be the projection of θ on A. Then

Eθ
ψ

{
d(θ0,ψ)

}
< Eθ

ψ

{
d(θ,ψ)

}
if distribution of θ satisfies one of the following conditions:

(C1) distribution is unimodal with mode ψ ;
(C2) distribution is mixture with probability density εf (·|ψ) + (1 − ε)f (·|ψ + π), where

ε ≥ 1/2 and ζ(·) defined in (2.3) is an increasing function.

It may be noted that the condition (C2) implies (C1) for ε ∈ [{1 + ζ(−1)}−1,1].

Remark 2.3. Convexity of density function f (t) in t ∈ [−1,1] yields increasing nature of the
function ζ(t).

3. Improving estimators in restricted parameter spaces

In Euclidean spaces, the action space is chosen as a convex closure of the estimand space since
estimators outside this space with the positive probability are dominated by their projections on
it. An analogous result stated below for estimating the circular parameter h(ν) is an immediate
consequence of Lemmas 2.4 and 2.5.

Theorem 3.1. Let estimand be h(ν) ∈ �1 = h(�) ⊂ T and the loss function be L defined in (1.1).
Denote the estimation space by A = cc(�1). Any estimator δ(Z) satisfying Prν(δ(Z) /∈ A) > 0
for some ν ∈ � is inadmissible and dominated by the projection of δ(Z) on A if either of the
following conditions holds:

(C3) l(A) ≤ (2/3)π ;
(C4) distribution of δ(Z) is symmetric about h(ν) and with respect to Lebesgue measure, it

satisfies one of the conditions (C1) and (C2) with ψ = h(ν).
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Figure 1. Risk plot (a) θ̄ (straight line) and (b) projection of θ̄ on [0,π ] (dotted line) under the loss L.

For the sake of clarity, the estimation space A can be called the action space only when its
Lebesgue measure is less than or equal to 2π/3.

Remark 3.1. Note that when estimand h(ν) is forced to lie on an arc of semicircle, A is strictly
a subset of T. If h(ν) does not take value on a semicircle, A= T ([3], Theorem 7).

Conditions given in Theorem 3.1 for the inadmissibility of an estimator are sufficient but
not necessary. Suppose that θ has a mixture distribution which is generated from distributions
CN(ν, κ) and CN(ν + π,κ) with probabilities ε and (1 − ε), respectively, where ν ∈ [0,π],
ε = 0.1 and κ = 1. Based on the random sample of size n = 10, risk functions of the sample
mean direction θ̄ (straight line) and the projection of θ̄ on [0,π] (dotted line) under the loss L are
plotted in Figure 1. Density of CN distribution and θ̄ are defined in the next subsection. It can
be seen that for end points of ν ∈ [0,π], θ̄ is not improved by its projection. This demonstration
refutes the result stated in Theorem 3.1 for an arbitrary estimator in case l(A) > (2/3)π .

If an estimator δ(Z) has a distribution with mixture probability density εf (δ(z)|h(ν)) + (1 −
ε)f (δ(z)|h(ν) + π), its mean direction is given by

CE
(
δ(Z)

) =
{

h(ν) + π, if ε < 1/2;
undefined, if ε = 1/2;
h(ν), if ε > 1/2.

Therefore, when ε < 1/2, δ(Z) can be treated as an estimator for h(ν) + π .
Although Theorem 3.1 is based on a condition (C4) satisfied by the distribution of an estimator

when l(A) > (2/3)π , examining the distribution of the estimator can be a complex exercise. We
try to simplify these conditions for specific cases.

Consider the problem of estimating the location parameter ν ∈ T of a circular random variable
θ under the loss L which is invariant under a rotation group

G1 = {
gα : gα(θ) = (θ + α) mod (2π)

}
. (3.1)
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Under L, an G1-equivariant estimator for ν based on a random sample θ1, . . . , θn satisfies

δ(θ1, . . . , θn) = θ1 + ξ(θ2 − θ1, . . . , θn − θ1),

where ξ is an arbitrary statistic whose distribution is free from ν. This indicates that distribution
of an G1-equivariant estimator is of the same nature as θ . Using this fact, we deduce the following
result from Theorem 3.1.

Corollary 3.1. If θ is a continuous circular random variable whose distribution is symmetric
about ν ∈ �1 and satisfies one of the conditions (C1) and (C2) with ψ = ν such that A = cc(�1)

is K1-type, that is, l(A) ≤ π , any G1-equivariant estimator δ(θ) lying outside A with the positive
probability is inadmissible and dominated by its projection on A under loss L.

A similar result can be extended to the torus T
k = T × · · · × T. A distribution on T

k can be
specified as that of k circular random variables, that is, k-tuple vector Z = (θ1, . . . , θk) taking
values on Z⊂ T

k . Suppose that all k components are independently distributed and each compo-
nent has a common location parameter ν. This estimation problem is invariant under a group G2

given by

G2 = {
gα = (g1α, . . . , gkα) : giα(θi) = (θi + α) mod (2π)

}
. (3.2)

Problem of estimating ν can also be thought as multisample problem of estimating common ν.
Therefore, we can also draw random samples of different sizes from different components of Z
as components are independently distributed. As in Corollary 3.1, we deduce the following result
from Theorem 3.1.

Corollary 3.2. Let all components of a random variable Z = (θ1, . . . , θk) taking value on T
k

be independently distributed. If each component has a common location parameter ν ∈ �1 and
satisfies with respect to Lebesgue measure one of the conditions (C1) and (C2) with ψ = ν, any
G2-equivariant estimator δ(z) lying outside A= cc(�1) with the positive probability is inadmis-
sible and dominated by its projection on A under loss L when l(A) ≤ π .

Corollaries 3.1 and 3.2 enable us to improve various estimators available in the literature for
the circular location ν of several directional distributions. Apart from the maximum likelihood
estimator (MLE) δml, the following estimators for ν have been proposed on the basis of a random
sample θ1, . . . , θn.

(E1) (Watson [29], page 135) Sample mean direction θ̄ minimizes
∑n

i=1 d(θi, α) over α ∈ T

and is obtained as θ̄ = atan(
∑n

i=1 sin θi/
∑n

i=1 cos θi).
(E2) (Mardia and Jupp [19], page 167) Circular median δcm minimizes

∑n
i=1 d1(θi, α) over

α ∈ T, where d1(α,β) = π − |π − |α − β|| for α,β ∈ T.
(E3) (He and Simpson [10]) L1-estimator δl1 minimizes

∑n
i=1{d(θi, α)}1/2 over α ∈ T.
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(E4) (Ducharme and Milasevic [5]) Normalized spatial median δnsm = (α∗
2/α∗

1), where
(α∗

1 , α∗
2) is the solution of

min
(α1,α2)∈R2

n∑
i=1

{
1 + α2

1 + α2
2 − 2(α1 cos θi + α2 sin θi)

}1/2
.

(E5) (Neeman and Chang [24], Tsai [26]) Circular Wilcoxon estimator δcw minimizes∑n
i=1 Rid1(θi, α) over α ∈ T, where Ri (i = 1, . . . , n) is the rank of sin(θi − α) amongst

sin(θ1 − α), . . . , sin(θn − α).

Except δcm, all other estimators are proposed in their Cartesian forms. All the above mentioned
estimators are either M-estimator or restricted M-estimator or R-estimator.

Remark 3.2. Due to lack of preference for the zero direction and orientation in the defini-
tion of T, rotation-equivariant estimators for circular parameters are preferred. All the above-
mentioned estimators enjoy the property of G1-equivariance when support is T. When sup-
port is T

k , these estimators based on sample values θ11, . . . , θ1n1 , . . . , θk1, . . . , θknk
are also

G2-equivariant. This equivariance property is used in the following section to derive improved
estimators.

3.1. Applications of Theorem 3.1

Theorem 3.1 is applicable to a wide variety of estimation problems for directional distributions.
In this section, we consider various examples where Theorem 3.1 leads to improvement over
traditional estimators.

Example 3.1 (Unimodal distributions on circle T). A circular normal distribution CN(ν, κ) is
defined by the following density:

f2(θ;ν, κ) = 1

2πI0(κ)
eκ cos(θ−ν), θ, ν ∈ T, κ > 0,

where Iv is the modified Bessel function of the first kind and order v. It is known a priori that
ν ∈ �1 such that �1 is an arc of the circle. Without loss of generality, we can assume that
�1 = [0, b], where b ∈ T. The estimation space for ν is

A=
{ [0, b], if b ≤ π ;
T, if b > π .

The unrestricted MLE of ν is δml = θ̄ . The circular normal distribution is the only rotationally
symmetric distribution for which MLE of the mean direction ν is the sample mean direction θ̄ .
Maximization of likelihood function over �1 yields the restricted MLE δrml as

δrml =
⎧⎨
⎩

θ̄ , if θ̄ ∈ [0, b];
b, if θ̄ ∈ (b,π + b/2);
0, if θ̄ ∈ [π + b/2,2π);

or

⎧⎨
⎩

θ̄ , if θ̄ ∈ [0, b];
b, if θ̄ ∈ (b,π + b/2];
0, if θ̄ ∈ (π + b/2,2π).

(3.3)



Truncated circular parameters 2531

At θ̄ = π + b/2, δrml can take two values. Since Pr(θ̄ = π + b/2) = 0, both estimators are
equivalent. Note that when b ≤ π , δrml is also the projection of θ̄ on A. Corollary 3.1 yields that
δrml improves θ̄ under the loss L when b ≤ π . When b > π , the projection of θ̄ on A is the same
as θ̄ . In a similar way, improvements over all other estimators, δcm, δl1, δnsm and δcw (as defined
in (E2), (E3), (E4), (E5)) can be obtained from Corollary 3.1 and Remark 3.2 for ν when ν is
restricted to [0, b] and b ≤ π .

Other well-known symmetric unimodal distributions are wrapped Cauchy WC(ν, ρ), wrapped
normal WN(ν, ρ) and cardioid C(ν,ρ) with the following probability densities in terms of t =
cos(θ − ν),

f3(t) = (1 − ρ2)

(1 + ρ2 − 2ρt)
, ρ ∈ (0,1);

f4(t) = 1

2π
+ 1

π

∞∑
i=1

ρi2
Ti(t), ρ ∈ (0,1);

f5(t) = (2π)−1 + π−1ρt, |ρ| < 1/2,

respectively, where Tv is a Chebyshev polynomial of first kind of order v. Jones and Pewsey
[13] proposed a family of symmetric unimodal distributions on T whose densities are provided
in terms of t as

f6(t) = {cosh(κψ)}1/ψ

2πP1/ψ(cosh(κψ))

{
1 + tanh(κψ)t

}1/ψ
, κ > 0,ψ ∈ R,

where Pv is the associated Legendre function of the first kind of degree v and order 0. Here, we
exclude the case of κ = 0 since it yields the uniform distribution on T. Circular normal, wrapped
Cauchy and cardioid distributions are contained in this family corresponding to ψ = 0,−1 and 1,
respectively.

Another general family of symmetric unimodal distributions on T contains wrapped α-stable
distributions with densities of the following form in terms of t ([19], page 52)

f7(t) = 1

2π
+ 1

π

∞∑
i=1

ρiαTi(t), ρ ∈ (0,1), α = (0,1) ∪ (1,2].

For α = 2, it yields wrapped normal distribution.
Since the distributions corresponding to densities f6 and f7 satisfy condition (C1) , Corol-

lary 3.1 and Remark 3.2 yield improvements over all estimators θ̄ , δml, δcm, δl1, δnsm and δcw for
the mean direction ν when ν is restricted to [0, b] such that b ≤ π .

Example 3.2 (Mixture distributions on T). Let random variable θ be generated from CN(ν, κ)

and CN(ν +π,κ) with probabilities ε and (1 − ε), respectively. For this distribution, ζ(t) = e2κt

which is increasing in t . Thus, Corollary 3.1 and Remark 3.2 yield that all the estimators, θ̄ ,
δml, δcm, δl1, δnsm and δcw, for ν ∈ �1 are improved by their projections on A if l(A) ≤ π and
ε ≥ 1/2. For the values of ε < 1/2, improvements are possible when l(A) ≤ (2/3)π .
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Similar improvements are possible when we mix either two wrapped normal or two distribu-
tions with density f6 for same value of ψ ≤ 1 with different mean directions ν and ν + π . To
apply Corollary 3.1, we must show that the corresponding function ζ(t) is an increasing function
in t . For a general density f6(t), derivative of ζ(t) with respect to t is obtained as

ζ ′(t) = 2(1 − ψ)

ψ

tanh(κψ)

{1 + tanh(κψ)t}2

{
1 + tanh(κψ)t

1 − tanh(κψ)t

}1/ψ

, ψ 	= 0,

which is always nonnegative unless ψ > 1.
The wrapped normal distribution can be represented by theta function ϑ3. Using the represen-

tation of ϑ3 in terms of infinite products ([9], page 921, equation 8.181.2), we have

f4(t) = 1

2π

∞∏
i=1

(
1 − ρ2i

)(
1 + 2tρ2i−1 + ρ2(i−1)

)
.

Second derivative of f4(t) with respect to t is f4(t)
∑

i 	=j ξi(t)ξj (t), where ξ(i) = 2ρ2i−1/{1 +
2tρ2i−1 + ρ2(i−1)}−1. Convexity of f4(t) follows from the positiveness of ξi(t) and increasing
nature of ζ(t) follows from the convexity of f4(t) using Remark 2.3.

Example 3.3 (Distributions on T with k-fold rotational symmetry). This distribution is con-
structed by putting k copies of the original distribution end-to-end ([19], page 53). If we are
given a distribution of θ which is unimodal and symmetric about ν, constructed distribution has
the density f (cos(k(θ − ν0))), θ ∈ T, ν0 ∈ [0,2π/k). Note that new distribution is k-modal, for
example, k-modal circular normal distribution ([12], page 209). For k ≥ 3, condition (C3) of
Theorem 3.1 is satisfied and so estimators of ν0 lying outside A with a positive probability can
be improved by their projections on A. Note that the results hold when the parameter space is
full, that is, [0,2π/k) or restricted, that is, a subset of [0,2π/k). For k = 2, the result holds only
for restricted parameter space if ν0 ∈ �1 ⊂ [0, b] such that b ≤ (2/3)π .

Example 3.4 (Distributions on torus Tk). Suppose that all k components of Z = (θ1, . . . , θk) ∈
Z ⊂ T

k are independently distributed and ith component θi follows CN(ν, κi) with known κi .
Consider the estimation of common ν ∈ �1 under the loss L. Let (θi1, . . . , θini

) be a random
sample from the ith population (i = 1, . . . , n). Suppose θ̄i denotes the sample mean direction and
Ri = {(∑ni

j=1 sin θij )
2 + (

∑ni

j=1 cos θij )
2}1/2 denotes the sample resultant length for the sample

of ith component. The MLE of ν is

θ̃ = atan

( ∑k
i=1 κiRi sin θ̄i∑k
i=1 κiRi cos θ̄i

)
. (3.4)

The conditional distribution of θ̃ is again circular normal CN(ν,R∗), where

R∗ =
{(

k∑
i=1

κiRi sin θ̄i

)2

+
(

k∑
i=1

κiRi cos θ̄i

)2}1/2

Holmquist [11].
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Since the distribution of R∗ is dependent only on κi , distribution of θ̃ is unimodal and symmetric
about its mode ν. Corollary 3.2 yields that θ̃ is dominated by its projection on A under the loss
L if l(A) ≤ π . Note that improved estimator of θ̃ is also the restricted MLE for common ν when
l(A) ≤ π .

Using Corollary 3.2 and Remark 3.2, we can obtain improvements over other estimators θ̄ ,
δcm, δl1, δnsm and δcw based on random sample θ11, . . . , θ1n1, . . . , θk1, . . . , θknk

.

Remark 3.3. This model can be further extended to the cases where distributions of independent
components are not necessarily the same and satisfy conditions (C1) and (C2) with respect to
Lebesgue measure, namely, distributions considered in Examples 3.1 and 3.2.

Example 3.5 (Distribution on unit sphere S2). Point x = (x1, x2, x3)
T ∈ S2 can be specified by

its geographical coordinates: colatitude θ = cos−1(x3) ∈ [0,π] and longitude φ = atan(x2/x1) ∈
[0,2π). Hence, sphere S2 is isomorphic to T2 = [0,π] × [0,2π). The density of Fisher distribu-
tion on the support T2 is given by

f8(θ,φ;ν1, ν2, κ) = κ sin θ

4π sinh(κ)
exp

{
κ
(
sin θ sinν1 cos(φ − ν2) + cos θ cosν1

)}
,

(ν1, ν2) ∈ T2, κ > 0,

where (ν1, ν2) is the mean direction. On the basis of a random sample of size n, the MLE of ν2,
when κ is known/unknown and ν1 is unknown, is given by

δml = atan

( ∑n
i=1 sin θi sinφi∑n
i=1 sin θi cosφi

)
.

It is known that mean direction is restricted to a continuous arc of hemisphere. Without loss of
generality, we can assume that ν1 ∈ [0,π] and ν2 ∈ [0, b] with b ≤ π . We can improve the MLE
of ν2 by its projection on [0, b] if b ≤ (2/3)π using Theorem 3.1.

Example 3.6 (Distribution on cylinder R×T). Mardia and Sutton [20] proposed a distribution
on the cylinder R×T. Let (X, θ) have the support R×T where the marginal distribution of θ is
CN(ν0, κ), ν0 ∈ T, κ > 0 and conditional distribution of X|θ is a normal with mean

μc = μ + σρ
√

κ
{
cos(θ − ν) − cos(ν0 − ν)

}
, μ ∈R, ν ∈ T,0 ≤ ρ ≤ 1, σ > 0

and variance σ 2(1 − ρ2). Based on a random sample of size n, the MLE of ν is

δml = atan

(
s2

s3

r23r12 − r13

r23r13 − r12

)
,

where for i = 1,2,3 and j = 1, . . . , n, x1j = xj , x2j = cos θj , x3j = sin θj , x̄i = ∑
j xij /n,

s2
i = ∑

j (xij − x̄i )
2; and for i 	= k (i, k = 1,2,3),

rik = 1

sisk

∑
j

(xij − x̄i )(xkj − x̄k).
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If ν is restricted to �1 such that l(A) ≤ (2/3)π , δml is dominated by its projection on A under
the loss L using Theorem 3.1. Note that simulations indicate that this result is also valid for
(2/3)π < l(A) ≤ π .

4. An inadmissibility result for general equivariant rules

Moors [21,22], Kumar and Sharma [16] gave a general method for obtaining improved equiv-
ariant estimators of parameters in Euclidean spaces. In this section, we extend these results for
estimating circular parameters.

Let the problem of estimating h(ν) ∈ �1 under the loss L be invariant under a compact group
G of measurable transformations g : Z → Z. There exists a finite and left (right) invariant Haar
measure λ on G ([6], Theorem 1.5). Let Ḡ and G̃ be the groups induced by G on parameter space
� and estimation space A= cc(�1).

Lemma 4.1. For the G-invariant estimation problem defined above, we have:

(i) f (z|ḡ(ν)) = f (g−1(z)|ν) a.e. with respect to measure η;
(ii) hḡ(ν) = g̃h(ν) mod (2π) for all ν ∈ �;

(iii) Let A ∈ C5 (closed convex). If φ0 is the projection of φ ∈ T on A, the projection of g̃(φ)

on g̃(A) is g̃(φ0).

For each z ∈ Z and ν ∈ �, define a probability measure on G as

τ
(
z|ḡ(ν)

) = f (z|ḡ(ν))∫
G f (z|ḡ∗(ν))dλ(g∗)

.

With the help of these measures, for a fixed z ∈ Z, define a function hz : � →A as

hz(ν) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

atan

( ∫
G sin(g̃h(ν))τ (z|ḡ(ν))dλ(g)∫
G cos(g̃h(ν))τ (z|ḡ(ν))dλ(g)

)
, if

∫
G

f
(
z|ḡ(ν)

)
dλ(g) > 0;

h(ν), if
∫
G

f
(
z|ḡ(ν)

)
dλ(g) = 0.

(4.1)

The new estimation space Az is defined as a convex closure of hz(�), that is, Az = cc(hz(�)).

Remark 4.1. In case of
∫
G f (z|ḡ(ν))dλ(g) = 0, Az = A. When

∫
G f (z|ḡ(ν))dλ(g) > 0, hz(ν)

can be written as

hz(ν) = atan

(
E sin(g̃h(ν))

E cos(g̃h(ν))

)
, (4.2)

where the expectation is taken over g with respect to a probability measure τ(z|ḡ(ν))dλ(g). If
Pr(g̃h(ν) ∈ A) = 1, hz(ν) ∈ A from the convexity of A (see Proposition 2.2). Since Az is the
smallest convex set containing hz(ν), we conclude that Az ⊂A.
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We assume that every transformation g̃ ∈ G̃ satisfies circular property, that is, for a fixed α and
for all φ ∈ A, g̃(φ) is either α + φ or α − φ such that images are in A itself.

Lemma 4.2. If every induced transformation on A satisfies the circular property, the reduced
estimation space Az satisfies Ag(z) = g̃(Az) for all z ∈ Z and g ∈ G.

Lemmas 4.1 and 4.2 are utilized to prove the main result of this section.

Theorem 4.1. Consider an G-invariant estimation problem under the loss function L with a
compact group G such that elements of induced group G̃ on the estimation space A satisfy the
circular property. Any G-equivariant estimator δ satisfying Prν(δ(Z) /∈ AZ) > 0 for some ν ∈ �

is dominated by its projection on AZ provided that l(AZ) ≤ (2/3)π .

This result is applicable to both restricted and unrestricted estimation problems as illustrated
in the following subsection.

4.1. Applications of Theorem 4.1

We consider estimation of the location parameter ν ∈ �1 of a circular random variable θ under
the loss L. Let us denote by fν(θ) the density of θ that would be a function of cos(θ − ν).

4.1.1. Unrestricted estimation problems

The estimation problem is invariant under the rotation group G1. Clearly, the induced group G̃1
on the estimation space A = T is itself G1 and every transformation in G1 satisfies the circular
property. Taking G = G1, we define

hθ (ν) = atan

( ∫ 2π

0 sin(α + ν)fα+ν(θ)dα∫ 2π

0 cos(α + ν)fα+ν(θ)dα

)
= atan

( ∫ 2π

0 sinαfα(θ)dα∫ 2π

0 cosαfα(θ)dα

)
,

or equivalently, hθ (ν) is constant on ν ∈ T. Therefore the following result follows from Theo-
rem 4.1.

Corollary 4.1. If θ is a circular random variable with the unrestricted location parameter ν ∈ T,
there is only one admissible G1-equivariant estimator under the loss L which is obtained as

δad = atan

( ∫ 2π

0 sinαfα(θ)dα∫ 2π

0 cosαfα(θ)dα

)
,

where fν(θ) the density of θ .

For CN(ν, κ) distribution, δad = θ̄ . All other G1-equivariant estimators δcm, δl1, δnsm and δcw
for ν ∈ T under the loss L are improved by θ̄ using Corollary 4.1. This result is significant in
the sense that so far comparison of θ̄ with δcm, δl1, δnsm and δcw was done only with respect to
asymptotic efficiency and robustness.
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4.1.2. Restricted estimation problems

Let the location ν be restricted to any arc of semicircle. Without loss of generality, we can as-
sume that ν ∈ �1 = [0, b] with 0 < b ≤ π . In Example 3.1, the same restricted space estimation
problem was considered and we obtained improvements over estimators θ̄ , δml, δcm, δl1, δnsm and
δcw for various distributions. Denote by θ̄∗, δ∗

ml, δ
∗
cm, δ∗

l1, δ∗
nsm and δ∗

cw, the dominating estimators
of θ̄ , δml, δcm, δl1, δnsm and δcw as their projections on �1 = [0, b]. Here, we can further improve
upon these improved estimators.

We consider the transformation group as G3 = {e, g} where g(θ) = (b − θ) mod (2π) and e is
the identity transformation. The estimation problem remains invariant under G3 and the induced
group on the estimation space A is G3. Clearly, elements of G3 satisfy the circular property.
Define the following function for a fixed random sample θ1, . . . , θn as

h(θ1,...,θn)(ν) = {
b/2 + tan−1(a(ν)

)}
mod (2π),

where after some algebraic computations, a(ν) is derived as

a(ν) =
∏n

i=1 fb−ν(θi) − ∏n
i=1 fν(θi)∏n

i=1 fb−ν(θi) + ∏n
i=1 fν(θi)

tan

(
b

2
− ν

)
.

Since fν(θ) is a function of cos(θ − ν), h(θ1,...,θn)(ν) is symmetric about ν = b/2. It is sufficient
to assume that ν ∈ [0, b/2] to study the behaviour of the function h(θ1,...,θn)(ν).

We consider distributions for which a(ν) is monotonic in ν ∈ [0, b/2]. As a(b/2) = 0, mono-
tonic nature of a(ν) is dependent on the sign of a(0). The new estimation space is

A(θ1,...,θn) = cc
(
h(θ1,...,θn)(�1)

) =
⎧⎨
⎩

[
b∗, b/2

]
, if a(0) < 0;

{b/2}, if a(0) = 0;[
b/2, b∗], if a(0) > 0,

where b∗ = h(θ1,...,θn)(0). It may be noted that l(A(θ1,...,θn)) ≤ b/2 which is a substantial reduc-
tion in l(A) = b.

Since G3 ⊂ G1, all estimators θ̄ , δml, δcm, δl1, δnsm, δcw, θ̄∗, δ∗
ml, δ∗

cm, δ∗
l1, δ∗

nsm and δ∗
cw are

also G3-invariant. For the distributions which satisfy the assumption of monotonicity of a(ν), all
these estimators can be improved by their projections on A(θ1,...,θn) using Theorem 4.1.

If θ follows a CN(ν, κ) distribution, the function a(ν) is given as

a(ν) = tanh

(
κr sin

(
θ̃ − b

2

)
sin

(
b

2
− ν

))
tan

(
b

2
− ν

)
.

Monotonicity of a(ν) can be easily observed. The new estimation space is equal to

A(θ̄ ,r) =
⎧⎨
⎩

[
b∗, b/2

]
, if θ̄ ∈ J1;

{b/2}, if θ̄ ∈ {b/2, π + b/2};[
b/2, b∗], if θ̄ ∈ I1,
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where b∗ = b/2 + tan−1[tan(b/2) tanh{κr sin(θ̄ − b/2) sin(b/2)}], J1 = J (b/2,π + b/2) and
I1 = I (b/2,π + b/2). Based on A(θ̄ ,R), an estimator δ is dominated by

δI =
⎧⎨
⎩

δ, if θ̄ ∈ J1 and δ ∈ [
b∗, b/2

]
, or, θ̄ ∈ I1 and δ ∈ [

b/2, b∗];
b∗, if θ̄ ∈ J1 and δ ∈ J

(
b∗, γ

)
, or, θ̄ ∈ I1 and δ ∈ (

b∗, γ
)
;

b/2, if θ̄ ∈ J1 and δ ∈ (b/2, γ ], or, θ̄ ∈ I1 and δ ∈ J (b/2, γ ], or, θ̄ ∈ {b/2,π + b/2},
where γ = π + b∗/2 + b/4. In Example 3.1, the estimator δ for ν is dominated by the projection
of δ on A. Let us denote by δ∗ this improved estimator. Based on A(θ̄ ,R), improved estimators δI

and δ∗
I of δ and δ∗, respectively, are equivalent except when either δ ∈ [γ,π + b/2] and θ̄ ∈ J1

or δ ∈ [π + b/2, γ ] and θ̄ ∈ I1. If δ = θ̄ , both θ̄I and θ̄∗
I are equivalent and given by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

b∗, if

⎧⎪⎨
⎪⎩

θ̄ < b∗ and θ̄ ∈ [0, b/2),

θ̄ > b∗ and θ̄ ∈ (b/2,π + b/2),

θ̄ ∈ (π + b/2,2π),

b/2, if θ̄ = π + b/2,

θ̄ , elsewhere.

(4.3)

In Figure 2, we have plotted the risk functions of the MLE θ̄ , restricted estimator δrml defined in
(3.3) and improved estimator θ̄I defined in (4.3) under the loss function L. The risk values have
been evaluated using simulations. For this, we have generated 100 000 samples from a CN(ν, κ)

distribution for various values of (n, κ, b). The following conclusions can be made from the
numerical study.

(a) The risk function of θ̄ is constant for a fixed value of (n, κ). The risk functions of δrml
and θ̄I are symmetric about b/2. For small values of κ or b, these risk functions are strictly
decreasing in ν ∈ [0, b/2]. For higher values of κ or b, behaviour is reverse.

(b) For all the values of (n, κ) and ν ∈ [0, b], δrml uniformly improves θ̄ and θ̄I uniformly
improves δrml when b ∈ (0,π]. Risk values of δrml and θ̄I are the same when b = π and are less
than that of θ̄ for all ν ∈ [0, b].

(c) The amount of relative improvement of δrml over θ̄ is increasing as κ or b decreases. This
is seen to be as high as 95%. Similarly, relative improvement of θ̄I over δrml is seen to be up
to 75%.

Similar observations have been made for various other configurations of (n, κ, b). Simulations
for various directional distributions show significant improvements. We omit details here.

Remark 4.2. For the support T, both unrestricted and restricted estimation problems discussed
in Sections 4.1.1 and 4.1.2 can be easily extendable to the case of support Tk .

5. Concluding remarks

For estimating parameters in Euclidean spaces, with respect to the loss function as an increasing
function of distance, the action space is taken to be the smallest convex set containing the esti-
mand space. If an estimator lies outside it with a positive probability, an improvement is obtained
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Figure 2. Risk plots of (a) θ̄ (straight line), (b) δrml (dashed line) and (c) θ̄I (dotted line) under the loss
function L when b ∈ (0,π ].

by projecting this estimator on the action space. In Section 3, we have extended this concept to
the estimation of circular parameters of directional distributions. The result of Theorem 3.1, is
not exactly analogous to the result for Euclidean spaces. Further, [16,22] gave a new technique
for improving equivariant estimators in Euclidean spaces. In Section 4, we have developed a
theory to extend this technique to circular parameters. The results have been applied to vari-
ous estimation problems in directional distributions. The resulting estimators are seen to show
significant improvements over the usual estimators.

It would be interesting to further extend these results to parameters lying in spheres of higher
dimensions.

Appendix

A.1. Proof of Proposition 2.1

The statement trivially follows when A = T. From Lemma 2.2, it is sufficient to consider A to be
of I -type. First, we assume A = I [0, γ ] with γ ∈ (0,π]. Note that for γ = 0, the proof is trivial.
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Let {φ1, . . . , φn} be linearly ordered sample of n(≥ 2) observations taking values in A. After
rotating sample by an angle 2π − φ1, modified ordered sample {0, α2, . . . , αn} takes values in
I [0, αn] ⊂ A with αi = φi − φ1 (i = 2, . . . , n). We have to prove

ᾱw = atan

( ∑n
i=2 wi sinαi

w1 + ∑n
i=2 wi cosαi

)
∈ I [0, αn],

where weights are w1, . . . ,wn. From (2.2), the lower bound of ᾱw is zero. If αn 	= π , both∑n
i=2 wi sinαi and w1 +∑n

i=2 wi cosαi cannot be zero simultaneously, that is, ᾱw always exists.
When n = 2 and α2 = π , ᾱw does not exist if w1 = w2.

(i) Consider αn < π/2. Since tan(·) is an increasing function in [0,π/2) and w1 +∑n
i=2 cosαi is positive, ᾱw ≤ αn is equivalent to

n−1∑
i=2

wi sinαi ≤ tanαn

(
w1 +

n−1∑
i=2

wi cosαi

)
. (A.1)

Induction method is used to prove the inequality (A.1). For n = 2, (A.1) is reduced to
w1 tanα2 ≥ 0 which always holds. We will show that (A.1) is true for n = k + 1 after using
it for n = k. Thus,

tanαk+1

(
w1 +

k∑
i=2

wi cosαi

)
≥ tanαk

(
w1 +

k∑
i=2

wi cosαi

)
=

k∑
i=1

wi sinαi.

The above steps follow since tanαk ≤ tanαk+1 and (A.1) is assumed to be true for n = k.
(ii) Now consider the case when π/2 < αn < π . Since w1 + ∑n

i=2 wi cosαi < 0 and tan(·)
is increasing in (π/2,π], ᾱw ≤ αn is equivalent to the reverse of inequality (A.1). The proof can
be completed as above.

(iii) Cases when αn = π/2 and αn = π are straightforward.

Hence, the proposition is established for A = K1[α,β] with α,β ∈ T. In a similar manner, it can
be proved when A is of types K1(α,β),K1(α,β] and K1[α,β).

A.2. Proof of Proposition 2.2

The statement is trivially true when A = T. As in the proof of Proposition 2.1, it is enough to
prove the result only for A = [0, γ ] with γ ∈ (0,π]. From (2.2), CE(θ) ≥ 0, if it exists. Every
interval is convex subset of R. Using the fact that an analogous result is true for the expectation
of random variables in R such as sin θ and cos θ ([7], page 74), we can observe ranges of both
E sin θ and E cos θ .

Suppose that Pr(θ ∈ A) = 1 and so Pr(γ − θ ∈ A) = 1. Since sin(·) is nonnegative in the range
[0,π], Pr(sin(γ − θ) ≥ 0) = 1. Thus,

E sin(γ − θ) ≥ 0. (A.2)
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(i) Consider the case 0 < γ < π/2. Since Pr(cos θ > 0) = 1, E cos θ > 0. Dividing both sides
of (A.2) by cos θ(E cos θ) (term is positive with probability one), we get

(E sin θ/E cos θ) ≤ tanγ. (A.3)

Using facts that tan−1(·) is increasing in [0,∞) and atan(·) = tan−1(·) in the range [0,π/2), we
obtain CE(θ) ≤ γ .

(ii) Consider γ = π/2. Since both E sin θ and E cos θ are nonnegative and cannot be zero
simultaneously, CE(θ) ≤ π/2.

(iii) If π/2 < γ < π , Pr(cos θ < 0) = 1 and so E cos θ is negative. Dividing both sides of (A.2)
by cos θ(E cos θ) (positive quantity), we again obtain (A.3). As tan−1(·) is increasing in the range
(−∞,0], we have

tan−1(E sin θ/E cos θ) ≤ γ − π.

Since atan(·) = tan−1(·) + π , CE(θ) ≤ γ .
(iv) Now consider that γ = π . Both sin θ ∈ [0,1] and cos θ ∈ [−1,1] with probability one.

Hence CE(θ) ≤ π , if it exists.

Existence of CE(θ) is not confirmed only for the case (iv). Suppose that Pr(θ = 0) = Pr(θ =
π) = 1/2, both E sin θ and E cos θ are zero, so CE(θ) does not exist. Moreover, if A = T and θ

follows uniform distribution on T with the density (2π)−1, CE(θ) does not exist.

A.3. Proof of Lemma 2.5

Using Lemma 2.2, it is enough to consider the case A = [0, b] with b ∈ (2π/3,π]. Decompose
the set A as A1 ∪ A2 ∪ A3, where

A1 = [0,3b/4 − π/2), A2 = [3b/4 − π/2, b/2], A3 = (b/2, b],
and complement of A as B1 ∪ B2, where

B1 = (b,π + b/2], B2 = (π + b/2,2π).

We have to show for all ψ ∈ A,

a(ψ) = Eθ
ψ

{
u(θ)

} =
∫

θ∈B1∪B2

u(θ)f1(θ |ψ)dθ > 0, (A.4)

where f1(θ |ψ) is the probability density of θ with respect to Lebesgue measure and u(θ) is given
by

u(θ) = cos(θ0 − ψ) − cos(θ − ψ), θ /∈ A,ψ ∈ A,

with θ0 as the projection of θ on A. According to the assumption, the distribution of θ is sym-
metric about ψ , therefore, we have

Eθ
ψ cos(θ0 − ψ) = Eθ

b−ψ cos(θ0 − b + ψ).
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Hence, a(ψ) = a(b − ψ) for ψ ∈ A. It is enough to prove that a(ψ) > 0 for ψ ∈ A1 ∪ A2.
Next, we examine the sign of the function u(·). Define u(θ) = u1(θ) + u2(θ), where from

definition of projection θ0, u1(θ) and u2(θ) are given by

u1(θ) =
{

2 sin

(
θ − b

2

)
sin

(
θ + b

2
− ψ

)
, if θ ∈ B1;

0, if θ ∈ B2;

u2(θ) =
{0, if θ ∈ B1;

2 sin

(
θ

2

)
sin

(
θ

2
− ψ

)
, if θ ∈ B2.

If θ ∈ B1, (θ − b) ∈ (0,π − b/2] ⊂ (0,2π/3). Hence, sign of u1(θ) is only dependent on that of
sin((θ + b)/2 − ψ). When ψ ∈ A1, decompose B1 as B1 = B11 ∪ B12, where

B11 = (b,2π + 2ψ − b], B12 = (2π + 2ψ − b,π + b/2].
It can be noted that(

θ + b

2
− ψ

)
∈

{
(b − ψ,π] ⊂ (2π/3,π], if θ ∈ B11;
(π,π/2 + 3b/4 − ψ] ⊂ (π,5π/4], if θ ∈ B12.

Thus, when ψ ∈ A1, u1(θ) ≥ 0 for θ ∈ B11 and u1(θ) < 0 for θ ∈ B12. If θ ∈ B1 and ψ ∈ A2,
((θ +b)/2−ψ) ∈ (π/3,π] and so u1(θ) ≥ 0. Similarly, when θ ∈ B2, θ/2 ⊂ (2π/3,π), the sign
of u2(θ) is only dependent on that of sin(θ/2 − ψ). If θ ∈ B2 and ψ ∈ A1 ∪ A2, (θ/2 − ψ) ∈
(π/4,π). This implies that u2(θ) > 0 when ψ ∈ A1 ∪ A2.

From Table A.1, it is sufficient to prove∫
θ∈B12∪B2

u(θ)f1(θ |ψ)dθ > 0 for ψ ∈ A1. (A.5)

Now we examine two cases separately, when distribution of θ is unimodal and bimodal.

(i) If density f1(θ |ψ) is either f (θ |ψ) or εf (θ |ψ) + (1 − ε)f (θ |ψ + π) with ε ≥ (1 +
ζmin)

−1, distribution of θ is unimodal with mode at ψ . It means that f1(θ |ψ) is increasing in
θ ∈ [ψ + π,2π). Write u(θ) = v1(θ) + v2(θ), where for i = 1,2, vi(θ) = ui(θ), θ ∈ B12 ∪ B2.
Thus,

v1(θ)

v2(θ)
=

{−∞, if θ ∈ B12;
0, if θ ∈ B2.

Table A.1. Behaviour of functions u1(θ) and u2(θ)

A1 A2 A1 ∪ A2

B1 u1(θ) ≥ 0 u1(θ) ≥ 0 u2(θ) = 0
u1(θ) < 0

B2 u1(θ) = 0 u1(θ) = 0 u2(θ) > 0
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Therefore, both v1(θ)/v2(θ) and f1(θ |ψ) are increasing in θ ∈ B12 ∪ B2. Let φ be a uniform
distributed random variable with respect to Lebesgue measure such that Pr(φ ∈ B12 ∪ B2) = 1.
As Eφ{v2(φ)f1(φ|ψ)} > 0, using a result of [2], Theorem 2.1, we have

Eφ{v1(φ)}
Eφ{v2(φ)} ≤ Eφ{v1(φ)f1(φ|ψ)}

Eφ{v2(φ)f1(φ|ψ)} .

In order to prove (A.5), it remains to show

Eφ
{
v1(φ) + v2(φ)

}
> 0 for all ψ ∈ A1. (A.6)

The above holds since we have

(b − 2ψ)Eφ
{
v1(φ) + v2(φ)

} =
∫

θ∈B12∪B2

{
cos(φ0 − ψ) − cos(φ − ψ)

}
dφ > 0.

This completes the proof when distribution of θ is unimodal.
(ii) Now we assume that θ has a mixture distribution with the probability density f1(θ |ψ) =

εf (θ |ψ) + (1 − ε)f (θ |ψ + π) with 1/2 ≤ ε < (1 + ζmin)
−1, that is, the distribution of θ is

bimodal. It has two modes ψ and ψ + π . Antimodes are ψ + w and ψ + 2π − w(= β), where
w = cos−1(ζ−1((1 − ε)/ε)). According to condition (C2) , w ∈ [π/2,π). We may note that
β ≤ 2π since ψ < π/2 ≤ w as ψ ∈ A1. This implies that f1(θ |ψ) is increasing in θ ∈ [β,2π).
If β ≤ 2π + 2ψ − b, (A.5) can be proved following the lines of the above case. When β >

2π + 2ψ − b, decompose the set B12 ∪ B2 = (2π + 2ψ − b,2π) as C1 ∪ C2 ∪ C3, where

C1 = (2π + 2ψ − b,β], C2 = (β,2π − 2w + b], C3 = (2π − 2w + b,2π).

Since the probability density f1(θ |ψ) is symmetric about β , that is, f1(θ |ψ) = f1(2β − θ |ψ),
we have∫

θ∈C1

u(θ)f1(θ |ψ)dθ =
∫

θ∈C2

u(2β − θ)f1(2β − θ |ψ)dθ =
∫

θ∈C2

u(2β − θ)f1(θ |ψ)dθ.

Define

u3(θ) =
{

u(θ) + u(2β − θ), if θ ∈ C2;
u(θ), if θ ∈ C3.

It may be noted that (A.6) yields the following for ψ ∈ A1:∫
θ∈C2∪C3

u3(θ)dθ =
∫

θ∈B12∪B2

u(θ)dθ ≥ 0. (A.7)

Consider the function

u(θ) + u(2β − θ) = 4 sin

(
θ − θ0

2

)
cos

(
θ + θ0

2
− β

)
sin(β − ψ).
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When θ ∈ B12 ∪B2, sin((θ − θ0)/2) > 0. Note that sin(β −ψ) = − sin(w) < 0 as w ∈ [π/2,π).
The sign of u(θ) + u(2β − θ) is the opposite of that of cos((θ + θ0)/2 − β). There are three
cases according to π + b/2 ∈ Ci , for i = 1,2,3. As in the case when distribution of θ is uni-
modal, we define two functions v1(θ) and v2(θ) for θ ∈ C2 ∪C3 in all these three cases such that
v1(θ)/v2(θ) is increasing in θ ∈ C2 ∪ C3 and v2(θ) is nonnegative for all θ ∈ C2 ∪ C3.

When π + b/2 ∈ C1, choices are

v1(θ) =
{

0, if θ ∈ C2;
u(θ), if θ ∈ C3;

v2(θ) =
{

u(θ) + u(2β − θ), if θ ∈ C2;
0, if θ ∈ C3.

Now consider π + b/2 ∈ C2. Decompose the interval C2 = C21 ∪ C22, where

C21 = (β,π + b/2], C22 = (π + b/2,2π − 2w + b].
In this case, we choose

v1(θ) =
{

u(θ) + u(2β − θ), if θ ∈ C21;
0, if θ ∈ C22;
0, if θ ∈ C3;

v2(θ) =
{0, if θ ∈ C21;

u(θ) + u(2β − θ), if θ ∈ C22;
u(θ), if θ ∈ C3.

When π + b/2 ∈ C3, decompose the interval C3 = C31 ∪ C32, where

C31 = (2π − 2w + b,π + b/2], C32 = (π + b/2,2π).

In this case, we define

v1(θ) =
{

u(θ) + u(2β − θ), if θ ∈ C2;
0, if θ ∈ C31;
u(θ), if θ ∈ C32;

v2(θ) =
{0, if θ ∈ C2;

−u(θ), if θ ∈ C31;
0, if θ ∈ C32.

Since the density f1(θ |ψ) is increasing in θ ∈ C2 ∪ C3, Theorem 2.1 of [2] completes the proof
when distribution of θ is bimodal.

A.4. Proof of Lemma 4.1

See [22], Lemma 2, for the proof of (i). Note that the proof given in [22] utilizes the measure per-
severance of the element g ∈ G under the measure η, that is, η(g−1(B)) 	= η(B) for all B ∈B(Z),
where B(Z) consists of Borel sets of the sample space Z. Later, Moors and van Houwelingen
[23] relaxed this condition of measure perseverance.

For any g ∈ G, if δ is an G-equivariant estimator, we have L(ḡ(ν), g̃(δ)) = L(ν, δ), that is,

cos
(
hḡ(ν) − g̃(δ)

) = cos
(
h(ν) − δ

)
, (A.8)
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for all ν ∈ � and δ ∈ A. Substituting δ = h(ν), we obtain cos(hḡ(ν)− g̃h(ν)) = 1. Thus, we have
hḡ(ν) = g̃h(ν) mod (2π), for all ν ∈ �. This proves (ii). Exploiting this result, (A.8) reduces to

d
(
g̃h(ν), g̃(δ)

) = d
(
h(ν), δ

)
,

for all ν ∈ � and δ ∈ h(�). This implies that g̃(·) is distance-preserving map on A. Let ψ be the
projection of g̃(φ) on g̃(A). Since g̃(·) is injective, we have

d
(
g̃(φ),ψ

) = d(φ,φ0) = d
(
g̃(φ), g̃(φ0)

)
.

From the uniqueness of projection, ψ = g̃(φ0). This proves (iii).

A.5. Proof of Lemma 4.2

First, we show that for all g ∈ G and ν ∈ �, new estimand hz(ν) satisfies

hg(z)ḡ(ν) = g̃hz(ν) for all ν ∈ �. (A.9)

Note that∫
G

f
(
g(z)|ḡ∗ḡ(ν)

)
dλ

(
g∗) =

∫
G

f
(
z|ḡ−1ḡ∗ḡ(ν)

)
dλ

(
g∗) (

from Lemma 4.1(i)
)

=
∫
G

f
(
z|ḡ∗(ν)

)
dλ

(
g∗) (

using transformation g∗ → gg∗g−1).
This implies that for

∫
G f (z|ḡ∗(ν))dλ(g∗) = 0, (A.9) follows from Lemma 4.1(ii). In the case of∫

G f (z|ḡ∗(ν))dλ(g∗) > 0, for any g ∈ G, we have

hg(z)ḡ(ν) = atan

( ∫
G sin(g̃∗hḡ(ν))τ (g(z)|ḡ∗ḡ(ν))dλ(g∗)∫
G cos(g̃∗hḡ(ν))τ (g(z)|ḡ∗ḡ(ν))dλ(g∗)

)

= atan

( ∫
G sin(hḡ∗ḡ(ν))τ (z|ḡ−1ḡ∗ḡ(ν))dλ(g∗)∫
G cos(hḡ∗ḡ(ν))τ (z|ḡ−1ḡ∗ḡ(ν))dλ(g∗)

)

= atan

( ∫
G sin(g̃g̃∗h(ν))τ (z|ḡ∗(ν))dλ(g∗)∫
G cos(g̃g̃∗h(ν))τ (z|ḡ∗(ν))dλ(g∗)

)

= g̃

(
atan

( ∫
G sin(g̃∗h(ν))τ (z|ḡ∗(ν))dλ(g∗)∫
G cos(g̃∗h(ν))τ (z|ḡ∗(ν))dλ(g∗)

))

= g̃hz(ν)

for all ν ∈ �. The above equalities utilize Lemmas 4.1 and 2.3, the transformation g∗ → gg∗g−1

and the circular property of g̃. Therefore, the surjection property of ḡ and (A.9) imply that

g̃hz(�) = hg(z)(�), (A.10)
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or equivalently, cc(g̃hz(�)) = cc(hg(z)(�)) = Ag(z). Clearly, g̃-image of a closed convex set
is again a closed convex set. Therefore, g̃(cc(hz(�))) is also a closed convex and g̃hz(�) ⊂
g̃(cc(hz(�))). This implies that

Ag(z) = cc
(
g̃hz(�)

) ⊂ g̃
(
cc

(
hz(�)

)) = g̃(Az)

as cc(g̃hz(�)) is the smallest convex set containing g̃hz(�). Next, we show that g̃(Az) ⊂ Ag(z).
As φ ∈ Az = conv(hz(�)) ∪ bd(hz(�)), there can be the following two cases:

(i) Suppose φ ∈ conv(hz(�)). From Proposition 2.1, there exists φ1, φ2 ∈ hz(�) such that

φ = atan

(
w sinφ1 + (1 − w) sinφ2

w cosφ1 + (1 − w) cosφ2

)
.

Operating g̃ on the both sides of the above equation and using the circular property, we get

g̃(φ) = atan

(
w sin g̃(φ1) + (1 − w) sin g̃(φ2)

w cos g̃(φ1) + (1 − w) cos g̃(φ2)

)
.

Note that g̃(φ1), g̃(φ2) ∈ g̃hz(�). Using (A.10), both belong to hg(z)(�). Therefore, g̃(φ) ∈
conv(hg(z)(�)) ⊂Ag(z).

(ii) Any φ ∈ bd(hz(�)) is the limit point of a series of points {φn} with φn ∈ conv(hz(�)).
Since g̃ is circular so is continuous, g̃(φ) is the limit point of the series {g̃(φn)} in
conv(g̃hz(�)) = conv(hg(z)(�)). Hence, g̃(φ) ∈ bd(hg(z)(�)) ⊂Ag(z).

A.6. Proof of Theorem 4.1

Since risk of an equivariant estimator δ(Z) is constant on the orbits of ν ([7], page 149), risk of
the G-equivariant estimator δ(Z) under the loss function L satisfies R(ν, δ) = ∫

G R(ḡ(ν), δ)dλ(g).
Using this, the risk of δ(Z) is given by

R(ν, δ) =
∫
G

∫
Z

{
1 − cos

(
δ(z) − hḡ(ν)

)}
f

(
z|ḡ(ν)

)
dη(z))dλ(g)

=
∫
Z

∫
G

{
1 − cos

(
δ(z) − g̃h(ν)

)}
f

(
z|ḡ(ν)

)
dλ(g)dη(z).

In the above step, we utilize the interchange in order of integration and Lemma 4.1(ii). Note that
δ0(g(z)) is the projection of δ(g(z)) on Ag(z), that is, δ0(g(z)) is the projection of g̃(δ(z)) on
g̃(Az) from invariance of δ(z) and Lemma 4.2. From Lemma 4.1(iii), δ0(g(z)) = g̃(δ0(z)), or
equivalently, δ0(z) is also G-equivariant estimator. Therefore, the above risk expression is also
valid for δ0(z). The difference R(ν, δ) − R(ν, δ0) is given by

u =
∫

δ(z)/∈Az

∫
G

{
cos

(
δ0(z) − g̃h(ν)

) − cos
(
δ(z) − g̃h(ν)

)}
f

(
z|ḡ(ν)

)
dλ(g)dη(z)

=
∫

δ(z)/∈Az

[
Eg{cos

(
δ0(z) − g̃h(ν)

) − cos
(
δ(z) − g̃h(ν)

)}∫
G

f
(
z|ḡ(ν)

)
dλ(g)

]
dη(z),
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if
∫
G f (z|ḡ(ν))dλ(g) > 0, where the expectation is taken over g with respect to a probabil-

ity measure τ(z|ḡ(ν))dλ(g). Using the representation of hz(ν) given in (4.2) and denoting by

vz(ν) = [{E sin(g̃h(ν))}2 + {E sin(g̃h(ν))}2]1/2, we have

sinhz(ν) = E sin
(
g̃h(ν)

)
/vz(ν),

coshz(ν) = E cos
(
g̃h(ν)

)
/vz(ν),

the risk difference is given by

u =
∫

δ(z)/∈Az

vz(ν)
{
cos

(
δ0(z) − hz(ν)

) − cos
(
δ(z) − hz(ν)

)}∫
G

f
(
z|ḡ(ν)

)
dλ(g)dη(z).

If l(Az) ≤ (2/3)π , the above integrand is positive since cos(δ(z) − hz(ν)) ≤ cos(δ0(z) − hz(ν))

from Lemma 2.4. This completes the proof.
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