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A functional limit theorem for the partial maxima of a long memory stable sequence produces a limiting
process that can be described as a β-power time change in the classical Fréchet extremal process, for β in a
subinterval of the unit interval. Any such power time change in the extremal process for 0 < β < 1 produces
a process with stationary max-increments. This deceptively simple time change hides the much more del-
icate structure of the resulting process as a self-affine random sup measure. We uncover this structure and
show that in a certain range of the parameters this random measure arises as a limit of the partial maxima
of the same long memory stable sequence, but in a different space. These results open a way to construct a
whole new class of self-similar Fréchet processes with stationary max-increments.

Keywords: extremal limit theorem; extremal process; heavy tails; random sup measure; stable process;
stationary max-increments; self-similar process

1. Introduction

Let (X1,X2, . . .) be a stationary sequence of random variables, and let Mn = max1≤k≤n Xk ,
n = 1,2, . . . be the sequence of its partial maxima. The limiting distributional behavior of the
latter sequence is one of the major topics of interest in extreme value theory. We are particularly
interested in the possible limits in a functional limit theorem of the form(

M�nt� − bn

an

, t ≥ 0

)
⇒ (

Y(t), t ≥ 0
)
, (1.1)

for properly chosen sequences (an), (bn). The weak convergence in (1.1) is typically in the space
D[0,∞) with one of the usual Skorohod topologies on that space; see [1,22] and [26]. If the
original sequence (X1,X2, . . .) is an i.i.d. sequence, then the only possible limit in (1.1) is the
extremal process, the extreme value analog of the Lévy process; see [9].

The modern extreme value theory is interested in the case when the sequence (X1,X2, . . .) is
stationary, but not necessarily independent. The potential clustering of the extremes in this case
leads one to expect that new limits may arise in (1.1). Such new limits, however, have not been
widely observed, and the dependence in the model has been typically found to be reflected in the
limit via a linear time change (a slowdown), often connected to the extremal index, introduced
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originally in [10]. See, for example, [11], as well as the studies in [2,12,18] and [4]. One possible
explanation for this is the known phenomenon that the operation of taking partial maxima tends to
mitigate the effect of dependence in the original stationary sequence, and the dependent models
considered above were, in a certain sense, not sufficiently strongly dependent.

Starting with a long range dependent sequence may make a difference, as was demonstrated
by [15]. In that paper, the original sequence was (the absolute value of) a stationary symmetric
α-stable process, 0 < α < 2, and the length of memory was quantified by a single parameter
0 < β < 1. In the case 1/2 < β < 1, it was shown that the limiting process in (1.1) can be
represented in the form

Zα,β(t) = Zα

(
tβ

)
, t ≥ 0, (1.2)

where (Zα(t), t ≥ 0) is the extremal (α-)Fréchet process.
The nonlinear power time change in (1.2) is both surprising and misleadingly simple. It is

surprising because it is not immediately clear that such a change is compatible with a certain
translation invariance the limiting process must have due to the stationarity of the original se-
quence. It is misleadingly simple because it hides a much more delicate structure. The main goal
of this paper is to reveal that structure. We start by explaining exactly what we are looking for.

The stochastic processes in the left-hand side of (1.1) can be easily interpreted as random sup
measures evaluated on a particular family of sets (those of the form [0, t] for t ≥ 0). If one does
not restrict himself to that specific family of sets and, instead, looks at all Borel subsets of [0,∞),
then it is possible to ask whether there is weak convergence in the appropriately defined space of
random sup measures, and what might be the limiting random sup measures. See the discussion
around (2.4) and the convergence result in Theorem 5.1. This is the approach taken in [14].
Completing the work published in [24] and [25], the authors provide a detailed description of the
possible limits. They show that the limiting random sup measure must be self-affine (they refer
to random sup measures as extremal processes, but we reserve this name for a different object).

As we will see in the sequel, if (1.1) can be stated in terms of weak convergence of a sequence
of random sup measures, this would imply the finite-dimensional convergence part in the func-
tional formulation of (1.1). Therefore, any limiting process Y that can be obtained as a limit in
this case must be equal in distribution to the restriction of a random sup measure to the sets of the
form [0, t], t ≥ 0. The convergence to the process Zα,β established in [15] was not established
in the sense of weak convergence of a sequence of random sup measures, and one of our tasks
in this paper is to fill this gap and prove the above convergence. Recall, however, that the con-
vergence in [15] was established only for 0 < α < 2 (by necessity, since α-stable processes do
not exist outside of this range) and 1/2 < β < 1. The nonlinear time change in (1.2) is, however,
well defined for all α > 0 and 0 < β < 1, and leads to a process Zα,β that is self-similar and has
stationary max-increments. Our second task in this paper is to prove that the process Zα,β can,
for all values of its parameters, be extended to a random sup measure and elucidate the struc-
ture of the resulting random sup measure. The key result is Corollary 4.4 below. The structure
we obtain is of interest on its own right. It is constructed based on a certain random closed set
possessing appropriate scaling and translation invariance properties. Extending this approach to
other random sets and other ways of handling these random sets may potentially lead to a con-
struction of new classes of self-similar processes with stationary max-increments and of random
sup measures. This is important both theoretically, and may be useful in applications.
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This paper is organized as follows. In the next section, we will define precisely the notions
discussed somewhat informally above and introduce the required technical background. Section 3
contains a discussion of the dynamics of the stationary sequence considered in this paper. It is
based on a null recurrent Markov chain. In Section 4, we will prove that the process Zα,β can
be extended to a random sup measure and construct explicitly such an extension. In Section 5,
we show that the convergence result of [15] holds, in a special case of a Markovian ergodic
system, also in the space SM of sup measures. Finally, in Section 6 we present one of the possible
extensions of the present work.

2. Background

An extremal process (Y (t), t ≥ 0) can be viewed as an analog of a Lévy motion when the oper-
ation of summation is replaced by the operation of taking the maximum. The one-dimensional
marginal distribution of a Lévy process at time 1 can be an arbitrary infinitely divisible distribu-
tion on R; any one-dimensional distribution is infinitely divisible with respect to the operation
of taking the maximum. Hence the one-dimensional marginal distribution of an extremal process
at time 1 can be any distribution on [0,∞); the restriction to the nonnegative half-line being
necessitated by the fact that, by convention, an extremal process, analogously to a Lévy process,
starts at the origin at time zero. If F is the c.d.f. of a probability distribution on [0,∞), then
the finite-dimensional distributions of an extremal process with distribution F at time 1 can be
defined by (

Y(t1), Y (t2), . . . , Y (tn)
)

(2.1)
d= (

X
(1)
t1

,max
(
X

(1)
t1

,X
(2)
t2−t1

)
, . . . ,max

(
X

(1)
t1

,X
(2)
t2−t1

, . . . ,X
(n)
tn−tn−1

))
for all n ≥ 1 and 0 ≤ t1 < t2 < · · · < tn. The different random variables in the right-hand side
of (2.1) are independent, with X

(k)
t having the c.d.f. F t for t > 0. In this paper, we deal with the

α-Fréchet extremal process, for which

F(x) = Fα,σ (x) = exp
{−σαx−α

}
, x > 0, (2.2)

the Fréchet law with the tail index α > 0 and the scale σ > 0. A stochastic process (Y (t), t ∈ T )

(on an arbitrary parameter space T ) is called a Fréchet process if for all n ≥ 1, a1, . . . , an > 0
and t1, . . . , tn ∈ T , the weighted maximum max1≤j≤n ajY (tj ) has a Fréchet law as in (2.2).
Obviously, the Fréchet extremal process is an example of a Fréchet process, but there are many
Fréchet processes on [0,∞) different from the Fréchet extremal process; the process Zα,β in (1.2)
is one such process.

A stochastic process (Y (t), t ≥ 0) is called self-similar with exponent H of self-similarity if
for any c > 0 (

Y(ct), t ≥ 0
) d= (

cH Y (t), t ≥ 0
)

in the sense of equality of finite-dimensional distributions. A stochastic process (Y (t), t ≥ 0) is
said to have stationary max-increments if for every r ≥ 0, there exists, perhaps on an enlarged
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probability space, a stochastic process (Y (r)(t), t ≥ 0) such that⎧⎨
⎩

(
Y (r)(t), t ≥ 0

) d= (
Y(t), t ≥ 0

)
,(

Y(t + r), t ≥ 0
) d= (

Y(r) ∨ Y (r)(t), t ≥ 0
)
,

(2.3)

with a ∨ b = max(a, b); see [15]. This notion is an analog of the usual notion of a process with
stationary increments (see, e.g., [3] and [20]) suitable for the situation where the operation of
summation is replaced by the operation of taking the maximum. It follows from Theorem 3.2 in
[15] that only self-similar processes with stationary max-increments can be obtained as limits in
the functional convergence scheme (1.1) with bn ≡ 0.

We switch next to a short overview of random sup measures. The reader is referred to [14] for
full details. Let G be the collection of open subsets of [0,∞). We call a map m : G → [0,∞] a
sup measure (on [0,∞)) if m(∅) = 0 and

m

(⋃
r∈R

Gr

)
= sup

r∈R

m(Gr)

for an arbitrary collection (Gr, r ∈ R) of open sets. In general, a sup measure can take values in
any closed subinterval of [−∞,∞], not necessarily in [0,∞], but we will consider, for simplic-
ity, only the nonnegative case in the sequel, and restrict ourselves to the maxima of nonnegative
random variables as well.

The sup derivative of a sup measure is a function [0,∞) → [0,∞] defined by

d ˇm(t) = inf
G�t

m(G), t ≥ 0.

It is automatically an upper semicontinuous function. Conversely, for any function f : [0,∞) →
[0,∞] the sup integral of f is a sup measure defined by

i ˇf (G) = sup
t∈G

f (t), G ∈ G,

with i ˇf (∅) = 0 by convention. It is always true that m = i ˇd ˇm for any sup measure m, but
the statement f = d ˇi ˇf is true only for upper semicontinuous functions f . A sup measure has
a canonical extension to all subsets of [0,∞) via

m(B) = sup
t∈B

d ˇm(t).

On the space SM of sup measures, one can introduce a topology, called the sup vague topology
that makes SM a compact metric space. In this topology, a sequence (mn) of sup measures
converges to a sup measure m if both

lim sup
n→∞

mn(K) ≤ m(K) for every compact K

and

lim inf
n→∞ mn(G) ≥ m(G) for every open G.
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A random sup measure is a measurable map from a probability space into the space SM equipped
with the Borel σ -field generated by the sup vague topology.

The convergence scheme (1.1) has a natural version in terms of random sup measures. Starting
with a stationary sequence X = (X1,X2, . . .) of nonnegative random variables, one can define
for any set B ⊆ [0,∞)

Mn(X)(B) = max
k:k/n∈B

Xk. (2.4)

Then for any an > 0, Mn(X)/an is a random sup measure, and [14] characterizes all possible
limiting random sup measures in a statement of the form

Mn(X)

an

⇒ M (2.5)

for some sequence (an). The convergence is weak convergence in the space SM equipped with
the sup vague topology. Theorem 6.1 in [14] shows that any limiting random sup measure M

must be both stationary and self-similar, that is,

M(a + ·) d= M and a−H M(a·) d= M for all a > 0 (2.6)

for some exponent H of self-similarity. In fact, the results of [14] allow for a shift (bn) as in (1.1),
in which case the power scaling a−H in (2.6) is, generally, replaced by the scaling of the form
δ− loga , where δ is an affine transformation. In the context of the present paper, this additional
generality does not play a role.

Starting with a stationary and self-similar random sup measure M , one defines a stochastic
process by

Y(t) = M
(
(0, t]), t ≥ 0. (2.7)

Then the self-similarity property of the random sup measure M immediately implies the self-
similarity property of the stochastic process Y , with the same exponent of self-similarity. Fur-
thermore, the stationarity of the random sup measure M implies that the stochastic process Y has
stationary max-increments; indeed, for r ≥ 0 one can simply take

Y (r)(t) = M
(
(r, r + t]), t ≥ 0.

Whether or not any self-similar process with stationary max-increments can be constructed
in this way or, in other words, whether or not such a process can be extended, perhaps on an
extended probability space, to a stationary and self-similar random sup measure remains, to the
best of our knowledge, an open question. We do show that the process Zα,β in (1.2) has such an
extension.

3. The Markov chain dynamics

The stationary sequence we will consider in Section 5 is a symmetric α-stable (SαS) sequence,
whose dynamics is driven by a certain Markov chain. Specifically, consider an irreducible null
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recurrent Markov chain (Yn,n ≥ 0) defined on an infinite countable state space S with transition
matrix (pij ). Fix an arbitrary state i0 ∈ S, and let (πi, i ∈ S) be the unique invariant measure of
the Markov chain with πi0 = 1. Note that (πi) is necessarily an infinite measure.

Define a σ -finite and infinite measure on (E,E) = (SN,B(SN)) by

μ(B) =
∑
i∈S

πiPi(B), B ∈ E,

where Pi(·) denotes the probability law of (Yn) starting in state i ∈ S. Clearly, the usual left shift
operator on S

N

T (x0, x1, . . .) = (x1, x2, . . .)

preserves the measure μ. Since the Markov chain is irreducible and null recurrent, T is conser-
vative and ergodic (see [6]).

Consider the set A = {x ∈ S
N : x0 = i0} with the fixed state i0 ∈ S chosen above. Let

ϕA(x) = min
{
n ≥ 1 : T nx ∈ A

}
, x ∈ S

N

be the first entrance time, and assume that

n∑
k=1

Pi0(ϕA ≥ k) ∈ RVβ,

the set of regularly varying sequences with exponent β of regular variation, for β ∈ (0,1). By
the Tauberian theorem for power series (see, e.g., [5]), this is equivalent to assuming that

Pi0(ϕA ≥ k) ∈ RVβ−1. (3.1)

There are many natural examples of Markov chains with this property. Probably, the simplest
example is obtained by taking S = {0,1,2, . . .} and letting the transition probabilities satisfy
pi,i−1 = 1 for i ≥ 1, with (p0,j , j = 0,1,2, . . .) being an arbitrary probability distribution satis-
fying

∞∑
j=k

p0,j ∈ RVβ−1, k → ∞.

Let f ∈ L∞(μ) be a nonnegative function on S
N supported by A. Define for 0 < α < 2

bn =
(∫

E

max
1≤k≤n

(
f ◦ T k(x)

)α
μ(dx)

)1/α

, n = 1,2, . . . . (3.2)

The sequence (bn) plays an important part in [15], and it will play an important role in this paper
as well. If we define the wandering rate sequence by

wn = μ
({

x ∈ S
N : xj = i0 for some j = 0,1, . . . , n

})
, n = 1,2, . . . ,
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then, clearly, wn ∼ μ(ϕA ≤ n) as n → ∞. We know by Theorem 4.1 in [15] that

lim
n→∞

bα
n

wn

= ‖f ‖∞. (3.3)

Furthermore, it follows from Lemma 3.3 in [17] that

wn ∼
n∑

k=1

Pi0(ϕA ≥ k) ∈ RVβ.

The above setup allows us to define a stationary symmetric α-stable (SαS) sequence by

Xn =
∫

E

f ◦ T n(x) dM(x), n = 1,2, . . . , (3.4)

where M is a SαS random measure on (E,E) with control measure μ. See [21] for details on
α-stable random measures and integrals with respect to these measures. This is a long range
dependent sequence, and the parameter β of the Markov chain determined just how long the
memory is; see [15,16]. Section 5 of the present paper discusses an extremal limit theorem for
this sequence.

4. Random sup measure structure

In this section, we prove a limit theorem, and the limit in this theorem is a stationary and self-
similar random sup measure whose restrictions to the intervals of the type (0, t], t ≥ 0, as in (2.7)
is distributionally equal to the process Zα,β in (1.2). This result is also a major step toward the
extension of the main result in [15] to the setup in (2.5) of weak convergence in the space of sup
measures of normalized partial maxima of the absolute values of a SαS sequence. The extension
itself is formally proved in the next section. We emphasize that the discussion in this section
applies to all 0 < β < 1.

We introduce first some additional setup. Let L1−β be the standard (1−β)-stable subordinator,
that is, an increasing Lévy process such that

Ee−θL1−β(t) = e−tθ1−β

for θ ≥ 0 and t ≥ 0.

Let

Rβ = {
L1−β(t), t ≥ 0

} ⊂ [0,∞) (4.1)

be (the closure of) the range of the subordinator. It has several very attractive properties as a
random closed set, described in the following proposition. We equip the space J of closed sub-
sets of [0,∞) with the usual Fell topology (see [13]), and the Borel σ -field generated by that
topology. We will use some basic facts about measurability of J-valued maps and equality of
measures on J; these are stated in the proof of the proposition below. It is always sufficient to
consider “hitting” open sets, and among the latter it is sufficient to consider finite unions of open
intervals.
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Proposition 4.1. Let β ∈ (0,1) and Rβ be the range (4.1) of the standard (1 − β)-stable subor-
dinator L1−β defined on some probability space (	,F,P ). Then:

(a) Rβ is a random closed subset of [0,∞).

(b) For any a > 0, aRβ
d= Rβ as random closed sets.

(c) Let μβ be a measure on (0,∞) given by μβ(dx) = βxβ−1 dx, x > 0, and let κβ = (μβ ×
P) ◦ H−1, where H : (0,∞) × 	 → J is defined by H(x,ω) = Rβ(ω) + x. Then for any r > 0
the measure κβ is invariant under the shift map Gr : J → J given by

Gr(F ) = F ∩ [r,∞) − r.

Proof. For part (a), we need to check that for any open G ⊆ [0,∞), the set{
ω ∈ 	 : Rβ(ω) ∩ G �=∅

}
is in F . By the right continuity of sample paths of the subordinator, the same set can be written
in the form {

ω ∈ 	 : L1−β(r) ∈ G for some rational r
}
.

Now the measurability is obvious.
Part (b) is a consequence of the self-similarity of the subordinator. Indeed, it is enough to

check that for any open G ⊆ [0,∞)

P (Rβ ∩ G �=∅) = P(aRβ ∩ G �=∅).

However, by the self-similarity,

P(Rβ ∩ G �=∅) = P
(
L1−β(r) ∈ G for some rational r

)
= P

(
aL1−β

(
a−(1−β)r

) ∈ G for some rational r
) = P(aRβ ∩ G �=∅),

as required.
For part (c) it is enough to check that for any finite collection of disjoint intervals, 0 < b1 <

c1 < b2 < c2 < · · · < bn < cn < ∞

κβ

({
F ∈ J : F ∩

n⋃
j=1

(bj , cj ) �=∅

})

(4.2)

= κβ

({
F ∈ J : F ∩

n⋃
j=1

(bj + r, cj + r) �=∅

})
;

see Example 1.29 in [13]. A simple inductive argument together with the strong Markov property
of the subordinator shows that it is enough to prove (4.2) for the case of a single interval. That is,
one has to check that for any 0 < b < c < ∞,

κβ

({
F ∈ J : F ∩ (b, c) �=∅

}) = κβ

({
F ∈ J : F ∩ (b + r, c + r) �=∅

})
. (4.3)
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For h > 0, let

δh = inf
{
y : y ∈ Rβ ∩ [h,∞)

} − h

be the overshoot of the level h by the subordinator L1−β . Then (4.3) can be restated in the form

∫ b

0
βxβ−1P(δb−x < c − b)dx + (

cβ − bβ
)

=
∫ b+r

0
βxβ−1P(δb+r−x < c − b)dx + (

(c + r)β − (b + r)β
)
.

The overshoot δh is known to have a density with respect to the Lebesgue measure, given by

fh(y) = sin(π(1 − β))

π
h1−β(y + h)−1yβ−1, y > 0; (4.4)

see, for example, Exercise 5.6 in [8], and checking the required identity is a matter of somewhat
tedious but still elementary calculations. �

In the notation of Section 3, we define for n = 1,2, . . . and x ∈ E = S
N a sup measure on

[0,∞) by

mn(B;x) = max
k:k/n∈B

f ◦ T k(x), B ⊆ [0,∞). (4.5)

The main result of this section will be stated in terms of weak convergence of a sequence of
finite-dimensional random vectors. Its significance will go well beyond that weak convergence,
as we will describe in the sequel. Let 0 ≤ t1 < t ′1 ≤ · · · ≤ tm < t ′m < ∞ be fixed points, m ≥ 1. For

n = 1,2, . . . let Y (n) = (Y
(n)
1 , . . . , Y

(n)
m ) be an m-dimensional Fréchet random vector satisfying

P
(
Y

(n)
1 ≤ λ1, . . . , Y

(n)
m ≤ λm

) = exp

{
−

∫
E

m∨
i=1

λ−α
i mn

((
ti , t

′
i

);x)α
μ(dx)

}
, (4.6)

for λj > 0, j = 1, . . . ,m; see, for example, [23] for details on Fréchet random vectors and pro-
cesses.

Theorem 4.2. Let 0 < β < 1. The sequence of random vectors (b−1
n Y (n)) converges weakly in

R
m to a Fréchet random vector Y ∗ = (Y ∗

1 , . . . , Y ∗
m) such that

P
(
Y ∗

1 ≤ λ1, . . . , Y
∗
m ≤ λm

)
(4.7)

= exp

{
−E′

(∫ ∞

0

m∨
i=1

λ−α
i 1

(
(Rβ + x) ∩ (

ti , t
′
i

) �=∅
)
βxβ−1 dx

)}

for λj > 0, j = 1, . . . ,m, where Rβ is the range (4.1) of a (1 − β)-stable subordinator defined
on some probability space (	′,F ′,P ′).
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We postpone proving the theorem and discuss first its significance. Define

Wα,β(A) =
e
∫

(0,∞)×	′
1
((

Rβ

(
ω′) + x

) ∩ A �=∅
)
M

(
dx, dω′), A ⊆ [0,∞), Borel. (4.8)

The integral in (4.8) is the extremal integral with respect to a Fréchet random sup measure M on
(0,∞)×	′, where (	′,F ′,P ′) is some probability space. We refer the reader to [23] for details.
The control measure of M is m = μβ × P ′, where μβ is defined in part (c) of Proposition 4.1.
It is evident that Wα,β(A) < ∞ a.s. for any bounded Borel set A. We claim that a version of
Wα,β is a random sup measure on [0,∞). The necessity of taking an appropriate version stems
from the usual phenomenon, that the extremal integral is defined separately for each set A, with
a corresponding A-dependent exceptional set.

Let Nα,β be a Poisson random measure on (0,∞)2 with the mean measure

αx−(α+1) dx βyβ−1 dy, x, y > 0.

Let ((Ui,Vi)) be a measurable enumeration of the points of Nα,β . Let, further, (R
(i)
β ) be i.i.d.

copies of the range of the (1 − β)-stable subordinator, independent of the Poisson random mea-
sure Nα,β . Then a version of Wα,β is given by

Ŵα,β(A) =
∞∨
i=1

Ui1
((

R
(i)
β + Vi

) ∩ A �=∅
)
, A ⊆ [0,∞), Borel; (4.9)

see [23]. It is interesting to note that, since the origin belongs, with probability 1, to the range of
the subordinator, evaluating (4.9) on sets of the form A = [0, t], 0 ≤ t ≤ 1, reduces this represen-
tation to the more standard representation of the process Zα,β in (1.2). See (3.8) in [15].

It is clear that Ŵα,β is a random sup measure on [0,∞). In fact,

d ˇ Ŵα,β(t) =
{

Ui, if t ∈ R
(i)
β + Vi , some i = 1,2, . . . ,

0, otherwise.
(4.10)

Even though it is Ŵα,β that takes values in the space of sup measures, we will slightly abuse the
terminology and refer to Wα,β itself a random sup measure.

Proposition 4.3. For any β ∈ (0,1), the random sup measure Wα,β is stationary and self-similar
with exponent H = β/α in the sense of (2.6).

Proof. Both statements can be read off (4.10). Indeed, the pairs (Ui, (R
(i)
β +Vi)) form a Poisson

random measure on (0,∞) × J and, by part (c) of Proposition 4.1, the mean measure of this
Poisson random measure is unaffected by the transformations Gr applied to the random set
dimension. This implies the law of the random upper semicontinuous function d ˇŴα,β is shift
invariant, hence stationarity of Wα,β .

For the self-similarity, note that replacing t by t/a, a > 0 in (4.10) is equivalent to replacing
R

(i)
β by aR

(i)
β and Vi by aVi . By part (b) of Proposition 4.1, the former action does not change
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the law of a random closed set, while it is elementary to check that the law of the Poisson
random measure on (0,∞)2 with points ((Ui, aVi)) is the same as the law of the Poisson random
measure on the same space with the points ((aβ/αUi,Vi)). Hence, the self-similarity of Wα,β with
H = β/α. �

Returning now to the result in Theorem 4.2, note that it can be restated in the form

b−1
n

(
Y

(n)
1 , . . . , Y (n)

m

) ⇒ (
Wα,β

((
t1, t

′
1

))
, . . . ,Wα,β

((
tm, t ′m

)))
as n → ∞.

In particular, if we choose ti = t ′i−1, i = 1, . . . ,m, with t1 = 0 and an arbitrary tm+1, and define

Z
(n)
i = max

j=1,...,i
Y

(n)
j , i = 1, . . . ,m,

then (
b−1
n Z

(n)
i , i = 1, . . . ,m

) ⇒
(

max
j=1,...,i

Wα,β

(
(tj , tj+1)

)
, i = 1, . . . ,m

)
(4.11)

= (
Wα,β

(
(0, ti+1)

)
, i = 1, . . . ,m

)
.

However, as a part of the argument in [15] it was established that

(
b−1
n Z

(n)
i , i = 1, . . . ,m

) ⇒ (
Zα,β(ti+1), i = 1, . . . ,m

)
,

with Zα,β as in (1.2); this is (4.7) in [15]. This leads to the immediate conclusion, stated in the
following corollary.

Corollary 4.4. For any β ∈ (0,1), the time-changed extremal Fréchet process satisfies

(
Zα,β(t), t ≥ 0

) d= (
Wα,β

(
(0, t]), t ≥ 0

)
and, hence, is a restriction of the stationary and self-similar random sup measure Wα,β (to the
intervals (0, t], t ≥ 0).

We continue with a preliminary result, needed for the proof of Theorem 4.2, which may also
be of independent interest.

Proposition 4.5. Let 0 < γ < 1, and (Y1, Y2, . . .) be i.i.d. nonnegative random variables such
that P(Y1 > y) is regularly varying with exponent −γ . Let S0 = 0 and Sn = Y1 + · · · + Yn for
n = 1,2, . . . be the corresponding partial sums. For θ > 0 define a random sup measure on
[0,∞) by

M(Y ;θ)(G) = 1(Sn ∈ θG for some n = 0,1, . . .)

G ⊆ [0,∞), open. Then

M(Y ;θ) ⇒θ→∞ M(γ )
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in the space SM equipped with the sup vague topology, where

M(γ )(G) = 1(R1−γ ∩ G �=∅).

Proof. It is enough to prove that for any finite collection of intervals (ai, bi), i = 1, . . . ,m with
0 < ai < bi < ∞, i = 1, . . . ,m we have

P
(
for each i = 1, . . . ,m,Sj /θ ∈ (ai, bi) for some j = 1,2, . . .

)
(4.12)

→ P
(
for each i = 1, . . . ,m,R1−γ ∩ (ai, bi) �=∅

)
as θ → ∞. If we let a(θ) = (P (Y1 > θ))−1, a regularly varying function with exponent γ , then
the probability in the left-hand side of (4.12) can be rewritten as

P
(
for each i = 1, . . . ,m,S�ta(θ)�/θ ∈ (ai, bi) for some t ≥ 0

)
. (4.13)

By the invariance principle,

(S�ta(θ)�/θ, t ≥ 0) ⇒θ→∞
(
Lγ (t), t ≥ 0

)
(4.14)

weakly in the J1-topology in the space D[0,∞), where Lγ is the standard γ -stable subordinator;

see, for example, [7]. If we denote by D
↑
+[0,∞) the set of all nonnegative nondecreasing func-

tions in D[0,∞) vanishing at t = 0, then D
↑
+[0,∞) is, clearly, a closed set in the J1-topology,

so the weak convergence in (4.14) also takes places in the J1-topology relativized to D
↑
+[0,∞).

For a function ϕ ∈ D
↑
+[0,∞), let

Rϕ = {
ϕ(t), t ≥ 0

}
be the closure of its range. Notice that

Rϕ =
(⋃

t>0

(
ϕ(t−), ϕ(t)

))c

,

which makes it evident that for any 0 < a < b < ∞ the set

{
ϕ ∈ D

↑
+[0,∞) : Rϕ ∩ [a, b] =∅

}
is open in the J1-topology, hence measurable. Therefore, the set

{
ϕ ∈ D

↑
+[0,∞) : Rϕ ∩ (a, b) �=∅

} =
∞⋃

k=1

{
ϕ ∈ D

↑
+[0,∞) : Rϕ ∩ [a + 1/k, b − 1/k] �=∅

}

is measurable as well and, hence, so is the set{
ϕ ∈ D

↑
+[0,∞) : for each i = 1, . . . ,m,Rϕ ∩ (ai, bi) �=∅

}
.
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Therefore, the desired conclusion (4.12) will follow from (4.13) and the invariance princi-
ple (4.14) once we check that the measurable function on D

↑
+[0,∞) defined by

J (ϕ) = 1
(
Rϕ ∩ (ai, bi) �=∅ for each i = 1, . . . ,m

)
is a.s. continuous with respect to the law of Lγ on D

↑
+[0,∞). To see this, let

B1 = {
ϕ ∈ D

↑
+[0,∞) : for each i = 1, . . . ,m there is ti such that ϕ(ti) ∈ (ai, bi)

}
and

B2 = {
ϕ ∈ D

↑
+[0,∞) : for some i = 1, . . . ,m there is ti such that (ai, bi) ⊆ (

ϕ(ti−), ϕ(ti)
)}

.

Both sets are open in the J1-topology on D
↑
+[0,∞), and J (ϕ) = 1 on B1 and J (ϕ) = 0 on B2.

Now the a.s. continuity of the function J follows from the fact that

P(Lγ ∈ B1 ∪ B2) = 1,

since a stable subordinator does not hit fixed points. �

Remark 4.6. It follows immediately from Proposition 4.5 that we also have weak convergence in
the space of closed subsets of [0,∞). Specifically, the random closed set θ−1{Sn,n = 0,1, . . .}
converges weakly, as θ → ∞, to the random closed set R1−γ .

Proof of Theorem 4.2. We will prove that∫
E

mini=1,...,m mn((ti , t
′
i );x)αμ(dx)∫

E
max1≤k≤n(f ◦ T n(x))αμ(dx)

(4.15)

→
∫ ∞

0
βxβ−1P ′((Rβ + x) ∩ (

ti , t
′
i

) �=∅ for each i = 1, . . . ,m
)
dx

as n → ∞. The reason this will suffice for the proof of the theorem is that, by the inclusion–
exclusion formula, the expression in the exponent in the right-hand side of (4.7) can be written
as a finite linear combination of terms of the form of the right-hand side of (4.15) (with different
collections of intervals in each term). More specifically, we can write, for a fixed x > 0,

E′
(

m∨
i=1

λ−α
i 1

(
(Rβ + x) ∩ (

ti , t
′
i

) �=∅
))

=
∫ ∞

0
P ′((Rβ + x) ∩ (

ti , t
′
i

) �=∅ for some i such that λ−α
i > u

)
du

and apply the inclusion–exclusion formula to the probability of the union inside the integral.
A similar relation exists between the left-hand side of (4.15) and the distribution of (b−1

n Y (n)).
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An additional simplification that we may and will introduce is that of assuming that f is
constant on A. Indeed, it follows immediately from the ergodicity that both the numerator and
the denominator in the left-hand side of (4.15) do not change asymptotically if we replace f by
‖f ‖∞1A; see (4.2) in [15]. With this simplification, (4.15) reduces to the following statement:
as n → ∞,

1

wn

μ

(
m⋂

i=1

{
xk = i0 for some k with ti < k/n < t ′i

})
(4.16)

→
∫ ∞

0
βxβ−1P ′((Rβ + x) ∩ (

ti , t
′
i

) �=∅ for each i = 1, . . . ,m
)
dx.

Note that we have used (3.3) in translating (4.15) into the form (4.16).
We introduce the notation A0 = A, Ak = Ac ∩ {ϕA = k} for k ≥ 1. Let (Y1, Y2, . . .) be a

sequence of i.i.d. N-valued random variables defined on some probability space (	′,F ′,P ′) such
that P ′(Y1 = k) = Pi0(ϕA = k), k = 1,2, . . . . By our assumption, the probability tail P(Y1 > y)

is regularly varying with exponent −(1−β). With S0 = 0 and Sj = Y1 +· · ·+Yj for j = 1,2, . . .

we have

μ

(
m⋂

i=1

{
xk = i0 for some k with ti < k/n < t ′i

})

=
∑

l:l/n≤t1

μ(Al)P
′(for each i = 1, . . . ,m,Sj ∈ (

nti − l, nt ′i − l
)

for some j = 0,1, . . .
)

+
∑

l:t1<l/n<t ′1

μ(Al)P
′(for each i = 2, . . . ,m,Sj ∈ (

nti − l, nt ′i − l
)

for some j = 0,1, . . .
)

:= D(1)
n + D(2)

n .

It is enough to prove that

lim
n→∞

1

wn

D(1)
n =

∫ t1

0
βxβ−1P ′((Rβ + x) ∩ (

ti , t
′
i

) �=∅ for each i = 1, . . . ,m
)
dx (4.17)

and

lim
n→∞

1

wn

D(2)
n =

∫ t ′1

t1

βxβ−1P ′((Rβ + x) ∩ (
ti , t

′
i

) �=∅ for each i = 1, . . . ,m
)
dx. (4.18)

We will prove (4.17), and (4.18) can be proved in the same way. Let K be a large positive integer,
and ε > 0 a small number. For each integer 1 ≤ d ≤ (1 − ε)K , and each l : t1(d − 1)/K ≤ l/n <

t1d/K , we have

P ′(for each i = 1, . . . ,m,Sj ∈ (
nti − l, nt ′i − l

)
for some j = 0,1, . . .

)
≤ P ′(for each i = 1, . . . ,m,Sj ∈ (

nti − nt1d/K,nt ′i − nt1(d − 1)/K
)

for some j = 0,1, . . .
)
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→ P ′(for each i = 1, . . . ,m,Rβ ∩ (
ti − t1d/K, t ′i − t1(d − 1)/K

) �=∅
)

as n → ∞, by Proposition 4.5. Therefore,

lim sup
n→∞

1

wn

D(1)
n

≤
�(1−ε)K�∑

d=1

[
lim sup
n→∞

∑
l:t1(d−1)/K≤l/n<t1d/K μ(Al)

wn

× P ′(for each i = 1, . . . ,m,Rβ ∩ (
ti − t1d/K, t ′i − t1(d − 1)/K

) �=∅
)]

+ lim sup
n→∞

∑
l:t1�(1−ε)K�/K≤l/n≤t1

μ(Al)

wn

.

Since for any a > 0,
na∑
l=1

μ(Al) ∼ w�na� as n → ∞,

and the wandering sequence (wn) is regularly varying with exponent β , we conclude that

lim sup
n→∞

∑
l:t1(d−1)/K≤l/n<t1d/K μ(Al)

wn

= lim sup
n→∞

w�nt1d/K� − w�nt1(d−1)/K�
wn

= t
β

1

Kβ

(
dβ − (d − 1)β

)
for 1 ≤ d ≤ (1 − ε)K and, similarly,

lim sup
n→∞

∑
l:t1�(1−ε)K�/K≤l/n≤t1

μ(Al)

wn

= t
β

1

[
1 −

(�(1 − ε)K�
K

)β]
.

Therefore,

lim sup
n→∞

1

wn

D(1)
n

≤
∫ (1−ε)t1

0
βxβ−1P ′(Rβ ∩ (

ti − aK(x), t ′i − bK(x)
) �=∅ for each i = 1, . . . ,m

)
dx

+ t
β

1

[
1 −

(�(1 − ε)K�
K

)β]
,

where aK(x) = t1d/K and bK(x) = t1(d − 1)/K if t1(d − 1)/K ≤ x < t1d/K for 1 ≤ d ≤
(1 − ε)K . Since

1
(
Rβ ∩ (ak, bk) �=∅

) → 1
(
Rβ ∩ (a, b) �=∅

)
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a.s. if ak → a and bk → b, we can let K → ∞ and then ε → 0 to conclude that

lim sup
n→∞

1

wn

D(1)
n ≤

∫ t1

0
βxβ−1P ′(Rβ ∩ (

ti − x, t ′i − x
) �=∅ for each i = 1, . . . ,m

)
dx. (4.19)

We can obtain a lower bound matching (4.19) in a similar way. Indeed, for each integer 1 ≤
d ≤ (1 − ε)K , and each l : t1(d − 1)/K ≤ l/n < t1d/K as above, we have

P ′(for each i = 1, . . . ,m,Sj ∈ (
nti − l, nt ′i − l

)
for some j = 0,1, . . .

)
≥ P ′(for each i = 1, . . . ,m,Sj ∈ (

nti − nt1(d − 1)/K,nt ′i − nt1d/K
)

for some j = 0,1, . . .
)

→ P ′(for each i = 1, . . . ,m,Rβ ∩ (
ti − t1(d − 1)/K, t ′i − t1d/K

) �=∅
)

as n → ∞, by Proposition 4.5, and we proceed as before. This gives a lower bound complement-
ing (4.19), so we have proved that

lim
n→∞

1

wn

D(1)
n =

∫ t1

0
βxβ−1P ′(Rβ ∩ (

ti − x, t ′i − x
) �=∅ for each i = 1, . . . ,m

)
dx.

This is, of course, (4.17). �

5. Convergence in the space SM

Let X = (X1,X2, . . .) be the stationary SαS process defined by (3.4). The following theorem is
a partial extension of Theorem 4.1 in [15] to weak convergence in the space of sup measures. In
its statement, we use the usual tail constant of an α-stable random variable given by

Cα =
(∫ ∞

0
x−α sinx dx

)−1

=
{

(1 − α)/
(
�(2 − α) cos(πα/2)

)
, if α �= 1,

2/π, if α = 1;

see [21].

Theorem 5.1. For n = 1,2, . . . define a random sup measure Mn(|X|) on [0,∞) by (2.4), with
|X| = (|X1|, |X2|, . . .). Let (bn) be given by (3.2). If 1/2 < β < 1, then

1

bn

Mn

(|X|) ⇒ C1/α
α Wα,β as n → ∞ (5.1)

in the sup vague topology in the space SM.

Proof. The weak convergence in the space SM will be established if we show that for any 0 ≤
t1 < t ′1 ≤ · · · ≤ tm < t ′m < ∞,

(
b−1
n Mn

(|X|)((t1, t ′1)), . . . , b−1
n Mn

(|X|)((tm, t ′m
))) ⇒ C1/α

α

(
Wα,β

((
t1, t

′
1

))
, . . . ,Wα,β

((
tm, t ′m

)))
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as n → ∞ (see Section 12.7 in [25]). For simplicity of notation, we will assume that t ′m ≤ 1. Our
goal is, then, to show that

(
1

bn

max
nt1<k<nt ′1

|Xk|, . . . , 1

bn

max
ntm<k<nt ′m

|Xk|
)

⇒ C1/α
α

(
Wα,β

((
t1, t

′
1

))
, . . . ,Wα,β

((
tm, t ′m

)))
(5.2)

as n → ∞.
We proceed in the manner similar to that adopted in [15], and use a series representation of

the SαS sequence (X1,X2, . . .). Specifically, we have

(Xk, k = 1, . . . , n)
d=

(
bnC

1/α
α

∞∑
j=1

εj�
−1/α
j

f ◦ T k(U
(n)
j )

max1≤i≤n f ◦ T i(U
(n)
j )

, k = 1, . . . , n

)
. (5.3)

In the right-hand side, (εj ) are i.i.d. Rademacher random variables (symmetric random variables

with values ±1), (�j ) are the arrival times of a unit rate Poisson process on (0,∞), and (U
(n)
j )

are i.i.d. E-valued random variables with the common law ηn defined by

dηn

dμ
(x) = 1

bα
n

max
1≤k≤n

f ◦ T k(x)α, x ∈ E. (5.4)

The three sequences (εj ), (�j ) and (U
(n)
j ) are independent. We refer the reader to Section 3.10

of [21] for details on series representations of α-stable processes. We will prove that for any
λi > 0, i = 1, . . . ,m and 0 < δ < 1,

P
(
b−1
n max

nti<k<nt ′i
|Xk| > λi, i = 1, . . . ,m

)
(5.5)

≤ P

(
C1/α

α

∞∨
j=1

�
−1/α
j

maxnti<k<nt ′i f ◦ T k(U
(n)
j )

max1≤k≤n f ◦ T k(U
(n)
j )

> λi(1 − δ), i = 1, . . . ,m

)
+ o(1)

and that

P
(
b−1
n max

nti<k<nt ′i
|Xk| > λi, i = 1, . . . ,m

)
(5.6)

≥ P

(
C1/α

α

∞∨
j=1

�
−1/α
j

maxnti<k<nt ′i f ◦ T k(U
(n)
j )

max1≤k≤n f ◦ T k(U
(n)
j )

> λi(1 + δ), i = 1, . . . ,m

)
+ o(1)

as n → ∞. Before doing so, we will make a few simple observations. Let

V
(n)
i =

∞∨
j=1

�
−1/α
j

maxnti<k<nt ′i f ◦ T k(U
(n)
j )

max1≤k≤n f ◦ T k(U
(n)
j )

, i = 1, . . . ,m.
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Since the points in R
m given by

(
�

−1/α
j

maxnti<k<nt ′i f ◦ T k(U
(n)
j )

max1≤k≤n f ◦ T k(U
(n)
j )

, i = 1, . . . ,m

)
, j = 1,2, . . .

form a Poisson random measure on R
m, say, NP , for λi > 0, i = 1, . . . ,m we can write

P
(
V

(n)
1 ≤ λ1, . . . , V

(n)
m ≤ λm

) = P
(
NP

(
D(λ1, . . . , λm) = 0

))
= exp

{−E
(
NP

(
D(λ1, . . . , λm)

))}
,

where

D(λ1, . . . , λm) = {
(z1, . . . , zm) : zi > λi for some i = 1, . . . ,m

}
.

Evaluating the expectation, we conclude that, in the notation of (4.5),

P
(
V

(n)
1 ≤ λ1, . . . , V

(n)
m ≤ λm

) = exp

{
−b−α

n

∫
E

m∨
i=1

λ−α
i mn

((
ti , t

′
i

);x)α
μ(dx)

}
.

By (4.6), this shows that, in the notation of Theorem 4.2,

(
V

(n)
1 , . . . , V (n)

m

) d= (
b−1
n Y

(n)
1 , . . . , b−1

n Y (n)
m

)
.

Now Theorem 4.2 along with the discussion following the statement of that theorem, and the
continuity of the Fréchet distribution show that (5.2) and, hence, the claim of the present theorem,
will follow once we prove (5.5) and (5.6). The two statements can be proved in a very similar
way, so we only prove (5.5).

Once again, we proceed as in [15]. Choose constants K ∈N and 0 < ε < 1 such that both

K + 1 >
4

α
and δ − εK > 0.

Then

P
(
b−1
n max

nti<k<nt ′i
|Xk| > λi, i = 1, . . . ,m

)

≤ P

(
C1/α

α

∞∨
j=1

�
−1/α
j

maxnti<k<nt ′i f ◦ T k(U
(n)
j )

max1≤k≤n f ◦ T k(U
(n)
j )

> λi(1 − δ), i = 1, . . . ,m

)

+ ϕn

(
C−1/α

α ε min
1≤i≤m

λi

)
+

m∑
i=1

ψn

(
λi, ti , t

′
i

)
,

where

ϕn(η) = P

(
n⋃

k=1

{
�

−1/α
j

f ◦ T k(U
(n)
j )

max1≤i≤n f ◦ T i(U
(n)
j )

> η for at least 2 different j = 1,2, . . .

})
,
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η > 0, and for t < t ′,

ψn

(
λ, t, t ′

) = P

(
C1/α

α max
nt<k<nt ′

∣∣∣∣∣
∞∑

j=1

εj�
−1/α
j

f ◦ T k(U
(n)
j )

max1≤i≤n f ◦ T i(U
(n)
j )

∣∣∣∣∣ > λ,

C1/α
α

∞∨
j=1

�
−1/α
j

maxnt<k<nt ′ f ◦ T k(U
(n)
j )

max1≤k≤n f ◦ T k(U
(n)
j )

≤ λ(1 − δ), and for each l = 1, . . . , n,

C1/α
α �

−1/α
j

f ◦ T l(U
(n)
j )

max1≤i≤n f ◦ T i(U
(n)
j )

> ελ for at most one j = 1,2, . . .

)
.

Due to the assumption 1/2 < β < 1, it follows that

ϕn

(
C−1/α

α ε min
1≤i≤m

λi

)
→ 0

as n → ∞; see [19]. Therefore, the proof will be completed once we check that for all λ > 0 and
0 ≤ t < t ′ ≤ 1,

ψn

(
λ, t, t ′

) → 0

This, however, can be checked in exactly the same way as (4.10) in [15]. �

6. Other processes based on the range of the subordinator

The distributional representation of the time-changed extremal process (1.2) in Corollary 4.4 can
be stated in the form

Zα,β(t) =
e
∫

(0,∞)×	′
1
((

Rβ

(
ω′) + x

) ∩ (0, t] �=∅
)
M

(
dx, dω′), t ≥ 0. (6.1)

The self-similarity property of the process and the stationarity of its max-increments can be
traced to the scaling and shift invariance properties of the range of the subordinator described in
Proposition 4.1. These properties can be used to construct other self-similar processes with sta-
tionary max-increments, in the manner similar to the way scaling and shift invariance properties
of the real line have been used to construct integral representations of Gaussian and stable self-
similar processes with stationary increments such as fractional Brownian and stable motions; see,
for example, [21] and [3].

In this section, we describe one family of self-similar processes with stationary max-
increments, which can be viewed as an extension of the process in (6.1). Other processes can
be constructed; we postpone a more general discussion to a later work.

For 0 ≤ s < t , we define a function js,t : J → [0,∞] by

js,t (F ) = sup
{
b − a : s < a < t, a, b ∈ F, (a, b) ∩ F =∅

}
,
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the “length of the longest empty space within F beginning between s and t”. The function js,t is
continuous, hence measurable, on J. Set also js,s(F ) ≡ 0. Let

0 < γ < (1 − β)/α, (6.2)

and define

Zα,β,γ (t) =
e
∫

(0,∞)×	′

[
1
((

Rβ

(
ω′) + x

) ∩ (0, t] �=∅
)
j0,t

(
Rβ

(
ω′) + x

)]γ
(6.3)

× M
(
dx, dω′), t ≥ 0.

It follows from (4.4) that

E′
(∫ ∞

0

[
1
(
(Rβ + x) ∩ (0, t] �=∅

)
j0,t (Rβ + x)

]γα
βxβ−1 dx

)
< ∞

for γ satisfying (6.2). Therefore, (6.3) presents a well-defined Fréchet process. We claim that
this process is H -self-similar with

H = γ + β/α

and has stationary max-increments.
To check stationarity of max-increments, let r > 0 and define

Z
(r)
α,β,γ (t) =

e
∫

(0,∞)×	′

[
1
((

Rβ

(
ω′) + x

) ∩ (r, r + t] �=∅
)
jr,r+t

(
Rβ

(
ω′) + x

)]γ
M

(
dx, dω′),

t ≥ 0.

Trivially, for every t ≥ 0 we have

Zα,β,γ (r) ∨ Z
(r)
α,β,γ (t) = Zα,β,γ (r + t)

with probability 1, and it follows from part (c) of Proposition 4.1 that

(
Z

(r)
α,β,γ (t), t ≥ 0

) d= (
Zα,β,γ (t), t ≥ 0

)
.

Hence, stationarity of max-increments. Finally, we check the property of self-similarity. Let tj >

0, λj > 0, j = 1, . . . ,m. Then

P
(
Zα,β,γ (tj ) ≤ λj , j = 1, . . . ,m

) = exp
{−I (t1, . . . , tm;λ1, . . . , λm)

}
,

where

I (t1, . . . , tm;λ1, . . . , λm)

= E′
(∫ ∞

0
βxβ−1 max

k=1,...,m
λ−α

k

[
1
((

Rβ

(
ω′) + x

) ∩ (0, tk] �=∅
)
j0,tk

(
Rβ

(
ω′) + x

)]γα
dx

)
.
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Therefore, the property of self-similarity will follow once we check that for any c > 0,

I (ct1, . . . , ctm;λ1, . . . , λm) = I
(
t1, . . . , tm; c−Hλ1, . . . , c

−H λm

)
.

This is, however immediate, since by using first part (b) of Proposition 4.1 and, next, changing
the variable of integration to y = x/c we have

I (ct1, . . . , ctm;λ1, . . . , λm)

= E′
(∫ ∞

0
βxβ−1 max

k=1,...,m

{
λ−α

k

[
1
((

cRβ

(
ω′) + x

) ∩ (0, ctk] �=∅
)

× sup
{
b − a : 0 < a < ctj , a, b ∈ cRβ

(
ω′) + x, (a, b) ∩ cRβ

(
ω′) + x =∅

}]αγ }
dx

)

= cβ+αγ E′
(∫ ∞

0
βxβ−1 max

k=1,...,m

{
λ−α

k

[
1
((

Rβ

(
ω′) + x

) ∩ (0, tk] �=∅
)

× sup
{
b − a : 0 < a < tk, a, b ∈ Rβ

(
ω′) + x, (a, b) ∩ Rβ

(
ω′) + x =∅

}]αγ }
dx

)

= I
(
t1, . . . , tm; c−H λ1, . . . , c

−H λm

)
,

as required.
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