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Quantile- and copula-related spectral concepts recently have been considered by various authors. Those
spectra, in their most general form, provide a full characterization of the copulas associated with the pairs
(Xt ,Xt−k) in a process (Xt )t∈Z, and account for important dynamic features, such as changes in the
conditional shape (skewness, kurtosis), time-irreversibility, or dependence in the extremes that their tradi-
tional counterparts cannot capture. Despite various proposals for estimation strategies, only quite incom-
plete asymptotic distributional results are available so far for the proposed estimators, which constitutes an
important obstacle for their practical application. In this paper, we provide a detailed asymptotic analysis
of a class of smoothed rank-based cross-periodograms associated with the copula spectral density kernels
introduced in Dette et al. [Bernoulli 21 (2015) 781–831]. We show that, for a very general class of (possibly
nonlinear) processes, properly scaled and centered smoothed versions of those cross-periodograms, indexed
by couples of quantile levels, converge weakly, as stochastic processes, to Gaussian processes. A first ap-
plication of those results is the construction of asymptotic confidence intervals for copula spectral density
kernels. The same convergence results also provide asymptotic distributions (under serially dependent ob-
servations) for a new class of rank-based spectral methods involving the Fourier transforms of rank-based
serial statistics such as the Spearman, Blomqvist or Gini autocovariance coefficients.

Keywords: Blomqvist; copulas; Gini spectra; periodogram; quantiles; ranks; Spearman; spectral analysis;
time series

1. Introduction

Spectral analysis and frequency domain methods play a central role in the nonparametric analysis
of time series data. The classical frequency domain representation is based on the spectral den-
sity – call it the L2-spectral density in order to distinguish it from other spectral densities to be
defined in the sequel – which is traditionally defined as the Fourier transform of the autocovari-
ance function of the process under study. Fundamental tools for the estimation of spectral densi-
ties are the periodogram and its smoothed versions. The classical periodogram – similarly call it
the L2-periodogram – can be defined either as the discrete Fourier transform of empirical auto-
covariances, or through L2-projections of the observed series on a harmonic basis. The success
of periodograms in time series analysis is rooted in their fast and simple computation (through
the fast Fourier transform algorithm) and their interpretation in terms of cyclic behavior, both
of a stochastic and of deterministic nature, which in specific applications are more illuminating
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than time-domain representations. L2-periodograms are particularly attractive in the analysis of
Gaussian time series, since the distribution of a Gaussian process is completely characterized by
its spectral density. Classical references are Priestley [46], Brillinger [4] or Chapters 4 and 10 of
Brockwell and Davis [5].

Being intrinsically connected to means and covariances, the L2-spectral density and L2-pe-
riodogram inherit the nice features (such as optimality properties in the analysis of Gaussian se-
ries) of L2-methods, but also their weaknesses: they are lacking robustness against outliers and
heavy tails, and are unable to capture important dynamic features such as changes in the condi-
tional shape (skewness, kurtosis), time-irreversibility, or dependence in the extremes. This was
realized by many researchers, and various extensions and modifications of the L2-periodogram
have been proposed to remedy those drawbacks.

Robust nonparametric approaches to frequency domain estimation have been considered first;
see Kleiner, Martin and Thomson [30] for an early contribution, and Chapter 8 of Maronna,
Martin and Yohai [43] for an overview. More recently, Klüppelberg and Mikosch [34] proposed
a weighted (“self-normalized”) version of the periodogram; see also Mikosch [44]. Hill and
McCloskey [25] used a robust version of autocovariances and a robustified periodogram with
the goal to obtain L2-spectrum-based parameter estimates that are robust to heavy-tailed data.
In the context of signal detection, Katkovnik [28] introduced a periodogram based on robust
loss functions. The objective of all those attempts is a robustification of classical tools: they
essentially aim at protecting existing L2-spectral methods against the impact of possible outliers
or violations of distributional assumptions.

Other attempts, more recent and somewhat less developed, are introducing alternative spectral
concepts and tools, mostly related with quantiles or copulas, and accounting for more general
dynamic features. A first step in that direction was taken by Hong [26], who proposes a gener-
alized spectral density with covariances replaced by joint characteristic functions. In the specific
problem of testing pairwise independence, Hong [27] introduces a test statistic based on the
Fourier transforms of (empirical) joint distribution functions and copulas at different lags. Re-
cently, there has been a renewed surge of interest in that type of concept, with the introduction,
under the names of Laplace-, quantile- and copula spectral density and spectral density kernels,
of various quantile-related spectral concepts, along with the corresponding sample-based peri-
odograms and smoothed periodograms. That strand of literature includes Li [38–40], Hagemann
[19], Dette et al. [12] and Lee and Rao [37]. A Fourier analysis of extreme events, which is re-
lated in spirit but quite different in many other respects, was considered by Davis, Mikosch and
Zhao [11]. Finally, in the time domain, Linton and Whang [41], Davis and Mikosch [10] and Han
et al. [24] introduced the related concepts of quantilograms and extremograms. A more detailed
account of some of those contributions is given in Section 2.

A deep understanding of the distributional properties of any statistical tool is crucial for its
successful application. The construction of confidence intervals, testing procedures and effi-
cient estimators all rest on results concerning finite-sample or asymptotic properties of related
statistics – here the appropriate (smoothed) periodograms associated with the quantile-related
spectral density under study. Obtaining such asymptotic results, unfortunately, is not trivial, and
to the best of our knowledge, no results on the asymptotic distribution of the aforementioned
(smoothed) quantile and copula periodograms are available so far.

In the case of i.i.d. observations, Hong [27] derived the asymptotic distribution of an empir-
ical version of the integrated version of his quantile spectral density, while Lee and Rao [37]
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investigated the distributions of Cramér–von Mises-type statistics based on empirical joint distri-
butions. No results on the asymptotic distribution of the periodogram itself are given, though. Li
[38,39] does not consider asymptotics for smoothed versions of his quantile periodograms, while
the asymptotic results in Hagemann [19] and Dette et al. [12] are quite incomplete. This is per-
haps not so surprising: the asymptotic distribution of classical L2-spectral density estimators for
general nonlinear processes also has remained an active domain of research for several decades;
see Brillinger [4] for early results, Shao and Wu [50], Liu and Wu [42] or Giraitis and Koul [18]
for more recent references.

The present paper has two major objectives. First, it aims at providing a rigorous analysis of the
asymptotic properties of a general class of smoothed rank-based copula cross-periodograms gen-
eralizing the quantile periodograms introduced by Hagemann [19] and, in an integrated version,
by Hong [27]. In Section 3, we show that, for general nonlinear time series, properly centered
and smoothed versions of those cross-periodograms, indexed by couples of quantile levels, con-
verge in distribution to centered Gaussian processes. A first application of those results is the
construction of asymptotic confidence intervals which we discuss in detail in Section 5.

The second objective of this paper is to introduce a new class of rank-based frequency do-
main methods that can be described as a non-standard rank-based Fourier analysis of the serial
features of time series. Examples of such methods are discussed in detail in Section 4, where
we study a class of spectral densities, such as the Spearman, Blomqvist and Gini spectra, and
the corresponding periodograms, associated with rank-based autocovariance concepts. Denot-
ing by F the marginal distribution function of Xt , the Spearman spectral density, for instance,
is defined as

∑
k∈Z eiωkρ

Sp
k , where ρ

Sp
k := Corr(F (Xt ),F (Xt−k)) denotes the lag-k Spearman

autocorrelation. We show that estimators of those spectral densities can be obtained as func-
tionals of the rank-based copula periodograms investigated in this paper. This connection, and
our process-level convergence results on the rank-based copula periodograms, allow us to estab-
lish the asymptotic normality of the smoothed versions of the newly defined rank-based peri-
odograms. Those results can be considered as frequency domain versions of Hájek’s celebrated
asymptotic representation and normality results for (non-serial) linear rank statistics under non-
i.i.d. observations (Hájek [20]).

The paper is organized as follows. Section 2 provides precise definitions of the spectral con-
cepts to be considered throughout, and motivates the use of our quantile-related methods by a
graphical comparison of the copula spectra of white noise, QAR(1) and ARCH(1) processes, re-
spectively – all of which share the same helplessly flat L2-spectral density. Section 3 is devoted
to the asymptotics of rank-based copula (cross-)periodograms and their smoothed versions, pre-
senting the main results of this paper: the convergence, for fixed frequencies ω, of the smoothed
copula rank-based periodogram indexed by couples of (τ1, τ2) of quantile orders to a Gaussian
process (Theorem 3.5). That theorem is based on an equally interesting asymptotic representa-
tion result (Theorem 3.6). Section 4 deals with the relation with Spearman, Gini, and Blomqvist
autocorrelation coefficients and the related spectra. Based on a short Monte-Carlo study, Sec-
tion 5 discusses the practical performances of the methods proposed, and Section 6 provides
some conclusions and directions for future research. Proofs are concentrated in an Appendix and
an the online supplement [33].
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2. Copula spectral density kernels and rank-based
periodograms

In this section, we provide more precise definitions of the various quantile- and copula-related
spectra mentioned in the Introduction, along with the corresponding periodograms.

Throughout, let (Xt )t∈Z denote a strictly stationary process, of which we observe a fi-
nite stretch X0, . . . ,Xn−1, say. Denote by F the marginal distribution function of Xt , and by
qτ := inf{x ∈ R: τ ≤ F(x)}, τ ∈ [0,1] the corresponding quantile function, where we use the
convention inf∅ = ∞. Note that if τ ∈ {0,1} then −∞ and ∞ are possible values for qτ . Our
main object of interest is the copula spectral density kernel

fqτ1 ,qτ2
(ω) := 1

2π

∑
k∈Z

e−iωkγ U
k (τ1, τ2), ω ∈ R, (τ1, τ2) ∈ [0,1]2, (2.1)

based on the copula cross-covariances

γ U
k (τ1, τ2) := Cov

(
I {Ut ≤ τ1}, I {Ut−k ≤ τ2}

)
, k ∈ Z,

where Ut := F(Xt ). Those copula spectral density kernels were introduced in Dette et al. [12],
and generalize the τ th quantile spectral densities of Hagemann [19], with which they coincide
for τ1 = τ2 = τ ; an integrated version actually was first considered by Hong [27]. The same
copula spectral density kernel also takes the form

fqτ1 ,qτ2
(ω)

(2.2)

:= 1

2π

∑
k∈Z

e−iωk
(
P(Xk ≤ qτ1,X0 ≤ qτ2) − τ1τ2

)
, ω ∈ R, (τ1, τ2) ∈ [0,1]2,

where P(Xk ≤ qτ1,X0 ≤ qτ2) is the joint distribution function of the pair (Xk,X0) taken at
(qτ1, qτ2). This is, by definition, the copula of the pair (Xk,X0) evaluated at (τ1, τ2), while τ1τ2
is the independence copula evaluated at the same (τ1, τ2). The copula spectral density kernel thus
can be interpreted as the Fourier transform of the difference between pairwise copulas at lag k

and the independence copula, which justifies the notation and the terminology.
As shown by Dette et al. [12], the copula spectral densities provide a complete description of

the pairwise copulas of a time series. Similar to the regression setting, where joint distributions
and quantiles provide more information than covariances and means, the copula spectral den-
sity kernel, by accounting for much more than the covariance structure of a series, extends and
supplements the classical L2-spectral density.

As an illustration, the L2-spectra and copula spectral densities are shown in Figures 1 and 2,
respectively, for three different processes: (a) a Gaussian white noise process, (b) a QAR(1)
process (Koenker and Xiao [36]) and (c) an ARCH(1) process [the same processes are also
considered in the simulations of Section 5]. All processes were standardized so that the marginal
distributions have unit variance. Although their dynamics obviously are quite different, those
three processes are uncorrelated, and thus all exhibit the same flat L2-spectrum. This very clearly
appears in Figure 1. In Figure 2, the copula spectral densities associated with various values



1774 Kley, Volgushev, Dette and Hallin

Figure 1. Traditional L2-spectra (2π)−1 ∑
k∈Z Cov(Yt+k, Yt )e−iωk . The process (Yt ) in the left-hand

picture is independent standard normal white noise; in the middle picture, Yt = Xt/Var(Xt )
1/2 where (Xt )

is QAR(1) as defined in (5.1); in the right-hand picture, Yt = Xt/Var(Xt )
1/2 where (Xt ) is the ARCH(1)

process defined in (5.3). All curves are plotted against ω/(2π).

of τ1 and τ2 are shown for the same processes. Obviously, the three copula spectral densities
differ considerably from each other and, therefore, provide a much richer information about the
dynamics of those three processes.

For an interpretation of Figure 2, recall (2.1) and (2.2), and note that

−γ U
k (τ1, τ2) = −Cov

(
I {Ut ≤ τ1}, I {Ut−k ≤ τ2}

)
= Cov

(
I {Ut ≤ τ1}, I {Ut−k > τ2}

)
= P(Xt ≤ qτ1 ,Xt−k > qτ2) − τ1(1 − τ2)

= P(Xt > qτ1,Xt−k ≤ qτ2) − (1 − τ1)τ2.

Hence, γ U
k (τ1, τ2) is the probability for {Xt } to switch from the upper τ2 tail to the lower τ1 tail

in k steps, minus the corresponding probability for white noise, which is also the probability for
{Xt } to switch from the lower τ2 tail to the upper τ1 tail in k steps, minus the corresponding
probability for white noise.

Copula spectral density kernels, as represented in Figure 2, thus provide information on those
quantile-crossing, or tail-switching probabilities. In particular, a non-vanishing imaginary part
for fqτ1 ,qτ2

(ω) indicates that P(Xt ≤ qτ1 ,Xt−k ≤ qτ2), for some values of k, differs from P(Xt ≤
qτ1 ,Xt+k ≤ qτ2), which implies that {Xt } is not time-revertible. Figure 2, where imaginary parts
are depicted above the diagonal, clearly indicates that the QAR(1) process is not time-revertible.

Note that, in order to distinguish between the ARCH(1) and the i.i.d. process, it is common
practice to compare the L2-spectral densities of the squared processes. This approach can also be
used for the QAR(1) process, but is bound to miss important features. For example, the asymmet-
ric nature of QAR(1) dynamics, revealed, for example, by the difference between its (0.1,0.1)

(top left panel) and (0.9,0.9) (bottom right) spectra cannot be detected in the L2-spectrum of a
squared QAR(1) process.

For a more detailed discussion of the advantages of the copula spectrum compared to the
classical one, see Hong [27], Dette et al. [12], Hagemann [19] and Lee and Rao [37].
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Figure 2. Copula spectra (2π)−1 ∑
k∈Z Cov(I {F(Yt+k) ≤ τ1}, I {F(Yt ) ≤ τ2})e−iωk for τ1, τ2 = 0.1,0.5,

and 0.9. Real parts (imaginary parts) are shown in sub-figures with τ2 ≤ τ1 (τ2 > τ1). Solid, dashed, and
dotted lines correspond to the white noise, QAR(1) and ARCH(1) processes in Figure 1. All curves are
plotted against ω/(2π).

Consistent estimation of fqτ1 ,qτ2
(ω) was independently considered in Hagemann [19] for the

special case τ1 = τ2 ∈ (0,1), and by Dette et al. [12] for general couples (τ1, τ2) ∈ (0,1)2 of
quantile levels, under different assumptions such as m(n)-decomposa bility and β-mixing.

Hagemann’s estimator, called the τ th quantile periodogram, is a traditional L2-periodogram
where observations are replaced with the indicators

I
{
F̂n(Xt ) ≤ τ

} = I {Rn;t ≤ nτ },
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where F̂n(x) := n−1 ∑n−1
t=0 I {Xt ≤ x} denotes the empirical marginal distribution function and

Rn;t the rank of Xt among X0, . . . ,Xn−1. Dette et al. [12] introduce their Laplace rank-
based periodograms by substituting an L1-approach for the L2 one, and considering the cross-
periodograms associated with arbitrary couples (τ1, τ2) of quantile levels. See Remark 2.1 for
details.

In this paper, we stick to the L2-approach, but extend Hagemann’s concept by considering,
as in Dette et al. [12], the cross-periodograms associated with arbitrary couples (τ1, τ2). More
precisely, we define the rank-based copula periodogram In,R , shortly, the CR-periodogram as
the collection

I
τ1,τ2
n,R (ω) := 1

2πn
d

τ1
n,R(ω)d

τ2
n,R(−ω), ω ∈ R, (τ1, τ2) ∈ [0,1]2, (2.3)

with

dτ
n,R(ω) :=

n−1∑
t=0

I
{
F̂n(Xt ) ≤ τ

}
e−iωt =

n−1∑
t=0

I {Rn;t ≤ nτ }e−iωt .

Those cross-periodograms, as well as Hagemann’s τ th quantile periodograms, are measurable
functions of the marginal ranks Rn;t , whence the terminology and the notation.

Classical periodograms and rank-based Laplace periodograms converge, as n → ∞, to ran-
dom variables whose expectations are the corresponding spectral densities; but they fail estimat-
ing those spectral densities in a consistent way. Similarly, the CR-periodogram I

τ1,τ2
n,R (ω) fails

to estimate fqτ1 ,qτ2
(ω) consistently. More precisely, let � denote the Hoffman–Jørgensen con-

vergence, namely, the weak convergence in the space of bounded functions [0,1]2 → C, which
we denote by �∞

C
([0,1]2). Note that results in empirical process theory are typically stated for

spaces of real-valued, bounded functions; see Chapter 1 of van der Vaart and Wellner [54]. By
identifying �∞

C
([0,1]2) with the product space �∞([0,1]2) × �∞([0,1]2) these results transfer

immediately. We show (see Proposition 3.4 for details) that, under suitable assumptions, for any
fixed frequencies ω �= 0 mod 2π,(

I
τ1,τ2
n,R (ω)

)
(τ1,τ2)∈[0,1]2 �

(
I(τ1, τ2;ω)

)
(τ1,τ2)∈[0,1]2 as n → ∞,

where the limiting process I is such that

E
[
I(τ1, τ2;ω)

] = fqτ1 ,qτ2
(ω) for all (τ1, τ2) ∈ [0,1]2 and ω �= 0 mod 2π

and I(τ1, τ2;ω1) and I(τ3, τ4;ω2) are independent for any τ1, . . . , τ4 as soon as ω1 �= ω2.
In view of this asymptotic independence at different frequencies, it seems natural to consider

smoothed versions of I
τ1,τ2
n,R (ω), namely, for (τ1, τ2) ∈ [0,1]2 and ω ∈R, averages of the form

Ĝn,R(τ1, τ2;ω) := 2π

n

n−1∑
s=1

Wn(ω − 2πs/n)I
τ1,τ2
n,R (2πs/n), (2.4)

where Wn denotes a sequence of weighting functions. For the special case τ1 = τ2, the consis-
tency of a closely related estimator is established by Hagemann [19]. However, even for τ1 = τ2,
obtaining the asymptotic distribution of smoothed CR-periodograms of the form (2.4) is not triv-
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ial, and so far has remained an open problem. Similarly, Dette et al. [12] do not provide any
results on the asymptotic distributions of their (smoothed) Laplace rank-based periodograms.
Note that even consistency results in Hagemann [19], as well as in Dette et al. [12] are only
pointwise in τ1, τ2.

In the present paper, we fill that gap. Theorem 3.5 below does not only provide point-
wise asymptotic distributions for smoothed CR-periodograms, but also describes the asymp-
totic behavior of a properly centered and rescaled version of the full collection {Ĝn,R(τ1, τ2;ω),

(τ1, τ2) ∈ [0,1]2} as a sequence of stochastic processes. Such convergence results (process con-
vergence rather than pointwise) are of particular importance, as they can be used to obtain the
asymptotic distribution of functionals of smoothed CR-periodograms as estimators of function-
als of the corresponding copula spectral density kernel. As an example, we derive, in Section 4,
the asymptotic distributions of periodograms computed from various rank-based autocorrelation
concepts (Spearman, Gini, Blomqvist, etc.).

In the process of analyzing the asymptotic behavior of {Ĝn,R(τ1, τ2;ω)}, we establish several
intermediate results of independent interest. For instance, we prove an asymptotic representa-
tion theorem (Theorem 3.6(i)), where we show that, uniformly in τ1, τ2 ∈ [0,1]2,ω ∈ R, the
smoothed periodogram Ĝn,R(τ1, τ2;ω) can be approximated by

Ĝn,U (τ1, τ2;ω) := 2π

n

n−1∑
s=1

Wn(ω − 2πs/n)I
τ1,τ2
n,U (2πs/n), (2.5)

where

I
τ1,τ2
n,U (ω) := 1

2π

1

n
d

τ1
n,U (ω)d

τ2
n,U (−ω), (2.6)

and

dτ
n,U (ω) :=

n−1∑
t=0

I {Ut ≤ τ }e−iωt with Ut := F(Xt ).

We conclude this section with two remarks clarifying the relation between the approach con-
sidered here that of Dette et al. [12], and some other copula-based approaches in the analysis of
time series.

Remark 2.1. The classical L2-periodogram of a real-valued time series can be represented in
two distinct ways, providing two distinct interpretations. First, it can be defined as the Fourier
transform of the empirical autocovariance function. More precisely, considering the empirical
autocovariance

γ̂k := 1

n − k

n−k∑
t=1

(Xt+k − X̄)(Xt − X̄), k ≥ 0, γ̂k := γ̂−k, k < 0,

the classical L2-periodogram can be defined as

In(ω) := 1

2π

∑
|k|<n

n − k

n
γ̂ke−ikω. (2.7)
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However, an alternative definition is

In(ω) := 1

2π

1

n

∣∣∣∣∣
n−1∑
t=0

Xte
−itω

∣∣∣∣∣
2

= n

4

(
b̂2

1 + b̂2
2

)
, (2.8)

where b1, b2 are the coefficients of the L2-projection of the observations X0, . . . ,Xn−1 on the
basis (1, sin(ωt), cos(ωt)), that is,

(â, b̂1, b̂2) = Argmin
(a,b1,b2)

′∈R3

n−1∑
t=0

(
Xt − a − b1 cos(ωt) − b2 sin(ωt)

)2
. (2.9)

This suggests two different starting points for generalization. We either can replace autoco-
variances in (2.7) by alternative measures of dependence such as (empirical) joint distributions
or copulas, or consider alternative loss functions in the minimization step (2.9). Replacing the au-
tocovariance function by the pairwise copula with τ1 = τ2 = τ yields the τ -quantile periodogram
of Hagemann [19], which we also consider here, under the name of CR-periodogram, albeit for
general (τ1, τ2) ∈ [0,1]2. Replacing the quadratic loss in (2.9) was, in a time series context, first
considered by Li [38,39] and Dette et al. [12], who observed that substituting the check func-
tion ρτ (x) = x(τ − I {x < 0}) of Koenker and Bassett [35] for the standard L2-loss leads to an
estimator for the quantity

f̃τ,τ (ω) := 1

2πf 2(qτ )

∑
k∈Z

e−iωk
(
P(X0 ≤ qτ ,X−k ≤ qτ ) − τ 2).

This latter expression is a weighted version of the copula spectral density kernel at τ1 = τ2 =
τ introduced in (2.2). This weighting, which involves f (qτ ), is undesirable, since it involves
the unknown marginal distribution of Xt , which is unrelated with its dynamics. Dette et al.
[12] demonstrate that, by considering ranks instead of the original data, that weighting can be
removed. The same authors also proposed a generalization to cross-periodograms associated
with distinct quantile levels. See Li [39], Dette et al. [12] and Hagemann [19] for details and
discussion.

Remark 2.2. The benefits of considering joint distributions and copulas as measures of serial
dependence in a nonparametric time-domain analysis of time series has been realized by many
authors. Skaug and Tjøstheim [51] and Hong [26] used joint distribution functions to test for
serial independence at given lag. Subsequently, related approaches were taken by many authors,
and an overview of related results can be found in Tjøstheim [53] and Hong [26]. Copula-based
tests of serial independence were considered by Genest and Rémillard [17], among others. Lin-
ton and Whang [41] introduced the so-called quantilogram, defined as the autocorrelation of the
series of indicators I {Xt ≤ q̂τ }, t = 0, . . . , n − 1, where q̂τ denotes the empirical τ -quantile;
they discuss the application of this quantilogram (closely related to Hagemann’s τ -quantile pe-
riodogram) to measuring directional predictability of time series. They do not, however, enter
into any spectral considerations. An extension of those concepts to the dependence between sev-
eral time series was recently considered in Han et al. [24]. Finally, Davis and Mikosch [10] also
considered a related quantity which is based on autocorrelations of indicators of extreme events.
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3. Asymptotic properties of rank-based copula periodograms

The derivation of the asymptotic properties of CR-periodograms requires some assumptions on
the underlying process and the weighting functions Wn.

Recall that the r th order joint cumulant cum(ζ1, . . . , ζr ) of the random vector (ζ1, . . . , ζr ) is
defined as

cum(ζ1, . . . , ζr ) :=
∑

{ν1,...,νp}
(−1)p−1(p − 1)!

(
E

∏
j∈ν1

ζj

)
· · ·

(
E

∏
j∈νp

ζj

)
,

with summation extending over all partitions {ν1, . . . , νp}, p = 1, . . . , r of {1, . . . , r} (cf.
Brillinger [4], page 19).

The assumption we make on the dependence structure of the process (Xt )t∈Z is as follows.
Its relation to more classical assumptions of weak dependence is discussed in Propositions 3.1
and 3.2 below, and in Lemma 3.3.

(C) There exist constants ρ ∈ (0,1) and K < ∞ such that, for arbitrary intervals A1, . . . ,

Ap ⊂R and arbitrary t1, . . . , tp ∈ Z,

∣∣cum
(
I {Xt1 ∈ A1}, . . . , I {Xtp ∈ Ap})∣∣ ≤ Kρmaxi,j |ti−tj |. (3.1)

The crucial point here is that we replace an assumption on the cumulants of the original ob-
servations by an assumption on the cumulants of certain indicators. Thus, in contrast to classical
assumptions, condition (C) does not require the existence of any moments. Additionally, note
that the sets Aj in (3.1) only need to be intervals, not general Borel sets as in classical mixing
assumptions.

Proposition 3.1. Assume that the process (Xt )t∈Z is strictly stationary and exponentially
α-mixing, that is,

α(n) := sup
A∈σ(X0,X−1,...)

B∈σ(Xn,Xn+1,...)

∣∣P(A ∩ B) − P(A)P(B)
∣∣ ≤ Kκn, n ∈N (3.2)

for some K < ∞ and κ ∈ (0,1). Then assumption (C) holds.

While mixing assumptions are very general and intuitively interpretable, which makes them
quite attractive from a probabilistic point of view, verifying conditions such as (3.1) or (3.2) can
be difficult in specific applications. An alternative description of dependence that is often easier
to check for was recently proposed by Wu and Shao [56]. More precisely, these authors assume
that the process (Xt )t∈Z can be represented as

Xt = g(. . . , εt−2, εt−1, εt ), t ∈N, (3.3)

where g denotes some measurable function and (εt )t∈Z is a collection of i.i.d. random variables.
Note that the function g is not assumed to be linear, which makes this kind of process very gen-
eral. To quantify the long-run dependence between (. . . ,X−1,X0), and (Xt ,Xt+1, . . .), denote
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by (ε∗
t )t≤0 an independent copy of (εt )t≤0 and define

X∗
t := g

(
. . . , ε∗−1, ε

∗
0, ε1, . . . , εt

)
, t ∈ N.

The process (Xt )t∈Z satisfies a geometric moment contraction of order a property (shortly,
GMC(a) throughout this paper) if, for some K < ∞ and σ ∈ (0,1),

E
∣∣Xn − X∗

n

∣∣a ≤ Kσn, n ∈ N; (3.4)

see Wu and Shao [56]. Examples of processes that satisfy this condition include, (possibly, under
mild additional conditions on the parameters) ARMA, ARCH, GARCH, asymmetric GARCH,
random coefficient autoregressive, quantile autoregressive and Markov models, to name just a
few. Proofs and additional examples can be found in Shao and Wu [50] and Shao [49]. The def-
inition in (3.4) still requires the existence of moments, which is quite undesirable in our setting.
However, the following result shows that a modified version of (3.4) is sufficient for our purposes.

Proposition 3.2. Assume that the strictly stationary process (Xt )t∈Z can be represented as
in (3.3), and that X0 has distribution function F . Let the process (F (Xt ))t∈Z satisfy GMC(a)
for some a > 0, that is, assume that there exist K < ∞ and σ ∈ (0,1) such that

E
∣∣F(Xn) − F

(
X∗

n

)∣∣a ≤ Kσn, n ∈N. (3.5)

Then assumption (C) holds.

The important difference between assumptions (3.4) and (3.5) lies in the fact that, in condi-
tion (3.5), only the random variables F(Xt ) = Ut , which possess moments of arbitrary order,
appear. This implies that a GMC(a) condition on Xt with arbitrarily small values of a, together
with a very mild regularity condition on F , are sufficient to imply assumption (C). More pre-
cisely, we have the following result.

Lemma 3.3. Assume that (Xt )t∈Z is strictly stationary. Let (Xt )t∈Z satisfy the GMC(b) condi-
tion for some b > 0, and assume that the distribution function F of X0 is Hölder-continuous of
order γ > 0. Then (3.5) holds for any a > 0.

For a proof of Lemma 3.3, note that

E
∣∣F(Xt ) − F

(
X∗

t

)∣∣a ≤ 2a−b/γ
E

∣∣F(Xt ) − F
(
X∗

t

)∣∣b/γ ≤ CE
∣∣Xt − X∗

t

∣∣b ≤ CKσ t ,

where σ ∈ (0,1) and K > 0 are the constants from the GMC(b) condition.

Remark 3.1. Although not very deep at first sight, the above result has some remarkable impli-
cations. In particular, we show in the Appendix that, under a very mild regularity condition on F ,
the copula spectra of a GMC(a) process are analytical functions of the frequency ω. This is in
sharp contrast with classical spectral density analysis, where higher-order moments are required
to obtain smoothness of the spectral density.
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We now are ready to state a first result on the asymptotic properties of the CR-periodogram
I

τ1,τ2
n,R defined in (2.3).

Proposition 3.4. Assume that F is continuous and that (Xt )t∈Z is strictly stationary and satisfies
assumption (C). Then, for every fixed ω �= 0 mod 2π,(

I
τ1,τ2
n,R (ω)

)
(τ1,τ2)∈[0,1]2 �

(
I(τ1, τ2;ω)

)
(τ1,τ2)∈[0,1]2 in �∞

C

([0,1]2).
The (complex-valued) limiting processes I, indexed by (τ1, τ2) ∈ [0,1]2, are of the form

I(τ1, τ2;ω) = 1

2π
D(τ1;ω)D(τ2;ω)

with D(τ ;ω) = C(τ ;ω) + iS(τ ;ω) where C and S denote two centered jointly Gaussian pro-
cesses. For ω ∈R, their covariance structure takes the form

E
[(
C(τ1;ω),S(τ1;ω)

)′(
C(τ2;ω),S(τ2;ω)

)] = π

(�fqτ1 ,qτ2
(ω) −fqτ1 ,qτ2

(ω)

fqτ1 ,qτ2
(ω) �fqτ1 ,qτ2

(ω)

)
.

Moreover, D(τ ;ω) = D(τ ;ω + 2π) = D(τ ;−ω), and the family {D(·;ω) : ω ∈ [0,π]} is a col-
lection of independent processes.

Note that, for ω = 0 mod 2π we have dτ
n,R(0) = nτ + oP (n1/2), where the exact form of

the remainder term depends on the number of ties in the observations. Therefore, under the
assumptions of Proposition 3.4, I

τ1,τ2
n,R (0) = n(2π)−1τ1τ2 + oP (1) for ω = 0 mod 2π.

Remark 3.2. Proposition 3.4 implies that the CR-periodograms corresponding to different fre-
quencies are asymptotically independent. Therefore, it can be used to obtain the asymptotic dis-
tribution of the smoothed periodogram for any bn = m/n, with m ∈ N not depending on n. In
this case, m CR-periodograms are used for smoothing and the asymptotic distributions of the
smoothed CR-periodograms follow from Proposition 3.4. However, in this case, the smoothed
periodogram is not necessarily a consistent estimator (its variance does not tend to zero) of the
spectral density kernel fqτ1 ,qτ2

(ω). As we shall see, in order to be consistent, a smoothed CR-
periodogram requires nbn = m(n) → ∞ as n → ∞.

In order to establish the convergence of the smoothed CR-periodogram process (2.4), we re-
quire the weights Wn in (2.4) to satisfy the following assumption, which is quite standard in
classical time series analysis (see, e.g., page 147 of Brillinger [4]).

(W) The weight function W is real-valued and even, with support [−π,π]; moreover, it has
bounded variation, and satisfies

∫ π
−π W(u)du = 1.

Denoting by bn > 0, n = 1,2, . . . , a sequence of scaling parameters such that bn → 0 and
nbn → ∞ as n → ∞, define

Wn(u) :=
∞∑

j=−∞
b−1
n W

(
b−1
n [u + 2πj ]).

We now are ready to state our main result.
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Theorem 3.5. Let assumptions (C) and (W) hold. Assume that X0 has a continuous distribution
function F and that there exist constants κ > 0 and k ∈N, such that

bn = o
(
n−1/(2k+1)

)
and bnn

1−κ → ∞.

Then, for any fixed ω ∈R, the process

Gn(·, ·;ω) := √
nbn

(
Ĝn,R(τ1, τ2;ω) − fqτ1 ,qτ2

(ω) − B(k)
n (τ1, τ2;ω)

)
τ1,τ2∈[0,1]

satisfies

Gn(·, ·;ω)� H(·, ·;ω) (3.6)

in �∞
C

([0,1]2), where the bias B
(k)
n is given by

B(k)
n (τ1, τ2;ω) :=

k∑
j=2

b
j
n

j !
∫ π

−π

vjW(v)dv
dj

dωj
fqτ1 ,qτ2

(ω), ω ∈R, (3.7)

and fqτ1 ,qτ2
is defined in (2.2). The process H(·, ·;ω) in (3.6) is a centered Gaussian process

characterized by

Cov
(
H(u1, v1;ω),H(u2, v2;ω)

)
= 2π

(∫ π

−π

W 2(w)dw

)(
fqu1 ,qu2

(ω)fqv2 ,qv1
(ω) + fqu1 ,qv2

(ω)fqv1 ,qu2
(ω)I {ω = 0 mod π}).

Moreover, H(ω) = H(ω + 2π) = H(−ω), and the family {H(ω),ω ∈ [0,π]} is a collection of
independent processes. In particular, the weak convergence (3.6) holds jointly for any finite fixed
collection of frequencies ω.

Remark 3.3. Assume that W is a kernel of order d , that is,
∫ π
−π vjW(v)dv = 0, for j < d and

0 <
∫ π
−π vdW(v)dv < ∞. The Epanechnikov kernel, for example, is of order 2. Then, for ω �=

0 mod 2π, the bias is of order bd
n . Since the variance is of order (nbn)

−1, the mean squared error
will be minimized when bn decays at rate n−1/(2d+1). Therefore, for kernels of finite order, the
optimal bandwidth fulfils the assumptions of Theorem 3.5.

Remark 3.4. Theorem 3.5 can be used to conduct asymptotic inference in various ways. An im-
portant example is the construction of asymptotic confidence intervals. For illustration purposes,
consider the case τ1 = τ2 = τ . Assume that W is a kernel of order d , and that the bandwidth bn

is chosen such that bn = o(n−1/(2d+1)). In this case, the bias is of order bd
n , and thus is asymp-

totically negligible compared to the variance. An asymptotic confidence interval thus can be
constructed by using Theorem 3.5 to obtain the approximation

√
nbn

(
Ĝn,R(τ, τ ;ω) − fqτ ,qτ (ω)

) ≈N
(
0, σ 2) for σ 2 = 2π

∫
W 2(u)du f2qτ ,qτ

(ω)
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and estimating σ 2 by plugging in Ĝn,R(τ, τ ;ω) as an estimator for fqτ ,qτ (ω). A more detailed
discussion of confidence interval construction that also includes the case where τ1 �= τ2 is de-
ferred to Section 5.

Remark 3.5. Process convergence with respect to the frequencies ω cannot hold since the lim-
iting processes are independent for different values of ω. This implies that there exists no tight
random element in �∞

C
([0,1]2 × [0,π]) with the right finite-dimensional distributions, as would

be required for process convergence in �∞
C

([0,1]2 × [0,π]) to take place. Note that a similar
situation occurs for the classical L2-spectral density which does not converge as a process when
indexed by frequencies.

For fixed quantile levels τ1, τ2, the asymptotic distribution of Gn(τ1, τ2;ω) is the same as the
distribution of the smoothed L2-cross-periodogram (see Chapter 7 of Brillinger [4]) correspond-
ing to the (unobservable) bivariate time series(

I
{
F(Xt ) ≤ τ1

}
, I

{
F(Xt) ≤ τ2

})
0≤t≤n−1.

In particular, the estimation of the marginal quantiles has no impact on the asymptotic distribution
of Gn. Intuitively, this can be explained by the fact that (q̂τ1 , q̂τ2) converges at n−1/2 rate while
the normalization

√
nbn appearing in Gn is strictly slower.

One aspect of Theorem 3.5 that does not appear in the context of classical spectral density
estimation is the convergence of Gn as a process. Establishing this result is challenging, and it
requires the development of new tools. On the other hand, once convergence has been estab-
lished at process level, it can be applied to derive the asymptotic distributions of various related
statistics; see Section 4.

Remark 3.6. In the derivation of Theorem 3.5, it would be natural to show that dτ
n,R(ω) and

dτ
n,U (ω) are sufficiently close to each other uniformly with respect to τ and ω, as n → ∞. In-

deed, using modifications of standard arguments from empirical process theory, it is possible to
establish that

n−1/2 sup
ω∈R

τ∈[0,1]

∣∣dτ
n,R(ω) − dτ

n,U (ω)
∣∣ = oP (rn) (3.8)

for some rate rn → 0 depending on the underlying dependence structure. Unfortunately, the
best rate rn that can theoretically be obtained must be slower than o(n−1/4), and this makes
the approximation (3.8) useless in establishing Theorem 3.5 for practically relevant choices of
the bandwidth parameter.

Remark 3.7. Another type of process convergence is frequently discussed in the literature on
classical L2-based spectral analysis, which is dealing with empirical spectral processes of the
form (∫ π

−π

g(ω)In(ω)dω

)
g∈G
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with G denoting a suitable class of functions. For more details, see Dahlhaus [8], Dahlhaus and
Polonik [9], and the references therein. Those processes are completely different from the pro-
cesses considered above, and the mathematical tools that need to be developed for their analysis
also differ substantially. It would be very interesting to extend our results to classes of integrated
periodograms that are indexed by classes of functions. Such an extension, however, is beyond of
the scope of the present paper.

Remark 3.8. At first glance, it seems surprising that the asymptotic theory developed here does
not require the marginal distribution function F to have a continuous Lebesgue density, although
the CR-periodograms in (2.3) are based on marginal quantiles. The reason is that the estimators
which are constructed from X0, . . . ,Xn−1 are almost surely equal to estimators based on the (un-
observed) transformed variables F(X0), . . . ,F (Xn−1). A similar phenomenon can be observed
in the estimation of copulas; see, for example, Fermanian, Radulović and Wegkamp [14].

In order to establish Theorem 3.5, we prove (an asymptotic representation result) that the
estimator Ĝn,R can be approximated by Ĝn,U in a suitable uniform sense. Theorem 3.5 then
follows from the asymptotic properties of Ĝn,U , which we state now.

Theorem 3.6. Let assumptions (C) and (W) hold, and assume that the distribution function F

of X0 is continuous. Let bn satisfy the assumptions of Theorem 3.5. Then,

(i) for any fixed ω ∈R, as n → ∞,√
nbn

(
Ĝn,U (τ1, τ2;ω) −EĜn,U (τ1, τ2;ω)

)
τ1,τ2∈[0,1] � H(·, ·;ω)

in �∞
C

([0,1]2), where the process H(·, ·;ω) is defined in Theorem 3.5;
(ii) still as n → ∞,

sup
τ1,τ2∈[0,1]

ω∈R

∣∣EĜn,U (τ1, τ2;ω) − fqτ1 ,qτ2
(ω) − B(k)

n (τ1, τ2,ω)
∣∣ = O

(
(nbn)

−1) + o
(
bk
n

)
,

where B
(k)
n is defined in (3.7);

(iii) for any fixed ω ∈R,

sup
τ1,τ2∈[0,1]

∣∣Ĝn,R(τ1, τ2;ω) − Ĝn,U (τ1, τ2;ω)
∣∣ = oP

(
(nbn)

−1/2 + bk
n

);
if moreover the kernel W is uniformly Lipschitz-continuous, this bound is uniform with respect
to ω ∈R.

4. Spearman, Blomqvist and Gini spectra

In the past decades, considerable effort has been put into replacing empirical autocovariances
by alternative (scalar) measures of dependence; see, for example, Kendall [29], Blomqvist [3],
Cifarelli, Conti and Regazzini [7], Ferguson, Genest and Hallin [13] and Schmid et al. [48] for
a recent survey. Such measures of association provide a good compromise between the limited
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information contained in autocovariances on one hand, and the fully nonparametric nature of
joint distributions and copulas on the other.

A particularly appealing class of such dependence measures is given by general rank-based
autocorrelations (see Hallin and Puri [22,23] or Hallin [21] for a survey). The idea of using
ranks in a time-series context is not new. In fact, it is possible to trace back rank-based mea-
sures of serial dependence to the early developments of rank-based inference: early examples
include run statistics or the serial version of Spearman’s rho (see Wald and Wolfowitz [55]).
The asymptotics of rank-based autocorrelations are well studied under the assumption of white
noise or, at least, exchangeability, and under contiguous alternatives of serial dependence. An al-
ternative approach to deriving the asymptotic distribution of rank-based autocorrelations, which
is applicable under general kinds of dependence, is based on their representation as function-
als of (weighted) empirical copula processes and was considered, for instance, in Fermanian,
Radulović and Wegkamp [14], Berghaus, Bücher and Volgushev [2].

Despite the great success of the L2-periodogram in time series analysis, the only attempt
to consider Fourier transforms of rank-based autocorrelations (or any other rank-based scalar
measures of dependence), to the best of our knowledge, is that of Ahdesmäki et al. [1]. The latter
paper is of a more empirical nature, and no theoretical foundation is provided. The aim of the
present section is to introduce a general class of frequency domain methods, and discuss their
connection to rank-based extensions of autocovariances.

4.1. The Spearman periodogram

To illustrate our purpose, first consider in detail the classical example of Spearman’s rank auto-
correlation coefficients (more precisely, a version of it – see Remark 4.1); at lag k, that coefficient
can be defined as

ρ̂k
n := 12

n3

n−|k|−1∑
t=0

(
Rn;t − n + 1

2

)(
Rn;t+|k| − n + 1

2

)
.

Letting Fn := {2πj/n|j = 1, . . . , �n−1
2 �− 1, �n−1

2 �}, define the Spearman and smoothed Spear-
man periodograms as

In,ρ(ω) := 1

2π

∑
|k|<n

e−iωkρ̂k
n, ω ∈Fn

and

Ĝn,ρ(ω) := 2π

n

n−1∑
s=1

Wn(ω − 2πs/n)In,ρ(2πs/n), ω ∈ R,

respectively. Intuition suggests that the (smoothed) rank-based periodogram Ĝn,ρ should be an
estimator for the Fourier transform

fρ(ω) := 1

2π

1

12

∑
k∈Z

e−iωkρk
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of the population counterpart

ρk = ρ(Ck) = 12
∫

[0,1]2

(
Ck(u, v) − uv

)
dudv, (4.1)

of ρ̂k
n , where Ck is the copula associated with (Xt ,Xt+k) (see, e.g., Schmid et al. [48]). Due

to the presence of ranks, the investigation of the asymptotic properties of the Spearman peri-
odogram under non-exchangeable observations seems highly non-trivial. However, as we shall
demonstrate now, those properties can be obtained via Theorem 3.5 by establishing a connection
between the Spearman periodogram and the CR-periodogram.

Proposition 4.1. For any ω ∈Fn,

In,ρ(ω) = 12
∫

[0,1]2
I

u,v
n,R(ω)dudv, (4.2)

where I
u,v
n,R is defined in (2.3) Moreover, for any fixed ω ∈ R,

Ĝn,ρ(ω) = 12
∫

[0,1]2
Ĝn,R(u, v;ω)dudv,

where Ĝn,R is defined in (2.4).

Proof of Proposition 4.1. Simple algebra yields

In,ρ(ω) = 12

2π

1

n
dn,ρ(ω)dn,ρ(−ω) with dn,ρ(ω) := 1

n

n−1∑
t=0

Rn;te−iωt .

Observe that

In,ρ(ω) = 12

2π

1

n3

n−1∑
s,t=0

Rn;tRn;se−iωteiωs.

On the other hand,

∫
[0,1]2

I
u,v
n,R(ω)dudv = 12

2π

1

n

n−1∑
s,t=0

e−iωteiωs

∫
[0,1]2

I {Rn;t ≤ nu,Rn;s ≤ nv}dudv

= 12

2π

1

n

n−1∑
s,t=0

e−iωteiωs
(
1 − n−1Rn;t

)(
1 − n−1Rn;s

)
(4.3)

= In,ρ(ω) + 12

2π

1

n2

n−1∑
s,t=0

e−iωteiωs(n − Rn;t − Rn;s).

For ω ∈Fn,
∑n−1

t=0 eiωt = 0, so that the second term in (4.3) vanishes. The claim follows. �
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This result is useful in several ways. On one hand, it allows to easily derive the asymptotic dis-
tribution of the smoothed Spearman periodogram by applying the continuous mapping theorem
in combination with Theorem 3.5; see Proposition 4.2 below. On the other hand, it motivates the
definition of a general class of rank-based spectra to be discussed in the next section.

Proposition 4.2. Under the assumptions of Theorem 3.5, for any fixed frequency ω �= 0 mod 2π,

In,ρ(ω)� 12
∫ 1

0

∫ 1

0
I(τ1, τ2;ω)dτ1 dτ2

and, for every fixed ω ∈ R,

√
nbn

(
Ĝn,ρ(ω) − fρ(ω) − B(k)

n,ρ(ω)
) D−→ Zρ(ω),

where Zρ(ω) ∼N (0,2πf2ρ(ω)(1 + I {ω = 0 mod π}) ∫
W 2(w)dw) and

B(k)
n,ρ(ω) :=

k∑
j=2

b
j
n

j !
∫ π

−π

vjW(v)dv
dj

dωj
fμ(ω), ω ∈ R.

Moreover, Zρ(ω) = Zρ(−ω), Zρ(ω) = Zρ(2π+ω) and Zρ(ω), ω ∈ [0,π] are mutually indepen-
dent random variables. The weak convergence above holds jointly for any finite, fixed collection
of frequencies ω.

This result is a direct consequence of the more general Proposition 4.3, which we establish in
the next section. Note that, following the method described in Remark 3.4, Proposition 4.2 can
be used to construct pointwise asymptotic confidence bands for fρ(ω).

Remark 4.1. A closely related version of the Spearman periodogram was recently considered by
Ahdesmäki et al. [1]. The main difference with our approach is that these authors use a slightly
different version of the lag-k Spearman coefficient, namely

ρ̃k := 1

n

12

(n − k)2 − 1

n−k−1∑
t=0

(
Rk

n;t − n − k + 1

2

)(
R̄k

n;t+k − n − k + 1

2

)
,

where Rk
n;t denotes the rank of Xt among X0, . . . ,Xn−k−1 and R̄k

n;t the rank of Xt among
Xk−1, . . . ,Xn−1, respectively. Letting ρ̃k := ρ̃−k for k < 0, Ahdesmäki et al. [1] then consider a
statistic of the form

∑
|k|<n eikωρ̃k . Note that these authors investigate their method by means of

a simulation study and do not provide any asymptotic theory.
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4.2. A general class of rank-based spectra

The findings in the previous section suggest considering a general class of rank-based peri-
odograms which are defined in terms of the CR-periodogram as

In,μ(ω) :=
∫

[0,1]2
I

u,v
n,R(ω)dμ(u, v), ω ∈ Fn, (4.4)

where μ denotes an arbitrary finite measure on [0,1]2. A smoothed version of In,μ is defined
through

Ĝn,μ(ω) := 2π

n

n−1∑
s=1

Wn(ω − 2πs/n)In,μ(2πs/n), ω ∈ R.

As discussed in the previous section, taking μ as 12 times the uniform distribution on [0,1]2

yields the Fourier transform of Spearman autocorrelations.
The general results in Theorem 3.5 combined with the continuous mapping theorem imply

that the smoothed periodogram Ĝn,μ is a consistent and asymptotically normal estimator of a
spectrum of the form

fμ(ω) := 1

2π

∑
k∈Z

e−iωk

∫
[0,1]2

(
Ck(u, v) − uv

)
dμ(u, v),

where Ck denotes the copula of the pair (X0,Xk).

Proposition 4.3. Under the assumptions of Theorem 3.5, for any fixed frequency ω ∈ R,√
nbn

(
Ĝn,μ(ω) − fμ(ω) − B(k)

n,μ(ω)
) D−→ Zμ(ω) ∼N

(
0, σ 2

μ

)
,

where the variance σ 2
μ takes the form

σ 2
μ = 2π

∫ π

−π

W 2(w)dw

×
∫

[0,1]2

∫
[0,1]2

(
fqu,qu′ (ω)fqv,qv′ (ω) + fqu,qv′ (ω)fqv,qu′ (ω)I {ω = 0 mod π})

× dμ(u, v)dμ
(
u′, v′)

and the bias is given by

B(k)
n,μ(ω) :=

k∑
j=2

b
j
n

j !
∫ π

−π

vjW(v)dv
dj

dωj
fμ(ω), ω ∈R.

Moreover, Zμ(ω) = Zμ(−ω), Zμ(ω) = Zμ(2π + ω), and Zμ(ω), ω ∈ [0,π] are mutually inde-
pendent random variables. The weak convergence above holds jointly for any finite, fixed collec-
tion of frequencies ω.
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Proof. Assumption (C) entails

fμ(ω) − B(k)
n,μ(ω) =

∫
[0,1]2

fqu,qv (ω) − B(k)
n (u, v;ω)dμ(u, v).

This yields

Ĝn,μ(ω) − fμ(ω) + B(k)
n,μ(ω) =

∫
[0,1]2

Gn(u, v;ω)dμ(u, v),

where Gn was defined in Theorem 3.5. An application of the continuous mapping theorem im-
plies √

nbn

(
Ĝn,μ(ω) − fμ(ω) − B(k)

n,μ(ω)
) D−→

∫
[0,1]2

H(u,v;ω)dμ(u, v).

Since H(·, ·;ω) is a centered Gaussian process, the integral
∫
[0,1]2 H(u,v;ω)dudv follows a

normal distribution with mean zero and variance:∫
[0,1]2

∫
[0,1]2

Cov
(
H(u,v;ω),H

(
u′, v′;ω))

dμ(u, v)dμ
(
u′, v′)

= 2π

∫
W 2(w)dw

∫
[0,1]2

∫
[0,1]2

(
fqu,qu′ (ω)fqv,qv′ (ω) + fqu,qv′ (ω)fqv,qu′ (ω)I {ω = 0 mod π})

× dμ(u, v)dμ
(
u′, v′).

This completes the proof. �

4.3. The Blomqvist and Gini periodograms

In this section, we identify two measures μ that correspond to two classical measures of serial
dependence, Blomqvist’s beta (see Blomqvist [3], Schmid et al. [48], Genest and Carabarín-
Aguirre [16]) and Gini’s gamma (see Schechtman and Yitzhaki [47], Nelsen [45], Carcea and
Serfling [6]) coefficients, which lead to the definition of the Blomqvist and Gini spectra, respec-
tively.

Let Ck denote the copula of the pair (X0,Xk) and assume that it is continuous. The corre-
sponding Blomqvist beta coefficient at lag k is

βk := 4Ck(1/2,1/2) − 1. (4.5)

Similarly, Gini’s gamma, also known as Gini’s lag k rank association coefficient is the copula-
based quantity

�k := 2
∫

[0,1]2

(|u + v − 1| − |v − u|)dCk(u, v)

(4.6)

= 4

(∫
[0,1]

Ck(u,u) − u2 du +
∫

[0,1]
Ck(u,1 − u) − u(1 − u)du

)
.
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This motivates the definition of the Blomqvist spectrum

fβ(ω) := 1

2π

∑
k∈Z

e−iωkβk

and the Gini spectrum

f�(ω) := 1

2π

∑
k∈Z

e−iωk�k.

Sample versions of the Blomqvist and Gini coefficients are

β̂k
n := 1

n − |k|
n−|k|−1∑

t=1

(
4I {Rn;t ≤ 1/2,Rn;t+|k| ≤ 1/2} − 1

)
,

and

�̂k
n := 2

n(n − |k|)
n−|k|−1∑

t=0

(|Rn;t + Rn;t+|k| − n| − |Rn;t − Rn;t+|k||
)
,

respectively. To establish the connection with the general periodogram defined in the previous
section, consider the measures μβ which puts mass 4 in the point (1/2,1/2) and μ� which puts
mass 4 on the sets {(u,u): u ∈ [0,1]} and {(u,1 − u): u ∈ [0,1]}, respectively.

Proposition 4.4. For any ω ∈Fn,

In,β(ω) :=
∫

[0,1]2
I

u,v
n,R(ω)dμβ(u, v) = 1

2π

∑
|k|<n

n − k

n
eiωkβ̂k

n

and

In,�(ω) :=
∫

[0,1]2
I

u,v
n,R(ω)dμ�(u, v) = 1

2π

∑
|k|<n

n − k

n
eiωk�̂k

n.

Proof. Observing that

|n − Rn;t − Rn;t+k| = 2 max(n − Rn;t − Rn;t+k,0) − (n − Rn;t − Rn;t+k)

and

|Rn;t − Rn;t+k| = 2 max(Rn;t ,Rn;t+k) − (Rn;t + Rn;t+k)

yields

|Rn;t + Rn;t+k − n| − |Rn;t − Rn;t+k|
= 2 max(n − Rn;t − Rn;t+k,0) − 2 max(Rn;t ,Rn;t+k) + 2(Rn;t + Rn;t+k) − n.
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On the other hand,∫ 1

0
I

u,u
n,R(ω)du = 1

2π

1

n

n−1∑
s,t=0

e−iωteiωs

∫ 1

0
I {Rn;t ≤ nu,Rn;s ≤ nu}du

= 1

2π

1

n

n−1∑
s,t=0

e−iωteiωs
(
1 − n−1 max(Rn;t ,Rn;s)

)

= − 1

2π

1

n2

n−1∑
s,t=0

e−iωteiωs max(Rn;t ,Rn;s)

and ∫ 1

0
I

u,1−u
n,R (ω)du = 1

2π

1

n

n−1∑
s,t=0

e−iωteiωs

∫ 1

0
I
{
Rn;t ≤ nu,Rn;s ≤ n(1 − u)

}
du

= 1

2π

1

n

n−1∑
s,t=0

e−iωteiωs max
(
1 − n−1Rn;t − n−1Rn;s ,0

)
.

Elementary algebra yields, for arbitrary functions a from Z2 to Z such that a(j, k) = a(k, j)

for all j, k,

∑
|k|<n

n−1−|k|∑
t=0

eiωka
(
t, t + |k|) =

n−1∑
s=0

n−1∑
t=0

e−iωteiωsa(t, s).

This implies (recall that ω ∈ Fn)

In,�(ω) = 1

2π

2

n

∑
|k|<n

n−1−|k|∑
t=0

eiωk
(|Rn;t + Rn;t+k − n| − |Rn;t − Rn;t+k|

)

= 1

2π

4

n2

n−1∑
s=0

n−1∑
t=0

e−iωteiωs
(
max(n − Rn;t − Rn;s ,0) − max(Rn;t ,Rn;s)

)

+ 1

2π

2

n2

n−1∑
s=0

n−1∑
t=0

e−iωteiωs
(
2(Rn;t + Rn;s) − n

)

= 4

(∫
[0,1]

I
u,u
n,R(ω)du +

∫
[0,1]

I
u,1−u
n,R (ω)du

)
.

The representation for In,β can be derived similarly; details are omitted for the sake of
brevity. �

Smoothed versions of the Blomqvist and Gini periodograms can be defined accordingly, and
their asymptotic distributions follow from Proposition 4.3. In particular, this yields consistent
estimators of the Blomqvist and Gini spectra defined above.
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We conclude this section with some general remarks. First, note that the approach above can
be applied to any scalar dependence measure that can be represented as a continuous linear func-
tional of the copula. For instance, Cifarelli, Conti and Regazzini [7] consider a general measure
of monotone dependence of the form

∫
[0,1]2

g
(|u + v − 1|) − g

(|u − v|)dC(u, v), (4.7)

where g : [0,1] → R is strictly increasing and convex. Choosing g(x) = x and g(x) = x2 yields
(up to constants) the Gini and Spearman rank correlations, respectively. Under suitable assump-
tions on g, the monotone dependence measure in (4.7) can be written (by applying integration-
by-parts) in the form of equation (4.4), and the results from Section 4.2 apply.

Other measures of serial dependence such as Kendall’s τ (see Ferguson, Genest and Hallin
[13]) only can be represented as nonlinear functionals of the copula. More general rank-based
autocorrelation coefficients also have been introduced in the context of inference for ARMA
models (see Hallin and Puri [22,23] or Hallin [21]); they involve score functions, typically are
not time-revertible, and lead to possibly unbounded measures μ. We expect that the general
results presented here can be extended to the periodograms associated with such coefficients, but
leave this question to future research.

5. Simulation study

In this section, we show how Theorem 3.5 can be used to construct asymptotic confidence inter-
vals for the copula spectra. An analysis of the finite sample performance was conducted using
the R package quantspec (Kley [31,32]). We consider three different models:

(a) the QAR(1) process

Yt = 0.1�−1(Ut ) + 1.9(Ut − 0.5)Yt−1 (5.1)

(cf. Koenker and Xiao [36]), where (Ut ) is a sequence of i.i.d. standard uniform random vari-
ables, and � denotes the distribution function of the standard normal distribution;

(b) the AR(2) process

Yt = −0.36Yt−2 + εt , (5.2)

where (εt ) is standard normal white noise (cf. Li [39]);
(c) the ARCH(1) process

Yt = (
1/1.9 + 0.9Y 2

t−1

)1/2
εt , (5.3)

where (εt ) is standard normal white noise (cf. Lee and Rao [37]).
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For each model, 10 000 independent copies of length n ∈ {28,29,210,211} were generated. For
each of them, the smoothed CR-periodograms

G̃n,R(τ1, τ2;ωjn) := Ĝn,R(τ1, τ2;ωjn)/W
j
n , W

j
n := 2π

n

n−1∑
0=s �=j

Wn(ωjn − ωsn), (5.4)

were computed for ωjn := 2πj/n, j = 1, . . . , n/2−1 and τ1, τ2 ∈ {0.1,0.5,0.9}, where we used
the kernel of order 4

W(u) := 15

32

1

π

(
7(u/π)4 − 10(u/π)2 + 3

)
I
{|u| ≤ π

}
minimizing the asymptotic IMSE (see Gasser, Müller and Mammitzsch [15]). The bandwidth
was chosen as bn = 0.4n−1/4 which is of lower order than the IMSE-optimal bandwidth n−1/9

to reduce bias and the factor (W
j
n )−1 ensures that the weights in (5.4) sum up to one for every n.

Based on Theorem 3.6, we then computed pointwise asymptotic (1 − α)-level confidence
bands for the real and imaginary parts of the spectrum, namely,

IC1,n(τ1, τ2;ωjn) := �G̃n,R(τ1, τ2;ωjn) ± �σ(τ1, τ2;ωjn)�
−1(1 − α/2), (5.5)

for the real part, and

IC2,n(τ1, τ2;ωjn) := G̃n,R(τ1, τ2;ωjn) ± σ(τ1, τ2;ωjn)�
−1(1 − α/2), (5.6)

for the imaginary part of the copula spectrum. As usual, � stands for the standard normal distri-
bution function, and

(�σ(τ1, τ2;ωjn)
)2 := 0 ∨

{
c(τ1, τ2;ωjn,ωjn), if τ1 = τ2,
1
2

(
c(τ1, τ2;ωjn,ωjn) + c(τ1, τ2;ωjn,−ωjn)

)
, if τ1 �= τ2,

and

(σ(τ1, τ2;ωjn)
)2 := 0 ∨

{
0, if τ1 = τ2,
1
2

(
c(τ1, τ2;ωjn,ωjn) − c(τ1, τ2;ωjn,−ωjn)

)
, if τ1 �= τ2

are estimators for Var(�G̃n,R(τ1, τ2;ωjn)) and Var(G̃n,R(τ1, τ2;ωjn)), respectively. Here,

c
(
τ1, τ2;ωjn,ωj ′n

)
:=

(
2π

n

/
W

j
n

)2

×
[

n−1∑
s=1

Wn(ωjn − 2πs/n)Wn

(
ωj ′n − 2πs/n

)
G̃n,R(τ1, τ1;2πs/n)G̃n,R(τ2, τ2;2πs/n)

+
n−1∑
s=1

Wn(ωjn − 2πs/n)Wn

(
ωj ′n + 2πs/n

)∣∣G̃n,R(τ1, τ2;2πs/n)
∣∣2

]



1794 Kley, Volgushev, Dette and Hallin

is an estimator for the covariance of G̃n,R(τ1, τ2;ωjn) and G̃n,R(τ1, τ2;ωj ′n); this follows from
the representation in Theorem 3.6(iii) and Theorem 7.4.3 in Brillinger [4]. To motivate this ap-
proach, recall that, for any complex-valued random variable Z with complex conjugate Z̄,

Var(�Z) = 1
2

(
Var(Z) + �Cov(Z, Z̄)

); Var(Z) = 1
2

(
Var(Z) − �Cov(Z, Z̄)

)
.

For n → ∞, the estimated variances above converge to the asymptotic variance in Theorem 3.5.
However, in small samples the more elaborate version considered here typically leads to better
coverage probabilities.

In Tables 1–4, we report the simulated coverage frequencies associated with

P
(�fqτ1 ,qτ2

(ω) ∈ IC1,n(τ1, τ2,ω)
)

and P
(fqτ1 ,qτ2

(ω) ∈ IC2,n(τ1, τ2,ω)
)
.

Inspection of Tables 1–4 reveals that, as n gets larger, the coverage frequencies converge to
the confidence level 1 − α. For models (5.1)–(5.2), those frequencies are quite close to 1 − α

even for moderately large values of n. Due to boundary effects, the coverage frequencies for ω

close to multiples of π are too low in all three models, but, as noted earlier, they improve as
n increases. Finally, in models (5.1) and (5.3) for smaller values of n, the confidence intervals
involving extreme quantiles tend to cover less frequently, as can be expected. Again, the accuracy
improves with increasing sample size.

Table 1. Coverage frequencies for the confidence intervals ICn(τ1, τ2,ω),
n = 28, bn = 0.4n−1/4, 1 − α = 0.95

(τ1, τ2) (0.1,0.1) (0.1,0.9) (0.5,0.5) (0.1,0.9) (0.9,0.9)

Model ω/π (�) () (�) (�) (�)

(a) QAR(1) (5.1) 1/8 0.911 0.921 0.906 0.987 0.899
1/4 0.934 0.917 0.920 0.979 0.910
1/2 0.947 0.919 0.932 0.976 0.915
3/4 0.946 0.918 0.927 0.979 0.916
7/8 0.941 0.915 0.931 0.979 0.921

(b) AR(2) (5.2) 1/8 0.913 0.926 0.900 0.975 0.916
1/4 0.935 0.925 0.917 0.967 0.940
1/2 0.940 0.927 0.929 0.966 0.949
3/4 0.939 0.924 0.928 0.969 0.947
7/8 0.937 0.920 0.928 0.972 0.945

(c) ARCH(1) (5.3) 1/8 0.860 0.910 0.906 0.902 0.878
1/4 0.872 0.905 0.922 0.909 0.887
1/2 0.902 0.897 0.937 0.946 0.914
3/4 0.906 0.894 0.934 0.959 0.924
7/8 0.906 0.891 0.935 0.962 0.920
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Table 2. Coverage frequencies for the confidence intervals ICn(τ1, τ2,ω),
n = 29, bn = 0.4n−1/4, 1 − α = 0.95

(τ1, τ2) (0.1,0.1) (0.1,0.9) (0.5,0.5) (0.1,0.9) (0.9,0.9)

Model ω/π (�) () (�) (�) (�)

(a) QAR(1) (5.1) 1/8 0.934 0.932 0.915 0.974 0.916
1/4 0.953 0.933 0.931 0.968 0.925
1/2 0.954 0.932 0.940 0.968 0.934
3/4 0.952 0.926 0.939 0.973 0.932
7/8 0.953 0.923 0.941 0.975 0.934

(b) AR(2) (5.2) 1/8 0.930 0.934 0.913 0.962 0.932
1/4 0.950 0.932 0.928 0.956 0.951
1/2 0.948 0.935 0.933 0.957 0.949
3/4 0.951 0.932 0.936 0.964 0.952
7/8 0.949 0.931 0.937 0.965 0.955

(c) ARCH(1) (5.3) 1/8 0.890 0.932 0.918 0.913 0.892
1/4 0.900 0.924 0.938 0.917 0.903
1/2 0.922 0.912 0.939 0.948 0.928
3/4 0.926 0.913 0.944 0.957 0.934
7/8 0.928 0.908 0.943 0.958 0.937

Table 3. Coverage frequencies for the confidence intervals ICn(τ1, τ2,ω),
n = 210, bn = 0.4n−1/4, 1 − α = 0.95

(τ1, τ2) (0.1,0.1) (0.1,0.9) (0.5,0.5) (0.1,0.9) (0.9,0.9)

Model ω/π (�) () (�) (�) (�)

(a) QAR(1) (5.1) 1/8 0.942 0.943 0.933 0.961 0.924
1/4 0.959 0.938 0.941 0.963 0.929
1/2 0.953 0.938 0.941 0.962 0.934
3/4 0.954 0.935 0.941 0.967 0.933
7/8 0.956 0.935 0.943 0.969 0.936

(b) AR(2) (5.2) 1/8 0.939 0.943 0.931 0.953 0.940
1/4 0.954 0.939 0.942 0.954 0.952
1/2 0.954 0.944 0.945 0.953 0.955
3/4 0.950 0.937 0.942 0.956 0.954
7/8 0.954 0.937 0.940 0.959 0.952

(c) ARCH(1) (5.3) 1/8 0.900 0.935 0.933 0.911 0.906
1/4 0.901 0.930 0.945 0.916 0.908
1/2 0.929 0.928 0.945 0.942 0.928
3/4 0.941 0.916 0.948 0.954 0.937
7/8 0.940 0.918 0.948 0.953 0.936
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Table 4. Coverage frequencies for the confidence intervals ICn(τ1, τ2,ω),
n = 211, bn = 0.4n−1/4, 1 − α = 0.95

(τ1, τ2) (0.1,0.1) (0.1,0.9) (0.5,0.5) (0.1,0.9) (0.9,0.9)

Model ω/π (�) () (�) (�) (�)

(a) QAR(1) (5.1) 1/8 0.953 0.945 0.944 0.957 0.933
1/4 0.957 0.943 0.945 0.961 0.932
1/2 0.955 0.938 0.949 0.960 0.938
3/4 0.952 0.938 0.946 0.963 0.939
7/8 0.954 0.936 0.945 0.964 0.945

(b) AR(2) (5.2) 1/8 0.953 0.944 0.943 0.954 0.947
1/4 0.954 0.944 0.945 0.953 0.956
1/2 0.955 0.946 0.945 0.951 0.954
3/4 0.954 0.947 0.940 0.954 0.957
7/8 0.952 0.945 0.943 0.956 0.951

(c) ARCH(1) (5.3) 1/8 0.911 0.942 0.944 0.918 0.908
1/4 0.918 0.937 0.950 0.926 0.917
1/2 0.934 0.931 0.947 0.946 0.937
3/4 0.944 0.931 0.949 0.954 0.943
7/8 0.944 0.928 0.950 0.958 0.945

6. Conclusions

Spectral analysis for the past fifty years has been a major tool in the analysis of time series. Being
essentially covariance-based, however, classical L2-spectral methods have obvious limitations,
for instance (see Figures 1 and 2), they cannot discriminate between QAR or ARCH and white
noise processes. Quantile-related spectral concepts have been proposed, which palliate those
limitations. Only quite incomplete asymptotic distributional results, however, have been available
in the literature for the consistent estimation of such concepts, which so far has precluded most
practical applications.

In this paper, we provide (Theorem 3.5), in the very strong form of convergence to a Gaus-
sian process, such asymptotic results for the smoothed copula rank-based periodogram process.
That rank-based periodogram is the generalization (Dette et al. [12]) of the copula rank peri-
odograms proposed by Hagemann [19]. Theorem 3.5 was used to construct confidence intervals.
A simulation study was conducted using the R package quantspec (Kley [31,32]).

Being copula- or rank-based, our spectral concepts furthermore are invariant under monotone
increasing continuous marginal transformations of the data, and are likely to enjoy appealing ro-
bustness features their traditional L2-counterparts are severely lacking. Another application is in
the asymptotic behavior of the spectra associated with more classical rank-based autocorrelation
coefficients, such as the Spearman, Gini or Blomqvist spectra.

Copula rank-based periodogram methods are improving over the classical ones both from
the point of view of efficiency (detection of nonlinear features) and from the point of view of
robustness (no finite variance assumption is required). They are likely to be ideal tools for a
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large variety of problems of practical interest, such as change-point analysis, tail dependence,
model diagnostics, or local stationary procedures (cf. Skowronek [52]) – essentially, all problems
covered in the traditional spectral context can be extended here, with the huge advantage that
nonlinear features that cannot be accounted for by traditional methods can be analyzed via the
new ones. This seems to offer most promising perspectives for future research.

Appendix: Proof of Theorem 3.6

The proof of Theorem 3.6 relies on a series of technical lemmas; for the readers’ convenience,
we begin by giving a general overview of the main steps and the corresponding lemmas.

For all n ∈ N, consider the stochastic process

Ĥn,U (τ1, τ2;ω) := √
nbn

(
Ĝn,U (τ1, τ2;ω) −EĜn,U (τ1, τ2;ω)

)
, (A.1)

indexed by (τ1, τ2) ∈ [0,1]2 and ω ∈ R; for a = (a1, a2) ∈ [0,1]2, write Ĥn(a;ω) for Ĥn,U (a1,

a2;ω).
The key step in the process of establishing parts (i) and (iii) of Theorem 3.6 is a uniform

bound on the increments of the process Ĥn,U . That bound is required, for example, when show-
ing the stochastic equicontinuity of Ĥn(a;ω) − Ĥn(b;ω). We derive such a bound by a re-
stricted chaining technique, which is described in Lemma A.1. The application of Lemma A.1
requires two ingredients. First, we need a general bound, uniform in a and b, on the moments of
Ĥn(a;ω) − Ĥn(b;ω). Such a bound is derived in Lemma A.2. Second, we need a sharper bound
on the increments Ĥn(a;ω) − Ĥn(b;ω) when a and b are “sufficiently close”. We provide this
result in Lemma A.7.

Lemma A.2 is a very general result, relying on an abstract condition on the cumulants of
discrete Fourier transforms of certain indicator functions; see (A.5). The link between assump-
tion (C) and (A.5) is established in Lemma A.4.

Finally, the proof of part (ii) of Theorem 3.6 follows by a series of uniform generalizations
of results from Brillinger [4], the details of which are provided in the online supplement [33]
[Lemmas 8.1–8.5].

A.1. Proof of part (i) of Theorem 3.6

In view of Theorems 1.5.4 and 1.5.7 in van der Vaart and Wellner [54], it is sufficient to prove
the following two claims:

(i1) convergence of the finite-dimensional distributions of the process (A.1), that is,

(
Ĥn(a1j , a2j ;ωj )

)
j=1,...,k

d→ (
H(a1j , a2j ;ωj )

)
j=1,...,k

(A.2)

for any (a1j , a2j ,ωj ) ∈ [0,1]2 ×R, j = 1, . . . , k and k ∈N;
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(i2) stochastic equicontinuity: for any x > 0 and any ω ∈R,

lim
δ↓0

lim sup
n→∞

P

(
sup

a,b∈[0,1]2

‖a−b‖1≤δ

∣∣Ĥn(a;ω) − Ĥn(b;ω)
∣∣ > x

)
= 0. (A.3)

Note indeed that (A.3) implies stochastic equicontinuity of both the real part (�Ĥn(a;ω))a∈[0,1]2

and the imaginary part (Ĥn(a;ω))a∈[0,1]2 of Ĥn.

First consider (i1). Observe that Ĝn,U (τ1, τ2;ω) is the traditional smoothed periodogram
estimator (see Chapter 7.1 in Brillinger [4]) of the cross-spectrum of the clipped processes
(I {F(Xt ) ≤ τ1})t∈Z and (I {F(Xt ) ≤ τ2})t∈Z. Thus, (A.2) is an immediate corollary of Theo-
rem 7.4.4 in Brillinger [4]. The limiting first and second moment structures are given by The-
orem 7.4.1 and Corollary 7.4.3 in Brillinger [4]. This implies the desired convergence (A.2) of
finite-dimensional distributions. Note that, by condition (C), the summability condition required
for the three theorems holds (Assumption 2.6.2(�), for every �; cf. Brillinger [4]).

Turning to (i2), in the notation from van der Vaart and Wellner [54], page 95, put �(x) := x6:
the Orlicz norm ‖X‖� = inf{C > 0: E�(|X|/C) ≤ 1} coincides with the L6 norm ‖X‖6 =
(E|X|6)1/6. Therefore, by Lemma A.2 and Lemma A.4, we have, for any κ ∈ (0,1) and suffi-
ciently small ‖a − b‖1,

∥∥Ĥn(a;ω) − Ĥn(b;ω)
∥∥

�
≤ K

(‖a − b‖κ
1

(nbn)2
+ ‖a − b‖2κ

1

nbn

+ ‖a − b‖3κ
1

)1/6

.

It follows that, for all a, b with ‖a − b‖1 sufficiently small and ‖a − b‖1 ≥ (nbn)
−1/γ and all

γ ∈ (0,1) such that γ < κ ,

∥∥Ĥn(a;ω) − Ĥn(b;ω)
∥∥

�
≤ K

(‖a − b‖κ+2γ

1 + ‖a − b‖2κ+γ

1 + ‖a − b‖3κ
1

)1/6

≤ K̄‖a − b‖γ /2
1 .

Note that ‖a − b‖1 ≥ (nbn)
−1/γ iff d(a, b) := ‖a − b‖γ /2

1 ≥ (nbn)
−1/2 =: η̄n/2.

Denoting by D(ε, d) the packing number of ([0,1]2, d) (cf. van der Vaart and Wellner [54],
page 98), we have D(ε, d) � ε−4/γ . Therefore, by Lemma A.1, for all x, δ > 0 and η ≥ η̄n,

P

(
sup

‖a−b‖1≤δ2/γ

∣∣Ĥn(a;ω) − Ĥn(b;ω)
∣∣ > x

)

= P

(
sup

d(a,b)≤δ

∣∣Ĥn(a;ω) − Ĥn(b;ω)
∣∣ > x

)

≤
[

8K̃

x

(∫ η

η̄n/2
ε−2/(3γ ) dε + (δ + 2η̄n)η

−4/(3γ )

)]6

+ P

(
sup

d(a,b)≤η̄n

∣∣Ĥn(a;ω) − Ĥn(b;ω)
∣∣ > x/4

)
.
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Now choose 1 > γ > 2/3. Letting n tend to infinity, the second term tends to zero by
Lemma A.7 since, by construction, 1/γ > 1 and

d(a, b) ≤ η̄n iff ‖a − b‖1 ≤ 22/γ (nbn)
−1/γ .

All together, this implies

lim
δ↓0

lim sup
n→∞

P

(
sup

d(a,b)≤δ

∣∣Ĥn(a;ω) − Ĥn(b;ω)
∣∣ > x

)
≤

[
8K̃

x

∫ η

0
ε−2/(3γ ) dε

]6

,

for every x,η > 0; the claim follows, since the integral in the right-hand side can be made arbi-
trarily small by choosing η accordingly.

A.2. Proof of part (ii) of Theorem 3.6

Essentially, this part of Theorem 3.6 is a uniform version of Theorems 7.4.1 and 7.4.2
in Brillinger [4] in the present setting of Laplace spectra. The proof is based on a series of
uniform versions of results from Brillinger [4]; details are provided in the online supplement
[33] (see in particular Lemma 8.5).

A.3. Proof of part (iii) of Theorem 3.6

It follows from the continuity of F that the ranks of the random variables X0, . . . ,Xn−1 and
F(X0), . . . ,F (Xn−1) coincide almost surely. Thus, without loss of generality, we can assume
that the estimator is computed from the unobservable data F(X0), . . . ,F (Xn−1). In particular,
this implies that we can assume the marginals to be uniform.

Denote by F̂−1
n (τ ) := inf{x: F̂n(x) ≥ τ } the generalized inverse of F̂n and let inf∅ := 0.

Elementary computation shows that, for any k ∈ N,

sup
ω∈R

sup
τ∈[0,1]

∣∣dτ
n,R(ω) − d

F̂−1
n (τ)

n,U (ω)
∣∣ ≤ n sup

τ∈[0,1]
∣∣F̂n(τ ) − F̂n(τ−)

∣∣ = OP

(
n1/2k

)
, (A.4)

where F̂n(τ−) := limξ↑0 F̂n(τ − ξ) and the OP -bound in the above equation follows from
Lemma 8.6 (online supplement [33]). By the definition of Ĝn,R and arguments similar to the
ones used in the proof of Lemma A.7, it follows that

sup
ω∈R

sup
τ1,τ2∈[0,1]

∣∣Ĝn,R(τ1, τ2;ω) − Ĝn,U

(
F̂−1

n (τ1), F̂
−1
n (τ2);ω

)∣∣ = oP (1).

It therefore suffices to bound the differences

sup
τ1,τ2∈[0,1]

∣∣Ĝn,U (τ1, τ2;ω) − Ĝn,U

(
F̂−1

n (τ1), F̂
−1
n (τ2);ω

)∣∣
pointwise and uniformly in ω.
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In what follows, we give a detailed proof of the statement for fixed ω ∈ R and sketch the
arguments needed for the proof of the uniform result.

By (A.1) we have, for any x > 0 and δn with

n−1/2 � δn = o
(
n−1/2b

−1/2
n (logn)−d

)
,

where d is the constant from Lemma A.3 corresponding to j = k,

P n(ω)

:= P

(
sup

τ1,τ2∈[0,1]

∣∣Ĝn,U

(
F̂−1

n (τ1), F̂
−1
n (τ2);ω

) − Ĝn,U (τ1, τ2;ω)
∣∣ > x

(
(nbn)

−1/2 + bk
n

))

≤ P

(
sup

τ1,τ2∈[0,1]
sup

‖(u,v)−(τ1,τ2)‖∞
≤supτ∈[0,1] |F̂−1

n (τ)−τ |

∣∣Ĝn,U (u, v;ω) − Ĝn,U (τ1, τ2;ω)
∣∣ > x

(
(nbn)

−1/2 + bk
n

))

≤ P

(
sup

τ1,τ2∈[0,1]
sup

|u−τ1|≤δn

|v−τ2|≤δn

∣∣Ĝn,U (u, v;ω) − Ĝn,U (τ1, τ2;ω)
∣∣ > x

(
(nbn)

−1/2 + bk
n

)
,

sup
τ∈[0,1]

∣∣F̂−1
n (τ ) − τ

∣∣ ≤ δn

)
+ P

(
sup

τ∈[0,1]

∣∣F̂−1
n (τ ) − τ

∣∣ > δn

)
= P n

1 + P n
2 , say.

It follows from Lemma A.5 that P n
2 is o(1). As for P n

1 , it is bounded by

P

(
sup

τ1,τ2∈[0,1]
sup

|u−τ1|≤δn

|v−τ2|≤δn

∣∣Ĥn,U (u, v;ω) − Ĥn,U (τ1, τ2;ω)
∣∣ >

(
1 + (nbn)

1/2bk
n

)
x/2

)

+ I
{

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn

|v−τ2|≤δn

∣∣EĜn,U (u, v;ω) −EĜn,U (τ1, τ2;ω)
∣∣ >

(
(nbn)

−1/2 + bk
n

)
x/2

}
,

where the first term tends to zero in view of (A.3). To see that the indicator in the second term
also is o(1), note that

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn

|v−τ2|≤δn

∣∣EĜn,U (u, v;ω) −EĜn,U (τ1, τ2;ω)
∣∣

≤ sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn

|v−τ2|≤δn

∣∣EĜn,U (u, v;ω) − fqu,qv (ω) − B(k)
n (u, v,ω)

∣∣

+ sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn

|v−τ2|≤δn

∣∣B(k)
n (τ1, τ2,ω) + fqτ1 ,qτ2

(ω) −EĜn,U (τ1, τ2;ω)
∣∣
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+ sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn

|v−τ2|≤δn

∣∣fqu,qv (ω) + B(k)
n (u, v,ω) − fqτ1 ,qτ2

(ω) − B(k)
n (τ1, τ2,ω)

∣∣

= o
(
n−1/2b

−1/2
n + bk

n

) + O
(
δn

(
1 + | log δn|

)d)
,

where d still is the constant from Lemma A.3 corresponding to j = k. Here, we have applied
part (ii) of Theorem 3.6 to bound the first two terms and Lemma A.3 for the third one. For any
fixed ω, thus, P n(ω) = o(1), which establishes the pointwise version of the claim.

We now turn to the uniformity (with respect to ω) issue. For an arbitrary yn > 0, similar
arguments as above yield, with the same δn,

P

(
sup
ω∈R

sup
τ1,τ2∈[0,1]

∣∣Ĝn,R(τ1, τ2;ω) − Ĝn,U (τ1, τ2;ω)
∣∣ > yn

)

≤ P

(
sup
ω∈R

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn

|v−τ2|≤δn

∣∣Ĥn,U (u, v;ω) − Ĥn,U (τ1, τ2;ω)
∣∣ > (nbn)

1/2yn/2
)

+ I
{

sup
ω∈R

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn

|v−τ2|≤δn

∣∣EĜn,U (u, v;ω) −EĜn,U (τ1, τ2;ω)
∣∣ > yn/2

}
+ o(1).

That the indicator in the latter expression is o(1) follows by the same arguments as above [note
that Lemma A.3 and the statement of part (ii) both hold uniformly in ω ∈R]. To bound the prob-
ability term, observe that by Lemma A.6, supτ1,τ2

supj=1,...,n |I τ1,τ2
n,U (2πj/n)| is OP (n2/K) for

any K > 0. Moreover, the uniform Lipschitz continuity of W implies that Wn also is uniformly
Lipschitz continuous with constant of order O(b−2

n ). Combining those facts with Lemma A.3
and the assumptions on bn, we obtain

sup
ω1,ω2∈R

|ω1−ω2|≤n−3

sup
τ1,τ2∈[0,1]

∣∣Ĥn,U (τ1, τ2;ω1) − Ĥn,U (τ1, τ2;ω2)
∣∣ = oP (1).

By periodicity of Ĥn,U in the argument ω, it thus remains to show that

max
ω=0,2πn−3,...,2π

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn

|v−τ2|≤δn

∣∣Ĥn,U (u, v;ω) − Ĥn,U (τ1, τ2;ω)
∣∣ = oP (1).

Lemmas A.1 and A.7 entail the existence of a random variable S(ω) such that, for any fixed
ω ∈R,

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn

|v−τ2|≤δn

∣∣Ĥn,U (u, v;ω) − Ĥn,U (τ1, τ2;ω)
∣∣ ≤ ∣∣S(ω)

∣∣ + Rn(ω),

where supω∈R |Rn(ω)| = oP (1) and

max
ω=0,2πn−3,...,2π

E
[∣∣S2L(ω)

∣∣] ≤ K2L
L

(∫ η

0
ε−4/(2Lγ ) dε + (

δ
γ/2
n + 2(nbn)

−1/2)η−8/(2Lγ )

)2L
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for any 0 < γ < 1,L ∈ N, 0 < η < δn, and a constant KL depending on L only. For appropriate
choice of L and γ , this latter bound is o(n−3); since the maximum is over a set with O(n3)

elements. This completes the proof of part (iii).

A.4. Details for the proof of parts (i) and (iii) of Theorem 3.6

This section contains the main lemmas used in Sections A.1 and A.3 above. We use the notation
introduced at the beginning of the proof of Theorem 3.6. The proofs of the results presented here
can be found in the online supplement [33] [Section 1.3].

For the statement of the first result, recall that, for any non-decreasing, convex function
�: R

+ → R
+ with �(0) = 0 the Orlicz norm of a real-valued random variable Z is defined

as (see, e.g., van der Vaart and Wellner [54], Chapter 2.2)

‖Z‖� = inf
{
C > 0: E�

(|Z|/C
) ≤ 1

}
.

Lemma A.1. Let {Gt : t ∈ T } be a separable stochastic process with ‖Gs −Gt‖� ≤ C d(s, t) for
all s, t with d(s, t) ≥ η̄/2 ≥ 0. Denote by D(ε, d) the packing number of the metric space (T , d).
Then, for any δ > 0, η ≥ η̄, there exists a random variable S1 and a constant K < ∞ such that

sup
d(s,t)≤δ

|Gs −Gt | ≤ S1 + 2 sup
d(s,t)≤η̄,t∈T̃

|Gs −Gt |

and

‖S1‖� ≤ K

[∫ η

η̄/2
�−1(D(ε, d)

)
dε + (δ + 2η̄)�−1(D2(η, d)

)]
,

where the set T̃ contains at most D(η̄, d) points. In particular, by Markov’s inequality (cf. van der
Vaart and Wellner [54], page 96),

P
(|S1| > x

) ≤
(

�

(
x

[
8K

(∫ η

η̄/2
�−1(D(ε, d)

)
dε + (δ + 2η̄)�−1(D2(η, d)

))]−1))−1

for any x > 0.

Lemma A.2. Let X0, . . . ,Xn−1 be the finite realization of a strictly stationary process with
X0 ∼ U [0,1], and let (W) hold. For x = (x1, x2) let Ĥn(x;ω) := √

nbn(Ĝn(x1, x2;ω) −
E[Ĝn(x1, x2;ω)]). For any Borel set A, define

dA
n (ω) :=

n−1∑
t=0

I {Xt ∈ A}e−itω.
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Assume that, for p = 1, . . . ,P , there exist a constant C and a function g :R+ → R
+, both inde-

pendent of ω1, . . . ,ωp ∈ R, n and A1, . . . ,Ap , such that

∣∣cum
(
dA1
n (ω1), . . . , d

Ap
n (ωp)

)∣∣ ≤ C

(∣∣∣∣∣�n

(
p∑

i=1

ωi

)∣∣∣∣∣ + 1

)
g(ε) (A.5)

for any Borel sets A1, . . . ,Ap with minj P(X0 ∈ Aj) ≤ ε. Then there exists a constant K (de-
pending on C,L,g only) such that

sup
ω∈R

sup
‖a−b‖1≤ε

E
∣∣Ĥn(a;ω) − Ĥn(b;ω)

∣∣2L ≤ K

L−1∑
�=0

gL−�(ε)

(nbn)�

for all ε with g(ε) < 1 and all L = 1, . . . ,P .

Lemma A.3. Under the assumptions of Theorem 3.5, the derivative (τ1, τ2) �→ dj

dωj fqτ1 ,qτ2
(ω)

exists and satisfies, for any j ∈ N0 and some constants C,d that are independent of a =
(a1, a2), b = (b1, b2) but may depend on j ,

sup
ω∈R

∣∣∣∣ dj

dωj
fqa1 ,qa2

(ω) − dj

dωj
fqb1 ,qb2

(ω)

∣∣∣∣ ≤ C‖a − b‖1
(
1 + ∣∣log‖a − b‖1

∣∣)d
.

Lemma A.4. Let the strictly stationary process (Xt )t∈Z satisfy assumption (C). For any Borel
set A, define

dA
n (ω) :=

n−1∑
t=0

I {Xt ∈ A}e−itω.

Let A1, . . . ,Ap ⊂ [0,1] be intervals, and let ε := minj=1,...,p P(X0 ∈ Aj). Then, for any p-tuple
ω1, . . . ,ωp ∈R,

∣∣cum
(
dA1
n (ω1), . . . , d

Ap
n (ωp)

)∣∣ ≤ C

(∣∣∣∣∣�n

(
p∑

i=1

ωi

)∣∣∣∣∣ + 1

)
ε
(| log ε| + 1

)d
,

where �n(λ) := ∑n−1
t=0 eitλ and the constants C,d depend only on K,p, and ρ [with ρ from

condition (C)].

Lemma A.5. Let X0, . . . ,Xn−1 be the finite realization of a strictly stationary process satisfy-
ing (C) and such that X0 ∼ U [0,1]. Then

sup
τ∈[0,1]

∣∣F̂−1
n (τ ) − τ

∣∣ = OP

(
n−1/2).
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Lemma A.6. Let the strictly stationary process (Xt )t∈Z satisfy assumption (C); assume more-
over that X0 ∼ U [0,1]. For any y ∈ [0,1], define

d
y
n (ω) :=

n−1∑
t=0

I {Xt ≤ y}e−iωt .

Then, for any k ∈ N,

sup
ω∈Fn

sup
y∈[0,1]

∣∣dy
n (ω)

∣∣ = OP

(
n1/2+1/k

)
.

Lemma A.7. Under the assumptions of Theorem 3.6, let δn be a sequence of non-negative real
numbers. Assume that there exists γ ∈ (0,1), such that δn = O((nbn)

−1/γ ). Then

sup
ω∈R

sup
u,v∈[0,1]2

‖u−v‖1≤δn

∣∣Ĥn(u;ω) − Ĥn(v;ω)
∣∣ = oP (1).
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