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sampling of finite point processes
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A finite point process is characterized by the distribution of the number of points (the size) of the process. In
some applications, for example, in the context of packet flows in modern communication networks, it is of
interest to infer this size distribution from the observed sizes of sampled point processes, that is, processes
obtained by sampling independently the points of i.i.d. realizations of the original point process. A standard
nonparametric estimator of the size distribution has already been suggested in the literature, and has been
shown to be asymptotically normal under suitable but restrictive assumptions. When these assumptions are
not satisfied, it is shown here that the estimator can be attracted to a semi-stable law. The assumptions
are discussed in the case of several concrete examples. A major theoretical contribution of this work are
new and quite general sufficient conditions for a sequence of i.i.d. random variables to be attracted to a
semi-stable law.
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1. Introduction

We first explain the motivation behind this work, namely, understanding statistical properties of
certain estimators arising when sampling finite point process. The issues raised in the motivation
require developing new theoretical results on the domain of attraction of the so-called semi-
stable laws. We conclude this section by describing this theoretical contribution, along with the
structure of this work.

Let W,W(i), i = 1,2, . . . ,N , be i.i.d. integer-valued random variables with the probability
mass function (p.m.f.) fW(w), w ≥ 1. Let also Bin(n, q) denote a binomial distribution with pa-
rameters n ≥ 1, q ∈ (0,1). Consider random variables Wq,W

(i)
q , i = 1,2, . . . ,N , obtained from

W,W(i), i = 1,2, . . . ,N , through the relationships Wq = Bin(W,q) and W
(i)
q = Bin(W(i), q),

i = 1,2, . . . ,N (independently across i). Note that Wq takes values in 0,1,2, . . . ,W . Let the
probability mass function of Wq be fWq (s), s ≥ 0. The basic interpretation of Wq is as follows.
If an object consists of W points (a finite point process) and each point is sampled with a proba-
bility q , then the number of sampled points is Wq = Bin(W,q).

One application of the above setting arises in modern communication networks. A finite point
process (an object) is associated with the so-called packet flow (and a point is associated with
a single packet). Sampling is used in order to reduce the amount of data being collected and
processed. One basic problem that has attracted much attention recently is the inference of fW

from the observed sampled data W
(i)
q , i = 1,2, . . . ,N (in principle, W

(i)
q = 0 is not observed

directly, but the inference about the number of times W
(i)
q = 0 is made through other means). See,
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for example, Duffield, Lund and Thorup [7], Hohn and Veitch [9], Yang and Michailidis [14]. For
other, more recent progress on sampling in communication networks, see Antunes and Pipiras
[2,3], and references therein.

We are interested here in some statistical properties of a nonparametric estimator of fW(w),
introduced in Hohn and Veitch [9] and also considered in Antunes and Pipiras [1]. We first briefly
outline how the estimator is derived. Estimation of fW(w) is based on a theoretical inversion of
the relation

fWq (s) =
∞∑

w=s

P (Wq = s|W = w)P (W = w)

(1.1)

=
∞∑

w=s

(
w

s

)
qs(1 − q)w−sfW (w), s ≥ 0.

In terms of the moment generating functions GWq (z) = ∑∞
s=0 zsfWq (s) and GW(z) =∑∞

w=1 zwfW (w), the relation (1.1) can be written as GWq (z) = GW(zq + 1 − q). By chang-
ing the variables zq + 1 − q = x, one has GW(x) = GWq (q

−1x − q−1(1 − q)) which has the
earlier form but with q replaced by q−1 (and z replaced by x). This suggests that (1.1) can be
inverted as

fW(w) =
∞∑

s=w

(
s

w

)(
q−1)w(

1 − q−1)s−w
fWq (s)

(1.2)

=
∞∑

s=w

(
s

w

)
(−1)s−w

qs
(1 − q)s−wfWq (s), w ≥ 1.

Antunes and Pipiras [1], Proposition 4.1, showed that the inversion relation (1.2) holds when

∞∑
s=n

(
s

n

)
(1 − q)s−n

qs
fWq (s) =

∞∑
w=n

(
w

n

)
2w−n(1 − q)w−nfW (w) < ∞, n ≥ 1. (1.3)

Observe that (1.3) always holds when q ∈ (0.5,1). But when q ∈ (0,0.5], the finiteness of the
above expression depends on the behavior of fW(w) as w → ∞. We shall make the assump-
tion (1.3) throughout this work.

In view of (1.2), a natural nonparametric estimator of fW is

f̂W (w) =
∞∑

s=w

(
s

w

)
(−1)s−w

qs
(1 − q)s−wf̂Wq (s), w ≥ 1, (1.4)

where

f̂Wq (s) = 1

N

N∑
i=1

1{W(i)
q =s}, s ≥ 0, (1.5)
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is the empirical p.m.f. of fWq , and 1A denotes the indicator function of an event A. Note that, by
using (1.4) and (1.2),

√
N

(
f̂W (w) − fW(w)

) =
∞∑

s=w

(
s

w

)
(−1)s−w

qs
(1 − q)s−w

√
N

(
f̂Wq (s) − fWq (s)

)
. (1.6)

Since {√
N

(
f̂Wq (s) − fWq (s)

)}∞
s=0

d→{
ξ(s)

}∞
s=0, (1.7)

where {ξ(s)}∞s=0 is a Gaussian process with zero mean and covariance structure

E
(
ξ(s1)ξ(s2)

) = fWq (s1)1{s1=s2} − fWq (s1)fWq (s2),

one may naturally expect that under suitable assumptions, (1.6) is asymptotically normal in the
sense that {√

N
(
f̂W (w) − fW(w)

)}∞
w=1

d→{
S(ξ)w

}∞
w=1, (1.8)

where {S(ξ)w}∞w=1 is a Gaussian process. Antunes and Pipiras [1], Theorem 4.1, showed
that (1.8) holds indeed if Rq,w < ∞,w ≥ 1, where

Rq,w =
∞∑

s=w

(
s

w

)2
(1 − q)2(s−w)

q2s
fWq (s)

(1.9)

=
∞∑

i=w

fW(i)(1 − q)i−2w

(
i

w

) i∑
s=w

(
s

w

)(
i − w

s − w

)(
q−1 − 1

)s
.

The quantity Rq,w is naturally related to the limiting variance of
√

Nf̂W (w). Indeed, since
NE(f̂Wq (s1) − fWq (s1))(f̂Wq (s2) − fWq (s2)) = fWq (s1)1{s1=s2} − fWq (s1)fWq (s2) and by us-

ing (1.6) and (1.2), the asymptotic variance of
√

Nf̂W (w) is expected to be Rq,w − (fW (w))2.
Requiring Rq,w < ∞ is then a natural assumption in proving (1.8).

We are interested in f̂W (w) when the condition Rq,w < ∞,w ≥ 1, is not satisfied. In fact,
such a situation is expected with many distributions. For example, we show in Section 4 below
that if fW (w) = (1 − c)cw−1, w ≥ 1, is a geometric distribution with parameter c ∈ (0,1), then
the distribution of fWq (s) is given by

fWq (s) =

⎧⎪⎪⎨⎪⎪⎩
(1 − q)(1 − c)

1 − c(1 − q)
, if s = 0,

1

c
cs
q(1 − cq), if s ≥ 1,

(1.10)

where cq = cq
1−c(1−q)

. Moreover, the condition Rq,w < ∞ holds if and only if c <
q

1−q
(see

Section 4). Thus, for example, we are interested what happens with f̂W (w) when Wq has p.m.f.
given by (1.10) with c ≥ q

1−q
.
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To understand what happens when Rq,w = ∞, observe from (1.4) and (1.5) that f̂W (w) can
also be written as

f̂W (w) = 1

N

N∑
i=1

Xi, (1.11)

where Xi , i = 1,2, . . . ,N , are i.i.d. random variables defined as

Xi =
(

W
(i)
q

w

)
(−1)W

(i)
q −w

qW
(i)
q

(1 − q)W
(i)
q −w1{W(i)

q ≥w}. (1.12)

Focus on the key term (1−q)
W

(i)
q

q
W

(i)
q

= (q−1 − 1)W
(i)
q entering (1.12). For example, when W is geo-

metric with parameter c, W
(i)
q has p.m.f. in (1.10). One then expects that

P
((

q−1 − 1
)W

(i)
q > x

) = P

(
W(i)

q >
logx

log(q−1 − 1)

)
(1.13)

≈ 1

c
c

logx/log(q−1−1)
q = 1

c
x−α,

where α = log c−1
q

log(q−1−1)
. This suggests that the distribution of Xi , i = 1,2, . . . ,N , has heavy tail

and that the estimator f̂W (w) is asymptotically non-Gaussian stable when α < 2. In fact, the
story turns out to be more complex. Because of the discrete nature of W

(i)
q , the relation (1.13)

does not hold in the asymptotic sense as x → ∞. An appropriate setting in this case involves
the so-called semi-stable laws. In the semi-stable context, moreover, the convergence of (1.11) is
expected only along subsequences of N .

Semi-stable laws have been studied quite extensively (see Section 2 for references). They are
infinitely divisible and extend the stable laws by allowing the power function in the Lévy mea-
sure (of the stable law) to be multiplied by a function with a multiplicative period. In particular,
necessary and sufficient conditions are known for a distribution to be attracted to a semi-stable
law (see Theorem 2.2 below), that is, for the sum of independent copies following the distri-
bution to converge to a semi-stable law (along a subsequence and after suitable normalization
and centering). A common example (and, in fact, one of the few concrete examples) of such a
distribution is that of a log-geometric random variable

X = aWq with P(Wq = s) = (1 − cq)cs
q, s = 0,1, . . . , (1.14)

where a > 0 and cq ∈ (0,1). (Strictly speaking, the log-geometric case is when a = e.) Note that
in (1.14), we use purposely the notation of (1.10) and (1.12).

In fact, motivated by (1.12) and the desire to consider more general distributions than log-
geometric, we will show that the domain of attraction of semi-stable laws also includes the dis-
tributions of random variables of the form

X = k(Wq)aWq with P(Wq = s) = h(s)cs
q , s = 0,1, . . . , (1.15)
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where k and h are functions satisfying suitable but also flexible conditions. Our approach goes
through verifying that the distributions determined by (1.15) satisfy the necessary and sufficient
conditions to be attracted to a semi-stable law. Somewhat surprising perhaps, the proof turns out
to be highly nontrivial. The difficulty lies in dealing with the general case when both functions k

and h in (1.15) are not constant. Much of this work, in fact, concerns this problem.
The rest of this work is structured as follows. Preliminaries on semi-stable laws can be found

in Section 2. In Section 3, we state and prove the main general results of this work concerning
semi-stable distributions and their domains of attraction. In Section 4, we apply the main results
from Section 3 to sampling of finite point processes. Several concrete examples, in particular, are
considered. A few auxiliary results are given in the Appendix. Some numerical illustrations can
be found in Chaudhuri and Pipiras [5].

2. Preliminaries on semi-stable laws

One way to characterize a semi-stable distribution is through its characteristic function (Mae-
jima [11]).

Definition 2.1. A probability distribution μ on R (or a random variable with distribution μ) is
called semi-stable if there exist r, b ∈ (0,1) and c ∈R such that

μ̂(θ)r = μ̂(bθ)eicθ for all θ ∈R, (2.1)

and μ̂(θ) �= 0, for all θ ∈ R, where μ̂(θ) denotes the characteristic function of μ.

A semi-stable distribution is known to be infinitely divisible (Maejima [11]) with a location
parameter η ∈ R, a Gaussian part with variance σ 2 ≥ 0 and a non-Gaussian part with Lévy
measure characterized by (distribution) functions

L(x) = ML(x)

|x|α , x < 0, R(x) = −MR(x)

xα
, x > 0, (2.2)

where α ∈ (0,2), ML(c1/αx) = ML(x) when x < 0, and MR(c1/αx) = MR(x) when x > 0,
for some c > 0. The functions ML and MR are thus periodic with multiplicative period c1/α .
The functions L(x) and R(x) are left-continuous and non-decreasing on (−∞,0) and right-
continuous and non-decreasing on (0,∞), respectively. The characteristic function of a semi-
stable distribution with a location parameter η and without a Gaussian part is given by

log μ̂(t) = iηt +
∫ 0

−∞

(
eitx − 1 − itx

1 + x2

)
dL(x) +

∫ ∞

0

(
eitx − 1 − itx

1 + x2

)
dR(x). (2.3)

Semi-stable distributions arise as limits of partial sums of i.i.d. random variables. Let
X1,X2, . . . be a sequence of i.i.d. random variables with a common distribution function F .
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Consider the sequence of partial sums

S∗
n = 1

Akn

{
kn∑

j=1

Xj − Bkn

}
, (2.4)

where {Akn} and {Bkn} are normalizing and centering sequences. Semi-stable laws arise as limits
of partial sums S∗

n , supposing that {kn} satisfies

kn → ∞, kn ≤ kn+1, lim
n→∞

kn+1

kn

= c ∈ [1,∞). (2.5)

Moreover, if S∗
n converges to a nontrivial limit (semi-stable distribution), the distribution F of Xj

is said to be in the domain of attraction of the limiting semi-stable law. In this case and supposing
the limiting law is non-Gaussian semi-stable, it is known that the normalizing sequence {Akn}
necessarily satisfies

Akn → ∞,Akn ≤ Akn+1, lim
n→∞

Akn+1

Akn

= c1/α where α ∈ (0,2). (2.6)

Megyesi [13], Grinevich and Khokhlov [8] gave necessary and sufficient conditions for a dis-
tribution to be in the domain of attraction of a semi-stable distribution.

Theorem 2.2 (Megyesi [13], Corollary 3). Distribution F is in the domain of attraction of
a non-Gaussian semi-stable distribution with the characteristic function (2.3) along the subse-
quence kn with normalizing constants Akn satisfying (2.5) and (2.6) if and only if for all x > 0
large enough,

F−(−x) = x−αl∗(x)
(
ML

(−δ(x)
) + hL(x)

)
, (2.7)

1 − F(x) = x−αl∗(x)
(
MR

(
δ(x)

) + hR(x)
)
, (2.8)

where l∗ is a right-continuous function, slowly varying at ∞, α ∈ (0,2), F− is the left-continuous
version of F and the error functions hR and hL are such that

hK(Aknx0) → 0 as n → ∞, (2.9)

for every continuity point x0 of MR , if K = R, and −x0 of ML, if K = L. MK , K ∈ {L,R}, are
two periodic functions with common multiplicative period c1/α and for all large enough x, δ(x)

is defined as

δ(x) = x

a(x)
∈ [

1, c1/α + ε
]
, (2.10)

where ε > 0 is any fixed number, with

a(x) = Akn if Akn ≤ x < Akn+1 . (2.11)
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Grinevich and Khokhlov [8] also showed that, in the sufficiency part of the theorem above, kn

can be chosen as follows. First, choose a sequence {Ãn} such that

lim
n→∞nÃ−α

n l∗(Ãn) = 1 (2.12)

and

Ãn → ∞, Ãn ≤ Ãn+1 and lim
n→∞

Ãn+1

Ãn

= 1. (2.13)

Define a new sequence {an} by setting an = Akn for every n, where Akn appears in (2.11). Then,
the natural numbers kn can be chosen as

Ãkn ≤ an < Ãkn+1 . (2.14)

The centering constants Bkn in (2.4) can be chosen as (Csörgö and Megyesi [6])

Bkn = kn

∫ 1−1/kn

1/kn

Q(s)ds, (2.15)

where, for 0 ≤ s ≤ 1,

Q(s) = inf
y

{
F(y) ≥ s

}
. (2.16)

The location parameter η of the limiting semi-stable law in (2.3) is then given by

η = 	(ψ1) − 	(ψ2), (2.17)

where

	(ψi) =
∫ 1

0

ψi(s)

1 + ψ2
i (s)

ds −
∫ ∞

1

ψ3
i (s)

1 + ψ2
i (s)

ds, i = 1,2, (2.18)

and

ψ1(s) = inf
x<0

{
L(x) > s

}
, ψ2(s) = inf

x<0

{−R(−x) > s
}
. (2.19)

It is also worth mentioning that the slowly varying function l∗(x) entering in (2.7) and (2.8) can
be replaced by two different, asymptotically equivalent slowly varying functions l∗1 (x) and l∗2 (x).
The proof of this result is given in Lemma A.5 in the Appendix.

3. General results concerning semi-stable domain of attraction

The next theorem is the main result of this work. We use the following notation throughout this
work:

�x� = the smallest integer larger than or equal to x,

�x�+ = the smallest integer strictly larger than x.
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For example, �2.47� = �2.47�+ = 3 but �3� = 3 and �3�+ = 4. The function �x�+ is the right-
continuous version of the function �x�. Also note that �x�+ = [x] + 1, where [x] is the integer
part of x (i.e., the largest integer smaller than or equal to x).

Theorem 3.1. Let Wq be an integer-valued random variable taking values in 0,1,2, . . . such
that, for all x > 0,

P

(
Wq

2
≥ x,Wq is even

)
=

∞∑
n=�x�

P

(
Wq

2
= n

)
= h1

(�x�)e−ν�x�, (3.1)

P

(
Wq − 1

2
≥ x,Wq is odd

)
=

∞∑
n=�x�

P

(
Wq − 1

2
= n

)
= h2

(�x�)e−ν�x�, (3.2)

where ν > 0 and the functions h1 and h2 satisfy

h2(x)

h1(x)
→ c1 as x → ∞, (3.3)

for some fixed c1 ≥ 0, and

h1(ax)

h1(x)
→ 1 as x → ∞, a → 1. (3.4)

Let also

X = L
(
eWq

)
eβWq (−1)Wq , (3.5)

where β > 0 and L is a slowly varying function at ∞ such that L(en) is ultimately monotonically
increasing. Suppose that

α := ν

2β
< 2. (3.6)

Then, X is attracted to the domain of a semi-stable distribution in the following sense. If
X,X1,X2, . . . are i.i.d. random variables, then as n → ∞, the partial sums

1

Akn

{
kn∑

j=1

Xj − Bkn

}
(3.7)

converge to a semi-stable distribution with

kn =
⌈

e(n−1)ν

h1(n − 1)

⌉
, Akn = L

(
e2n−2)e2β(n−1) (3.8)

and Bkn given by (2.15). The limiting semi-stable distribution is non-Gaussian, has location
parameter given in (2.17) and is characterized by

α = ν

2β
, (3.9)
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ML(−x) = c1e−ν([1/2+(1/(2β)) logx]−(1/(2β)) logx),
(3.10)

MR(x) = e−ν(�(1/(2β)) logx�+−(1/(2β)) logx), x > 0.

Proof. The result will be proved by verifying the sufficient conditions (2.7)–(2.8) of Theo-
rem 2.2. We break the proof into two cases dealing with (2.7) and (2.8) separately. The final
part of the proof shows that the sequence kn can be chosen as in (3.8).

Step 1 (showing (2.8)): Fix x > 0 large enough. In view of (3.5), we are interested in

F̄ (x) := 1 − F(x) = P
(
L

(
eWq

)
eβWq (−1)Wq > x

)
. (3.11)

Let Z2 = Wq

2 . Note that (3.11) can be written as

F̄ (x) = P
(
L

(
e2Z2

)
e2βZ2 > x,Z2 is integer

)
= P

(
L

(
e2Z2

)
e2βZ2 > x

)
(3.12)

= P

(
Z2 + 1

2β
logL

(
e2Z2

)
>

1

2β
logx

)
,

where, in view of (3.1),

P(Z2 ≥ x) = h1
(�x�)e−ν�x�. (3.13)

We next want to write F̄ (x) in (3.12) as

F̄ (x) = P

(
Z2 ≥ g

(
1

2β
logx

))
(3.14)

for some function g.
There are many choices for g in (3.14). One natural choice is to take

g0(y) = n if (n − 1) + 1

2β
logL

(
e2n−2) ≤ y < n + 1

2β
logL

(
e2n

)
. (3.15)

The function g0, however, turns out not to be suitable for our purpose. It will be used below
only for reference and comparison to other related functions. We will use a related function g1

defined, for integer n ≥ 2, as

g1(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

n − 1,

if n − 1 + 1

2β
logL

(
e2n−2) ≤ y < n − 1 + 1

2β
logL

(
e2n

)
,

y − 1

2β
logL

(
e2n

)
,

if n − 1 + 1

2β
logL

(
e2n

) ≤ y < n + 1

2β
logL

(
e2n

)
.

(3.16)
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Figure 1. Plot of g0(y), g1(y) and g2(y).

We will also use the function

g2(y) = f −1(y) = inf
{
z: f (z) ≥ y

}
(3.17)

defined as an inverse of the function

f (z) = z + 1

2β
logL

(
e2z

)
. (3.18)

Note that ⌈
g0(y)

⌉ = ⌈
g1(y)

⌉
+ = ⌈

g2(y)
⌉

+ = ⌈
g(y)

⌉
, (3.19)

where g is any function satisfying (3.14). The functions g0, g1 and g2 are plotted in Figure 1.
We shall use another function g̃1 which modifies g1 in the following way: for n ≥ 2,

g̃1(y) = y − 1

2β
logL

(
e2n−2)

(3.20)

if n − 1 + 1

2β
logL

(
e2n−2) ≤ y < n + 1

2β
logL

(
e2n

)
.

One relationship between the functions g1 and g̃1 can be found in Lemma A.1 in the Appendix,
and will be used in the proof below. Note that g̃1(y) can be expressed as

g̃1(y) = y − g̃∗
1(y), (3.21)
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where, for n ≥ 2,

g̃∗
1(y) = 1

2β
logL

(
e2n−2) if n − 1 + 1

2β
logL

(
e2n−2) ≤ y < n + 1

2β
logL

(
e2n

)
. (3.22)

See Lemma A.2 in the Appendix for a property of g̃∗
1 which will be used in the proof below.

We need few properties of the function g2. Since g2 is the inverse of the function f , we have
eg2(logx) as the inverse of ef (logx). Indeed,

eg2(log ef (logx)) = eg2(f (logx)) = elogx = x.

Note now from (3.18) that

ef (logx) = elogx+(1/(2β)) logL(x2) = x
(
L

(
x2))1/(2β)

.

Since (L(x2))1/(2β) is a slowly varying function, ef (logx) is a regularly varying function. So, by
Theorem 1.5.13 of Bingham, Goldie and Teugels [4],

eg2(logx) = xl(x),

where l(x) is a slowly varying function. Hence,

g2(logx) = logx + log l(x) = logx + g∗
2(logx),

where

g∗
2(logx) = log l(x)

or replacing log x by y,

g2(y) = y + g∗
2(y). (3.23)

Note also that for any A > 0, we have

g∗
2(logAx) − g∗

2(logx) = log l(Ax) − log l(x) = log
l(Ax)

l(x)
→ 0 as x → ∞. (3.24)

Continuing with (3.14) now, note that, by using (3.13) and (3.19),

F̄ (x) = P

(
Z2 ≥ g

(
1

2β
logx

))
= h1

(⌈
g

(
1

2β
logx

)⌉)
e−ν�g((1/(2β)) logx)� (3.25)

= h1

(⌈
g2

(
1

2β
logx

)⌉
+

)
e−ν�g1((1/(2β)) logx)�+ .
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By using (3.21), note further that

F̄ (x) = h1

(⌈
g2

(
1

2β
logx

)⌉
+

)
e−νg̃1((1/(2β)) logx)

× e−ν(g1((1/(2β)) logx)−g̃1((1/(2β)) logx))e−ν(�g1((1/(2β)) logx)�+−g1((1/(2β)) logx))

= h1

(⌈
g2

(
1

2β
logx

)⌉
+

)
e−ν((1/(2β)) logx−g̃∗

1 ((1/(2β)) logx)) (3.26)

× e−ν(g1((1/(2β)) logx)−g̃1((1/(2β)) logx))e−ν(�g1((1/(2β)) logx)�+−g1((1/(2β)) logx))

= x−αl∗1 (x)
(
MR

(
δ(x)

) + hR(x)
)
,

where α = ν
2β

as given in (3.9),

l∗1 (x) = h1

(⌈
g2

(
1

2β
logx

)⌉
+

)
eνg̃∗

1 ((1/(2β)) logx)

(3.27)
× e−ν(g1((1/(2β)) logx)−g̃1((1/(2β)) logx)),

MR

(
δ(x)

) = e−ν(�g̃1((1/(2β)) logx)�+−g̃1((1/(2β)) logx)) (3.28)

and

hR(x) = e−ν(�g1((1/(2β)) logx)�+−g1((1/(2β)) logx))

(3.29)
− e−ν(�g̃1((1/(2β)) logx)�+−g̃1((1/(2β)) logx)).

We next show that the functions l∗1 , MR and hR satisfy the conditions of Theorem 2.2 with
suitable choices of δ(x) and Akn .

By Lemma A.3 in the Appendix, l∗1 (x) is a right-continuous slowly varying function and hence
it satisfies the conditions of Theorem 2.2. For the function MR(δ(x)), note from (3.28) that

MR

(
δ(x)

) = e−ν(�2βg̃1((1/(2β)) logx)/(2β)�+−2βg̃1((1/(2β)) logx)/(2β))

(3.30)
= MR

(
e2βg̃1((1/(2β)) logx)

)
with

MR(x) = e−ν(�logx/(2β)�+−logx/(2β)). (3.31)

The function MR(x) is periodic with multiplicative period e2β , and is right-continuous as re-
quired in Theorem 2.2. Since the period e2β is also c1/α , this yields

c = eν. (3.32)

To choose δ(x), note from (3.30) that

MR

(
δ(x)

) = MR

(
e2βg̃1((1/(2β)) logx)−2β(n−1)

)
,
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for any n ≥ 1, since MR has multiplicative period e2β . We can set

δ(x) = e2βg̃1((1/(2β)) logx)−2β(n−1) if e2β(n−1)L
(
e2n−2) ≤ x < e2nβL

(
e2n

)
. (3.33)

From (3.20), we have

δ(x) = e2β((1/(2β)) logx−(1/(2β)) logL(e2n−2))−2β(n−1)

(3.34)
= x

e2β(n−1)L(e2n−2)
if e2β(n−1)L

(
e2n−2) ≤ x < e2nβL

(
e2n

)
.

Thus, δ(x) has the required form (2.10)–(2.11) with

Akn = e2β(n−1)L
(
e2n−2) (3.35)

and

a(x) = e2β(n−1)L
(
e2n−2) = Akn if Akn ≤ x < Akn+1 . (3.36)

Note also from (3.34) that

1 ≤ δ(x) <
e2βnL(e2n)

e2β(n−1)L(e2n−2)

= e2β L(e2n)

L(e−2e2n)
→ e2β = c1/α,

so that δ(x) ∈ [1, c1/α + ε] for large enough x when ε > 0 is fixed.
To complete step 1, we need to prove that hR(Aknx0) → 0 as n → ∞ for every continuity

point x0 of MR(x). The discontinuity points of MR are

x = e2kβ, k ∈ Z. (3.37)

To show hR(Aknx0) → 0, note that, by Lemma A.1, it is enough to prove that h̃R(Aknx0) �= 0 for
finitely many values of n, where

h̃R(x) = e−ν�g1((1/(2β)) logx)�+ − e−ν�g̃1((1/(2β)) logx)�+ .

This holds only if for some integer m ≥ 2,

m + logL
(
e2m−2) ≤ 1

2β
logAknx0 < m + logL

(
e2m

)
. (3.38)

By Lemma A.4, (3.38) holds for infinitely many values of n only if x0 = e2rβ , r ∈ Z, which is a
discontinuity point of MR(x) in (3.37). Hence, hR(Aknx0) → 0 as n → ∞ for every continuity
point x0 of MR(x).

Step 2 (showing (2.7)): In view of (3.5), we are now interested in

F−(−x) = P
(
L

(
eWq

)
eβWq (−1)Wq < −x

)
. (3.39)
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Let Z2 = Wq

2 as in step 1. Note that (3.39) can be written as

F−(−x) = P

(
L

(
e2Z2

)
e2βZ2 > x,Z2 − 1

2
is integer

)
= P

(
L

(
ee2(Z2−1/2)

)
eβe2β(Z2−1/2) > x,Z2 − 1

2
is integer

)
(3.40)

= P
(
L

(
ee2Z1

)
eβe2βZ1 > x

)
= P

(
Z1 + 1

2
+ 1

2β
logL

(
e2Z1+1) >

1

2β
logx

)
,

where, in view of (3.2),

P(Z1 ≥ x) = h2
(�x�)e−ν�x�. (3.41)

Writing (3.40) as

F−(−x) = P

(
Z1 + 1

2β
logL

(
e2Z1+1) >

1

2β
logx − 1

2

)
,

the right-hand side has the form (3.11) where L(e2Z2) is replaced by L(ee2Z1) and 1
2β

logx is

replaced by 1
2β

logx − 1
2 . Thus, as in (3.14)–(3.15), one can write

F−(−x) = P

(
Z1 ≥ g̃

(
1

2β
logx − 1

2

))
, (3.42)

where

g̃(y) = n if n − 1 + 1

2β
logL

(
ee2n−2) ≤ y < n + 1

2β
logL

(
ee2n

)
. (3.43)

The expression (3.42) can also be written as

F−(−x) = P

(
Z1 ≥ g̃0

(
1

2β
logx

))
, (3.44)

where g̃0(y) = g̃(y − 1
2 ) or, for n ≥ 2,

g̃0(y) = n if n − 1

2
+ 1

2β
logL

(
e2n−1) ≤ y < n + 1

2
+ 1

2β
logL

(
e2n+1). (3.45)

We want to work with the intervals [n − 1 + 1
2β

logL(e2n−2), n + 1
2β

logL(e2n)) appearing in

step 1, and use the results of that step. Note that, on the interval [n − 1 + 1
2β

logL(e2n−2), n +
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1
2β

logL(e2n)), the function g̃0 has the form

g̃0(y) =

⎧⎪⎪⎨⎪⎪⎩
n − 1, if n − 1 + 1

2β
logL

(
e2n−2) ≤ y < n − 1

2
+ 1

2β
logL

(
e2n−1),

n, if n − 1

2
+ 1

2β
logL

(
e2n−1) ≤ y < n + 1

2β
logL

(
e2n

)
.

(3.46)

Defining

I0(y) =

⎧⎪⎪⎨⎪⎪⎩
−1, if n − 1 + 1

2β
logL

(
e2n−2) ≤ y < n − 1

2
+ 1

2β
logL

(
e2n−1),

0, if n − 1

2
+ 1

2β
logL

(
e2n−1) ≤ y < n + 1

2β
logL

(
e2n

)
,

(3.47)

and combining (3.15), (3.46) and (3.47), we have

g̃0(y) = g0(y) + I0(y). (3.48)

Continuing with (3.44), note further that, by using (3.41) and (3.48),

F−(−x) = h2

(
g̃0

(
1

2β
logx

))
e−νg̃0((1/(2β)) logx)

(3.49)

= e−νI0((1/(2β)) logx)h2

(
g0

(
1

2β
logx

)
+ I0

(
1

2β
logx

))
e−νg0((1/(2β)) logx).

We want to write F−(−x) as in (2.7) of Theorem 2.2 (where by Lemma A.5, we can take a
slowly varying function l∗2 which is asymptotically equivalent to l∗1 ). We need the notation for
the intervals appearing in (3.46)–(3.47), namely, for n ≥ 1,

Dn =
[
n − 1 + 1

2β
logL

(
e2n−2), n − 1

2
+ 1

2β
logL

(
e2n−1)),

En =
[
n − 1

2
+ 1

2β
logL

(
e2n−1), n + 1

2β
logL

(
e2n

))
.

We also need a similar notation without the slowly varying function L, that is, for n ≥ 1,

D′
n = [

n − 1, n − 1
2

)
, E′

n = [
n − 1

2 , n
)
.

Set also

D =
∞⋃

n=1

Dn, E =
∞⋃

n=1

En,

(3.50)

D′ =
∞⋃

n=1

D′
n, E′ =

∞⋃
n=1

E′
n.
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As in (3.26), we can now write (3.49) as

F−(−x) = x−α h2(g0((1/(2β)) logx) + I0((1/(2β)) logx))

c1h1(g0((1/(2β)) logx))
l∗1 (x)c1e−νI0((1/(2β)) logx)

× e−ν(�g1((1/(2β)) logx)�+−g1((1/(2β)) logx)),

where α = ν
2β

and l∗1 (x) is given in (3.27). This can also be written as

F−(−x) = x−αl∗2 (x)
(
ML

(−δ(x)
) + hL(x)

)
,

where

l∗2 (x) = h2(g0((1/(2β)) logx) + I0((1/(2β)) logx))

c1h1(g0((1/(2β)) logx))
l∗1 (x), (3.51)

ML

(−δ(x)
) = c1e−ν([1/2+g̃1((1/(2β)) logx)]−g̃1((1/(2β)) logx)), (3.52)

hL(x) = c1e−νI0((1/(2β)) logx)e−ν(�g1((1/(2β)) logx)�+−g1((1/(2β)) logx))

(3.53)
− c1e−ν([1/2+g̃1((1/(2β)) logx)]−g̃1((1/(2β)) logx)).

By using (3.3)–(3.4), we have

h2(g0((1/(2β)) logx) + I0((1/(2β)) logx))

c1h1(g0((1/(2β)) logx))
→ 1 as x → ∞.

Hence,
l∗2 (x)

l∗1 (x)
→ 1, as x → ∞, that is, l∗2 (x) and l∗1 (x) are two asymptotically equivalent functions.

By the definition of I0 and using Lemma A.3, l∗2 (x) is right-continuous and slowly varying.
The function δ(x) appearing in (3.52) is the same as in (3.33)–(3.34) of step 1, while the

function ML(−x) is defined as

ML(−x) = c1e−ν([1/2+(1/(2β)) logx]−(1/(2β)) logx), x > 0. (3.54)

It is left-continuous when x > 0, and also periodic with multiplicative period e2β = c1/α . Thus,
ML(x) for x < 0 is left-continuous as required in Theorem 2.2. The discontinuity points of
ML(−x) are

x = eβ(2k+1), k ∈ Z. (3.55)

To conclude the proof of step 2, we need to show that hL(Aknx0) → 0 as n → ∞ for every
continuity point x0 of ML(−x), that is, x0 different from (3.55). For this, we rewrite hL(x) as
follows. Observe that

e−νI0(y) = eν1D(y) + 1E(y)

and (
eν1D′(y) + 1E′(y)

)
e−ν(�y�+−y) = e−ν([1/2+y]−y),
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where after taking the logs, using �y�+ = [y]+1 and simplification, the last identity is equivalent
to [y]1D′(y) + ([y] + 1)1E′(y) = [ 1

2 + y] and can be seen easily by drawing a picture. By using
these identities and (3.53), we can write

c−1
1 hL(x) =

(
eν1D

(
1

2β
logx

)
+ 1E

(
1

2β
logx

))
e−ν(�g1((1/(2β)) logx)�+−g1((1/(2β)) logx))

− e−ν([1/2+g̃1((1/(2β)) logx)]−g̃1((1/(2β)) logx))

= h1,L(x)e−ν(�g1((1/(2β)) logx)�+−g1((1/(2β)) logx)) + h2,L(x),

where

h1,L(x) = eν1D

(
1

2β
logx

)
+ 1E

(
1

2β
logx

)
− eν1D′

(
g1

(
1

2β
logx

))
− 1E′

(
g1

(
1

2β
logx

))
,

h2,L(x) = e−ν([1/2+g1((1/(2β)) logx)]−g1((1/(2β)) logx)) − e−ν([1/2+g̃1((1/(2β)) logx)]−g̃1((1/(2β)) logx)).

It is therefore enough to show that h1,L(Aknx0) → 0 and h2,L(Aknx0) → 0, as n → ∞.
From (3.16), (3.20) and (3.50), h1,L(Aknx0) �= 0 if, for some integer m ≥ 1,

m − 1

2
+ logL

(
e2m−1) ≤ 1

2β
logAknx0 < m − 1

2
+ logL

(
e2m

)
. (3.56)

(To see this, partition [m − 1 + 1
2β

logL(e2m−2),m + 1
2β

logL(e2m)) into four subintervals [m −
1+ 1

2β
logL(e2m−2),m−1+ 1

2β
logL(e2m)), [m−1+ 1

2β
logL(e2m),m− 1

2 + 1
2β

logL(e2m−1)),

[m− 1
2 + 1

2β
logL(e2m−1),m− 1

2 + 1
2β

logL(e2m)), [m− 1
2 + 1

2β
logL(e2m),m+ 1

2β
logL(e2m))

and check that the function is nonzero only on the third subinterval as given in (3.56).) By
Lemma A.4, (3.56) holds for infinitely many values of n only if x0 = eβ(2r+1) which is a dis-
continuity point of ML(−x) in (3.55). To show h2,L(Aknx0) → 0, note that, by Lemma A.1, it is
enough to prove that h̃2,L(Aknx0) �= 0 for finitely many values of n, where

h̃2,L(x) = e−ν[1/2+g1((1/(2β)) logx)] − e−ν[1/2+g̃1((1/(2β)) logx)].

By using (3.16) and (3.20), the relation h̃2,L(Aknx0) = 0 holds only if, for some integer m ≥ 1,

m − 1

2
+ logL

(
e2m−2) ≤ 1

2β
logAknx0 < m − 1

2
+ logL

(
e2m

)
. (3.57)

(To see this, draw a plot of g1(y) and g̃1(y) for y in [m−1+ 1
2β

logL(e2m−2),m− 1
2 logL(e2m)),

and note that g̃1(y) = m − 1
2 at y = m − 1

2 + 1
2β

logL(e2m−2) and g1(y) = m − 1
2 +

1
2β

logL(e2m).) By Lemma A.4, (3.57) holds for infinitely many values of n only if x0 = eβ(2r+1)

which is a discontinuity point of ML(−x) in (3.55). Hence, hL(Aknx0) → 0 as n → ∞ for every
continuity point x0 of ML(−x).
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Step 3 (Deriving subsequence kn): We conclude the proof of the theorem by showing that
kn is given by (3.8). In view of the discussion following Theorem 2.2, we want to choose a
sequence Ãn satisfying (2.12)–(2.13) such that kn given by (3.8) now satisfies (2.14). We define
such sequence Ãn as

log Ãn = 2β(m − 1) + logL
(
e2m−2)

(3.58)

+ (logn − logkm)(2β + logL(e2m) − logL(e2m−2))

logkm+1 − logkm

if km ≤ n < km+1,m ≥ 1.

The sequence Ãn satisfies (2.13). If km ≤ n < km+1 − 1, the last limit in (2.13) follows from

log Ãn+1 − log Ãn = (logn − log(n + 1))(2β + logL(e2m) − logL(e2m−2))

logkm+1 − logkm

→ 0.

If n = km+1 − 1, the limit follows from

log Ãn+1 − log Ãn

= 2β + logL
(
e2m

) − logL
(
e2m−2)

− (log(km+1 − 1) − logkm)(2β + logL(e2m) − logL(e2m−2))

logkm+1 − logkm

→ 0

since logL(e2m) − logL(e2m−2) → 0, and

log(km+1 − 1) − logkm

logkm+1 − logkm

→ 1.

Next we show (2.12), that is, nÃ−α
n l∗1 (Ãn) → 1, as n → ∞, where α = ν

2β
and l∗1 is as defined

in (3.27). When km ≤ n < km+1, observe that

lognÃ−α
n l∗1 (Ãn) = log

nl∗1 (Ãn)

Ã
ν/2β
n

= log
nl∗1 (Ãn)

e(m−1)νL(e2m−2)ν/2β

+ ν + (ν/(2β)) logL(e2m) − (ν/(2β)) logL(e2m−2)

logkm+1 − logkm

log

(
km

n

)
(3.59)

∼ logn + log
l∗1 (Ãn)

h1(m − 1)L(e2m−2)ν/2β
− logkm

+ ν + (ν/(2β)) logL(e2m) − (ν/(2β)) logL(e2m−2)

logkm+1 − logkm

log

(
km

n

)
.
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Now observe that as n → ∞, we have m → ∞, and thus km

n
is bounded and

ν + (ν/(2β)) logL(e2m) − (ν/(2β)) logL(e2m−2)

logkm+1 − logkm

→ 1.

Thus, (3.59) is asymptotically equivalent to

log
l∗1 (Ãn)

h1(m − 1)L(e2m−2)ν/2β
. (3.60)

By the relation (A.4) in the Appendix, l∗1 (Ãn) ∼ h1(g2(
1

2β
log Ãn))eνg̃∗

1 ((1/(2β)) log Ãn) and hence
(3.59) is also asymptotically equivalent to

log
h1(g2((1/(2β)) log Ãn))eνg̃∗

1 ((1/(2β)) log Ãn)

h1(m − 1)L(e2m−2)ν/2β
. (3.61)

Since km ≤ n < km+1, we have

2β(m − 1) + logL
(
e2m−2) ≤ log Ãn < 2βm + logL

(
e2m

)
and, by (3.22), eνg̃∗

1 ((1/(2β)) log Ãn)

L(e2m−2)ν/2β = 1. Hence, (3.61) simplifies to log h1(m−1+κ)
h1(m−1)

,where 0 ≤ κ < 1.

But as n → ∞, we have m → ∞ and thus h1(m−1+κ)
h1(m−1)

→ 1 by using (3.4). This proves that

lognÃ−α
n l∗1 (Ãn) → 0 and thus nÃ−α

n l∗1 (Ãn) → 1, as n → ∞.
Finally, we show that kn defined in (3.8) satisfies (2.14). Define an = Akn = e2β(n−1)L(e2n−2).

Hence,

logan = logAkn = 2β(n − 1) + logL
(
e2n−2).

Now observe that Ãkn = an and thus (2.14) is satisfied. �

The partial sums (3.7) involve centering constants Bkn defined in (2.15). As in the stable case,
one can expect to replace Bkn by knEX when 1 < α < 2, and to show the convergence of (3.7)
without Bkn when 0 < α < 1. The next result shows that this is indeed the case.

Proposition 3.2. Suppose that the assumptions of Theorem 3.1 hold. Let

ζ = − 1 − e−ν

1 − e2β−ν
− eβ(2�(1/ν) log c1�−1)

(
c1e−ν(�(1/ν) log c1�−1) − 1

)
(3.62)

+ c1
(1 − e−ν)eν−β

1 − e2β−ν
e(2β−ν)�(1/ν) log c1�.

If 0 < α < 1, then

Bkn

Akn

→ ζ,
1

Akn

kn∑
j=1

Xj
d→ Y + ζ
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and if 1 < α < 2, then

knEX − Bkn

Akn

→ −ζ,
1

Akn

{
kn∑

j=1

Xj − knEX

}
d→ Y + ζ,

where Y follows the semi-stable law characterized by (3.9) and (3.10).

Proof. Case 0 < α < 1: It is enough to show the convergence of Bkn

Akn
= kn

Akn

∫ 1−1/kn

1/kn
Q(s)ds to ζ ,

where Q(s) is defined in (2.16). For fixed s1 and s2, write

kn

Akn

∫ 1−1/kn

1/kn

Q(s)ds

(3.63)

= kn

Akn

∫ s1

1/kn

Q(s)ds + kn

Akn

∫ s2

s1

Q(s)ds + kn

Akn

∫ 1−1/kn

s2

Q(s)ds.

Observe first that, for fixed s1 and s2, the second term in (3.63) converges to zero. Indeed, this
follows from the fact that kn

Akn
→ 0. For the latter convergence, note from (3.8) that

kn

Akn

∼ e(n−1)ν

h1(n − 1)

1

L(e2n−2)e2β(n−1)
. (3.64)

For arbitrarily small δ > 0, by using Potter’s bounds for L and Lemma A.6 for h1, the right-hand
side of (3.64) is bounded by Ce(ν−2β+δ)(n−1) → 0, as long as ν − 2β + δ < 0.

Consider now the third term in (3.63), involving the function Q(s) for values of s close
to 1. The function Q(s) is defined as the inverse of the distribution function F(x) =
P(L(eWq )eβWq (−1)Wq ≤ x). Since we are interested in Q(s) for s close to 1, it is enough to
look at the function for x > 0. For x > 0, the function F(x) has jumps at points x = L(e2n)e2βn

of size

P(Wq = 2n) = P

(
Wq

2
≥ n,Wq is even

)
− P

(
Wq

2
≥ n + 1,Wq is even

)
.

This means that, for s close to 1, the inverse function Q(s) has jumps at points s = 1 − P(
Wq

2 ≥
n,Wq is even) of size L(e2n)e2βn − L(e2n−2)e2β(n−1). Moreover, Q(s) = L(e2n)e2βn when 1 −
P(

Wq

2 ≥ n,Wq is even) ≤ s < 1 − P(
Wq

2 ≥ n + 1,Wq is even). (If this step is unclear, the reader
may want to draw a picture.) Note that the jump points satisfy

1 − s = P

(
Wq

2
≥ n,Wq is even

)
= h1(n)e−νn

by (3.1).
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Assuming for simplicity that eν(n−1)

h1(n−1)
are integers so that kn = eν(n−1)

h1(n−1)
and taking s2 = 1 −

h1(n1)e−νn1 , we can write,

kn

Akn

∫ 1−h1(n−1)e−ν(n−1)

s2

Q(s)ds

= kn

Akn

n−2∑
m=n1

L
(
e2m

)
e2βm

(
h1(m)e−νm − h1(m + 1)e−ν(m+1)

)

= eν(n−1)

h1(n − 1)e2β(n−1)L(e2n−2)

n−2∑
m=n1

L
(
e2m

)
e2βmh1(m)e−νm

(
1 − h1(m + 1)

h1(m)
e−ν

)
=: I1 + I2,

where, for fixed K ,

I1 = eν(n−1)

h1(n − 1)e2β(n−1)L(e2n−2)

n−K∑
m=n1

L
(
e2m

)
e2βmh1(m)e−νm

(
1 − h1(m + 1)

h1(m)
e−ν

)
,

I2 = eν(n−1)

h1(n − 1)e2β(n−1)L(e2n−2)

n−2∑
m=n−K

L
(
e2m

)
e2βmh1(m)e−νm

(
1 − h1(m + 1)

h1(m)
e−ν

)
.

For the term I2, note that, after changing m to n − j in the sum,

I2 = e2β−ν

K∑
j=2

L(e2(n−j))

L(e2(n−1))
e−(2β−ν)j h1(n − j)

h1(n − 1)

(
1 − h1(n − j + 1)

h1(n − j)
e−ν

)
.

By using (3.4), we get that

I2 → e2β−ν
(
1 − e−ν

) K∑
j=2

e−(2β−ν)j = (
1 − e−ν

) eν−2β

1 − eν−2β

(
1 − e−(K−1)(2β−ν)

)
, (3.65)

as n → ∞. For the term I1, we have similarly

I1 = e2β−ν

n−n1∑
j=K

L(e2(n−j))

L(e2(n−2))
e−(2β−ν)j h1(n − j)

h1(n − 1)

(
1 − h1(n − j + 1)

h1(n − j)
e−ν

)
.

For arbitrarily small δ > 0, by using Potter’s bounds and Lemma A.6, we can write

|I1| ≤ C

n−n1∑
j=K

e−(2β−ν−δ)j . (3.66)
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When 2β −ν−δ > 0, the last bound is arbitrarily small for large enough K . Together with (3.65),
this shows that

kn

Akn

∫ 1−h1(n−1)e−(n−1)ν

s2

Q(s)ds = I1 + I2 → (
1 − e−ν

) eν−2β

1 − eν−2β
= − 1 − e−ν

1 − e2β−ν
,

as n → ∞.
Consider now the first term in (3.63), involving the function Q(s) for values of s close to 0.

Here we need to examine the function F(x) = P(L(eWq )eβWq (−1)Wq ≤ x) for x < 0. For x < 0,
the function F(x) has jumps at x = −L(e2n+1)eβ(2n+1) of size

P(Wq = 2n + 1) = P

(
Wq − 1

2
≥ n,Wq is odd

)
− P

(
Wq − 1

2
≥ n + 1,Wq is odd

)
.

Moreover, Q(s) = −L(e2n+1)eβ(2n+1) when P(
Wq−1

2 ≥ n + 1,Wq is odd) < s ≤ P(
Wq−1

2 ≥
n,Wq is odd). Note that, by (3.2), the jump points satisfy

s = P

(
Wq − 1

2
≥ n,Wq is odd

)
= h2(n)e−νn.

Write the first term in (3.63) as

kn

Akn

∫ h2(l(n)−1)e−ν(l(n)−1)

h1(n−1)e−ν(n−1)

Q(s)ds + kn

Akn

∫ s1

h2(l(n)−1)e−ν(l(n)−1)

Q(s)ds =: I ∗
1 + I ∗

2 , (3.67)

where l(n) is the integer such that

h2
(
l(n)

)
e−νl(n) ≤ h1(n − 1)e−ν(n−1) < h2

(
l(n) − 1

)
e−ν(l(n)−1)

or

h2
(
l(n)

)
e−νl(n) ≤ h2(n − 1)e−ν(n−1+(1/ν) log(h2(n−1)/(h1(n−1)))) < h2

(
l(n) − 1

)
e−ν(l(n)−1).

Note that, when h2(x)
h1(x)

→ c1 and 1
ν

log c1 is not an integer, or when 1
ν

log c1 is an integer and
h2(x)
h1(x)

↑ c1, for large values of n one can take l(n) = n− 1 +� 1
ν

log c1�. Indeed, this follows from

e−ν < e−ν(�(1/ν) log(h2(n−1)/(h1(n−1)))�−(1/ν) log(h2(n−1)/(h1(n−1)))) ≤ 1 (3.68)

and the fact that

h2(n − 1 + �(1/ν) log(h2(n − 1)/(h1(n − 1)))�)
h2(n − 1)

→ 1, (3.69)

as n → ∞.
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Now, taking s1 = h2(n2)e−νn2 , we can write I ∗
2 in (3.67) as

I ∗
2 = − kn

Akn

l(n)−2∑
m=n2

L
(
e2m+1)eβ(2m+1)

(
h2(m)e−νm − h2(m + 1)e−ν(m+1)

)
.

Following a similar calculation as done for the third term in (3.63), we get, as n → ∞,

I ∗
2 → −c1

(1 − e−ν)e2(ν−2β)eβ

1 − eν−2β
e−(ν−2β)�(1/ν) log c1�

= c1
(1 − e−ν)eν−β

1 − e2β−ν
e(2β−ν)�(1/ν) log c1�.

One can write I ∗
1 in (3.67) as

I ∗
1 = − eν(n−1)

h1(n − 1)e2β(n−1)L(e2n−2)
L

(
e2l(n)−1)eβ(2l(n)−1)

× (
h2

(
l(n) − 1

)
e−ν(l(n)−1) − h1(n − 1)e−ν(n−1)

)
= −L(e2l(n)−1)eβ(2l(n)−1)

L(e2n−2)e2β(n−1)

(
h2(l(n) − 1)

h1(n − 1)
e−ν(l(n)−n) − 1

)
= −L(e2l(n)−1)

L(e2n−2)
eβ(2�(1/ν) log c1�−1)

(
h2(l(n) − 1)

h1(n − 1)
e−ν(�(1/ν) log c1�−1) − 1

)
.

Now, by using (3.3) and (3.4), it can be seen that

I ∗
1 → −eβ(2�(1/ν) log c1�−1)

(
c1e−ν(�(1/ν) log c1�−1) − 1

)
,

as n → ∞.
Now we consider the case when 1

ν
log c1 is an integer and h2(x)

h1(x)
↓ c1. We want to find l(n) such

that (3) holds. Hence, we want

lim
n→∞

h2(n − 1)

h2(l(n))
e−ν(n−1+(1/ν) log(h2(n−1)/(h1(n−1)))−l(n)) ≥ 1.

Take l(n) = n − 2 + � 1
ν

log h2(n−1)
h1(n−1)

�. Then, limn→∞ h2(n−1)
h1(l(n))

→ 1. Now,

lim
n→∞ e−ν(n−1+(1/ν) log(h2(n−1)/(h1(n−1)))−n+2−�(1/ν) log(h2(n−1)/(h1(n−1)))�)

= e−ν(1+(1/ν) log c1−(1/ν) log c1−1) = e0 = 1.

We also need

h2(l(n) − 1)

h2(n − 1)
e−ν(l(n)−1−n+1−(1/ν) log(h2(n−1)/(h1(n−1)))) > 1
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for large n. For this, observe that h2(l(n)−1)
h2(n−1)

→ 1 and

lim
n→∞ e−ν(l(n)−1−n+1−(1/ν) log(h2(n−1)/(h1(n−1))))

= lim
n→∞ e−ν(n−3+�(1/ν) log(h2(n−1)/(h1(n−1)))�−n+1−(1/ν) log(h2(n−1)/(h1(n−1))))

= lim
n→∞ e−ν(−2+1+(1/ν) log c1−(1/ν) log c1) = e−ν.

Hence, when 1
ν

log c1 is an integer, we have h2(x)
h1(x)

↓ c1 and � 1
ν

log h2(x)
h1(x)

� ↓ 1
ν

log c1 + 1, and as in
the previous calculations,

I ∗
1 → −eβ(2�(1/ν) log c1�−1)

(
c1e−ν(�(1/ν) log c1�−1) − 1

)
and

I ∗
2 → c1

(1 − e−ν)eν−β

1 − e2β−ν
e(2β−ν)�(1/ν) log c1�.

Finally, gathering the results above, we deduce the convergence to the constant ζ given
by (3.62).

Case 1 < α < 2: It is enough to show the convergence of knEX−Bkn

Akn
to −ζ . Using the fact that

EX = ∫ 1
0 Q(s)ds, observe that

knEX − Bkn

Akn

= kn

Akn

∫ 1/kn

0
Q(s)ds + kn

Akn

∫ 1

1−1/kn

Q(s)ds.

For simplicity, we assume that e(n−1)ν

h1(n−1)
is an integer. To evaluate

∫ 1
1−1/kn

Q(s)ds, one follows a
similar procedure as in the case 0 < α < 1 to obtain

kn

Akn

∫ 1

1−h1(n−1)e−ν(n−1)

Q(s)ds

= kn

Akn

∞∑
m=n−1

L
(
e2m

)
e2βm

(
h1(m)e−νm − h1(m + 1)e−ν(m+1)

) =: Ĩ1 + Ĩ2,

where, for fixed K ,

Ĩ1 = eν(n−1)

h1(n − 1)e2β(n−1)L(e2n−2)

n+K∑
m=n−1

L
(
e2m

)
e2βmh1(m)e−νm

(
1 − h1(m + 1)

h1(m)
e−ν

)
,

Ĩ2 = eν(n−1)

h1(n − 1)e2β(n−1)L(e2n−2)

∞∑
m=n+K

L
(
e2m

)
e2βmh1(m)e−νm

(
1 − h1(m + 1)

h1(m)
e−ν

)
.
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Similar to the case 0 < α < 1, one can show that

kn

Akn

∫ 1

1−h1(n−1)e−(n−1)ν

Q(s)ds = Ĩ1 + Ĩ2 → 1 − e−ν

1 − e2β−ν
.

Similarly, one can write∫ 1/kn

0
Q(s)ds = kn

Akn

∫ h2(l(n)−1)e−ν(l(n)−1)

0
Q(s)ds − kn

Akn

∫ h2(l(n)−1)e−ν(l(n)−1)

h1(n−1)e−ν(n−1)

Q(s)ds

:= Ĩ∗
2 − Ĩ ∗

1 .

As shown in the case 0 < α < 1, we again use two different representations of l(n) for two
different cases. Note that Ĩ ∗

1 is exactly I ∗
1 considered in that case.

Observe that

Ĩ ∗
2 = − kn

Akn

∞∑
m=l(n)−1

L
(
e2m+1)e(2m+1)β

(
h2(m)e−νm − h2(m + 1)e−ν(m+1)

)
.

As n → ∞,

Ĩ ∗
2 → −c1

(1 − e−ν)eν−β

1 − e2β−ν
e(2β−ν)�(1/ν) log c1�

and, from the case 0 < α < 1,

Ĩ ∗
1 → −eβ(2�(1/ν) log c1�−1)

(
c1e−ν�(1/ν) log c1� − 1

)
.

Finally, gathering the results above, we deduce the convergence to −ζ where ζ is given
by (3.62). �

Theorem 3.1 concerns the partial sums
∑n

j=1 Xj along a subsequence kn of n. The following
result describes the behavior of the partial sums across all n. The result is a direct consequence of
Lemma 5 of Meerschaert and Scheffler [12]. Recall that a collection of random variables {Yn}n≥1
is called stochastically compact if every subsequence {n′} has a further subsequence {n′′} ⊂ {n′}
for which {Yn′′ } converges in distribution. The following notation will also be used. For a semi-
stable distribution τ with characteristic function ψ(t), τλ will denote the semi-stable distribution
with the characteristic function ψ(t)λ.

Proposition 3.3. Let X,X1,X2, . . . be i.i.d. random variables such that

1

Akn

{
kn∑

j=1

Xj − Bkn

}
d→Y, (3.70)

where Y follows a semi-stable distribution τ with 0 < α < 2 and kn, Akn , Bkn are given in (2.5),
(2.6) and (2.15). Then, there exist an and bn such that an is regularly varying with index 1

α
,
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akn = Akn and a−1
n (X1 + X2 + · · · + Xn) − bn is stochastically compact, with every limit point

of the form λ−1/ατλ for some λ ∈ [1, c]. Moreover, one can take

an = λ
1/α
n Akpn

and bn = λ
1−1/α
n

Bkpn

Akpn

, (3.71)

where λn = n
kpn

and pn, kpn are chosen so that kpn ≤ n < kpn+1 for every n ≥ 1.

Proof. The proposition follows directly from Lemma 5 and its proof in Meerschaert and Schef-
fler [12]. The left-hand side of (3.70) appears in (2.9) of Meerschaert and Scheffler [12] as

ã−1
n (X1 + X2 + · · · + Xkn) − b̃n.

The existence of a regularly varying an with akn = ãn is part of the statement of Lemma 5
of Meerschaert and Scheffler [12]. The expressions in (3.71) can be found in the proof of that
Lemma 5. �

Corollary 3.4. Under the assumptions of Proposition 3.3,

lim sup
n

P
(
a−1
n (X1 + X2 + · · · + Xn) − bn > x

) ≤ sup
1≤λ≤c

P (Yλ > x) (3.72)

and

lim sup
n

P
(
a−1
n (X1 + X2 + · · · + Xn) − bn < x

) ≤ sup
1≤λ≤c

P (Yλ < x), (3.73)

where Yλ has the distribution of the form λ−1/ατλ.

Proof. Along a subsequence {n(k)} of {n}, we have

lim sup
n

P
(
a−1
n (X1 + X2 + · · · + Xn) − bn > x

)
(3.74)

= lim
k

P
(
a−1
n(k)(X1 + X2 + · · · + Xn(k)) − bn(k) > x

)
.

Now, by Proposition 3.3, there exists a further subsequence {n(km)} of {n(k)} such that

lim
m

P
(
a−1
n(km)(X1 + X2 + · · · + Xn(km)) − bn(km) > x

)
(3.75)

= P(Yλ > x),

where Yλ follows the distribution λ−1/ατλ. The relation (3.75) holds for all x as long as the
semi-stable distribution τλ is continuous. By Huff [10], the continuity of τλ is equivalent to∫ 0
−∞ dLλ(x) + ∫ ∞

0 dRλ(x) = ∞, where Lλ and Rλ define the Lévy measure of τλ. By the
definition of τλ, Lλ = λL and Rλ = λR. Denote the multiplicative period of ML(x) and MR(x)
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by p > 1. Then, after the change of variables x = pky in the integrals below,∫ 0

−∞
dL(x) +

∫ ∞

0
dR(x) =

∞∑
k=−∞

∫ −pk

−pk+1
d
ML(x)

|x|α +
∞∑

k=−∞

∫ pk+1

pk

d
(−MR(x))

xα

=
∞∑

k=−∞
p−kα

∫ −1

−p

d
ML(y)

|y|α +
∞∑

k=−∞
p−kα

∫ p

1
d
(−MR(y))

yα
= ∞,

unless ML ≡ 0 and MR ≡ 0. Combining (3.74) and (3.75), we have (3.72) for all x ∈ R. The
relation (3.73) can be obtained similarly. �

We will use Corollary 3.4 to provide a conservative confidence interval for fW(w) in Section 4.

4. Application to sampling of finite point processes

We now turn back to the context of sampling of finite point processes. The following result
restates Theorem 3.1 and Proposition 3.2 for the nonparametric estimator f̂W (w) of fW(w)

given in (1.4) or (1.11)–(1.12).

Theorem 4.1. Suppose conditions (3.1)–(3.4) hold and kn is given in (3.8). Let

α = ν

2 log(q−1 − 1)
. (4.1)

If α ∈ (1,2), then

dN

(
f̂ (w) − f (w)

) d→(−1)−w(Y + ζ ),

and if α ∈ (0,1), then

dN f̂ (w)
d→(−1)−w(Y + ζ ),

along the sample sizes N = kn, where dN = kn

Akn
with

Akn =
(

2n − 2
w

)
(1 − q)−w

(
q−1 − 1

)2n−2
, (4.2)

and ζ defined in (3.62) and Y is a semi-stable distribution characterized by (3.10) with

β = log
(
q−1 − 1

)
. (4.3)

Proof. In view of (1.11)–(1.12), we are interested in the distribution of

X =
(

Wq

w

)
(−1)Wq−w (1 − q)Wq−w

qWq
1{Wq≥w},
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where w > 0 is fixed and Wq follows a p.m.f. satisfying (3.1)–(3.4). For Wq > w large enough,
one can write (−1)wX = L(eWq )eβWq (−1)Wq as given in Theorem 3.1 with

L(x) =
(

logx

w

)
(1 − q)−w = (1 − q)−w

∏w−1
i=0 (logx − i)

w! (4.4)

and β = log 1−q
q

= log(q−1 − 1). Observe that L(x) is an ultimately increasing slowly varying
function. Hence, when α ∈ (1,2), by using (1.11)–(1.12) and applying Theorem 3.1 and Propo-
sition 3.2,

kn

Akn

(
f̂W (w) − fW (w)

) = dN

(
f̂W (w) − fW(w)

)
converges to a semi-stable distribution (−1)−w(Y + ζ ) with α in (4.1) and Akn in (4.2). When
α ∈ (0,1),

kn

Akn

f̂W (w) = dN f̂W (w)

converges to a semi-stable distribution (−1)−w(Y + ζ ) with α in (4.1) and Akn in (4.2). �

The next result provides a conservative confidence interval for f (w) based on f̂ (w) when 1 <

α < 2. The finite-sample performance of the confidence interval and related issues are considered
in Chaudhuri and Pipiras [5].

Proposition 4.2. Under the assumptions and notation of Theorem 4.1, suppose α ∈ (1,2). For
γ ∈ (0,1), set

C = [
f̂W (w) − b̃Nx1−γ /2, f̂W (w) − b̃Nxγ/2

]
, (4.5)

where

b̃N = N1/α−1AkpN
k
−1/α
pN

(4.6)

with pN such that kpN
≤ N < kpN+1 and

sup
1≤λ≤c

P
(
Y

ζ
λ < xγ/2

) = γ

2
, sup

1≤λ≤c

P
(
Y

ζ
λ > x1−γ /2

) = γ

2
, (4.7)

where Y
ζ
λ has the distribution of the form λ−1/ατλ and τ is the distribution of Y + ζ . Then,

lim inf
N→∞ P

(
fW(w) ∈ C

) ≥ 1 − γ, (4.8)

that is, C is a conservative 100(1 − γ )% confidence interval for fW(w).

Proof. When α ∈ (1,2), by using Corollary 3.4 and Theorem 4.1, we get

lim sup
N→∞

P

(
Nλ

−1/α
N

AkpN

f̂W (w) − λ
1−1/α
N

kpN

AkpN

fW (w) < xγ/2

)
≤ sup

1≤λ≤c

P
(
Y

η
λ < xγ/2

) = γ

2
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⇔ lim sup
N→∞

P

(
N

λNkpN

f̂W (w) − λ
1/α−1
N AkpN

kpN

xγ/2 < fW(w)

)
≤ γ

2
.

Using λN = N
kpN

, we get

lim sup
N→∞

P
(
f̂W (w) − N1/α−1AkpN

k
−1/α
pN

xγ /2 < fW(w)
) ≤ γ

2
. (4.9)

Similarly for the right tail, we get

lim sup
N→∞

P

(
Nλ

−1/α
N

AkpN

f̂W (w) − λ
1−1/α
N

kpN

AkpN

fW (w) > x1−γ /2

)
≤ sup

1≤λ≤c

P
(
Y

η
λ > x1−γ /2

) = γ

2

⇔ lim sup
N→∞

P

(
N

λNkpN

f̂W (w) − λ
1/α−1
N AkpN

kpN

x1−γ /2 > fW(w)

)
≤ γ

2
(4.10)

⇔ lim sup
N→∞

P
(
f̂W (w) − N1/α−1AkpN

k
−1/α
pN

x1−γ /2 > fW(w)
) ≤ γ

2
.

Combining (4.9) and (4.10), we get (4.8). �

We conclude with two examples illustrating Theorem 4.1.

Example 4.3. Consider the case where W follows a geometric distribution, that is, fW(w) =
cw−1(1 − c), w = 1,2,3, . . . and 0 < c < 1. Substituting this into (1.1) leads to

fWq (s) =
∞∑

w=s

(
w

s

)
qs(1 − q)w−scw−1(1 − c). (4.11)

When s = 0, we get

fWq (0) =
∞∑

w=1

(1 − q)wcw−1(1 − c) = (1 − q)(1 − c)

1 − c(1 − q)
. (4.12)

When s ≥ 1, on the other hand, we have

fWq (s) = qscs−1(1 − c)

∞∑
w=s

(
w

s

)(
c(1 − q)

)w−s

(4.13)

= qscs−1(1 − c)

(1 − c(1 − q))s+1
= cq

c
cs−1
q (1 − cq),
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where cq = qc
1−c(1−q)

, by using the identity
∑∞

w=s

(
w
s

)
xw−s = ∑∞

r=0

(
s+r
r

)
xr = (1 − x)−(s+1).

Hence, for x ≥ 1,

P

(
Wq

2
≥ x,Wq is even

)
=

∞∑
s=�x�

cq

c
c2s−1
q (1 − cq) = 1

c

c
2�x�
q

1 + cq

(4.14)

and

P

(
Wq − 1

2
≥ x,Wq is odd

)
=

∞∑
s=�x�

cq

c
c2s
q (1 − cq) = cq

c

c
2�x�
q

1 + cq

. (4.15)

Thus, the conditions (3.1)–(3.4) in Theorem 3.1 are satisfied with ν = 2 log 1
cq

, h1(�x�) =
1

c(1+cq )
, h2(�x�) = cq

c(1+cq )
with h2(x)

h1(x)
= cq . By using the expression of β in (4.3), the parameter

α appearing in (3.9) or (4.1) is given by

α = log(1/cq)

log(q−1 − 1)
= log (1 − c(1 − q))/(cq)

log(q−1 − 1)
.

Note that cq < 1 and hence log 1
cq

> 0. Then, α > 0 is possible only when q ∈ (0,0.5). In partic-
ular, for q ∈ (0,0.5),

1 < α < 2 ⇔ q

1 − q
< c <

1

2(1 − q)
, (4.16)

0 < α < 1 ⇔ 1

2(1 − q)
< c < 1. (4.17)

Theorem 4.1 can now be applied in these two cases with

Akn =
(

2n − 2
w

)
(1 − q)−w

(
q−1 − 1

)2n−2 and kn =
⌈

c(1 + cq)

c2n−2
q

⌉
.

Remark. Under (4.16) or (4.17), and q ∈ (0,0.5), the limit of f̂ (w) involves a semi-stable distri-
bution. On the other hand, as proved in Antunes and Pipiras [1], f̂ (w) is asymptotically normal
if Rq,w < ∞, where Rq,w is given in (1.9). This condition obviously holds when q ∈ (0.5,1)

(and also for q = 0.5 by recalling from Example 4.3 above that fWq (s) ∼ Ccs
q as s → ∞). To

understand when Rq,w < ∞ for q ∈ (0,0.5), observe that

Rq,w =
∞∑

k=w

fW(k)(1 − q)k−2w

(
k

w

) k∑
s=w

(
s

w

)(
k − w

s − w

)(
1

q
− 1

)s

(4.18)

=
∞∑

s=w

(
s

w

)(
q−1 − 1

)s
∞∑

k=s

ck−1(1 − c)(1 − q)k−2w

(
k

w

)(
k − w

s − w

)
.
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Since(
k

w

)(
k − w

s − w

)
= k!

w!(k − w)!
(k − w)!

(s − w)!(k − s)! = k!
(k − s)!s!

s!
w!(s − w)! =

(
k

s

)(
s

w

)
,

we have

Rq,w = (1 − c)

∞∑
s=w

(
s

w

)2 (
q−1 − 1

)s
∞∑

k=s

(
k

s

)
ck−1(1 − q)k−2w

= (1 − c)

∞∑
s=w

(
s

w

)2 (
q−1 − 1

)s
∞∑

k=s

(
k

s

)(
c(1 − q)

)k−s
cs−1(1 − q)s−2w

= (1 − c)

∞∑
s=w

(
s

w

)2 (
q−1 − 1

)s
cs−1(1 − q)s−2w

∞∑
k=s

(
k

k − s

)(
c(1 − q)

)k−s

(4.19)

= (1 − c)

∞∑
s=w

(
s

w

)2 (
q−1 − 1

)s
cs−1(1 − q)s−2w

(
1 − c(1 − q)

)−(s+1)

=
(

1 − c

c

) ∞∑
s=w

(
s

w

)2 (
q−1 − 1

)s(
c(1 − q)

)s
(1 − q)−2w

(
1 − c(1 − q)

)−(s+1)

= dw

∞∑
s=w

(
s

w

)2 ((
q−1 − 1

) c(1 − q)

1 − c(1 − q)

)s

,

where dw = ( 1−c
c

)(1 − q)−2w 1
1−c(1−q)

. Thus, Rq,w < ∞ if and only if

(
q−1 − 1

) c(1 − q)

1 − c(1 − q)
< 1 ⇔ c <

q

1 − q
. (4.20)

Apart from the boundary cases c = q
1−q

and c = 1
2(1−q)

, the ranges of c given in (4.16), (4.17)
and (4.20) now cover the whole permissible interval c ∈ (0,1).

Example 4.4. Consider the case where W follows a negative binomial distribution, that is,
fW(w) = (

w−1
r−1

)
cw−r (1 − c)r , w = r, r + 1, . . . ,0 < c < 1. We first compute fWq (s). One

can write W = G1 + G2 + · · · + Gr , where G1,G2, . . . ,Gr are i.i.d. geometric random vari-
ables with p.m.f. fG1(w) = cw−1(1 − c),w ≥ 1, and hence Wq = G′

1 + G′
2 + · · · + G′

r , where
G′

1,G
′
2, . . . ,G

′
r are i.i.d. random variables following the distribution given in (4.12)–(4.13).

Hence,

fWq (0) =
{

(1 − q)(1 − c)

1 − c(1 − q)

}r

. (4.21)
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For s ≥ 1, we have

fWq (s) =
∑

i1,i2,...,ir≥0,i1+i2+···+ir=s

P
(
G′

1 = i1
)
P

(
G′

2 = i2
) · · ·P (

G′
r = ir

)
.

To evaluate this quantity, let

pr
j =

∑
ij+1,ij+2,...,ir≥1,ij+1+ij+2+···+ir=s

P
(
G′

j+1 = ij+1
)
P

(
G′

j+2 = ij+2
) · · ·P (

G′
r = ir

)
, (4.22)

for 0 ≤ j < r . Then, by using (4.12),

fWq (s) =
r−1∑
j=0

(
r

j

){
(1 − q)(1 − c)

1 − c(1 − q)

}j

pr
j .

Now, by using (4.13),

pr
j =

(
cq(1 − cq)

c

)r−j

c
s−(r−j)
q

∑
ij+1,ij+2,...,ir≥1,ij+1+ij+2+···+ir=s

1

=
(

1 − cq

c

)r−j

cs
q

(
s − 1

r − j − 1

)
.

Hence, for s ≥ 1,

fWq (s) = cs
q

r−1∑
j=0

{
(1 − q)(1 − c)

1 − c(1 − q)

}j(1 − cq

c

)r−j (
r

j

)(
s − 1

r − j − 1

)
= cs−1

q p∗(s),

where p∗(s) is a polynomial given as

p∗(s) =
r−1∑
i=1

a∗
i si .

This implies that for x > 1,

P

(
Wq

2
≥ x,Wq is even

)
=

∞∑
s=�x�

c2s−1
q p∗(2s) = c2�x�

q

∞∑
s=�x�

c2s−2�x�−1
q p∗(2s) (4.23)

and

P

(
Wq − 1

2
≥ x,Wq is odd

)
=

∞∑
s=�x�

c2s
q p∗(2s + 1) = c2�x�

q

∞∑
s=�x�

c2s−2�x�
q p∗(2s + 1). (4.24)
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Thus the conditions (3.1)–(3.2) in Theorem 3.1 are satisfied with ν = 2 log 1
cq

, h1(x) =∑∞
k=0 c2k−1

q p∗(2x + 2k), h2(x) = ∑∞
k=0 c2k

q p∗(2x + 1 + 2k). The conditions (3.3)–(3.4) also
hold with c1 = cq . The parameter α appearing in (3.9) is given by

α = log(1/cq)

log(q−1 − 1)
= log((1 − c(1 − q))/(cq))

log(q−1 − 1)
.

Note that cq < 1 and hence log 1
cq

> 0. Then, α > 0 is possible only when q ∈ (0,0.5). In par-
ticular, for q ∈ (0,0.5), the two cases (4.16)–(4.17) can be considered. Theorem 4.1 can now be
applied in these two cases with

Akn =
(

2n − 2
w

)
(1 − q)−w

(
q−1 − 1

)2n−2 and kn =
⌈

1

c2n−2
q h1(n − 1)

⌉
.

Appendix: Auxiliary results

We state and prove here a number of auxiliary results used in Section 3.

Lemma A.1. Let g1 and g̃1 be defined in (3.16) and (3.20), respectively. Then, g̃1(y)−g1(y) →
0, as y → ∞.

Proof. For n ≥ 2, if

n − 1 + 1

2β
logL

(
e2n−2) ≤ y < n − 1 + 1

2β
logL

(
e2n

)
,

then

0 ≤ g̃1(y) − g1(y) <
1

2β
log

L(e2n)

L(e2n−2)
→ 0 as y → ∞ (n → ∞), (A.1)

since L is a slowly varying function. If

n − 1 + 1

2β
logL

(
e2n

) ≤ y < n + 1

2β
logL

(
e2n

)
,

then similarly

g̃1(y) − g1(y) = 1

2β
log

L(e2n)

L(e2n−2)
→ 0 as y → ∞ (n → ∞). (A.2)

�

Lemma A.2. Let g̃∗
1 be defined in (3.22). Then, for any A > 0,

g̃∗
1(logAx) − g̃∗

1(logx) → 0 as x → ∞.
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Proof. Suppose without loss of generality that A > 1. First, note that

g̃∗
1(logAx) − g̃∗

1(logx) = 1

2β

(
logL

(
e2nAx−2) − logL

(
e2nx−2))

= 1

2β
log

L(enAx−2)

L(enx−2)
(A.3)

= 1

2β
log

L(e2nAx−2nx e2nx−2)

L(enx−2)
,

where, for y (= x or Ax),

ny − 1 + 1

2β
logL

(
e2ny−2) ≤ logy < ny + 1

2β
logL

(
e2ny

)
.

Observe that nAx − nx takes only positive integer values, and that

0 ≤ nAx − nx ≤ �logA�.
Hence, by Theorem 1.2.1 of Bingham, Goldie and Teugels [4],

L(enAx−nx enx−1)

L(enx−1)
→ 1 as enx−1 → ∞ (or x → ∞).

This yields the result. �

Lemma A.3. The function l∗1 (x) defined in (3.27) is right-continuous and slowly varying at ∞.

Proof. To show that l∗1 (x) is slowly varying, write

l∗1 (x) = h1(�g2((1/(2β)) logx)�+)

h1(g2((1/(2β)) logx))

× h1

(
g2

(
1

2β
logx

))
eνg̃∗

1 ((1/(2β)) logx)e−ν(g1((1/(2β)) logx)−g̃1((1/(2β)) logx)).

Note that

h1(�g2((1/(2β)) logx)�+)

h1(g2((1/(2β)) logx))

= h1((�g2((1/(2β)) logx)�+/(g2((1/(2β)) logx)))g2((1/(2β)) logx))

h1(g2((1/(2β)) logx))
→ 1

by using (3.4), since g2(
1

2β
logx) → ∞ and

�g2((1/(2β)) logx)�+
g2((1/(2β)) logx)

→ 1 as x → ∞.
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By Lemma A.1, we also have

e−ν(g1((1/(2β)) logx)−g̃1((1/(2β)) logx)) → 1 as x → ∞.

Hence, l∗1 (x) is asymptotically equivalent to

h1

(
g2

(
1

2β
logx

))
eνg̃∗

1 ((1/(2β)) logx). (A.4)

It is enough to show that the function (A.4) is slowly varying. By using Lemma A.2, we have

eνg̃∗
1 ((1/(2β)) logAx)

eνg̃∗
1 ((1/(2β)) logx)

→ 1 as x → ∞. (A.5)

It remains to show that h1(g2(
1

2β
logx)) is a slowly varying function. For A > 0,

h1(g2((1/(2β)) logAx))

h1(g2((1/(2β)) logx))
(A.6)

= h1((g2((1/(2β)) logAx)/(g2((1/(2β)) logx)))g2((1/(2β)) logx))

h1(g2((1/(2β)) logx))
.

Now, by using (3.23),

g2((1/(2β)) logAx)

g2((1/(2β)) logx)

= (1/(2β)) logAx + g∗
2((1/(2β)) logAx)

(1/(2β)) logx + g∗
2((1/(2β)) logx)

= 1 + (1/(2β)) logAx + g∗
2((1/(2β)) logAx) − (1/(2β)) logx − g∗

2((1/(2β)) logx)

(1/(2β)) logx + g∗
2((1/(2β)) logx)

= 1 + (1/(2β)) logA + g∗
2((1/(2β)) logAx) − g∗

2((1/(2β)) logx)

g2((1/(2β)) logx)
→ 1,

since g2(
1

2β
logx) → ∞ and by using (3.24), g∗

2( 1
2β

logAx) − g∗
2( 1

2β
logx) → 0. Thus, by us-

ing (3.4) and (A.6), we have

h1(g2((1/(2β)) logAx))

h1(g2(
1

2β
logx))

→ 1 asx → ∞.

This completes the proof that l∗1 (x) is a slowly varying function.
The function l∗1 (x) is right-continuous since h1(x) can be defined to be continuous, g2 is

continuous (as the inverse of a continuous increasing function) and g1, g̃1 and g̃∗
1 are right-

continuous functions. �
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Lemma A.4. Let L be a slowly varying function. Then, for any fixed x0 �= e2β(r+1−b1), r ∈ Z,
β > 0, there are only finitely many integer values of n for which

m − b1 + 1

2β
logL

(
e2m−b2

) ≤ 1

2β
log(Aknx0) < m − b1 + 1

2β
logL

(
e2m−b3

)
, (A.7)

where Akn = e(n−1)2βL(e2n−2), m takes positive integer values, b1, b2 and b3 are fixed positive
constants with b2 > b3.

Proof. Suppose m = n + rn, where rn is a sequence of integers. We first show that if (A.7) is
satisfied for infinitely many values of n, then supn≥1 |rn| < ∞. Arguing by contradiction, for
example, assume rn → ∞ as n → ∞. From (A.7), we need to have

e2β(rn+1−b1)
L(e2n+2rn−b2)

L(e2n−2)
≤ x0 < e2β(rn+1−b1)

L(e2n+2rn−b3)

L(e2n−2)
. (A.8)

A standard argument using Potter’s bounds for L shows that e2β(rn+1−b1) L(e2n+2rn−b)

L(e2n−2)
→ ∞ (b =

b2 or b3) when rn → ∞. Since x0 is fixed, this leads to a contradiction. A similar argument can
be applied when rn → −∞.

Next we show that m is necessarily of the form m = n + r where r is a fixed integer for
large enough n. We prove this by contradiction. First, observe that rn can only take finitely many
integer values. Now if rn has a subsequence rnk

→ r , then letting n → ∞ in (A.8), we have
e2β(r+1−b1) = x0. Thus, r is determined uniquely and since rn are integers, we have that rn = r

for large enough n.
Finally, if m = n + r , then (A.7) cannot hold for infinitely many values of n unless x0 =

e2β(r+1−b1). This proves the lemma. �

Lemma A.5. Let (2.7)–(2.8) hold for a random variable X with l∗(x) replaced by a right-
continuous slowly varying function l∗1 (x) in (2.7). Then, l∗(x) in (2.8) can be replaced by another

right-continuous function l∗2 (x) if
l∗2 (x)

l∗1 (x)
→ 1 as x → ∞.

Proof. Observe that

1 − F(x) = x−αl∗2 (x)
(
MR

(
δ(x)

) + hR(x)
)

= x−αl∗1 (x)

(
MR

(
δ(x)

) + hR(x) +
(

l∗2 (x)

l∗1 (x)
− 1

)(
MR

(
δ(x)

) + hR(x)
))

(A.9)

= x−αl∗1 (x)
(
MR

(
δ(x)

) + hR(x) + h̃R(x)
)
,

where

h̃R(x) =
(

l∗2 (x)

l∗1 (x)
− 1

)(
MR

(
δ(x)

) + hR(x)
)
. (A.10)
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Since
l∗2 (x)

l∗1 (x)
→ 1 as x → ∞, MR is a bounded periodic function from (2.2) and hR(Aknx) → 0,

as n → ∞, we have h̃R(Aknx) → 0 for every continuity point x of MR(x). Hence, in (A.9), one
can take the new error function to be hR(x) + h̃R(x). Hence, the result is proved. �

Lemma A.6. Let h1 be the function defined in Theorem 3.1 and satisfying (3.4). For every δ > 0,
there is Mδ such that, for all n > Mδ ,

h1(Mδ + 1)eMδ+1eδn < h1(n) <
h1(Mδ + 1)

eδ(Mδ+1)
eδn.

Proof. Fix any δ = δ0 ∈ (0,1). By using (3.4), there exists Mδ0 such that for all m > Mδ0 ,
1 − δ0 <

h1(m+1)
h1(m)

< 1 + δ0. Take any n > Mδ0 . Then,

h1(n) = h1(n)

h1(n − 1)

h1(n − 1)

h1(n − 2)
· · · h1(Mδ0 + 2)

h1(Mδ0 + 1)
h1(Mδ0 + 1)

< h1(Mδ0 + 1)(1 + δ0)
n−Mδ0 −1 < h1(Mδ0 + 1)eδ0(n−Mδ0−1).

Similarly,

h1(n) > h1(Mδ0 + 1)(1 − δ0)
n−Mδ0 −1 > h1(Mδ0 + 1)e−δ0(n−Mδ0−1). �
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